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Controlling nonlinear rogue-wave formation using the coherence length of phase noise
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Weak phase noise present on an optical field can be amplified by a self-focusing nonlinearity (n2 > 0) and
form intense “rogue-wave” features. Here, we study the effect of the coherence length (or grain size) of this
phase noise on the likelihood of rogue-wave formation in the presence of a self-focusing nonlinearity. We show
that while the likelihood of rogue-wave formation increases with laser power when the coherence length is only
slightly smaller than the beam diameter, the likelihood is minimally affected by a change in laser power when the
coherence length is significantly smaller than the beam diameter. Our study provides insight into the interaction
of nonlinearity with phase instabilities on a field and could be useful in applications such as reducing the effect
of turbulence-induced breakup of intense laser beams, and developing radiance limiters to reduce the focusable
power in a beam.
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I. INTRODUCTION

The formation of rare but extreme (or “rogue”) amplitude
waves in optical [1–6], microwave [7], and hydrodynamic sys-
tems [8] have attracted considerable recent interest [9–11]. A
random phase fluctuation with sufficient strength imposed on
an optical field can develop on propagation into networklike
intensity patterns that are commonly referred to as “caus-
tics” [3,6,12]. Light can concentrate very tightly in caustics,
which facilitates rogue-wave formation and leads to long-
tailed statistics for the intensity and non-Rayleigh statistics
for the amplitude. Rogue waves in linear systems can develop
through the constructive interference of several waves with
random phases and amplitudes [13], or through the directional
focusing of these waves [14]. Speckle formation in optical
systems is also a linear phenomenon, and the complex ampli-
tude of a fully developed speckle field has circular Gaussian
statistics with a negative exponential distribution of intensity
[15,16]. Long-tailed intensity statistics in linear systems can
occur due to multiple scattering through a medium [17], due
to the spatial inhomogeneity-induced clustering of speckles
with different grain sizes [18], and through the redistribution
of energy among several speckle grains in the farfield due to
higher-order correlations encoded onto the field [19].

The presence of nonlinearity in an optical system
can considerably influence the formation of rogue waves.
Rogue events have been observed during supercontinuum
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generation in nonlinear fiber-optics systems and are the result
of collisions between “breather” solitons formed by nonlin-
ear amplification of modulational instability in the system
[1,10,20,21]. Rogue waves can also form in spatially extended
nonlinear systems either by means of self-focusing seeded
by wavefront perturbations on the field [4,6,22] or by hy-
percycle amplification after the breaking of spatial symmetry
in optical cavities [23]. Small scale filamentation is another
phenomenon that occurs when a large self-focusing nonlin-
earity amplifies angular spectral sidebands through four-wave
mixing, leading to the formation of several localized struc-
tures called “filaments” such that each filament has the same
(critical) power Pcr [24,25]. Rogue waves can also form in
a beam undergoing small-scale filamentation when filaments
merge because of medium inhomogeneities [25]. A self-
focusing nonlinearity can enhance rogue-wave formation in
laser beams containing weak phase noise [6]. However, a
nonuniform polarization structure on the beam can suppress
rogue waves under certain conditions [26]. Rogue waves are
more likely to form in speckle patterns of a particular coher-
ence length propagating through a photorefractive crystal due
to the saturation of nonlinearity once a rogue feature reaches a
certain minimum width [5]. Light scattered through a medium
with tailored disorder can also show a similar enhancement of
rogue-wave formation at a particular coherence length of the
disorder [27].

Here, we study how the transverse spatial coherence length
of phase noise affects rogue-wave formation in the presence of
a self-focusing nonlinearity. We measure the intensity statis-
tics of the beam after it propagates through a hot rubidium
vapor cell for various coherence lengths (or grain sizes) of the
phase noise and various beam powers. We observe that the in-
tensity statistics have a diminished sensitivity to nonlinearity
when the coherence length of the phase noise is much smaller
than the beam width. We also study the mechanism behind
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FIG. 1. (a) Schematic of the experimental setup. H-polarized
light from a tunable diode laser is diffracted by a phase-only grating
on spatial light modulator SLM1 forming a Gaussian beam of diam-
eter D0 (to 1/e2 values of the intensity) in the first diffractive order.
SLM2 adds a random phase mask (example shown in the inset) with
coherence length Lcoh and amplitude of π rad on the beam. The active
area of SLM2 is then relayed to the entrance facet (purple dashed
line) of a 7.5-cm-long rubidium cell through a telescope formed by
lenses L1 (focal length f1 = 1 m) and L2 (focal length f2 = 0.75 m).
The output facet (green dashed line) of the cell is then imaged by lens
L3 onto the image plane of the camera. Measured caustic patterns
formed by noisy beams with Lcoh/D0 of [(b) and (f)] 0.135, [(c) and
(g)] 0.075, [(d) and (h)] 0.045, and [(e) and (i)] 0.015, after linear
(top), and nonlinear (bottom) propagation through the cell are also
shown. The beam power at the input of the cell (Pin) was 90 mW for
the nonlinear results. The focal lengths of the lenses L1, L2, and L3
are 1 m, 75 cm, and 30 cm, respectively.

