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Nonlinear optics is concerned with the propagation
of intense beams of light through a material
system. The optical properties of the medium can
be modified by the intense light beam, leading to
new processes that would not occur in a material
that responded linearly to an applied optical field.
These processes can lead to the modification of
the spectral, spatial, or polarization properties of
the light beam, or the creation of new frequency
components. More complete accounts of nonlinear
optics including the origin of optical nonlinearities
can be found in references [72.1-4].

Both the Gaussian and MKS system of units are
commonly used in nonlinear optics. Thus, we have
chosen to express the equations in this chapter
in both the Gaussian and MKS systems. Each
equation can be interpreted in the MKS system
as written or in the Gaussian system by omitting
the prefactors (e.g., 1/4meg) that appear in square
brackets at the beginning of the expression on the
right-hand-side of the equation.
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72.1 Nonlinear Susceptibility

In linear optics it is customary to describe the response
of a material in terms of a macroscopic polarization P
(i. e., dipole moment per unit volume) which is linearly
related to the applied electric field E through the linear
susceptibility )((Nl). In order to extend the relationship
between P and E into the nonlinear regime, the polar-
ization is expanded in a power series of the electric field
strength. We express this relationship mathematically by
first decomposing the field and the polarization into their
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frequency components such that

E@r, 1) = Z E(r,w)e @ (72.1)
1

P, = Z P(r,w)e @ (72.2)
1

where the summations are performed over both positive
and negative frequencies. The reality of E and P is then
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assured by requiring that E(r, w;) = E*(r, —w;) and
P(r,w)) = P*(r, —wy). In this case the general expres-
sion for the Cartesian component i of the polarization at
frequency w, is given by

Piwo) = Leol| Y 1) @a) Ej(@o)
J

+3 03 X @ omy @)

jk (mn)

X E j(wm) Ex(wn)

3
+ Z Z Xi(j]j(wﬁ @, Wy, W) E j(w)

Jjkl (mno)

X Ej(wn) Er(wo)

b,

where ijkl refer to field components, and the notation
(mn), for example, indicates that the summation over
n and m should be performed such that w, = w,, + w,
is held constant. Inspection of (72.3) shows that
the x can be required to satisfy intrinsic permutation
symmetry, i.e., the Cartesian components and the cor-
responding frequency components [e.g., (j, ;) but not
(i, ws)] associated with the applied fields may be per-
muted without changing the value of the susceptibility.
For example, for the second-order susceptibility,

(72.3)

lek)(a)m W, Wp) —Xlk)(a)(rvwn»a)m) (72.4)
If the medium is lossless at all the field frequencies tak-
ing part in the nonlinear interaction, then the condition
of full permutation symmetry is necessarily valid. This
condition states that the pair of indices associated with
the Cartesian component and the frequency of the non-
linear polarization [i. e., (i, wy)] may be permuted along
with the pairs associated with the applied field compo-
nents. For example, for the second-order susceptibility,
this condition implies that

Xl]k)(wov WOm wn)—Xk])( Wn; O, —g) . (72.5)
If full permutation symmetry holds, and in addition all
the frequencies of interest are well below any of the
transition frequencies of the medium, the x ™) are invari-
ant upon free permutation of all the Cartesian indices.
This condition is known as the Kleinman symmetry
condition.

72.1.1 Tensor Properties

The spatial symmetry properties of a material can be
used to predict the tensor nature of the nonlinear sus-
ceptibility. For example, for a material that possesses
inversion symmetry, all the elements of the even-
ordered susceptibilities must vanish (i.e., X(”) =0 for
n even). The number of independent elements of the
nonlinear susceptibility for many materials can be sub-
stantially fewer than than the total number of elements.
For example, in general )((3) consists of 81 elements,
but for the case of isotropic media such as gases,
liquids, and glasses, only 21 elements are nonvanish-
ing and only three of these are independent. The non-
vanlshlng elements consist of the following types: Xz(jj)
and Xz;)z’ where i # j. In addition, it can be shown

XlJlJ
that

(3) 3) 3) 3)

i = Xigj ¥ Xijij + Xijji - (72.6)

72.1.2 Nonlinear Refractive Index

For many materials, the refractive index n is intensity-
dependent such that

n=nyg+nol, (72.7)

where ng is the linear refractive index, n; is the nonlinear
refractive index coefficient , and I = [4meg|noc| E |2 /27
is the intensity of the optical field. For the case of
a single, linearly polarized light beam traveling in an
isotropic medium or along a crystal axis of a cubic
material, n, is related to X(3) by

1 127‘[ (';)( )
np=——— w; W, W, W, —W) .
2 ]67‘[280 no Xiiii

(72.8)

For the common situation in which n, is measured in
units of cm?/W and x @ is measured in Gaussian units,
the relation becomes

cm? 1272 % 107
ml < )|=—=—x l(l?l)(w w, W, W, —W) .
W nge

(72.9)

There are various physical mechanisms that
can give rise to a nonlinear refractive index. For
the case of induced molecular orientation in CS,,
ny =3x10" 4 cm? /W.If the contribution to the nonlin-
ear refractive index is electronic in nature (e.g., glass),
then ny ~2x 1071 cm?/W.
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72.1.3 Quantum Mechanical Expression
for ™

The general quantum mechanical perturbation expres-
sion for the x“ in the nonresonant limit is (Under
conditions of resonant excitation, relaxation phenom-
ena must be included in the treatment, and the density
matrix formalism must be used [72.4]. The resulting
equation for the nonlinear susceptibility is then more
complicated)

(n) .
Xig--eip (wo; w1, ...

