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Abstract

Materials with resonant features can have a rapidly changing refractive index spectrally
or temporally that gives rise to a changing group index. Depending on the wavelength of
the input light, this light can see regimes of normal or anomalous dispersion. Within these
regions, the group index can become large, depending on the optical effect used, and give
rise to slow or fast light effects.

This thesis covers two platforms that exhibit the use of slow and fast light. Slow and
fast light are used to manipulate and enhance other optical effects in question. As the focus
of this thesis, we examine a rotating ruby rod and spaceplates based on multilayer stacks,
both considered as slow- and fast-light media. Light propagation through each platform
is modelled and simulated to compare to the experiment. The simulation results for both
platforms match well with the measured experimental effects and show the feasibility and
utility of slow or fast light to manipulate or enhance optical effects.

We simulate light propagation in a rotating ruby rod as a rotating, anisotropic medium
with thermal nonlinearity using generalized nonlinear Schrodinger equations, modelling
the interplay of many optical effects, including nonlinear refraction, birefringence, and a
nonlinear group index. The results are fit to experimentally measured results, revealing two
key relationships: The photon drag effect can have a nonlinear component that is dependent
on the motion of the medium, and the temporal dynamics of the moving birefringent
nonlinear medium create distorted figure-eight-like transverse trajectories at the output.

We observe light propagation through a rotating ruby rod where the light is subject to
drag. Light drag is often negligible due to the linear refractive index but can be enhanced
by slow or fast light, i.e., a large group index. We find that the nonlinear refractive index
can also play a crucial role in the propagation of light in moving media and results in a
beam deflection. An experiment is performed on the crystal that exhibits a very large
negative group index and a positive nonlinear refractive index. The negative group index
drags the light opposite to the motion of the medium. However, the positive nonlinear
refractive index deflects the beam along with the motion of the medium and hinders the
observation of the negative drag effect. Therefore, it is deemed necessary to measure not
only the transverse shift of the beam but also its output angle to discriminate the light-
drag effect from beam deflection. This work could be applied to dynamic control of light
trajectories, for example, beam steering and velocimetry.

For the following two chapters, we will focus on a different slow-light platform. This
platform focuses on optics that we developed and tested that compress the amount of free-
space propagation using multilayered stacks of thin films known as spaceplates. We design
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and characterize four multilayer stack-based spaceplates based on two design philosophies:
coupled resonators and gradient descent. Using the transfer-matrix method, we simulate
and extract the angular and wavelength dependence of the transmission phase and trans-
mittance to extract and predict compression factors for each device. A brief theoretical
investigation is developed to predict resonance positions, spacing, and bandwidth.

We measure the transverse walk-off to extract the compression factor of four multilayer
stack-based spaceplates as a function of angle and wavelength. One of the devices was found
to have a compression factor of R = 176 ± 14, more than ten times larger than previous
experimental records. We increased the numerical aperture of one of the devices by ten
times, and we still observed a compression factor of R = 30± 3, two times larger than the
most recent experimental measurements. We also measured focal shifts up to 800 microns,
more than 40 times the device size, typically 10-12 microns thick. The multilayer stack-
based spaceplates we studied here show great promise for ultrathin flat optical systems
that can easily be integrated into a modern-day imaging system.
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Résumé

Les matériaux avec des caractéristiques résonnantes peuvent avoir un indice de réfraction
qui change rapidement spectralement ou temporellement, ce qui donne lieu à un indice
de groupe changeant. Selon la longueur d’onde de la lumière d’entrée, cette lumière peut
voir des régimes de dispersion normaux ou anormaux. A l’intérieur de ces régions, l’indice
de groupe peut devenir important, selon l’effet optique utilisé, et donner lieu à des effets
lumineux lents ou rapides.

Cette thèse porte sur deux plates-formes qui présentent l’utilisation de la lumière lente
et rapide. La lumière lente et rapide est utilisée pour manipuler et améliorer d’autres effets
optiques en question. Au centre de cette thèse, nous examinons une tige de rubis rotative et
des lames d’espace basées sur des empilements multicouches, tous deux considérés comme
des milieux à lumière lente et rapide. La propagation de la lumière à travers chaque
plate-forme est modélisée et simulée pour être comparée à l’expérience. Les résultats
de simulation pour les deux plates-formes correspondent bien aux effets expérimentaux
mesurés et montrent la faisabilité et l’utilité de la lumière lente ou rapide pour manipuler
ou améliorer les effets optiques.

Nous simulons la propagation de la lumière dans une tige de rubis en rotation en tant
que milieu anisotrope en rotation, avec une non-linéarité thermique à l’aide d’équations de
Schrödinger non linéaires généralisées, modélisant l’interaction de nombreux effets optiques,
notamment la réfraction non linéaire, la biréfringence et un indice de groupe non linéaire.
Les résultats sont adaptés aux résultats mesurés expérimentalement révélant deux relations
clés: l’effet de trâınée de photons peut avoir une composante non linéaire qui dépend du
mouvement du milieu, et la dynamique temporelle du milieu non linéaire biréfringent en
mouvement crée une distorsion transversale en forme de huit. trajectoires en sortie.

Nous observons la propagation de la lumière à travers une tige de rubis en rotation
où la lumière est soumise à une trâınée. La trâınée lumineuse est souvent négligeable en
raison de l’indice de réfraction linéaire, mais peut être améliorée par une lumière lente ou
rapide, c’est-à-dire un indice de groupe important. Nous trouvons que l’indice de réfraction
non linéaire peut également jouer un rôle crucial dans la propagation de la lumière dans
les milieux en mouvement et se traduit par une déviation du faisceau. Une expérience est
réalisée sur le cristal qui présente un très grand indice de groupe négatif et un indice de
réfraction non linéaire positif. L’indice de groupe négatif entrâıne la lumière à l’opposé
du mouvement du milieu. Cependant, l’indice de réfraction non linéaire positif dévie le
faisceau avec le mouvement du milieu et gêne l’observation de l’effet de trâınée négatif.
Par conséquent, il est jugé nécessaire de mesurer non seulement le décalage transversal du
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faisceau mais également son angle de sortie pour discriminer l’effet de trâınée lumineuse
de la déviation du faisceau. Ces travaux pourraient être appliqués au contrôle dynamique
des trajectoires lumineuses, par exemple, l’orientation du faisceau et la vélocimétrie.

Pour les deux chapitres suivants, nous nous concentrerons sur une plate-forme de
lumière lente différente. Cette plate-forme se concentre sur l’optique que nous avons
développée et testée et qui comprime la quantité de propagation dans l’espace libre à
l’aide d’empilements multicouches de couches minces appelées lames d’espace. Nous con-
cevons et caractérisons quatre lames d’espace multicouches basées sur des piles basées sur
deux philosophies de conception; Résonateurs couplés et descente de gradient. À l’aide de
la méthode de matrice de transfert, nous simulons et extrayons la dépendance angulaire
et en longueur d’onde de la phase de transmission et de la transmittance pour extraire et
prédire les facteurs de compression pour chaque appareil. Une brève étude théorique est
développée pour prédire les positions de résonance, l’espacement et la bande passante.

Nous mesurons le walk-off transversal pour extraire le facteur de compression de quatre
lames d’espace multicouches en fonction de l’angle et de la longueur d’onde. L’un des
appareils s’est avéré avoir un facteur de compression de R = 176 ± 14, plus de dix fois
supérieur aux enregistrements expérimentaux précédents. Nous avons multiplié par dix
l’ouverture numérique de l’un des appareils, et nous avons tout de même observé un facteur
de compression de R = 30 ± 3, deux fois supérieur aux mesures expérimentales les plus
récentes. Nous avons également mesuré des décalages focaux jusqu’à 800 microns, soit plus
de 40 fois la taille de l’appareil, généralement de 10 à 12 microns d’épaisseur. Les lames
d’espace multicouches à base de piles que nous avons étudiées ici sont très prometteuses
pour les systèmes optiques plats ultra-minces qui peuvent facilement être intégrés dans un
système d’imagerie moderne.
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rotation speed of Ω = 100 deg/s for three regimes: (a) Linear (P = 0.2
mW), (b) Nonlinear (P = 100 mW) and (c) Highly Nonlinear (P = 520
mW). Nonlinear effects can be observed leaving imprinted beams when the
input power is sufficiently high P > 100 mW. The field trajectories widen
with increasing power due to the nonlinear deflection as a result of the non-
linear group index. For a given z, the time evolution shows beam rotation
in the xy plane. Field structure is complicated for the o- and e-beams
overlapped, and therefore, the centre of intensity is favourable to track the
dynamics, seen in Fig. 2.10. For a given t, the field evolution increases in
size and moves more in the xy plane with higher powers. The field value is
maximum in the yellow regions and zero in the dark blue. The faint beam
seen in the highly nonlinear regime is an index gradient imprinted on the
crystal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.9 Simulated transverse trajectories of the o- (blue) and e- (red)
beams for three input powers at positive/negative low/high rota-
tion speeds. Linear regime shows no transverse shift drag in either beam
for different speeds, while nonlinear and highly nonlinear regimes show in-
creasing shifts for a given speed. The amount of shift is seen more clearly in
the o-beam movement. At the same time, the e-beam shows deviations from
a circular trajectory, which is due to the nonlinear response of the system.
Opposite speeds show opposing translations of each beam. . . . . . . . . . 53