this effect through numerical simulations of nonlinear beam
propagation. Our simulations show that small-grained phase
noise induces the redistribution of beam power into multiple
filaments of reduced intensity, thereby limiting the maximum
intensity in a rogue feature relative to the background. Our
study complements Refs. [5,6,26], and is relevant for the de-
velopment of better optical power limiters, and for probing a
turbulent medium and mitigating its effect on the propagation
of intense laser beams.

II. EXPERIMENT

Figure 1(a) shows the schematic of our experimental setup.
Our saturable nonlinear medium is a cell containing natural
abundance rubidium. We heat the cell to 115 ◦C, and blue
detune our laser source by 600 MHz above the 87Rb D2

F = 1 → F ′ = 2 transition in order to have a self-focusing
nonlinear response. A horizontally polarized beam from our

laser source diffracts from a phase grating impressed on a
spatial light modulator (SLM1) and forms a Gaussian beam
of diameter 2.5 mm (D0) in the first diffractive order. We
isolate this diffractive order by letting the light propagate over
2 m, and add a conjugate defocus on SLM1 to compensate
for the accumulated defocus on the beam. Both SLM1 and
SLM2 are liquid-crystal-on-silicon (LCOS) phase only SLMs
from Hamamatsu that have identical resolution (600 × 800)
and pixel size (20 µm). SLM2 adds a random phase mask with
a spatial coherence length Lcoh and a maximum amplitude of
π rad onto the beam. To determine the random phase mask, we
generate a 600 × 800 matrix of uniformly distributed random
numbers between 0 and 1, and apply to this salt-and-pepper
noise matrix a Gaussian filter of width 1/Lcoh defined below
[28], which acts as a blur

G(kx, ky) = L2
coh

2π
exp

(
−k2

x + k2
y

2
L2

coh

)
. (1)

We then multiply the matrix by π so that the maximum phase
amplitude of the added phase noise is π rad. Limiting the max-
imum phase amplitude to π rad ensures, as we show later, that
the caustics formed after purely linear propagation through
the cell are weak enough to not yield long-tailed intensity
statistics [6]. The lenses L1 and L2 form a telescope that
relays the active area of SLM2 to the entrance facet of the
rubidium cell to form a fully resolved image of the phase mask
realized on SLM2. The waveplates before the cell convert the
polarization of the beam to left-handed circular to match the
handedness of the σ+ atomic transition. The lens L3 images
the output facet of the cell onto the image plane of the camera,
which records the intensity at the cell output.

Figures 1(b)–1(e) show the recorded output intensity
distributions after linear propagation through the cell for rep-
resentative phase masks with Lcoh/D0 of 0.135, 0.075, 0.045,
and 0.015, respectively. For all linear measurements, we in-
crease the value of detuning from 600 MHz to 65.04 GHz and
fix input beam power Pin to 4 mW. As shown in Figs. 1(b)–
1(e), the added phase noise leads to redistribution of the beam
intensity upon linear propagation, but is weak enough that
no sharp caustics are formed. As we decrease the Lcoh/D0

of noise (left to right), more “hotspots” are formed in the
beam such that the intensity corresponding to the smallest
Lcoh/D0 [Fig. 1(e)] becomes more granular. Figures 1(f)–1(i)
show the recorded intensities for the same phase masks as
in the top panels (b)–(e), but with the nonlinearity turned on
by changing the detuning to 600 MHz, and the beam power
Pin to 90 mW. The nonlinearity sharpens the hotspots formed
during linear propagation while preserving their underlying
structure [6].