11N
=|:£i|ﬁe7jF Z 00(8)

, Wp)

gay--an
1
X
(walg_wl ——wp)
) i in-1 i
x HgaiHayay =" Ma’;,—lan Martlg (72.10)
(Wgyg —w2— -+ —wp) - - (Wa,g — ®n)

where w, = w1+ ---+wp, N is the density of atoms
or molecules that compose the material, pp(g) is the
probability that the atomic or molecular population is
initially in the state g in thermal equilibrium, u’a‘l a 18
the i1 th Cartesian component of the (aja;) dipole matrix
element, w,,, is the transition frequency between the
states a; and g, and JPr is the full permutation operator
which is defined such that the expression that follows
it is to be summed over all permutations of the pairs
(ip, wg), (i1, w1) - - - (in, W) and divided by the number
of permutations of the input frequencies. Thus the full
expression for x @ consists of six terms and that for y @
consists of 24 terms.

In the limit in which the frequencies of all the fields
are much smaller than any resonance frequency of the
medium, the value of X(") can be estimated to be

1 20 \"
L
&0 hwo

where 1 is a typical value for the dipole moment and
wo is a typical value of the transition frequency between
the ground state and the lowest-lying excited state. For
the case of x® in Gaussian units, the predicted value
is x® =3x107!*, which is consistent with the meas-
ured values of many materials (e.g., glass) in which
the nonresonant electronic nonlinearity is the dominant
contribution.

(72.11)

72.1.4 The Hyperpolarizability

The nonlinear susceptibility relates the macroscopic po-
larization P to the electric field strength E. A related
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microscopic quantity is the hyperpolarizability, which
relates the dipole moment p induced in a given atom
or molecule to the electric field E'°¢ (the Lorentz local
field) that acts on that atom or molecule. The relationship
between p and E'°° is

pi(ws)
= Leol[ Y e @0) E(@o)
J

D3 Bi(@o: om. 00) EY (0m) EXS (0n)

Jk (mn)

+ Z Z yijkl(a)g; Wy, Wy 5 W)

Jjkl (mno)

X EY () EX (@) E* (@0) ++ ] . (12.12)

where o;; is the linear polarizability, B;x is the
first hyperpolarizability, and y;j; is the second hy-
perpolarizability. The nonlinear susceptibilities and
hyperpolarizabilities are related by the number density
of molecules N and by local-field factors, which account
for the fact that the field E'°° that acts on a typical mol-
ecule is not in general equal to the macroscopic field E.
Under many circumstances, it is adequate to relate E'°°
to E through use of the Lorentz approximation

1
4dmeg
To a good approximation, one often needs to include

only the linear contribution to P(w), and thus the local
electric field becomes

E(0) = L(0)E(w) , (72.14)

where £L(w) = {[¢;']e(@)+2}/3 is the local field
correction factor and e(w) is the linear dielectric con-
stant. Since P(w) = Np(w), (72.3) and (72.12) through
(72.14) relate the x to the hyperpolarizabilities
through

E"°(w) = E(w) + [ } 4—”P(w) (72.13)
= : . .

Xi(jl)("’”) = L(wg) Najj(ws) , (72.15)
Xl.(]i)(wa; W, Wp) = L(Wg )L (W) L (y)

XN/gijk(wa; Wy, Wp)
(72.16)

Ko (@ @, On, @) = oL(06) L (@) L (@n) L (@)
X Ny;jki (0o ; W, @p, @) -
(72.17)
For simplicity, the analysis above ignores the vector
character of the interacting fields in calculating £ (w).

A generalization that does include these effects is given
in [72.5].

72.1 Nonlinear Susceptibility

T°¢l |4 Med
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72.2 Wave Equation in Nonlinear Optics

72.2.1 Coupled-Amplitude Equations

The propagation of light waves through a nonlinear
medium is described by the wave equation

2 2
viE- L0 g [L] TIh )
4meg | 2 or?
For the case in which E and P are given by (72.1),
the field amplitudes associated with each frequency
component can be decomposed into their plane wave
components such that

E(r o) =) Aur,one®”,
l

Porio =) Pur,ope®”,
l

(72.19)

where k;,, = n(wy)wy/c is the magnitude of the wavevec-
tor k,,. The amplitudes A, and P, are next decomposed
into vector components whose linear optical properties
are such that the polarization associated with them does
not change as the field propagates through the material.
For example, for a uniaxial crystal these eigenpolariza-
tions could correspond to the ordinary and extraordinary
components. In order to describe the propagation and
the nonlinear coupling of these eigenpolarizations, the
vector field amplitudes are expressed as