2.10 Transverse trajectories for three input powers and three input
speeds (a) Ω = ±10 deg/s, (b) Ω = ±100 deg/s, and (c) Ω = ±9000
deg/s. Simulated curves for the linear (P = 0.2 mW) regime show a figure-
eight-like trajectory for the COI, while nonlinear (P = 100 mW) and highly
nonlinear (P = 520 mW) regimes show deviations from a figure-eight, as
well as transverse shifting along y. Blue and orange curves correspond to
positive and negative rotation speeds, respectively. . . . . . . . . . . . . . . 55
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2.11 The transverse shift in the nonlinear and highly nonlinear regime
for various rotation speeds. The distribution shows a log-normal-like
distribution about Ω = 100 deg/s. The phenomenological fit (dashed lines)
suggests a peak closer to Ω = 150 deg/s, while the simulation values sug-
gest Ω = 100 deg/s. About the peak rotation speed, considered as some
characteristic rotation speed of the system, the amount of shift drops ex-
ponentially. The exponential behaviour is comprised of both optical and
thermal nonlinear response and is modelled using the nonlinear group index
discussed in Sec. 2.4.2. Several points are highlighted along the curve for
comparison of the amount of drag when considering different input powers.
These shifts are taken as half the difference between positive and negative
rotation speeds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.1 Schematics of the dynamics in the system. (a) A schematic show-
ing laser beam propagation in i) a stationary medium versus ii) a moving
medium which exhibits a transverse shift of ∆y. For simplicity of illustra-
tion, we show the laser beams as pulses. (b) The edge of a rotary ruby rod
is used to achieve an approximately linear motion in the −y (+y) direction
when the crystal rotates clockwise (counterclockwise). (c) A single frame
imaged at the input face of the crystal (z = −2 cm) that shows the o- and
e-beams propagated through the 2-cm-long ruby crystal. (d) A diagram
showing the trajectories of o- and e-beams at different crystal orientations
highlighting each beam’s intensity change at 45-degree intervals. The red
“×” shows the centre of intensity (COI) position for different crystal orienta-
tions, highlighting the emergence of a figure-eight-like pattern. In contrast,
o- and e-beams are shown by green and blue dots, respectively, with varying
transparency to signify their relative intensities. . . . . . . . . . . . . . . . 60
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3.2 Experimental setup for measurement of transverse shifts. A 520
mW continuous-wave laser beam at 473 nm is focused using a 100 mm focal
length plano-convex lens L1 to a spot size of 20 µm onto the input face of
a rotating ruby rod. The rod spins around its axis, driven by a stepper
motor. The laser beam at the output of the crystal is imaged onto a CCD
camera with unity magnification using a 4-f system consisting of two lenses
L2 and L3 of focal length f = 150 mm. The CCD camera captures the
beam, with a frame rate of 1000 fps, as the stepper motor is rotated at
various speeds. An ND filter is placed between the dielectric mirror and
lens L2 for nonlinear measurements and between L1 and the ruby for linear
measurements. The CCD camera images at different z-positions using a
translation stage. Measurements are taken at z = 0, z = 0.762 cm, and
z = 1.524 cm to measure the transverse shift, as well as the output angle
of the beam as it exits the crystal. Input beam power was controlled by a
half-wave plate and a polarizing beam-splitter before the ruby crystal. (M:
Mirror, HWP: Half-wave plate, PBS: Polarizing beam-splitter, BD: Beam
dump, L1: Plano-convex lens [f = 100 mm], L2: Plano-convex lens [f = 150
mm], L3: Plano-convex lens [f = 150 mm], FF: Fluorescence filter, DM:
Dielectric mirror, ND: Neutral density filter [O.D. 1], and a CCD: Charge-
coupled device.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.3 (a) Measured COI trajectories in linear (P0 = 0.2 mW) regime.
(b) Simulated COI trajectories in the linear regime. Legend of dif-
ferent rotation rates (deg/s) applies to (a) and (b). Looking into the beam,
(counter) clockwise rotation speeds are (negative) positive. No significant
shift is observed in y for trajectories at different speeds because the group
index and the nonlinear refraction are negligible. . . . . . . . . . . . . . . . 64

3.4 (a) Measured COI trajectories in nonlinear (P0 = 100 mW) regime.
(b) Simulated COI trajectories in the nonlinear regime. Legend of
different rotation rates (deg/s) applies to (a) and (b). Trajectories at low
speeds are distorted due to the index gradient formed by each beam at its
respective max intensity. The gradient diminishes at high speeds, and thus,
the figure eights are recovered but transversely shifted from one another
based on the nonlinear deflection for a given rotation speed. . . . . . . . . 65
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3.5 Experimentally measured (a) and simulated (b) COI trajectories
in the nonlinear regime (input laser power of 520 mW) for different
rotational speeds (Ω) in units of deg/s. At low speeds, trajectories
are significantly distorted and have similar paths to the 100 mW results
but with more distortion due to stronger nonlinear coupling between the
beams. At high speeds, the coupling between the beams is weaker due to
the finite response time of the medium. For slow speeds, Ω ≤ 100 deg/s, the
trajectories are very noisy, and no discernable pattern is easily observed.
This behaviour is mainly due to the thermal gradient impressed on the
crystal by the intense illumination, and therefore, the transverse beam shape
is drastically modified. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.6 Experimental and simulated amount of shift in the beam’s trans-
verse position at the end of the crystal for 0.2 mW, 100 mW, and
520 mW input beam laser power. The measured shift for the linear
regime (i.e., P0 = 0.2 mW) for both experiment and simulations is mul-
tiplied by a factor of 10, showing no discernible deviation from zero shift.
The magnitude of the transverse shift is shown against the magnitude of
the rotation speed. This shift is calculated between the position with no
rotation, i.e. Ω = 0 deg/s, and the respective transversely shifted position.
Simulations are plotted using dotted lines in green and red for the nonlinear
and highly nonlinear regimes for better comparison to experimental data.
The fits were based on a phenomenological exponential function in Eq. (3.2).
The fit is not a perfect match due to the simulated nonlinear response of
the material acting on the beams upon propagation through the crystal. . . 67

3.7 Power dependence of experimental and simulated transverse shifts.
The evolution of the transverse shift with power for various rotation speeds
is shown for both experiment and simulation. . . . . . . . . . . . . . . . . 68

3.8 Schematic showing the three positions imaged by translating a
CCD fast camera. With a frame rate of 1000 frames/s, we measure three
positions moving away from the output face of the crystal by using a 4-f
system of lenses 2 and 3. A single frame of a video of the beam at the
output face (i.e. z = 0 mm) is shown in the inset of which the COI is taken
to show the movement of the COI and the amount the beam is dragged over
many frames. The frame shows a single large beam encompassing the o- and
e-beams. The two beams expand significantly upon propagation through 2
cm in the ruby crystal, so they are no longer distinguishable on the camera. 70
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3.9 Measurement of the output angle versus input power and rotation
speed. (a) a schematic showing the output beam’s angle after leaving the
crystal. The nonlinear response of the crystal changes the angle at the
interface of the crystal output face and, therefore, changes the propagation
pathway. (b) The output angle and its uncertainty are calculated from
the beams’ transverse positions measured at three points along the z-axis
(z = 0, z = 0.762 cm, and z = 1.524 cm). The output angle increases as the
laser’s power increases, as expected from nonlinear deflection. . . . . . . . 72

3.10 Experimentally measured transverse shift in nonlinear (P0 = 100
mW), and highly nonlinear (P0 = 520 mW) regimes at different z-
positions. Measurements were taken at z = 0, 7.62 mm, and 15.24 mm to
calculate the output angle. The transverse shift approaches ∆y = 10 ∼ 15
µm for an input power P0 = 100 mW, and ∆y = 60 µm for P0 = 520 mW.
The curve takes shape similar to a log-normal distribution, but is modelled
as the sum of two decaying exponentials with different decay rates centred
around a rotation speed of Ω = 100 deg/s. . . . . . . . . . . . . . . . . . . 73

3.11 Extrapolation of transverse shift for input laser powers of P0 =
100 mW, and P0 = 520 mW. Evolution of the amount of transverse
drag at three points, including the crystal output face, and two positions
hereafter, as shown in Fig. 3.8. The extrapolation of these points in the
highly nonlinear regime (P0 = 520 mW) also shows a linear dependence on
the transverse shift as the propagation distance increases, consistent with
a straight-line propagation of the COI. The difference from the nonlinear
regime is the magnitude of the slopes is much larger due to a larger nonlinear
response in the system for input powers of 520 mW. One could extrapolate
these curves as a linear regression back to the crystal input face z = −20
mm and see that the value does not reach zero. It is clear in the range of
speeds from Ω = 50 ∼ 1000 deg/s, where the value would be non-zero at
the crystal input face, and thus a nonlinear trajectory is suspected. . . . . 74
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3.12 A continuous fitting function consisting of the sum of two expo-
nentials. The transverse shift is plotted for the highly nonlinear regime
P0 = 520 mW for three positions along z: z = 0 (blue), z = 7.62 mm
(yellow), and z = 15.24 mm (green). Similar behaviour can be seen in the
case of an input power of P0 = 100 mW with transverse shifts of smaller
magnitude. The form of the fitting function is f(Ω) = a−be−Ω/c + de−Ω/f ,
where a, b, c, d, and f are fitting constants. One can see that the maximum
drag should be closer to Ωc ≈ 150 deg/s, while discrete points in Fig. 3.11
suggest 100 deg/s. It is clear that the two exponentials indeed fit the dis-
crete points from low to high rotation speeds and provide strong evidence
that the transverse shift scales with a sum of exponentials. . . . . . . . . . 75