To quantify the intensity statistics, we record output in-
tensity patterns for an ensemble of 500 random phase masks
with the same Lcoh. We acquire these intensity datasets for
nonlinear propagation through the cell at various incident
beam powers Pin (30, 60, 90, and 115 mW) and various Lcoh

values (varied from 50 to 450 µm). We also record datasets
for linear propagation through the cell. We only select the
pixels in the acquired images that overlap with the beam to
calculate the histogram of intensities in each dataset. These
intensity histograms NH (IN ) are well described by a Weibull
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FIG. 2. (a) Measured intensity histograms (markers) and their respective Weibull distribution fits (lines) after (a) linear and (b) nonlinear
propagation through the rubidium cell for Lcoh/D0 of 0.135 (blue, solid), 0.075 (red, dot-dashed), 0.045 (green, dashed), and 0.015 (purple,
dotted). The value of Pin for the nonlinear datasets is 90 mW. The shaded regions around the respective plot markers represent the uncertainty
of counts in the corresponding bins. The value of the parameter β for each fit is stated in the legend along with the corresponding uncertainty
obtained through Monte Carlo simulations. The rogue-wave threshold intensities IRW for each distribution are shown as solid vertical lines of
the same color in both (a) and (b). (c) The variation of β with Lcoh/D0 for linear measurements (black triangles), and nonlinear measurements
with Pin of 30 (blue circles), 60 (red squares), 90 (green diamonds), and 115 mW (purple triangles). The gray shaded region indicates the range
of β corresponding to long-tailed intensity statistics.

distribution defined as follows [29]:

NH (IN ) = Ntotal
β

α

(
IN

α

)β−1

exp

[
−

(
IN

α

)β]
, (2)

where IN = I/〈I〉e is the beam intensity normalized to the
ensemble average of intensities in the entire dataset 〈I〉e, Ntotal

is the total number of counts in the dataset, and the parameters
α and β are the scale and shape parameters of the distribu-
tion, respectively. Fully developed speckle patterns have an
exponential distribution of intensities [16] and correspond to
the scenario when β = 1. Long-tailed statistics have values
of β smaller than 1 with caustic formation and rogue-wave
behavior becoming more likely with smaller values of β. We
estimate β for our measured intensity histograms by perform-
ing maximum likelihood estimation (MLE) fits to the Weibull
distribution followed by Monte Carlo simulations to obtain
the uncertainties of the fit parameters.

Figures 2(a) and 2(b) show the measured intensity statistics
along with their respective Weibull distribution fits for linear
and nonlinear propagation through the rubidium cell, respec-
tively, for Lcoh/D0 of 0.135 (blue circles and dotted line),
0.075 (red diamonds and dashed line), 0.045 (green squares
and dot-dashed line), and 0.015 (purple triangles and solid
line). The input beam power Pin for the nonlinear datasets
in Fig. 2(b) is 90 mW. The values of β estimated from the
fits to each dataset are indicated in the legend. The nonlinear
datasets in Fig. 2(b) show long-tailed statistics throughout,
which is also manifested in the smaller estimated values of
β for all Lcoh/D0 compared to the linear datasets in Fig. 2(a).
The “tailiness” of the statistics can also be quantified in terms
of the percentage of all counts in the histogram that exceed
the rogue-wave threshold IRW, which is defined as twice the
average intensity in the highest third of events (or pixels
with the highest third of recorded intensities) [10,30]. See
Appendix A for details on the calculation of IRW and the
percentage of counts that exceed IRW. For the linear results
in Fig. 2(a), we do not observe any rogue events for Lcoh/D0

of 0.135 and 0.015, and only 0.001% and 0.005% for Lcoh/D0

of 0.075 and 0.045, respectively. In contrast, for the nonlinear
results in Fig. 2(b), approximately 0.03%, 0.068%, 0.088%,
and 0.058% of counts exceed IRW for Lcoh/D0 of 0.135, 0.075,
0.045, and 0.015, respectively. Additionally, the values of
IRW for the nonlinear datasets are significantly larger than the
linear dataset throughout (see Table I in Appendix A for the
estimated values of IRW and the rogue-wave percentages for
all of the measured datasets). We also note that phase noise
of smaller Lcoh/D0 has a wider angular spectral bandwidth
(see Fig. 6 in Appendix C). This broadband noise seed should
cause further broadening of the angular spectrum of the beam
through four-wave mixing and lead to sharper caustics and
longer-tailed intensity statistics. However, we do not observe
a monotonic increase in the “tailiness” of intensity statistics
as Lcoh/D0 is reduced in Fig. 2(b), which is also reflected
in the associated values of β given in the legend. Instead, β

is minimized for Lcoh/D0 of 0.075, and its distribution is the
most long tailed.