An(r, o) =1, Ap(r, wp) ,

Pn(r7wl):ﬁllzf7)n(r»wl); (72.20)
where i, is the unit vector associated with the
eigenpolarization of the spatial mode n at fre-
quency wj. If the fields are assumed to travel along the
z-direction, and the slowly-varying amplitude approxi-
mation 8%A,,/8z% < 2k, A, /9z is made, the change in
the amplitude of the field as it propagates through the
nonlinear medium with no linear absorption is described
by the differential equation

dA 1 i2m
nl@) PPN ), (72.21)
dz 4meg | n(wp)c
where #NL is the nonlinear contribution to the po-

larization amplitude #,, n(wy) is the linear refractive
index at frequency wy, and the plus (minus) sign indi-
cates propagation in the positive (negative) z-direction.
Sections 72.3 and 72.4 give expressions for the PN
for various second- and third-order nonlinear optical

processes. Equation (72.21)) is used to determine the
set of coupled-amplitude equations describing a par-
ticular nonlinear process. For example, for the case of
sum-frequency generation , the two fields of frequency
w; and w, are combined through second-order non-
linear interaction to create a third wave at frequency
w3 = w1 + wy. Assuming full permutation symmetry, the
amplitudes of the nonlinear polarization for each of the
waves are

PNz, 01) = (02X Az, 03) A" (2, wp) 74K

(72.22)
Pz ) = [80]2X¢£?1C)A(Zv w3)A*(z, wp) e 1Ak

(72.23)
PN (2, w3) = [60126 3 Az, 01) Az, w2) 2K,

(72.24)

where Ak = ki +kp — k3 is the wavevector mismatch
(see Sect. 72.2.2) and Xéff) is given by

2 2) Asy AN oA
Xt = > xi @) @) (72.25)
ijk
where (&;); = #i; - . For simplicity, the subscripts on each
of the field amplitudes have been dropped, since only

one spatial mode at each frequency contributed. The
resulting coupled amplitude equations are

2

dA(w1) _ _L_ 4w Xeff Alws) A (@2) o—iAkz i
dz |4 | n(wy)c
(72.26)
dA(wp) [ 17 i4nwzx(f2f) iAk
= — | — = A(w3)A* (1) e 7125
dz |4 | n(wp)c
(72.27)
dA(w3) [ 17 14770)3)((?2 iAk
= — | —Z A(w)) A(wr) e .
dz |4 | n(w3)c

(72.28)
72.2.2 Phase Matching

For many nonlinear optical processes (e.g., harmonic
generation) it is important to minimize the wave vec-
tor mismatch in order to maximize the efficiency. For
example, if the field amplitudes A(w;) and A(w;) are
constant, the solution to (72.28) yields for the output
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intensity

1k, @) = [m}

2
3273 [ng’] W2 1(1) () L?

n(wpn(w2)n(ws)c?

x sinc>(AkL/2) , (72.29)

in terms of sinc x = (sinx)/x, where I(L,w3)=
(4meg)n(w3)clA(L, w3)|2/27t, and I(w1) and I(wy) are
the corresponding input intensities. Clearly, the effect
of the wavevector mismatch is to reduce the efficiency
of the generation of the sum frequency wave. The
maximum propagation distance over which efficient
nonlinear coupling can occur is given by the coherence
length

2
=

As a result of the dispersion in the linear refrac-
tive index that occurs in all materials, achieving phase
matching over typical interaction lengths (e.g., 5 mm) is
nontrivial. For the case in which the nonlinear mater-
ial is birefringent, it is sometimes possible to achieve
phase matching by insuring that the interacting waves
possess some suitable combination of ordinary and ex-
traordinary polarization. Other techniques for achieving
phase matching include quasiphase matching [72.5] and
the use of the mode dispersion in waveguides [72.6].

However, the phase matching condition is automat-
ically satisfied for certain nonlinear optical processes,
such as two-photon absorption (see Sect.72.4.6) and
Stokes amplification in stimulated Raman scattering
(see Sect.72.5.1). One can tell when the phase match-
ing condition is automatically satisfied by examining the
frequencies that appear in the expression for the nonlin-
ear susceptibility. For a nonlinear susceptibility of the
sort X(3) (w1; wa, w3, w4) the wave vector mismatch is
given in general by Ak =k +k3 +ks —ky. Thus, for
the example of Stokes amplification in stimulated Ra-
man scattering, the nonlinear susceptibility is given by
X(S) (w1; w1, wo, —wp) where wo(wi) is the frequency
of the pump (Stokes) wave, and consequently the wave
vector mismatch vanishes identically.

Lc (72.30)

72.2.3 Manley—-Rowe Relations

Under conditions of full permutation symmetry, there
is no flow of power from the electromagnetic fields to
the medium, and thus the total power flow of the fields
is conserved. The flow of energy among the fields can
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be described by the Manley—Rowe relations. For exam-
ple, for the case of sum-frequency generation, one can
deduce from (72.26,27, 28) that

d [Hw) | d[Hw)]|_ d[lw3)
dz| o | dz| @ | dz| o3 |°

(72.31)

The expressions in square brackets are proportional to
the flux of photons per unit area per unit time, and imply
that the creation of a photon at w3 must be accompanied
by the annihilation of photons at both w and w;. Similar
relations can be formulated for other nonlinear optical
processes that are governed by a nonlinear susceptibil-
ity that satisfies full permutation symmetry. Since this
behavior occurs at the photon level, nonlinear optical
processes can lead to the generation of light fields that
have esoteric quantum statistical properties (Chapt. 78
and Chapt. 80).