3.13 The effect of input beam power on beam shape in a stationary
medium for a beam waist of 3 mm. Four powers are shown (a) P0 = 10
mW, (b) P0 = 12 mW, (c) P0 = 398 mW, and (d) P0 = 520 mW, where
the blue (P0 = 10 mW) and cyan (P0 = 12 mW) curves do not meet
the threshold power to show nonlinear refraction and thus self-focusing.
Increasing laser power causes the input beam to self-interact and self-focus,
creating a spatial soliton. This solitonic behaviour is seen in the yellow
(P0 = 398 mW) and red (P0 = 520 mW) curves, which are significantly more
intense and show a change to the beam’s transverse profile. One can see that
moderate intensity (P0 = 398 mW) shows slightly less self-focusing than the
red curve (P0 = 520 mW). The red curve approaches a stable solitonic-type
solution known as the Townes Profile. The tapering and stabilization of
the beam waist for a Gaussian beam due to a self-focusing nonlinearity is a
well-known characteristic of spatial solitons. The Townes profile observation
here indicates a considerably large nonlinear index in the system at an input
wavelength of λ0 = 473 nm. A lens does not focus the beam in this case and
is the straight output of the laser with a beam diameter of 3 mm. Townes
profile formation with CW lasers is uncommon as most soliton solutions are
formed using pulsed lasers that need sufficiently long propagation distances
to stabilize. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
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4.1 A schematic of how an SP device of thickness d acts as an effective
distance of free space propagation, deff . The distance w represents
the lateral shift over a certain distance propagated in free space where the
angle of the input ray, θ, is conserved for both free space and the SP. The
distance between an apparent ray, in dashed lines, and the actual ray is the
transverse walk-off, ∆x. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.2 Schematics of the incident, reflected and transmitted fields for (a)
a single interface and (b) a multilayer stack interface. An incident

field E⃗i interacts with a surface at an angle θi for the normal, and creates a
reflected field E⃗r, at angle θr = θi, and a transmitted field E⃗t, at an angle θt.
For a single interface of infinitely thin thickness, the interaction is governed
by Snell’s Law in Eq. (4.7) relating the refractive indices n1 and n2 and the
angles θi, θr, and θt. The fields are related by Fresnel coefficients, discussed
in Eqs. (4.8)- (4.11). For a multilayer stack, the stack is described by a
matrix, M , calculated using TMM to relate the inward and outward fields
discussed in more detail later in the chapter. Propagation and interface
matrices can be defined in between layers i and i+ 1, which will be used to
calculate the full matrix M of the device. . . . . . . . . . . . . . . . . . . . 88

4.3 Fitting an ideal SP phase to the transmission phase of a device.
Phase is shown over the full angular range of θ = 0 ∼ 90◦ and a smaller
region θ = 0 ∼ 5◦ for both s- and p-polarization. The smaller angular range
allows for a better fit to the device’s phase and, therefore, provides a correct
quantification of the compression factor for this given device. . . . . . . . . 94

4.4 A schematic of the transverse walk-off for a given incident angle
θ. The measured transverse walk-off ∆xsp comprises components of the
addition of the apparent walk-off, ∆x and the SP walk-off, ∆x′

sp [1]. . . . . 95

4.5 A schematic of the evolution of the transverse walk-off for an SP.
Spatial compression is witnessed in the blue region, denoted SP region. The
device’s NA, ±θdevice, is set based on the region between where the slope
of the transverse walk-off goes to zero. ∆xmax/min show the maximum and
minimum transverse walk-off measured within the SP region. The yellow
regions show a region where R starts to decrease from its maximum value
until the device reaches a zone where it is no longer spatially compressing
but acting larger than its given size, indicated in red. This region is usually
seen after ±2θdevice. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
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4.6 Schematic representation of a Gaussian beam waist evolution for
three cases for a beam with a waist w0 = 10 µm. The beam waist
evolution of free space is plotted in black, and the waist is situated at z = 0.
The evolution of beam waist for a 3 mm thick piece of glass is shown in red
and for a 10 µm thick SP (R = 80) in blue. These two cases for a piece
of glass and an SP highlight the focal advance and retraction, respectively.
The advance in focus is denoted as ∆Fgl, and the focal retraction is denoted
∆Fsp. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.7 Unit cells of two SP devices using a coupled resonator approach.
The unit cell in (a) is repeated four times, resulting in three peaks in the
wavelength dependence of the transmittance for device CR1. The unit cell
in (b) is repeated eight times, resulting in seven peaks in the wavelength
dependence of the transmittance for device CR2. The resonance peaks result
from interference of multiple cavities formed in the device, and the amount
of peaks is governed by n − 1 unit cells. nH > nL, where nH are the blue
layers, and nL are the orange layers. . . . . . . . . . . . . . . . . . . . . . . 99

4.8 Unit cells of two SP devices using gradient descent. (a) shows
a design (MS1) with a moderate angular range (θ ± 10◦), and a modest
compression factor (R = 18), while (b) shows a design (MS2) with a small
angular range (θ = ±1◦) and a large compression factor (R = 238). . . . . 101

4.9 An example of the simulated characterization methods for an SP
(CR1) is shown. (a) shows transmission phase calculated from TMM
is plotted in blue and fitted to an ideal SP phase (See. Eq. (4.27)). The
device is fit over θ = 3.5◦; however, the fit is shown for twice that range.
(b) shows the transmittance as a function of angle. The inset in the plot
shows the device that is characterized, showing one unit cell comprised of
varying layer thicknesses and alternating low/high index. (c) shows the
transmittance as a function of wavelength, where five resonance peaks are
shown. The unit cell in b) is repeated eight times, resulting in seven peaks
in the wavelength dependence of the transmittance; however, only five are
shown near the operating range of the laser. The resonance peaks result from
coupling because the cavity is formed in the device, and the amount of peaks
is governed by n − 1 unit cells. (d) shows the corresponding compression
factor as a function of wavelength. . . . . . . . . . . . . . . . . . . . . . . . 102
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4.10 An example of the simulated characterization methods for an SP
(CR2) is shown. (a) shows the transmission phase calculated from TMM
plotted in blue and fitted to an ideal SP phase. The operating angular
range of the device is θ = ±1◦. (b) shows the transmittance as a function of
angle. The inset in the plot shows the device that is characterized, showing
one unit cell comprised of varying layer thicknesses and alternating low/high
index. (c) shows the transmittance as a function of wavelength, where three
resonance peaks are shown. The unit cell in (b) is repeated four times,
resulting in three peaks in the wavelength dependence of the transmittance.
The resonance peaks result from coupling because the cavity is formed in
the device, and the amount of peaks is governed by n − 1 unit cells. (d)
shows the corresponding compression factor as a function of wavelength.
The resonant features are more narrow due to a large compression factor. . 105

4.11 An example of the simulated characterization methods for an SP
(MS1) is shown. (a) shows the transmission phase, TMM in blue, and
the ideal SP phase in red. The device is fit over θ = 10◦. (b) shows the
transmittance as a function of angle. (c) shows the transmittance as a func-
tion of wavelength, where one peak with a much larger bandwidth is shown,
compared to the central peak of CR1 and CR2. (d) shows the corresponding
compression factor as a function of wavelength. The maximum compression
factor was found to be R = 40, roughly two times the size of the predicted
R by gradient descent. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.12 An example of the simulated characterization methods for an SP
(MS2) is shown. (a) shows the transmission phase, TMM in blue, and the
ideal SP phase in red. The device is fit over θ = 1◦. (b) shows the transmit-
tance as a function of angle. (c) shows the transmittance as a function of
wavelength, where one peak with a more narrow bandwidth is shown, com-
pared to CR1 and CR2. (d) shows the corresponding compression factor as
a function of wavelength. The maximum compression factor was R = 238,
matching the predicted R by gradient descent. . . . . . . . . . . . . . . . . 107

4.13 Spectral behaviour when changing the number of unit cells for
CR2. (a)-(d) shows a long range spectral response of CR2 with increasing
amount of unit cells from n = 1, to n = 4. (e)-(h) show only the region
near the design wavelength of λ = 1.55 µm with an increasing amount of
unit cells according to (a) through (d). Peaks present resonance locations
according to constructive and destructive interference positions, with the
number of peaks determined by n− 1 unit cells. . . . . . . . . . . . . . . . 108
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4.14 Transmittance for devices MS2 and MS1 are plotted around their
design wavelengths and over a larger range. (a) shows the design
range of MS2, while (b) shows an extended range with rich, resonant features
in lower and higher wavelengths. (c) shows the design range of MS1, while
(d) also shows an extended range with rich, resonant features in lower and
higher wavelengths, but features are much more narrow than MS1. This
reflects the sharp feature seen around the design wavelength. . . . . . . . . 110