Figure 2(c) shows the variation of β with Lcoh/D0 for linear
measurements (black triangles) and nonlinear measurements
with Pin of 30 (blue circles), 60 (red squares), 90 (green
diamonds), and 115 mW (purple triangles). The shaded gray
region represents the region where β < 1 and rogue-wave
behavior is likely. As also shown in Fig. 2(a), β > 1 for purely
linear propagation for all values of Lcoh/D0 considered here
and we do not observe either rogue-wave behavior or the
formation of a fully developed speckle pattern. The reasons
for this result are: (i) the propagation distance (length of
the cell) is short enough to be in the Fresnel region of the
incident beam. Consequently, the number of scattering centers
on the phase mask contributing to the field at any point on
the observation plane is small enough for the central limit
theorem to not be valid in a random walk statistical model
of the field, which leads to non-Gaussian field statistics [31].
This argument is especially true for larger values of Lcoh/D0

for which there are fewer scattering centers for the input beam.
(ii) The maximum phase amplitude of the added phase noise
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is π , and hence small enough to not lead to strong focusing
into sharp caustics after propagation through the cell [6]. The
value of β for nonlinear measurements is smaller than β

for linear measurements for all Lcoh/D0, which is consistent
with the aforementioned increase in sharpness of caustics due
to nonlinearity. The noteworthy feature, however, is that for
nonlinear measurements, β is significantly more sensitive to
the beam power Pin when Lcoh/D0 is larger than 0.075 than
it is for smaller Lcoh/D0. This diminished sensitivity of the
broadening of angular spectrum of the beam to nonlinearity
when seeded by broadband phase noise shares similarities
with the reduced effect of nonlinearity on the broadening of
the modulational instability spectrum in an optical fiber for
a low amplitude partially coherent broadband seed [32]. We
further explore this observed phenomenon through numerical
simulations.

III. NUMERICAL MODELING

The propagation of a field E(r, t ) = E (x, y)ei(kz−ωt )êL +
c.c. through a spatially extended nonlinear medium, such as
our rubidium cell, can be described by the (2 + 1)-D nonlinear
Schrödinger equation (NLSE) [24] given below

∂E

∂z
− i

2k
∇2

⊥E = ik

2ε0
P, (3)

where E (x, y) is the field envelope, ω is the angular frequency
of the laser, k is the wave number, ∇2

⊥ = ∂2/∂x2 + ∂2/∂y2

is the transverse Laplacian, P = ε0χ (E )E is the atomic po-
larization, and χ (E ) is the total atomic susceptibility that
includes the linear as well as all orders of nonlinear response
[24]. In our calculation of total susceptibility, we include
the contributions from all the D2 transitions of rubidium.
See Appendix B for more details. We use the split-step
Fourier method [33] to solve Eq. (3), and obtain the field
at any location (x, y, z) within the rubidium cell. We use
Fresnel propagation for all linear propagation calculations
[34]. For all simulations, we assume a transverse resolution of
2048 × 2048 pixels, a pixel size of 4.89 µm, and a longitudinal
step size of 0.5 mm. We account for the slight longitudinal
misalignment in our experimental setup by assuming that the
beam waist is located 6 mm before the cell and add 1 cm of
linear propagation after the cell.

Figures 3(a)–3(d) show the simulated output intensities for
the same set of phase masks used in the experiment that were
used for the measured output intensities shown in Figs. 1(f)–
1(i). We also include an amplitude mask on the Gaussian beam
to match the intensity of the Gaussian beam in our experiment
[see Fig. 7(a)]. The simulated intensities in Figs. 3(a)–3(d),
and the measured intensities in Figs. 1(f)–1(i) have very sim-
ilar underlying intensity structures and sharpness of caustic
features. Figure 3(e) shows the simulated intensity statistics
for Pin of 90 mW, and Lcoh/D0 of 0.135 (blue circles), 0.075
(red diamonds), 0.045 (green squares), and 0.015 (purple tri-
angles). We use 200 realizations of random phase masks of a
particular Lcoh/D0 to calculate these intensity statistics. The
simulated statistics show a good qualitative agreement with
the measured statistics shown in Fig. 2(b) for the same set of
parameters, and in both scenarios, the histogram correspond-
ing to Lcoh/D0 of 0.075 is the most long tailed. We emphasize