A nonlinear optical process that satisfies the
Manley—Rowe relations is called a parametric process.
Conversely, a process for which field energy is not
conserved, and thus Manley—Rowe relations cannot be
formulated, is said to be nonparametric. Thus, paramet-
ric processes are described by purely real x ™, whereas
nonparametric proceses are described by complex x .

72.2.4 Pulse Propagation

If the optical field consists of ultrashort (<100 ps)
pulses, it is more convenient to work with the temporally
varying amplitude, rather than with the individual fre-
quency components. Thus, for a linearly polarized plane
wave pulse propagating along the z-axis, the field is de-
composed into the product of a slowly varying amplitude
A(z, t) and a rapidly varying oscillatory term such that

E@, 0= A(z, peltoz=eod L c o (72.32)
where kg = nowo/c. For a pulse propagating in a material
with an intensity-dependent refractive index, the prop-
agation can be described by the nonlinear Schrédinger
equation

A ipr 9%A

oz 2 a2 =iylAPA.

(72.33)
where f; = (dzk/ da)z)lwzw0 is the group velocity dis-
persion parameter, T = t — z/v, is the local time for the
pulse, v = [(dk/dw) Ia):wo]’1 is the group velocity, and
y = [4meglnanowp /2 is the nonlinear refractive index
parameter.

72.2 Wave Equation in Nonlinear Optics
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72.3 Second-0Order Processes

Second-order nonlinear optical processes occur as
a consequence of the second term in expression
(72.3), i.e., processes whose strength is described by
%@ (wy; @, ®,). These processes entail the genera-
tion of a field at frequency w, = w;, + w, in response
to applied fields at (positive and/or negative) frequen-
cies wy,, and w,. Several examples of such processes are
described in this Section.

72.3.1 Sum Frequency Generation

Sum frequency generation produces an output field at
frequency w3 = w; 4+ w; for w; and w, both positive. It
is useful, for example, for the generation of tunable radi-
ation in the uv if w; and/or w, are obtained from tunable
lasers in the visible range. Sum frequency generation is
described in detail in Sects. 72.2.1-72.2.3.

72.3.2 Second Harmonic Generation

Second harmonic generation is routinely used to convert
the output of a laser to a higher frequency. It is described
by *@ Qw; w, w). Let i be the power conversion effi-
ciency from frequency w to 2w. Assuming that phase
matching is perfect, and the pump wave at frequency w
is undepleted by the interaction, a derivation analogous
to that for (72.29) yields

n = tanh? (z/1) (72.34)

where the characteristic conversion length / is given by

c/n(w)nRw)
I =[4r]

4wy @|A10)]
Note that the conversion efficiency asymptotically ap-
proaches unity. In practice, conversion efficiencies
exceeding 80% can be achieved.

(72.35)

72.3.3 Difference Frequency Generation

Difference frequency generation can be used to create
light in the infrared and far infrared by generating the
difference frequency w; = w3 —w; (Where w3 and w;
are positive and w3 > w;) of two incident lasers. Con-
sider the case in which a strong (undepleted) pump
wave at frequency w3 and a weak (signal) wave
at w; are incident on a nonlinear medium described
by x® (w2; w3, —w1) = @ (w1; @3, —w7). The ampli-
tude A (w3) of the strong wave can be taken as a constant,

and thus the interaction can be described by finding si-
multaneous solutions to (72.26) and (72.27) for A(w)
and A(w3). In the limit of perfect phase matching (i.e.,
Ak = 0), the solutions are

A(z, w1) = A0, w1) coshkz , (72.36)
A
Al an) =i M9 A@) s ) sinhks
nawi |A(ws)|
(72.37)
where
1 1672'2[)((2)]20)2(,02
2 192 2
= A . (72.38
K [167#} kilac® [A(w3)|” . ( )

Equation (72.37) describes the spatial growth of the
difference frequency signal.

72.3.4 Parametric Amplification
and Oscillation

For the foregoing case of a strong wave at frequency w3
and a weak wave with w| < w3 incident on a second-
order nonlinear optical material, the lower frequency
input wave is amplified by the nonlinear interaction; this
process is known as parametric amplification. Difference
frequency generation is a consequence of the Manley—
Rowe relations, as described above in Sect. 72.2.3. Since
w3 = w| + w3, the annihilation of an w3 photon must be
accompanied by the simultaneous creation of photons
[} and w?l.

An optical parametric oscillator can be constructed
by placing the nonlinear optical material inside an op-
tical resonator that provides feedback at w; and/or w.
When such a device is excited by a wave at ws, it
can produce output frequencies w; and w; that sat-
isfy w1+ w» = w3. Optical parametric oscillators are
of considerable interest as sources of broadly tunable
radiation [72.7].