5.1 Schematic of beam propagation for three different cases. A different
focal plane is shown in the case of a beam propagating (a) in free space,
(b) through a tilted 3-mm long piece of glass, (c) through a tilted 10-µm
multilayer stack based SP, and (d) the combined tilted system comprised
of the glass and the SP. With respect to the imaging plane of free space,
the glass advances the focus and positively shifts the beam to a different
transverse position. The focus retracts in the case of the SP, and the beam
negatively shifts in the transverse plane. The combined system shows that
a 10 µm SP can undo the effects of the glass slide, leading to an unaffected
beam. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.2 Characterization methods for an SP. (a) Transmission phase calcu-
lated from TMM is plotted in blue and fitted to an ideal SP phase in red.
The device is fit over the SP region shown in light blue. (b) Transverse walk-
off is calculated from the derivative of the phase in (a). (c) Transmittance
as a function of angle is plotted and maximized over the SP region. (d) The
corresponding SP multilayer stack unit cell is shown with low (nL) and high
(nH) refractive indices layers quarter-wave thickness. The device consists of
a unit cell repeated four times, creating a coupled resonator-like response
with sharp resonances that exhibit larger compression factors. (e) Trans-
mittance as a function of wavelength is plotted, showing three resonance
peaks. The number of peaks follows n− 1 unit cells. (f) The corresponding
compression factor is shown calculated from (b) for various wavelengths. . 118
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5.3 Experimental setup to measure transverse walk-off and focal shifts.
A 1.6 mW continuous-wave tunable laser at 1550 nm with a spot size of 7
mm is minified by a factor of five by a telescope consisting of two plano-
convex lenses L1 (f = 25 cm), and L2 (f = 5 cm). The beam is then
sent through a quarter wave plate (QWP) to set the input polarization,
followed by a half-wave plate (HWP) and polarizing beam-splitter (PBS)
to control the power. The beam is then sent through another QWP, and
HWP, set such that p-polarization illuminates the sample. The QWP and
HWP can have p- and s-polarization and circular polarization if needed.
The beam is then focused by a plano-convex lens L3 (f = 25 cm) down to
a spot size of approximately 2w0 = 310 µm, with a half angle divergence of
θhalf = 0.2◦. At the focus, an SP is placed on a rotation mount controlled by
a K-cube to measure the transverse walk-off as a function of the angle. The
beam is then recollimated by another plano-convex lens L4 (f = 10 cm) and
refocused using a plano-convex lens L5 (f = 15 cm) to be imaged on a camera
situated on a translation stage with 2.54 cm range of motion, controlled by
another k-cube. The imposed magnification was calibrated to be M = 1.48,
and all measurements were scaled accordingly. Imaging measurements were
done by switching L5 for another plano-convex lens of f = 10 cm, imposing
unity magnification. The camera is an Indium-Gallium-Arsenide (InGaAs)
infrared red charge-coupled device (CCD) camera (Bobcat 320 Gig-E). The
camera is placed on the translation stage to measure the beam spot size
along the direction of propagation. . . . . . . . . . . . . . . . . . . . . . . 121

5.4 Measured transmittance of four devices. CR1 and CR2 show side
peaks due to multiple resonances based on integer-valued multiples of λ/4
layer thickness. Devices MS1 and MS2 show one single resonance peak due to
layer thickness based on gradient descent. Designs were simulated using the
TMM centred at λdevice = 1550 nm. Fabrication intolerances push the actual
central wavelengths λm to different locations, where λm,CR1 ≈ 1547 nm,
λm,CR2 ≈ 1531 nm, λm,MS1 ≈ 1562 nm, and λm,MS2 ≈ 1566 nm. Devices were
fabricated on top of 3 mm thick fused silica, with an anti-reflective coating
on the films to minimize stress and maximize transmission. The lowest
transmittance was measured to be approximately 25% at the peak of device
MS2. Transmittance peaks correspond to regions of spatial compression,
where the magnitude of spatial compression governs the device’s resonance
bandwidth and angular range [2]. . . . . . . . . . . . . . . . . . . . . . . . 122
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5.5 Experimentally measured transverse walk-off for glass (blue curve),
SP+glass (red curve), and the SP alone (green curve). The result
is shown for the device CR2, at an input wavelength of λ = 1532.905 nm,
corresponding to the left peak seen in Fig. 5.2(d). The red curve, associated
with an 11.51 µm thick SP on top of a 3 mm thick glass, shows no trans-
verse walk-off over an approximately two-degree interval. The red curve
shows that the effect of the small SP cancels the walk-off of a large piece of
glass. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5.6 Experimentally measured transverse walk-off for all devices. Curves
show transverse walk-off as a function of angle over a region larger than the
SP region of four devices in (a) and different peaks of CR2 in (b). (a)
The SP region of θ = ±1◦ for devices CR2, and MS2, θ = ±3.5◦ for CR1,
and θ = ±10◦ for devices CR2. Fitting the devices over their respective
SP region, maximum compression factors of R = 176, R = 42, R = 30, and
R = 3.4 are found for the central resonance peaks of devices MS2, CR2, MS1,
and CR1, respectively. (b) Angular dependence of the transverse walk-off
for the central position of each resonance peak for CR2. The left and right
peaks show larger spatial compression than the central, resulting in com-
pression factors of Rl = 96, Rc = 42, and Rr = 49. Simulated transverse
walk-off curves are plotted in solid lines, showing good agreement with the
experiment. Further study is needed to understand the compression factor
scaling with observed side peaks. . . . . . . . . . . . . . . . . . . . . . . . 125

5.7 Experimentally measured and simulated wavelength dependence
of devices. (a) The performance of CR2, with the three maximum com-
pression factors, observed to be Rl = 96 ± 2, Rc = 41.9 ± 0.6, and Rr =
48.6 ± 1.4, corresponding to the left, central, and right peaks, respectively.
Bandwidths of the peaks are found to be ∆λl = 143± 4 pm, ∆λc = 282± 6
pm, and ∆λr = 147± 5 pm. (b) The performance of MS2, reaching a max-
imum value of R = 176 ± 14, with a bandwidth of ∆λ = 55 ± 7 pm. (c)
The performance of MS1, reaching a maximum value of R = 30 ± 3, with
a bandwidth of ∆λ = 2.8± 0.3 nm. Experimentally measured compression
factors (red) match the simulated results (blue) well for three devices. . . 126
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5.8 Focal retraction and imaging of an SP. The beam waist evolution is
plotted against the z-position for (a) free space, (b) SP on top of glass,
and (c) glass, highlighting the focus points of each. Extracting the beam
waists and their positions, we plot the beam waist evolution in (d) for
each case (a)-(c), as well as the predicted SP beam waist evolution (cyan).
The focal retraction produced by the SP is denoted Fsp, from which we
plot the predicted SP effect using the free space evolution shifted by Fsp.
The corresponding images of the measured beam waist are plotted in (e),
showing the focus points of each corresponding case. The top row of images
is for free space, the middle row is SP on glass, and the bottom row is glass. 128

5.9 The Strehl ratio of design MS2 and transverse beam profiles for
CR2 and MS2. The Strehl ratio plotted over the SP region of θ = ±1◦

and over the resonance peak in wavelength in (a). Strehl ratio reached a
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Chapter 1

Introduction

1.1 Motivation of Slow Light

In this thesis, the effects of slow light are studied in two different major concepts: photon
drag, and spaceplates. The first application of slow light is applied to the photon drag
effect [3], which is significantly enhanced when using a slow light medium. We use the large
group index seen in ruby at 473 nm to try and observe negative photon drag [4]. However,
due to Kramers-Kronig relations, the delayed response is due to a strong nonlinear response,
particularly nonlinear refraction [5]. Nonetheless, we will provide theory and experiment
to develop a thorough understanding of how nonlinear dispersion and nonlinear refraction
play a key role in the propagation of beams through slow light media.

The second application utilizes slow light by tuning the group delay within a spaceplate,
a direct result of the group velocity [6], which allows for a longer light-matter interaction,
therefore, accumulating enough phase to mimic free space propagation [7–12]. A space-
plate is a device that replaces the space needed for an image to focus, and one can play
with resonance effects and the optical properties of the material such that the input wave
acquires enough phase to retract the focus [1, 13]. It has been shown that spaceplates are
also considered slow-light angular media [14]. The focus of the latter half of this thesis,
Chapters 4 and 5, provides a theoretical and experimental study of spaceplates, particu-
larly comprised of thin film multilayer stacks. In structuring materials properly to have
specific resonant conditions, the group index can be manipulated within that structure,
enabling the large spatial compression of modern optical systems through the spaceplate
effect.
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Slow light is indeed a useful phenomenon in both linear and nonlinear optics. The
scope of this thesis will be to exploit the utility of slow light and study fundamental
concepts, as well as provide insight into an enticing technological advancement toward
miniaturizing optical systems [15]. Furthermore, this thesis can serve as a stepping stone
to understanding the link between slow light enhancement on optical effects and nonlinear
refraction. Indeed, the two processes have commonalities and are touched on in other
research areas. One field that could benefit from a fundamental understanding of the link
between slow light and nonlinear refraction is epsilon-near-zero materials, in some cases
now coined as time-varying media [16–18]. Time-varying media is a new way of describing
a fundamental concept of slow light media, and the present thesis will provide some insight
into this fundamental concept in the context of the dynamics observed in a rotating ruby
rod, the focus of Chapters 2 and 3.