FIG. 3. (a) Simulated caustic patterns at the output of the cell
for Pin of 90 mW, and Lcoh/D0 of (a) 0.135, (b) 0.075, (c) 0.045, and
(d) 0.015. The phase masks used for these calculations were the same
as the ones used in the experiment to capture the caustic patterns
shown in Figs. 1(b)–1(e). (e) Simulated intensity statistics for Pin of
90 mW, and Lcoh/D0 of 0.135 (blue circles), 0.075 (red diamonds),
0.045 (green squares), and 0.015 (purple triangles).

that we do not expect a complete agreement between our
measurements and numerical simulations due to several con-
tributing factors, such as nonlocality in the nonlinear response
of rubidium vapor [35], temperature variation within the cell
leading to a spatial variation in the nonlinear susceptibility,
aberrations in the imaging optics and the windows of the cell,
and the pixel size of SLMs. Furthermore, the reinforcing na-
ture of the self-focusing nonlinearity implies that our system is
highly sensitive to any noise present in the experiment, which
is difficult to account for in our simplified numerical model
completely. However, the good qualitative agreement between
our measurements and simulations allows us to study and
draw reasonable conclusions about the propagation dynamics
of the beam within the cell.

IV. DISCUSSION

To understand the interplay between phase noise induced
distortion of the beam and the self-focusing nonlinearity, we
use our simplified numerical model to study the propagation
dynamics over a distance of 15 cm in the presence and in
the absence of nonlinearity. Our use of the numerical model
to understand the propagation dynamics is motivated by the
fact that we cannot experimentally image the beam inside
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FIG. 4. The evolution of the scintillation index σ 2
I with propagation distance z as predicted by our numerical model under (a) linear, and

under [(b) and (c)] nonlinear propagation with Pin of 90 and 180 mW, respectively. The legend shows the values of Lcoh/D0 of the random
phase mask added to the beam. The dashed black line indicates the threshold above which long-tailed intensity statistics start to emerge.

the nonlinear medium. We use the scintillation index σ 2
I as

a metric for the sharpness of caustics and monitor its variation
with propagation distance z. The quantity σ 2

I is the normalized
variance of intensity defined as [36,37]

σ 2
I = 〈I2〉 − 〈I〉2

〈I〉2
. (4)

Here, 〈· · · 〉 denotes the transverse spatial average over the
entire field. Fully developed speckle patterns have a σ 2

I of
unity, while caustics with large intensity fluctuations in the
transverse plane have σ 2

I larger than unity. Also referred in
the literature as the intensity “contrast” [12,31], the scin-
tillation index has been used as a metric to identify the
onset of branched flow—another instance of caustic forma-
tion due to the focusing of waves propagating through media
with correlated disorder [37,38], and to characterize irradi-
ance fluctuations in waves propagating through turbulence
[12,36,39]. Figure 4(a) shows the evolution of σ 2

I for a noisy
Gaussian beam with Lcoh/D0 of 0.135 (blue, solid), 0.075 (red,
dot-dashed), 0.045 (green, dashed), and 0.015 (purple, dot-
ted) during linear propagation. The black horizontal dashed
line indicates the threshold value of σ 2

I above which sharp
caustics characterized by larger fluctuations in intensity than
a Gaussian speckle are observed. For a specific set of input
parameters (Pin and Lcoh), we average σ 2

I at each z over 100
different phase masks. This averaged σ 2

I is represented by the
lines, and the shaded regions around the lines represent its
standard deviation. Figures 4(b) and 4(c) show the evolution
of σ 2

I with z for nonlinear propagation with Pin of 90 and
180 mW, respectively, and the same set of values of Lcoh/D0

as in Fig. 4(a).
We note that in all of the scenarios shown in Figs. 4(a)–

4(c), σ 2
I at first increases with z, and then peaks as the phase

noise on the beam morphs into intensity distortion. This rate
of increase in σ 2

I depends strongly on the grain size of the
phase noise, as well as the nonlinearity. As also discussed
previously in Refs. [12,31], we observe in Fig. 4(a) that σ 2

I
initially increases with z until it reaches a maximum when
the various “facets” or grains of the added phase noise on
the beam initially come to a focus along the minima of
their gradients to form hotspots. When the grain size of the
noise is much smaller than the beam diameter (such as when

Lcoh/D0 = 0.015), the phase variations occur over a smaller
area within the beam and so the phase gradients are larger
and more densely packed [see Fig. 7(b)]. For purely linear
propagation, these hotspots then diverge, thereby causing σ 2

I
to decrease with z. As the grain size of phase noise becomes
larger, the phase gradients decrease in magnitude and become
less densely packed [see Fig. 7(c)], which leads to fewer
grains within the beam that focus into hotspots at larger z.