72.3.5 Focused Beams

For conceptual clarity, much of the discussion so far has
assumed that the interacting beams are plane waves.
In practice, the incident laser beams are often fo-
cused into the nonlinear material to increase the field
strength within the interaction region and consequently
to increase the nonlinear response. However, it is un-
desirable to focus too tightly, because doing so leads
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to a decrease in the effective length of the interac-
tion region. In particular, if wg is the radius of the
laser beam at the beam waist, the beam remains fo-
cused only over a distance of the order b = 27rw%/)L
where A is the laser wavelength measured in the non-

72.4 Third-0Order Processes

A wide variety of nonlinear optical processes are pos-
sible as a result of the nonlinear contributions to the
polarization that are third-order in the applied field.
These processes are described by X(3) (g W, Wy, W)
(72.3) and can lead not only to the generation of new
field components (e.g., third-harmonic generation) but
can also result in a field affecting itself as it propa-
gates (e.g., self-phase modulation). Several examples
are described in this section.

72.4.1 Third-Harmonic Generation

Assuming full-permutation symmetry, the nonlinear
polarization amplitudes for the fundamental and third-
harmonic beams are

PN (2, 0) = (203X AR 30) A%z, )P e

PN (2, 30) =80l xS TA G, )P el®¥ | (72.39)
where Ak = 3k(w) —k(Bw) and Xeff is the effective
third-order susceptibility for third-harmonic generation
and is defined in a manner analogous to the Xé?f)
in (72.25). If the intensity of the fundamental wave is
not depleted by the nonlinear interaction, the solution

for the output intensity /(L, 3w) of the third-harmonic
field for a crystal of length L is
48720 [Xe(?f)]

1
I(L,3w) = |:2567T48(2):| nGw)n(w)3ct
x I(w)> L?sinh®[AkL /2],

(72.40)

where I(w) is the input intensity of the fundamental
field. As a result of the typically small value of x ff)
in crystals, it is generally more efficient to generate
the third harmonic by using two x® crystals in which
the first crystal produces second harmonic light and the
second crystal combines the second harmonic and the
fundamental beams via sum-frequency generation. It is
also possible to use resonant enhancement of |x®|
in gases to increase the efficiency of third-harmonic
generation [72.8].
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linear material. For many types of nonlinear optical
processes, the optimal nonlinear response occurs if
the degree of focusing is adjusted so that b is several
times smaller than the length L of the nonlinear optical
material.

72.4.2 Self-Phase
and Cross-Phase Modulation

The nonlinear refractive index leads to an intensity-
dependent change in the phase of the beam as it
propagates through the material. If the medium is loss-
less, the amplitude of a single beam at frequency w
propagating in the positive z-direction can be expressed
as

Az, @) = A0, w)e®" @ (72.41)

where the nonlinear phase shift oNL(2) is given by

N (z) = %nzlz , (72.42)
and [ = [4meg]noc|A(O, a))|2/271 is the intensity of the
laser beam. If two fields at different frequencies w; and
wy are traveling along the z-axis, the two fields can affect
each other’s phase; this effect is known as cross-phase
modulation. The nonlinear phase shift qbll\ni (z) for each

of the waves is given by

P5(2) = %”2(11,24-212,1)2. (72.43)

For the case of a light pulse, the change in the phase
of the pulse inside the medium becomes a function of
time. In this case the solution to (72.33) for the time-
varying amplitude A(z, t) shows that in the absence
of group-velocity dispersion (GVD) (i.e., B2 = 0) that
the solution for A(z, 7) is of the form of (72.41), ex-
cept that the temporal intensity profile /(t) replaces the
steady-state intensity / in (72.42). As the pulse propa-
gates through the medium, its frequency becomes time
dependent, and the instantaneous frequency shift from
the central frequency wy is given by

apNL (1) _onpz dl

= — . (72.44)
at c ot

dw(r) = —

This time-dependent self-phase modulation leads to
a broadening of the pulse spectrum and to a frequency
chirp across the pulse.

72.4 Third-0rder Processes

'zl |4 Med



1058 PartF | Quantum Optics

'zl |4 Med

If the group velocity dispersion parameter 8, and the
nonlinear refractive index coefficient n, are of opposite
sign, the nonlinear frequency chirp can be compensated
by the chirp due to group velocity dispersion, and (72.33)
admits soliton solutions . For example, the fundamental
soliton solution is

1 .
A(z,t) =,/ —sech L gle/2lp
LD Tp

where 1), is the pulse duration and Lp = rg /1B2] is the
dispersion length. As a result of their ability to propagate
in dispersive media without changing shape, optical soli-
tons show a great deal of promise in applications such
as optical communications and optical switching. For
further discussion of optical solitons see [72.9].

(72.45)

72.4.3 Four-Wave Mixing

Various types of four-wave mixing processes can oc-
cur among different beams. One of the most common
geometries is backward four-wave mixing used in non-
linear spectroscopy and optical phase conjugation. In
this interaction, two strong counterpropagating pump
waves with amplitudes A1 and A, and with equal fre-
quencies w12 = w are injected into a nonlinear medium.
A weak wave, termed the probe wave, (with fre-
quency w3 and amplitude A3) is also incident on the
medium. As a result of the nonlinear interaction among
the three waves, a fourth wave with an amplitude A4
is generated which is counterpropagating with respect
to the probe wave and with frequency w4 = 20w — w3.
For this case, the third-order nonlinear susceptibili-
ties for the probe and conjugate waves are given by
X(3) (w3,4; ®, w, —w4,3). For constant pump wave inten-
sities and full permutation symmetry, the amplitudes of
the nonlinear polarization for the probe and conjugate
waves are given by

PNz, w3,4) = £le0l6x D[ (1A11* +A21%) A3 4
+ A ArAf 5K (72.46)

where Ak = ki +ky — k3 — ks is the phase mismatch,
which is nonvanishing when w3 # w4. For the case of op-
tical phase conjugation by degenerate four-wave mixing
(i.e., w3 = w4 = wand A4(L) = 0), the phase conjugate
reflectivity Rpc is
A4(0)]?
Rpc = % = tanz(KL) ,
[A3(0)]
where « = [1/167%¢0][247%wx® /(noc)?]/Ti T, and
Iy are the intensities of the pump waves. Phase-

(72.47)

conjugate reflectivities greater than unity can be
routinely achieved by performing four-wave mixing in
atomic vapors or photorefractive media.