To understand the application of slow light overall in each of these platforms, we will
build an understanding of wave propagation and the various effects that manipulate the
trajectories that light can take. Therefore, we will begin the current chapter by introducing
the wave equation derived from Maxwell’s equations and exploring general wave theory.
We will then elaborate on linear and nonlinear propagation through wave equations and
the nonlinear Schrödinger equation. From these equations, we will come to appreciate
and comprehend the components that manipulate wave propagation, such as nonlinear
refraction or dispersion. Moreover, we will elaborate on dispersion and its relation to slow
and fast light and slow- and fast-light-enhanced optical processes.

1.2 Wave Theory

The study of light-matter interaction is a rich field in physics that spans many different
phenomena, from linear to nonlinear optics. Light is an electromagnetic (EM) wave with
spatially and temporally varying electric and magnetic fields. In vacuum, these fields travel
at the speed of light, c, which is governed by the frequency, ω, and wave vector, k, of the
light, such that c = ω/k. The wave vector is inversely proportional to the wavelength of
the input light, λ, such that k = 2π/λ, and the frequency is inversely proportional to its
period T , where ω = 2π/T . Using these wave properties, we can give the description of a
monochromatic plane wave written as

Ẽ = Ẽoe
−ı(k⃗·r⃗−ωt), (1.1)

where Ẽo is the amplitude of the wave, r is a vector comprised of Cartesian coordinates
(x, y, z) such that r⃗ = xx̂ + yŷ + zẑ, and the wave vector in 3D is k⃗ = kxx̂ + kyŷ + kz ẑ.
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Plane waves are used since any wave can be written as a superposition of plane waves.
It is important to note that this field will interact with materials and respect Maxwell’s
equations.

1.2.1 Maxwell’s Equations

Firstly, we consider how the behaviour of the electric field and the magnetic field is modified
when considering a material response. Assuming that the fields have spatial and temporal
variation, we write Maxwell’s equations in the form presented by Boyd [19]

∇ · D̃ = ρ, (1.2)

∇× Ẽ =
−∂B̃

∂t
, (1.3)

∇ · B̃ = 0, (1.4)

∇× H̃ = −∂D̃

∂t
+ J̃ , (1.5)

where H is the magnetic field
H̃ = µ0B̃−M̃, (1.6)

and D̃ is the electric displacement

D̃ = ϵ0Ẽ + P̃ , (1.7)

where P̃ is the linear polarization that arises in a material, and M̃ is the magnetization
field. We will assume no free charge, ρ = 0, no current density, J⃗ = 0, and there is no
magnetization field, M̃ = 0. The other undefined variables are ϵ0, the dielectric permit-
tivity, and µ0, the magnetic permeability. These constants change based on whether they
are in vacuum or in a material. In this case, we must introduce the dielectric permittivity
in a material, ϵ = ϵrϵ0, and the magnetic permeability in a material µ = µrµ0, where ϵr
and µr are the relative permittivity and permeability of a given material, respectively. We
know that the speed of an EM wave travelling in a vacuum is c, and this can be written
as c = 1√

ϵ0µ0
. By simple inspection, we can see that the speed of the EM wave will change

when in a material, particularly c → v = 1√
ϵµ
. We introduce an important quantity in

optics, n =
√
ϵµ, known as the refractive index. One point to note is that in optical fre-

quencies, µ is taken to be unity, and therefore n =
√
ϵ. The refractive index will play a key

role in the wave properties and, therefore, the propagation of waves. We will now derive
the wave equation using Maxwell’s equations that will be used to describe the propagation
of light in a medium with a given refractive index, n.
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1.2.2 Wave Equation: Linear to Nonlinear

Linear

Taking inspiration from Boyd [19], let us first take the curl of Eq. (1.3)

∇× (∇× Ẽ) = ∇×

(
−∂B̃

∂t

)
= − ∂

∂t
(∇× B̃). (1.8)

Assuming no current density, i.e. J⃗ = 0, we can substitute Eq. (1.5) into Eq. (1.8) to find

∇× (∇× Ẽ) = −µ0
∂

∂t

∂D̃

∂t
= −µ0

∂2D̃

∂t2
. (1.9)

Substituting the expression for the electric displacement, D̃ in Eq. (1.7), we find

∇× (∇× Ẽ) = −µ0
∂2(ϵ0Ẽ + P̃ )

∂t2
. (1.10)

Regarding the right-hand side, vector identities state that ∇× (∇× Ẽ) = −∇2−∇(∇· Ẽ).
However, according to Eq. (1.2), ∇ · Ẽ = 0, therefore, we find the wave equation

∇2Ẽ − 1

c2
∂2Ẽ

∂t2
= − 1

ϵ0c2
∂2P̃

∂t2
. (1.11)

Here, we can see that polarization is a driving term for the equation. Polarization is
important in the scope of driving the wave equation and opens the idea of nonlinear driving
terms to the wave equation. The material properties become dependent on the input field,
Ẽ, and therefore change the driving force in the equation.

Before reaching the nonlinear expansion, we must make assumptions about the material.
Let us first assume that the medium we are studying is linear, homogeneous, and isotropic.
Therefore, the response to the input electric field scales linearly with the field, the material
itself is the same in all directions, and the refractive index in all directions is the same.
Assuming these parameters, we can write the polarization as

P̃ = ϵ0χẼ. (1.12)

Here, we have introduced χ, which is the electric susceptibility, an optical property of the
material (as opposed to a fundamental constant). This provides a more direct link to the
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material response rather than the polarization. If we consider the electric displacement,
substitute Eq. (1.12) into Eq. (1.7), we find

D̃ = ϵ0Ẽ + ϵ0χẼ = ϵ0(1 + χ)Ẽ = ϵẼ. (1.13)

Therefore, the permittivity within a material, ϵ, is related the electric susceptibility χ by
the relationship

ϵ = 1 + χ. (1.14)

Up to this point, we have considered the permittivity as scalar; however, certain materials
can have anisotropy that causes a directional response of the permittivity. Therefore, it
is important to note that, in general, the permittivity and permeability are considered as
tensors.

Nonlinear

The electric susceptibility is important to determine how strongly a material will respond to
an input EM wave. Light from a laser may be sufficient to induce changes in the material
response. With increasing laser power, the electric fields interacting with the material
become large enough to induce nonlinear changes in the material response. The increase
in power changes the polarization driving term and can be represented by taking a power
expansion of the polarization with respect to the electric field. Expanding Eq. (1.12) in
terms of the electric field, we find

P̃ (t) = ϵ0(χ
(1)Ẽ(t) + χ(2)Ẽ(t)2 + χ(3)Ẽ(t)3 + ...]

= P̃ (1)(t) + P̃ (2)(t) + P̃ (3)(t) + ...,
(1.15)

where χ(1) represents the linear susceptibility, and χ(2), χ(3) and onwards represent the
nonlinear susceptibility. By inspection, it can be seen that P̃ (1)(t) = ϵ0(χ

(1)Ẽ(t), P̃ (2)(t) =
ϵ0(χ

(2)Ẽ(t)2, P̃ (3)(t) = ϵ0(χ
(3)Ẽ(t)3, etc. However, the terms are usually grouped into

a linear polarization term, P̃ (1)(t) and a nonlinear polarization term P̃NL(t) comprising
P̃ (m)(t), where m = 2, 3, 4, etc. Therefore, we can write

P̃ = P̃ (1)(t) + P̃NL(t). (1.16)

We have used P̃ to describe a complex scalar quantity; however, all calculations can be
generalized to vector quantities.
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With Eq. (1.16), it allows us to transform the wave equation in Eq. (1.11) to a nonlinear
representation. Using Eqs. (1.7) and (1.16), we can rewrite the wave equation to a
nonlinear wave equation as

∇2Ẽ − 1

c2
∂2D̃

∂t2
= − 1

ϵ0c2
∂2P̃NL

∂t2
, (1.17)

where the driving term is now completely driven by the nonlinear components of the
polarization, P̃NL, and the linear component is incorporated in D̃, where D̃ = ϵẼ+ P̃ (1)(t).

Given the nonlinear wave equation, we can start considering how light can generate
nonlinear polarization and how light travels based on the different linear and nonlinear
components. When considering nonlinear processes, multiple frequencies can interact with
one another and generate new frequencies. The frequency of light also affects another
critical property, dispersion. Dispersion is a measure of how the wave vector changes with
the frequency. Depending on the material’s optical properties, these frequencies can be
resonant or non-resonant and lead to interesting optical effects.

As we saw in Eq. (1.15), the polarization includes nonlinear components scaling with
the electric field. However, it is essential to note that not all materials support all non-
linearities. In general, materials are classified into two groups: centrosymmetric and non-
centrosymmetric. Centrosymmetry states that a material is invariant under inversion,
which means that the medium will be symmetric and allow only odd-order nonlinear terms.
In the case of non-centrosymmetry, the material properties will change under inversion,
and the symmetry is broken, allowing even-order nonlinear polarization terms.