In the presence of nonlinearity, the hotspots formed after
the initial reorganization of the beam continue to self-focus.
Hence, σ 2

I increases beyond unity and maximizes when at
least one of the hotspots reaches a full width at half maximum
(FWHM) size 
r of 25 ± 2.5 µm. A Gaussian beam of this
FWHM size and an average power of 1.4 mW (say, Pcr) forms
a self-trapped filament that propagates for at least 1.3 cm in
the rubidium vapor without any change in its width before
diverging due to absorption and diffraction. Filaments of the
same width but smaller power than Pcr diverge more quickly,
while those with power larger than Pcr undergo multiple self-
focusing and defocusing cycles depending on their power
[40]. For Pin of 90 mW and Lcoh/D0 of 0.015, more than two
filaments of size 
r are formed when σ 2

I is maximized such
that the power in each filament is smaller than 0.9 mW [see
Fig. 7(f)]. In contrast, for Pin of 90 mW, and Lcoh/D0 � 0.045,
a single filament of size 
r with average power larger than
1 mW is formed when σ 2

I is maximized [see Fig. 7(k)]. As
shown in Fig. 4(b), this sharper intensity contrast between the
“rogue” filaments and the background intensity in the beam
for Lcoh/D0 � 0.045 results in a higher peak of σ 2

I for these
cases than when Lcoh/D0 � 0.045. When Pin is increased to
180 mW, the caustics become even sharper, and more fila-
ments of size 
r are formed when σ 2

I is maximized, which,
as shown in Fig. 4(c), occurs at even smaller z for all cases.
For Lcoh/D0 of 0.015 (�0.045), the average power in each fil-
ament is smaller (larger) than 1.4 mW (see Fig. 8). Hence, for
noisy beams with Lcoh/D0 � 0.045, the propagation after the
initial peak of σ 2

I is followed by another cycle of self-focusing
of filaments and subsequently, by diffraction. Nevertheless,
even at such large beam powers, the small-grained phase
noise seeds the formation of several filaments each containing
less than Pcr power. This phenomenon limits the maximum
intensity in a rogue feature and the tailiness of the inten-
sity statistics. Finally, we note that σ 2

I for Lcoh/D0 < 0.045
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TABLE I. Table of the rogue-wave intensity threshold IRW and
the percentage of rogue waves observed RWP for measured intensity
statistics at various input beam powers Pin and coherence lengths of
the added phase noise to the beam Lcoh/D0.

Pin (mW) Lcoh/D0 IRW RWP (%)

Linear 0.15 4.35 0
0.135 4.46 0
0.12 4.72 0
0.105 4.8 0
0.09 5.07 0
0.075 5.29 0.001
0.06 6.6 0.002
0.045 7.2 0.005
0.03 7.14 0.002
0.015 5.9 0

30 0.15 6.46 0.007
0.135 6.71 0.011
0.12 6.82 0.012
0.105 8.09 0.027
0.09 10.12 0.046
0.075 15.3 0.057
0.06 16.26 0.123
0.045 16.77 0.124
0.03 15.63 0.097
0.015 11.44 0.081

60 0.15 9.18 0.022
0.135 9.73 0.019
0.12 10.67 0.025
0.105 16.44 0.046
0.09 21.42 0.063
0.075 21.85 0.125
0.06 24.17 0.079
0.045 24.57 0.049
0.03 19.59 0.041
0.015 14.83 0.075

90 0.15 13.67 0.036
0.135 19.25 0.03
0.12 19.92 0.04
0.105 23.45 0.062
0.09 24.39 0.056
0.075 27.12 0.068
0.06 26.31 0.068
0.045 20.69 0.088
0.03 20.09 0.033
0.015 16.27 0.058

115 0.15 16.32 0.08
0.135 17.77 0.083
0.12 19.35 0.088
0.105 19.14 0.095
0.09 25.35 0.058
0.075 26.06 0.061
0.06 25.69 0.046
0.045 21.37 0.049
0.03 18.49 0.035
0.015 14.84 0.091

(Lcoh/D0 � 0.045) has little (large) variation between Pin of
90 and 180 mW at z = 7.5 Cm, or the length of the cell
[dotted vertical line in Figs. 4(b) and 4(c)]. This result is a
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FIG. 5. Real (blue, left axis) and imaginary (red, right axis) parts
of the total susceptibility of rubidium vapor versus the optical field
intensity.

consequence of the initial beam reorganization followed by
self-focusing cycle(s) occurring at shorter z as the phase noise
becomes more granular, and is consistent with the diminished
sensitivity of the likelihood of rogue-wave formation to non-
linearity observed experimentally.