72.4.4 Self-Focusing and Self-Trapping

Typically a laser beam has a transverse intensity profile
that is approximately Gaussian. In a medium with an
intensity-dependent refractive index, the index change
at the center of the beam is different from the index
change at the edges of the beam. The gradient in the
refractive index created by the beam can allow it to
self-focus for ny > 0. For this condition to be met, the
total input power of the beam must exceed the critical
power P, for self-focusing which is given by
7(0.612)2

cr —

(72.48)
8nono

where A is the vacuum wavelength of the beam. For
powers much greater than the critical power, the beam
can break up into various filaments, each with a power
approximately equal to the critical power. For a more
extensive discussion of self-focusing and self-trapping
see [72.10,11].

72.4.5 Saturable Absorption

When the frequency w of an applied laser field is suffi-
ciently close to a resonance frequency wg of the medium,
an appreciable fraction of the atomic population can
be placed in the excited state. This loss of population
from the ground state leads to an intensity-dependent
saturation of the absorption and the refractive index of
the medium (see Sect.69.2 for more detailed discus-
sion) [72.4]. The third-order susceptibility as a result of
this saturation is given by

X = [i] \WPT\ Toage 8T —i
&0 37Tw()h2 [1+(8T2)2]2 ’

where u is the transition dipole moment, 77 and T3 are
the longitudinal and transverse relaxation times, respec-
tively (see Sect. 68.4.3), «g is the line-center weak-field
intensity absorption coefficient, and § = w — wy is the
detuning. For the 3s <« 3p transition in atomic
sodium vapor at 300 °C, the nonlinear refractive index
na ~ 107 cm? /W for a detuning 87> = 300.

(72.49)

72.4.6 Two-Photon Absorption

When the frequency w of a laser field is such that 2w
is close to a transition frequency of the material, it is
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possible for two-photon absorption (TPA) to occur. This
process leads to a contribution to the imaginary part of
*® (; », , —w). In the presence of TPA, the intensity
I(z) of a single, linearly polarized beam as a function of
propagation distance is

1(0)
14+ B100)z°
where B =[1/167%¢0 |24 %wIm[x]/(noc)? is the
TPA coefficient. For wide-gap semiconductors such as
ZnSe at 800nm, 8~ 10~8 cm/W.

1(z) = (72.50)

72.4.7 Nonlinear Ellipse Rotation

The polarization ellipse of an elliptically polarized laser
beam rotates but retains its ellipticity as the beam prop-
agates through an isotropic nonlinear medium. Ellipse

72.5 Stimulated Light Scattering

Stimulated light scattering occurs as a result of changes
in the optical properties of the material that are induced
by the optical field. The resulting nonlinear coupling be-
tween different field components is mediated by some
excitation (e.g., acoustic phonon) of the material that
results in changes in its optical properties. The nonlin-
earity can be described by a complex susceptibility and
anonlinear polarization that is of third order in the inter-
acting fields. Various types of stimulated scattering can
occur. Discussed below are the two processes that are
most commonly observed.

72.5.1 Stimulated Raman Scattering

In stimulated Raman scattering (SRS), the light field
interacts with a vibrational mode of a molecule. The
coupling between the two optical waves can become
strong if the frequency difference between them is
close to the frequency w, of the molecular vibrational
mode. If the pump field at wgp and another field com-
ponent at w; are propagating in the same direction
along the z-axis, the steady-state nonlinear polariza-
tion amplitudes for the two field components are given
by

PN (2, w0,1) = [£016 Xz (@0.1)

x|A(z, 010)* Az, w0.1) , (72.52)

where  xg (@0.1) = X (@015 0,1, @1,0, —®1,0), the
Raman susceptibility, actually depends only on the fre-
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rotation occurs as a result of the difference in the
nonlinear index changes experienced by the left- and
right-circular components of the beam, and the angle 6
of rotation is

1
0==-A
5 nwz/c

2
_ 1 127 X(S.)
1672¢ n%c rIYE

x(w; w, 0, —0)(I+ —1-)z, (72.51)

where I are the intensities of the circularly polarized
components of the beam with unit vectors 6+ = (¥ +
i$)/~/2. Nonlinear ellipse rotation is a sensitive tech-
nique for determining the nonlinear susceptibility
element yx,yy, for isotropic media and can be used in
applications such as optical switching.