There are many different ways in which frequencies can mix that generate nonlinear
polarization terms when considering the lowest-order nonlinear optical responses. χ(2) ma-
terials can be used for nonlinear optical processes like second harmonic generation [20,21],
spontaneous parametric down-conversion [22, 23], and optical rectification [24, 25]. χ(3)

materials, however, have many more processes that can occur like third harmonic genera-
tion [26,27], the Kerr effect [28,29], or four-wave mixing [30,31]. The nonlinear response is
due to the frequency mixing resulting from proper phase-matching and a sufficiently strong
EM wave, such as a laser beam. For now, we will consider a plane wave that interacts with
a material that has the form

Ẽ(x, y, z) = Ẽ0(x, y, z)e
−i(kz−ωt). (1.18)

We will return to discuss the implications of a transverse profile later in Section 1.3.
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1.3 Nonlinear Refraction

When considering nonlinear polarization, one optical effect of interest is nonlinear refrac-
tion [19, 32, 33], a third-order nonlinearity. Under sufficiently intense illumination, the
refractive index of a material can have a nonlinear component large enough to alter the
linear refractive index. For a third-order nonlinearity, the nonlinear polarization scales
with the electric field squared. For most materials, we can assume that the magnetic
permeability is close to 1. Therefore, we find the refractive index to be

n =
√
ϵ =

√
1 + χ. (1.19)

Here, χ represents the total electric susceptibility with linear and nonlinear components.
In general, the permittivity can be expanded, like that of the polarization, in terms of the
electric field where

ϵ = 1 +
∞∑
n=1

χ(n)En−1 = 1 + χ(1) + χ(2)Ẽ + χ(3)Ẽ2 + .... (1.20)

Assuming this form, we can see that the refractive index will contain nonlinear corrections
that scale with the electric susceptibility and field. Suppose we have a centrosymmetric
medium and keep only odd-order terms in the susceptibility. Therefore, the dielectric
permittivity simplifies to

ϵ = 1 + χ(1) + χ(3)Ẽ2 + χ(5)Ẽ4 + .... (1.21)

We will consider only the first-order nonlinear correction to ϵ. The form of ϵ is based on
a perturbative approach where each correction makes a smaller and smaller contribution
to the linear effect. However, the higher-order terms must be considered in the case of
very intense beams [34] or highly nonlinear materials [35]. In some cases, like in the
case of epsilon-near-zero materials such as Indium-Tin-Oxide (ITO) [36], the perturbative
expansion no longer holds, nonlinear components can be larger than linear, and one has
to take a non-perturbative approach [37]. This effect is a result of the optical Kerr effect.
The refractive index of a material can have an intensity dependence when the illuminating
light is intense and changes the beam properties as it propagates. In the case of the ruby
crystal in the following chapter, we observe a large optical Kerr effect, and therefore, we
should spend time discussing what happens to the refractive index in the presence of a
strong electric field. However, we will just consider the case of sufficiently intense lasers,
but still in the regime that we can take the perturbative expansion of the permittivity.
Therefore, we find that

ϵ = 1 + χ(1) + χ(3)Ẽ2. (1.22)
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Substituting Eq. (1.22) into Eq. (1.19), we find

n =
√
ϵ =

√
1 + χ(1) + 3χ(3)Ẽ2. (1.23)

Let us assume that the nonlinear contribution perturbs the refractive index by ∆n, such
as n → n+∆n. Assuming 1 + χ(1) ≫ χ(3)Ẽ2, we find that

n+∆n = 1 + χ(1) + 3
χ(3)Ẽ2

2
. (1.24)

Therefore, by inspection, we find that

∆n ≈ 3
χ(3)Ẽ2

2
. (1.25)

Often, nonlinear refraction is represented by a nonlinear refractive index, n2, multiplied
by the input intensity, I, such that

∆n = n2I. (1.26)

The input intensity is related to the square of the electric field, where

I = 2n0ϵ0cẼ
2, (1.27)

and substituting the expression for I into Eq. (1.26), equating Eqs. (1.26) and (1.25), we
find the nonlinear refractive index to be

n2 =
3χ(3)

4n0ϵ0c
, (1.28)

where the factor of 3 arises from the degeneracy of the frequency components.

When a laser beam has a spatial structure, the intensity distribution will cause a
different amount of nonlinear contribution to the refractive index. Typically, lasers have a
Gaussian beam profile. The transverse structure of a Gaussian beam takes the form

E(x, y, z) = A(x, y, z)e−((x−x0)2+(y−y0)2)/w(z)2 , (1.29)

where A(x, y, z) is a slowly varying envelope function, x0 and y0 are the coordinates of
the central position of the beam, and w(z) is the beam waist that follows a hyperbolic
evolution along z. The beam waist of a Gaussian beam is written

w(z) = w0(1 + (z/zR)
2)1/2, (1.30)
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where z is the propagation distance, w0 is the beam waist at z = 0, and zR is the Rayleigh
range, defined as

zR = πw2
0/λ. (1.31)

With spatial structure, the singular wave vector describing a plane wave is no longer
sufficient to describe the nonlinear interaction, and therefore, we must consider phase
matching. Phase-matching is crucial for more efficient interactions from a laser with the
material in question [38–40]. In general, phase-matching dictates momentum conservation
and, therefore, involves an analysis of the wave vectors that describe the interaction. The
phase matching can be maximized by aligning the material to enhance the targeted non-
linear response. Phase matching becomes complicated when there is a beam structure that
invites multiple wave vectors, and laser beams have Gaussian characteristics and a profile
that has many wave vectors.

The distribution of intensity follows the square of the transverse Gaussian profile. The
intensity is highest at the centre of the profile and, therefore, would induce the largest
nonlinear refraction that perturbs that linear index. In the case of a positive nonlinear
refractive index n2 > 0 and a beam with the spatial structure, the beam can create an
index pattern in the material that acts as a lens [41,42] and causes the high-intensity parts
to focus the beam. Self-focusing necessitates a positive nonlinear refractive index, while
n2 < 0 is self-defocusing [43,44]. If n2 is sufficiently large, the beam can undergo processes
like filamentation [45,46] where a beam will break up into many parts of the same critical
power, or self-channel [47] where the beam propagates with a fixed waist then starts to
diffract. Another exciting condition is when nonlinear refraction is balanced with nonlinear
dispersion, causing solitons to form [48–50].

When considering different nonlinear processes, the timescale of their interactions can
also play an important role. Nonlinear refraction is often considered nearly instanta-
neous [51,52] when a Kerr-type nonlinearity is present. However, in some cases, nonlinear
refraction can be associated with sluggish response, and due to Kramers-Kronig relations,
the group index ng is also affected [5,53]. The importance of Kramers-Kronig relations will
be discussed further in Section 1.6.1 of this chapter. Dispersion has increased relevance
when considering nonlinear optical responses like nonlinear refraction.

The beam parameters, like the distribution of wave vectors in the beam, can also play
a key role in linear optical systems. In Chapters 4 and 5, we study spaceplates that are
dependent on the angular spread of the beam and, therefore, the wave vectors. Lenses
can focus a beam, which changes the angular spread of the beam and sets the numerical
aperture at its focus point. This is crucial to the performance of the spaceplate, which is
limited to a certain numerical aperture. However, if the beam is focused to fit in this range
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of angles, the focus can be retracted, which is a key interesting feature of a spaceplate.
The wave vectors will acquire different amounts of phase after propagating through the
spaceplate, which ultimately shifts the focus backward. This is controlled by the group
delay in the material, which can be explained by the material dispersion. Therefore, we
will develop an understanding of dispersion, starting with how dispersion relates to wave
properties, particularly the phase and group velocity.

1.4 Dispersion

1.4.1 Wave Properties

The phase velocity describes how fast the wave moves through a medium. Since a medium
can be described by refractive index, and light moves at speed c, the phase velocity is
written as

vp =
c

n
. (1.32)

The phase velocity describes the local variation of the wave as it propagates. The group
velocity, however, describes the envelope of this wave, and it can be written as

vg =
c

ng

. (1.33)

Both of these quantities can be written in terms of the frequency and wave vector, which
are important in describing the dispersion. Moreover, the speed of the group can be used to
enhance or manipulate light-matter interaction, which is known as slow or fast light. Given
that ω = kc/n, substituting this expression into Eq. (1.32) gives vp = ω/k. The group
velocity captures the envelope, which looks at the variation and is therefore described by
the derivative of the phase velocity,

vg =
dω

dk
. (1.34)

From here, we determine an expression for the group index as a function of wavelength.

vg =
dω

dk
=

dω

dλ

(
dk

dλ

)−1

=
d

dλ
(−2πλ2ω). (1.35)

Substituting the expression ω = kc/n into Eq. (1.35), we find the group velocity to be

vg =
c

1− λ
n
dn
dλ

, (1.36)
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where ng = n − λdn
dλ
. Similarly, these equations can be written in terms of the frequency

where the phase and group velocities are

vp =
c

n(ω)
, (1.37)

and
vg =

c

1 + ω
n
dn
dω

. (1.38)

and the group index is found to be ng = n+ ω dn
dω
.

Now that we understand the fundamental wave properties that are used to describe
light propagation, we will investigate how a material response can be used to manipulate
and control the propagation. Therefore, we will spend time understanding dispersion and
how it affects nonlinear propagation.