V. CONCLUSION

In summary, we have shown that the grain size of phase
noise on a laser beam can be used to control rogue-wave
formation in media with a self-focusing nonlinearity. The
likelihood of rogue-wave formation is minimally affected by
nonlinearity when the coherence length of phase noise is much
smaller than the beam diameter. Our numerical simulations
show that small-grained phase noise causes the beam power
to be redistributed into multiple filaments rather than a sin-
gle filament, which is formed when the phase noise has a
longer correlation length. This redistribution of beam power
into several filaments of smaller intensity limits the maximum
intensity in rogue features relative to the background. Un-
derstanding the role of nonlinearity in amplifying the phase
noise-induced intensity fluctuations on a field could be helpful
in devising efficient mechanisms to mitigate these fluctuations
for intense structured light propagating through a turbulent
medium [41,42], and developing efficient radiance limiters
using saturable nonlinear media [43].
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APPENDIX A: ROGUE-WAVE THRESHOLDS
AND LIKELIHOODS

As per the convention in optics [10], where we can only
measure the intensity of events, the rogue-wave threshold
IRW(=2IS ) here is defined in terms of the intensity as twice the
mean intensity in the highest third of events IS . Following the
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FIG. 6. The angular power spectral density (PSD) of phase noise
eiφrand(x,y) of various spatial coherence lengths Lcoh. The legend
states the values of the corresponding Lcoh normalized to the beam
diameter D0.

method described in Ref. [30] for the calculation of IRW, we
first normalize the ensemble of recorded beam intensities on
the camera for each dataset to the average intensity 〈I〉e. Prior
to normalization, we also crop the acquired images around the
region of interest to discard the pixels that do not overlap with
the beam. The local maxima of normalized intensities then
yield the highest (or most intense) events (or pixels) in the
ensemble, and IS is given by the mean intensity of the highest
third of these events. The rogue-wave percentage RWP is the
percentage of pixels in the dataset with normalized intensities

larger than IRW with respect to the total number of pixels
with nonzero intensities in the entire dataset. The estimated
values of IRW and RWP for the entire experimental dataset
corresponding to Fig. 2(c) is shown in Table I below.

APPENDIX B: SUSCEPTIBILITY OF RUBIDIUM VAPOR

We use the method described in Ref. [44] to calculate the
total susceptibility of rubidium vapor heated to 115 ◦C, and
optically pumped at a detuning of 600 MHz above the 87Rb D2

F = 1 → F ′ = 2 transition frequency. We first calculate the
susceptibility contribution of each D2 transition of rubidium to
the total susceptibility using the equation (6.3.28) in Ref. [24],
and the parameters in Ref. [45]. We include Doppler broaden-
ing of the spectrum of each resonant transition by convolving
the respective spectrum with the Maxwell distribution of atom
velocities [46]. We then sum these susceptibility contributions
weighted by their oscillator strengths [47]. Figure 5 shows the
real (blue, solid) and imaginary (red, dashed) parts of the total
susceptibility χ of rubidium versus the optical pump intensity.

APPENDIX C: POWER SPECTRAL DENSITY
OF THE PHASE NOISE

To calculate our phase masks eiφrand(x,y), we first generate
a matrix of uniformly distributed random numbers between
0 and 1. We then convolve the matrix with a Gaussian fil-
ter, whose response G(kx, ky) in the angular frequency space
(kx, ky) is given by Eq. (1) in the main text. We then mul-
tiply the entire matrix by π to rescale the phase variation
to be between 0 and π rad. The spectral bandwidth of the
phase noise can be estimated from its angular power spectral

FIG. 7. (a) Input Gaussian beam intensity. Phase gradient map |∇φ(x, y)| for a sample mask with Lcoh/D0 of (b) 0.015 and (c) 0.045. The
top panels (d)–(h) show the beam intensity at various propagation distances z within the cell for the phase gradient map shown in (b), and the
bottom panels (i)–(m) show the beam intensity at various z for the phase gradient map shown in (c). The beam power Pin is 90 mW throughout.
The intensity distributions in all panels are normalized with respect to the maximum intensity in the respective frames.