quency difference 2 = wy — w; and is given by

@o1) 17 N(3ee/3g); 1

[ =|— s

KO T b 02— 22F 2182
(72.53)

where the minus (plus) sign is taken for the wg (@)
susceptibility, wps is the reduced nuclear mass, and
(0a/9q)o is a measure of the change of the polarizability
of the molecule with respect to a change in the inter-
molecular distance ¢ at equilibrium. If the intensity of
the pump field is undepleted by the interaction with the
w field and is assumed to be constant, the solution for
the intensity of the w; field at z = L is given by

KL, 1) = 10, w1)e® (72.58)
where the SRS gain parameter GgR is
G L 48— iy (@n)ioL
= T m w
R= 1 T6n2e0 (o2 RGO
=grloL, (72.55)

gr is the SRS gain factor, and I is the input inten-
sity of the pump field. For w; < wg (w1 > wp), the w;
field is termed the Stokes (anti-Stokes) field, and it ex-
periences exponential amplification (attenuation). For
sufficiently large gains (typically Gr 2 25), the Stokes
wave can be seeded by spontaneous Raman scatter-
ing and can grow to an appreciable fraction of the
pump field. For a complete discussion of the sponta-
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neous initiation of SRS see [72.12]. For the case of CS,,
gr = 0.024 cm/MW.

Four-wave mixing processes that couple a Stokes
wave having w; <wp and an anti-Stokes wave
having w> > wg, where w+ wy = 2wy, can also oc-
cur [72.4]. In this case, additional contributions to
the nonlinear polarization are present and are char-
acterized by a Raman susceptibility of the form
X(3) (w1,2; wo, wo, —w2,1). The technique of coherent
anti-Stokes Raman spectroscopy is based on this four-
wave mixing process [72.13].

72.5.2 Stimulated Brillouin Scattering

In stimulated Brillouin scattering (SBS), the light field
induces and interacts with an acoustic wave inside the
medium. The resulting interaction can lead to extremely
high amplification for certain field components (i.e.,
Stokes wave). For many optical media, SBS is the
dominant nonlinear optical proccess for laser pulses of
duration > 1ns. The primary applications for SBS are
self-pumped phase conjugation and pulse compression
of high-energy laser pulses.

If an incident light wave with wave vector ko and
frequency wy is scattered from an acoustic wave with
wave vector ¢ and frequency €2, the wave vector and
frequency of the scattered wave are determined by con-
servation of momentum and energy to be k; = ko +¢ and
w1 = wp £ 2, where the (+) sign applies if kp - ¢ > 0 and
the (—) applies if kg - g < 0. Here, 2 and ¢q are related by
the dispersion relation Q2 = v|g| where v is the velocity
of sound in the material. These Bragg scattering con-
ditions lead to the result that the Brillouin frequency
shift Qp = w; —wp is zero for scattering in the for-
ward direction (i.e., in the ko direction) and reaches
its maximum for scattering in the backward direction
given by

Qp = 2wovng/c, (72.56)

where ng is the refractive index of the material.

The interaction between the incident wave and the
scattered wave in the Brillouin-active medium can be-
come nonlinear if the interference between the two
optical fields can coherently drive an acoustic wave,
either through electrostriction or through local dens-
ity fluctuations resulting from the absorption of light
and consequent temperature changes. The following
discussion treats the more common electrostriction
mechanism.

Typically, SBS occurs in the backward direction
(i.e., ko = koZ and k; = —k1Z2), since the spatial overlap

between the Stokes beam and the laser beam is maxi-
mized under these conditions and, as mentioned above,
no SBS occurs in the forward direction. The steady-
state nonlinear polarization amplitudes for backward
SBS are

PN (2, w0,1) = [016X5 (@0,1)

x|A@z, @1,0)*A(z, 0,1) . (72.57)
where  x; (@0,1) = X (wo,1; w01, ®1,0, —01,0), the

Brillouin susceptibility, depends only on Q2 = wg — w
and is given by

1 :| w(z)ye2 1
g0 | 24m2cpo QF — Q2 FilpQ
(72.58)

XB(Q)O,I) = |:

where the minus (plus) sign is taken for the wp (@)
susceptibility, y. is the electrostrictive constant, pg is
the mean density of the material, and I'g is the Brillouin
linewidth given by the inverse of the phonon lifetime.
If the pump field is undepleted by the interaction with
the w; field and is assumed to be constant, the solution
for the output intensity of the w; field at z =0 is given
by

10, 1) = I(L, w1)e%® (72.59)

where the Brillouin gain coefficient Gy is given by

G U482 s @nlloL
= T m w )
B 1672¢g (noc)? ABLOLIT0

QQply
80— 5
[Qf — Q%] +(QIB)?
=gBlL,

IpL

(72.60)

g is the SBS gain factor, Iy is the input intensity of the
pump field, and

oo | L | e
0 8(2) noc3povly

is the line-center (i.e., 2 = +Qp) SBS gain factor.
For @ > 0 (22 < 0), the w; field is termed the Stokes
(anti-Stokes) field, and it experiences exponential am-
plification (attenuation). For sufficiently large gains
(typically Gp 2 25), the Stokes wave can be seeded
by spontaneous Brillouin scattering and can grow to
an appreciable fraction of the pump field. For a com-
plete discussion of the spontaneous initiation of SBS
see [72.14]. For CS3, go = 0.15cm/MW.