Not only is dispersion important in compensating nonlinear optical response, but it
also plays a key role when considering slow or fast light media. We find slow or fast light
regimes when the group index is large with respect to the phase index n0. Regarding the
velocities, the group velocity is much slower than the phase velocity. Sometimes, the group
index can also be smaller than the phase index or even negative, considering the fast light
regime. A proper way of stating these regimes is saying the group velocity of an EM wave
is subluminal or superluminal [54–56], which means that the group travels faster or slower
than the speed of light. These phenomena can happen when the material response changes
rapidly with frequency or wavelength. Group velocities that are subluminal or superluminal
can result from nonlinearities, but some materials are naturally very dispersive [57]. It is
important to note, however, that the phase velocity can also be considered as superluminal
or subluminal, but not bounded by the speed of light [58]. We now look at how we describe
dispersion and how higher-order corrections to dispersion can affect wave propagation. Slow
and fast light are higher-order terms in the dispersion, which bring relevance to higher-order
corrections.

Depending on the frequency of input light, the material response will vary. The wave
vector is written as k = 2π/λ, but it can be equivalently written as k = ω/c. If we take a
Taylor expansion of the wave vector as a function of frequency ω, we will find higher-order
dispersion terms about a resonance frequency ω0. The Taylor expansion of the wave vector
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results in

k = k0 +
∞∑
n=1

kn
n!

(ω − ω0)
n = k0

∞∑
n=1

1

n!

(
dnk

dωn

)
ω0

(ω − ω0)
n

= k0 +
k1
1!
(ω − ω0) +

k2
2!
(ω − ω0)

2 +
k3
3!
(ω − ω0)

3 + ...

= k0 +

(
dk

dω

)
ω0

(ω − ω0) + 1/2

(
d2k

dω2

)
ω0

(ω − ω0)
2 + 1/6

(
d3k

dω3

)
ω0

(ω − ω0)
3 + ....

(1.39)

Upon expanding k, we find that the coefficients of k1, k2, etc. represent physical quantities
that describe the propagating wave. We find k1 =

(
dk
dω

)
ω0
, which is the inverse of the group

velocity. Therefore, the coefficient for k2 is the inverse derivative of group velocity, formally
known as group velocity dispersion (GVD) [19,59]

GVD = k2 = (dvg/dω)
−1
ω0

. (1.40)

Going one step further into the expansion, we find k3 which is group delay dispersion
(GDD) [19,59], or in other words, the spectral variation of the group delay,

GDD = k3 = (dGVD/dω)−1
ω0

. (1.41)

For this thesis, we only need to consider the effects of dispersion up to GVD. However,
higher-order dispersion terms can become significant in highly nonlinear systems with a
large dispersion. Upon propagation, all orders of dispersion, except the first order, shape
the pulse. The modification of the pulse is also dependent on the sign, which changes how
the frequency is modulated with the wave vector. Therefore, it is essential to note regions
of positive (normal) and negative (anomalous) dispersion [4,60]. In other words, the wave
sees normal (anomalous) dispersion with an increase (decrease) in refractive index with an
increase in wavelength.

In optics, normal or anomalous dispersion can balance out nonlinear effects and lead
to the formation of solitons, or EM waves, that propagate for long distances without
distortion of the beam shape [49]. Solitons form when there is a balance between GVD
and nonlinear refraction. Often, this balancing is based on the lengths needed for each
interaction. Following the derivation of Boyd [19], we find the nonlinear length associated
with nonlinear refraction as

LNL =
1

(ω0/c)n2I
. (1.42)
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When LNL is equal to the dispersion length, Ldis, defined as,

Ldis = T 2|k2|, (1.43)

where T is the time duration of a pulse, we can find the condition of solitons or self-
channelling [61]. Therefore, we will spend some time deriving the nonlinear Schrödinger
equation that considers nonlinear refraction and dispersion to understand the dynamics of
a given system.

1.5 Nonlinear Schrödinger Equation

We can derive the nonlinear Schrödinger equation from the wave equation. We want to
develop the nonlinear Schrödinger equation to be able to model nonlinear light propaga-
tion, as in the following chapter, where we model the light propagation through a rotating
rub rod. Thus, we will derive the nonlinear Schrödinger equation to develop a basic un-
derstanding. Thus, let us consider an electric field that describes a pulse of the form

Ẽ(z, t) = Ã(z, t)eik0z−ω0t + c.c., (1.44)

where Ã(z, t) is a pulse envelope function, and c.c. is a complex conjugate of the field. In
the remainder of this derivation, k0 = nlin(ω0)ω0/c, and the pulse propagates through a
dispersive, nonlinear medium.

To arrive at the nonlinear Schrödinger equation, we can relate the time and frequency
of the field Ẽ using a Fourier transform

Ẽ(z, t) =

∫ ∞

−∞
Ẽ(z, ω)e−iωtdω/2π, (1.45)

and similarly for D̃ and Ã. We also must consider that the permittivity depends on the
frequency such that

D̃(z, ω) = ϵ0ϵ(ω)Ẽ(z, ω). (1.46)

Assuming we only have variation along the longitudinal direction, i.e. along propagation
and substituting Eqs. (1.45) and (1.46) into Eq. (1.11), we find

d2Ẽ(z, ω)

dz2
− ϵ(ω)ω2

c2
∂2Ẽ

∂ω2
= 0. (1.47)
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We only take the resonant term (i.e. ω−ω0 rather than anti-resonant ω+ω0, where ω0

is resonant frequency) as in [19], and assuming the slowly varying envelope approximation
for Ã, i.e.

|∂
2Ã

∂z2
| ≪ |2k0

∂Ã

∂z
|, (1.48)

we find a simplified expression for the wave equation

2ık0
dÃ

dz
+ (k2 − k2

0)Ã = 0. (1.49)

Rearranging Eq. (1.49) and assuming that k and k0 only differ by a small fraction, we find

dÃ(z, ω − ω0)

dz
− ı(k − k0)Ã(z, ω − ω0) = 0. (1.50)

The field Ã will have both a resonant (ω−ω0) and an anti-resonant (ω+ω0) term as a result
of the complex conjugate. However, we only take the resonant term into consideration in
the nonlinear interaction as the anti-resonant term does not interact strongly [19].

The wave vector can be Taylor expanded to include higher-order dispersion terms as
well as a nonlinear contribution due to nonlinear refraction such that

k − k0 = ∆kNL + k1(ω − ω0) +
k2
2
(ω − ω0)

2 + ..., (1.51)

where ∆kNL = ∆nNLω0/c = n2Iω0/c. We can substitute Eq. (1.51) into Eq. (1.50) to find

dÃ(z, ω − ω0)

dz
−ı∆kNLÃ(z, ω−ω0)+ık1(ω−ω0)Ã(z, ω−ω0)+

ık2
2
(ω−ω0)

2Ã(z, ω−ω0) = 0.

(1.52)

It is important to note that if we take a Fourier transform of Eq. (1.52), we can find a
temporal evolution of the wave equation

∂Ã

∂z
− ı∆kNLA(z, ω − ω0) + ık1

∂Ã

∂t
+

ık2
2

∂2Ã

∂t2
= 0. (1.53)

Then, if we make the substitution that τ = t − z/vg, we can find a simplified version of
the equation that accounts for the envelope

dÃs

dz
+ ık2/2

∂2Ã

∂τ 2
− ı∆kNLÃ(z, ω − ω0) = 0, (1.54)
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where ∆kNL = n2Iω0/c = 2n0ϵ0n2ω0|Ãs|2 = γ|Ãs|2 is the nonlinearity, k2 represents the
nonlinear dispersion, and Ãs refers to the optical field in retarded time. We can write the
final form of this equation as

dÃs

dz
+

ık2
2

∂2Ãs

∂τ 2
= ıγ|Ãs|2Ãs, (1.55)

which is otherwise known as the nonlinear Schrödinger equation. This form can capture
the dynamics upon propagation, and we will use it to model our rotating ruby rod using
the specific optical properties associated with that system, as in Chapter 2, which covers
our theoretical work [62]. This model will then be tested experimentally in our work in
Chapter 3 [5].

1.6 Slow Light and its Applications

Dispersion is related to the spectral response of the refractive index. Typically, the group
index and the phase index are approximately the same value, but large group indices are
possible if the refractive index rapidly changes over the frequency or wavelength. This
behaviour is usually associated with a resonance feature in absorption [63]. These sorts of
resonance features happen when a certain symmetry in materials or certain atomic features
allow the energy states of the electrons to absorb photons more preferably [64, 65]. When
a photon is absorbed, electrons are moved to excited states and decay at different rates
depending on the material. The energy levels are highly discretized for atomic vapours,
allowing for highly resonant features, like sodium [61] or rubidium vapor [63, 65]. Due to
the selection rules of the electrons and the orbitals that they can exist in, the electronic
states accessible within an atomic vapour can be very narrow, on the order of kHz [66,67].
The allowed states can vary depending on the material platform. For solids, the material
is rigid and can allow a variety of different energies as the energy is discretized into bands
with a wide variety of allowed photonic transitions [68–70], and the shape of these bands
depends on the constituent atoms and their place within the material. Doped transparent
oxides like rubies were initially used in the first optical masers [71], but indeed are now seen
as interesting solid-state materials because they are very similar to an atomic vapor [72,73].
The crystalline structure can be transparent to certain wavelength regions. Still, the crystal
is doped with a much heavier atom, chromium, Cr3+, in the case of ruby and sapphire.
Both materials host these heavier atoms within a transparent solid of Al2O3 but show very
different optical properties. The Cr3+ lodged within the structure are similar to that of the
atomic vapour, with multiple ions floating around; however, the ions are more localized
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and have to obey strict rules regarding the crystalline structure of materials. The crystal
structure will also affect how light is absorbed. Thus, it is worthwhile to talk about how
absorption is defined.