013174-7



CHOUDHARY, BLACK, ANTIKAINEN, AND BOYD PHYSICAL REVIEW RESEARCH 6, 013174 (2024)

density (PSD), which we define as the squared magnitude of
the 2D Fourier transform of eiφrand(x,y). We take an ensemble
average of the PSDs for 250 realizations of phase noise of
a particular coherence length Lcoh. In Fig. 6, we show the
PSD of phase noise of normalized spatial coherence lengths
Lcoh/D0 of 0.135 (blue, solid), 0.075 (red, dot-dashed), 0.045
(green, dashed) and 0.015 (purple, dotted), with D0 being
the Gaussian beam diameter. We note that the PSD of noise
becomes more broadband as Lcoh/D0 is reduced, while the
total noise power remains constant.

APPENDIX D: FIELD EVOLUTION THROUGH THE CELL

Figure 7(a) shows the intensity of the input Gaussian beam
generated in our setup. As stated in the main text, the input
field intensity in these numerical simulations is taken to be
the same as the one generated in the experiment. Figures 7(b)
and 7(c) show the phase gradient maps |∇φ(x, y)| of a rep-
resentative random phase mask of coherence lengths Lcoh/D0

of 0.015 and 0.045, respectively. The top panels (d)–(h) show
the normalized intensities of the beam at various propagation
distances z stated in the panel label for the phase gradient
map shown in Fig. 7(b). Similarly, the bottom panels (i)–(m)
show the normalized intensities of the beam at various z for
the phase gradient map shown in Fig. 7(c).

As shown in Figs. 7(d) and 7(i), the beam at first reorga-
nizes by focusing along the minima of the respective phase
gradient maps. This initial reorganization occurs at smaller z
for phase noise of smaller grain size. The intensity hotspots on
this reorganized beam then continue to self focus until at least
one of the hotspots reaches the filament width 
r as shown
in Figs. 7(f) and 7(k). The scintillation index of the beam
σ 2

I is maximized in this plane. The collapse of the filament
is limited by absorption, saturation of the nonlinearity, and
nonparaxiality [40]. For Lcoh/D0 of 0.015, multiple filaments
of width 
r are formed at z = 4.5 Cm, and each filament has
power smaller than Pcr required for forming a self-trapped fila-
ment that can propagate for several cm. Hence, these filaments
diffract within a few mm as the other hotspots also self-
focus and subsequently diffract. Around z = 6 Cm, absorption
losses reduce the effect of nonlinearity, and the filaments start
to diverge and σ 2

I of the beam starts to decrease with z. For

FIG. 8. The top panels (a)–(c) show the beam intensity at various
propagation distances z within the cell for the phase gradient map
shown in Fig. 7(b), and the bottom panels (d)–(f) show the beam in-
tensity at various z for the phase gradient map shown in Fig. 7(c). The
beam power Pin is 180 mW throughout. The intensity distributions in
all panels are normalized with respect to the maximum intensity in
the respective frames.

Lcoh/D0 of 0.045, a single filament of width 
r and power of
1.1 mW is formed at z = 5 Cm where σ 2

I is also maximized.
The large intensity contrast between the filament, and the
background intensity of the beam leads to a much larger peak
value of σ 2

I than the peak value for Lcoh/D0 of 0.015 even
though the power in the filament is still smaller than Pcr.

Figures 8(a)–8(c) show the beam evolution through the cell
for the same phase gradient map as shown in Fig. 7(b), but at
a beam power Pin of 180 mW. Similarly, Figs. 8(d)–8(f) show
the beam evolution for the phase gradient map as shown in
Fig. 7(c), and at a beam power Pin of 180 mW. Comparing
Fig. 7(d) with Fig. 8(a), and Fig. 7(e) with Fig. 8(d), we note
that the initial beam reorganization stage involving focusing
along the minima of the respective phase gradients remains
similar despite the higher power. Comparing Fig. 7(f) with
Fig. 8(b) and Fig. 7(k) with Fig. 8(e), we note that the larger
beam power gets distributed into several more filaments along
the same underlying caustic pattern.
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