(72.61)
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72.6 Other Nonlinear Optical Processes

72.6.1 High-Order Harmonic Generation

If full permutation symmetry applies and the fundamen-
tal field w is not depleted by nonlinear interactions, then
the intensity of the gth harmonic is given by

1

27q2w? |: 2 l(w) ]q

n?(qw)c | n(w)c
x|x@(qo; o, ..., 0)Jy(Ak 20, 2|,
(72.62)
where Ak = [n(w) —n(qw)]w/c,
AN
Jy(Ak, zo,2) = / IR (72.63)

20

7 = zo at the input face of the nonlinear medium, and b is
the confocal parameter Sect. 72.3.5 of the fundamental
beam. Defining L = z — zo, the integral J; can be eas-
ily evaluated in the limits L <« b and L > b. The limit
L <« b corresponds to the plane-wave limit in which
case

|J4(AK, 20, 2)[* = L?sinc? (AT/‘L> ) (72.64)

The limit L >> b corresponds to the tight-focusing con-
figuration in which case

0, Ak<0,
q—2
Jy(Ak, zo,2) = b bAk ebAK/2
@=2!'\ 2
Ak>0.
(72.65)

Note that in this limit, the gth harmonic light is
only generated for positive phase mismatch. Reintjes
et al. [72.15, 16] observed both the fifth and seventh
harmonics in helium gas which exhibited a depen-
dence on I(w) which is consistent with the 79(w)
dependence predicted by (72.62). However, more re-
cent experiments in gas jets have demonstrated the
generation of extremely high-order harmonics which
do not depend on the intensity in this simple manner
(see Chapt. 74 for further discussion of this nonpertur-
bative behavior).
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72.6.2 Electro-Optic Effect

The electro-optic effect corresponds to the limit in which
the frequency of one of the applied fields approaches
zero. The linear electro-optic effect (or Pockels effect)
can be described by a second-order susceptibility of
the form X(z) (w; w, 0). This effect produces a change
in the refractive index for light of certain polariza-
tions which depends linearly on the strength of the
applied low-frequency field. More generally, the linear
electro-optic effect induces a change in the amount of
birefringence present in an optical material. This elec-
trically controllable change in birefringence can be used
to construct amplitude modulators, frequency shifters,
optical shutters, and other optoelectronic devices. Ma-
terials commonly used in such devices include KDP and
lithium niobate [72.17]. If the laser beam is propagat-
ing along the optic axis (i.e., z-axis) of the material
of length L and the low-frequency field E; is also ap-
plied along the optic axis, the nonlinear index change
An = ny, —n, between the components of the electric
field polarized along the principal axes of the crystal is
given by

an=| | ndresE (72.66)

n= yp nyre3 E; .
where rg3 is one of the electro-optic coefficients.

The quadratic electro-optic effect produces a change
in refractive index that scales quadratically with the ap-
plied dc electric field. This effect can be described by
a third-order susceptibility of the form X(3) (w; w, 0, 0).

72.6.3 Photorefractive Effect

The photorefractive effect leads to an optically induced
change in the refractive index of a material. In certain
ways this effect mimics that of the nonlinear refractive
index described in Sect.72.1.2, but it differs from the
nonlinear refractive index in that the change in refrac-
tive index is independent of the overall intensity of the
incident light field, and depends only on the degree of
spatial modulation of the light field within the nonlinear
material. In addition, the photorefractive effect can oc-
cur only in materials that exhibit a linear electro-optic
effect, and contain an appreciable density of trapped
electrons and/or holes that can be liberated by the appli-
cation of a light field. Typical photorefractive materials
include lithium niobate, barium titanate, and strontium
barium niobate.

72.6 Other Nonlinear Optical Processes
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A typical photorefractive configuration might be
as follows: two beams interfere within a photorefrac-
tive crystal to produce a spatially modulated intensity
distribution. Bound charges are ionized with greater
probability at the maxima than at the minima of the dis-
tribution and, as a result of the diffusion process, carriers
tend to migrate away from regions of large light intensity.
The resulting modulation of the charge distribution leads
to the creation of a spatially modulated electric field that
produces a spatially modulated change in refractive in-
dex as a consequence of the linear electro-optic effect.
For a more extensive discussion see [72.18].

72.6.4 Ultrafast and Intense-Field
Nonlinear Optics

Additional nonlinear optical processes are enabled by
the use of ultrashort (< 1 ps) or ultra-intense laser pulses.
For reasons of basic laser physics, ultra-intense pulses
are necessarily of short duration, and thus these effects
normally occur together. Ultrashort laser pulses possess
a broad frequency spectrum, and therefore the disper-
sive properties of the optical medium play a key role in
the propagation of such pulses. The three-dimensional
nonlinear Schrodinger equation must be modified when
treating the propagation of these ultrashort pulses by
including contributions that can be ignored under other
circumstances [72.19,20]. These additional terms lead to
processes such as space-time coupling, self-steepening,
and shock wave formation [72.21,22]. The process of
self-focusing is significantly modified under short-pulse
(pulse duration shorter than approximately 1 ps) exci-
tation. For example, temporal splitting of a pulse into
two components can occur; this pulse splitting lowers
the peak intensity, and can lead to the arrest of the usual
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