In most of the discussion up to this point, we have defined the refractive index as a
real-valued quantity. The refractive can have an imaginary component that quantifies how
much light is absorbed. Looking at the representation of the refractive index with the
dielectric permittivity, we can write a complex refractive index as

n =
√
ϵr + ıϵi, (1.56)

where ϵr refers to the real part of the permittivity (rather than relative permittivity) and
ϵi is the imaginary part of the permittivity. Let us suppose that the complex refractive
index also consists of a real and imaginary part, such that

n = n0 + ık, (1.57)

where n0 is the real part of the refractive index, and k is the imaginary part. Using some
algebra, we can relate the real and imaginary parts of the dielectric permittivity to n and
k, where

ϵr = n2 − k2, (1.58)

and
ϵi = 2nk. (1.59)

Each of these quantities will have a very different response depending on the input wave-
length. We can use the imaginary part of the refractive index to find the absorption. The
absorption, denoted α is written as

α = 4πk/λ. (1.60)

Typically, the resonant features seen in absorption have a Lorentzian lineshape [74].
Around a resonance position, the refractive index should change. Depending on how narrow
this lineshape is, a large group index could be possible, inviting an excellent spot to talk
about Kramers-Kronig relations.

1.6.1 Kramers-Kronig Relations

Kramers-Kronig relations describe that a complex physical quantity written in terms of
a real and imaginary part will be linked spectrally [75, 76]. In particular, the Lorentzian
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lineshape seen in absorption leads to a swing in the refractive index and, therefore, a scaled
swing in the group index. If we consider the complex refractive index, for example, we can
relate the real and imaginary parts using Kramers Kronig relations

Re[n(ω)] = 1/π

∫ ∞

−∞

Im[n(ω′)]dω′

ω − ω′ , (1.61)

and

Im[n(ω)] = −1/π

∫ ∞

−∞

Re[n(ω′)]dω′

ω − ω′ , (1.62)

where k = Im[n] and n0 = Re[n], and ω′ is the frequency that we are integrating over.
Kramers Kronig relations allow switching from real to imaginary parts of any complex
and serve as a useful tool in optics. Kramers Kronig relations, although they do not work
well with nonlinear optics [77, 78], can relate to the ideas of delayed responses when the
nonlinear response is large. The Kramers-Kronig relations only work well in nonlinear
optics if the input and output fields can be treated as linear interactions, like harmonic
generation where the frequency is always one or integer multiples of ω that participate in
the interaction. Indeed, the time scale of nonlinear interactions can affect other optical
processes and cause delays similar to slow light. Therefore, we must address the idea of
slow light and how it plays a role in nonlinear optics.

1.6.2 Slow-Light Media

For a laser beam, we know that the phase velocity and group velocity affect how it travels.
The phase velocity describes the local variations of the field, and the group velocity de-
scribes the field’s envelope. The group velocity and phase velocity are not bounded by the
speed of light, and in some cases, the group carries information [79]. Only the leading edge
of the pulse is bounded by the speed of light [80]. Group velocities can also be subluminal
or superluminal, like that of the phase velocity. Slow light is usually referred to as the case
of subluminal speeds, where the group travels much slower than wave oscillations. In some
cases, the group can be slowed so much that the light stops [81–83]. For the interest of this
thesis, group velocities of interest are slow (fast if the sign of the group index is negative)
but not zero.

Slow (fast) light is quite versatile in its ability to aid optical processes, most evidently
by aiding light-matter interaction. In general, optical processes need a certain distance
of which to build up appreciable magnitude. As discussed by Miller [84], optics need
thickness. Indeed, optical processes must take place over a certain spatial range, but slow
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or fast light provides a different degree of freedom or tuning knob which can, in some
cases, dramatically increase light-matter interaction. Increasing light-matter interaction in
this fashion can also help avoid parasitic effects of absorption associated with large spatial
propagation. This is crucial in platforms like waveguides where the amount of light lost
per unit length is a critical parameter to determine the usability of a device [85]. For the
scope of this thesis, we will look at free space optics and enhancing or manipulating their
response with the utilization of slow (or fast) light. In this case, we can look for certain
material platforms that can exhibit slow (fast) light and the associated optical process that
enables it.

1.6.3 Optical Effects for the Creation of Slow-Light

Material platforms like rubidium [66] and ruby exhibit specific optical processes that allow
sharp absorption features that give rise to large group indices as a result of Kramers-Kronig
relations, on the order of ng ≈ 106. Figure 1.1 shows the absorption, refractive index, and
group index as a function of the frequency. The typical absorption feature is Lorentzian,
and if we use Kramers-Kronig relations, we can find the corresponding refractive index.
Since the group index is related to the rate of change of the refractive index with respect
to the frequency, we can look at the slope to find the group index. Figure 1.1 shows two
regions of interest for the group index, particularly when ng > 0 and ng < 0, corresponding
to normal and anomalous dispersion, respectively.

These regions are considered normal and anomalous and can be regarded as fast and
slow light regimes. We can enhance other optical effects in these regions by having a
longer interaction time. The magnitude of the slow or fast light effect depends on the type
of optical effect used to obtain it. For the case of rubidium vapour, electromagnetically
induced transparency [86, 87] can produce a group index of ng = 105, and ruby, through
coherent population oscillation (CPO) [70,88], can reach group indices of ng = 106 for 514.5
nm light and ng = −1.17×106 for 473 nm light. CPO consists of an intense field and a weak
detuned field that illuminates the crystal simultaneously, creating a small transparency
window in the absorption spectrum that leads to a rapid change of the refractive index
and thus the group index [88]. Regarding ng ≈ −106, although the group velocity is small
in magnitude and therefore travels slowly, this regime is considered as fast light. Fast light
happens when there is anomalous drag present in the system or when ng < n0. Fast light
can describe two situations: The group will reach the end of a system faster than the
oscillations of the phase, or the group will seemingly begin at the back end of a system
and travel backward, against the propagation direction of energy flow [89]. Going against

18



 

Slow 
Light

Fast 
Light

Normal

Anomalous

0

Figure 1.1: Schematic of the spectral response of the absorption α, the refractive
index n, and the group index ng. By Kramers-Kronig, the Lorentzian lineshape in
the absorption spectrum gives the swing in the refractive index. This variation in the
refractive index will give a non-zero slope and, therefore, a variation in the group index.
The region in red for the group index shows a region of normal dispersion and slow light
behaviour. The blue region, on the other hand, shows anomalous dispersion and a fast-
light effect. These slow and fast light regions can enhance the light-matter interaction in
specific spectral regions.

energy flow seems to break causality, but this would only happen if the phase velocity
behaved like the group velocity.
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1.7 Thesis Outline

The subsequent chapters will focus on the theoretical and experimental investigation of
two main topics, the photon drag effect and nonlinear deflection, and the development and
testing of multilayer stack-based spaceplates.

In Chapter 2, we model the nonlinear propagation of light through a rotating ruby
rod using Nonlinear Schrödinger equations based on the work of Hogan et al. [62]. The
response of the medium is captured in a dielectric tensor that incorporates rotation, bire-
fringence, and thermal nonlinearity. We also incorporate a nonlinear group index that
captures the slow-light effect in the crystal. This group index was found to have a rota-
tion speed- and intensity-dependence that can change the beam’s trajectory through the
crystal. These effects are incorporated into coupled Nonlinear Schrödinger equations from
which the transverse trajectories and transverse shift are extracted. The trajectories of
each beam are investigated, as well as the electric field evolution in space and time.

In Chapter 3, we experimentally measure the transverse trajectories and transverse
shift at the output of the ruby rod, based on the work of Hogan et al. [5]. We observe
that the centre of intensity of the sometimes overlapping two beams trace figure-eight
trajectories in the transverse plane at the crystal output. The average position is then
experimentally calculated for each trajectory to map out the transverse shift as a function
of input intensity and rotation speed. The dependence of the output angle is also calculated,
showing the dependencies on rotation speed and intensity. To understand the output angle,
the transverse shift is also measured at other positions past the output. A Townes profile
was also observed, and the strength of this nonlinear refraction was quantified.

In Chapter 4, we investigate four different spaceplate designs based on thin film multi-
layer stacks, according to the work of Hogan et al. [2]. The spaceplates are each designed
by either a gradient descent optimization method or by optimizations of a multiple coupled
resonator model. The four devices are characterized using the Transfer Matrix Method to
extract the transmission phase and transmittance dependencies on the input angle and
wavelength. The transmission phase as a function of angle can then be used to calculate
the transverse walk-off, from which we extract the compression factor as a function of
wavelength. Due to the nature of the coupled resonator structure, multiple resonances are
found. A brief theoretical investigation of the resonance positions and bandwidth is also
proposed.

In Chapter 5, we experimentally measure the transverse walk-off of each spaceplate
discussed in Chapter 4 and extract the compression factor as a function of wavelength,
according to the work of Hogan et al. [2]. The full dependency of the transverse walk-off
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and angle is shown for each device type, and the characterization of beam quality is also
measured and discussed. These experimental values are compared to simulations showing
good agreement. Focal shifts of the imaging plane are also measured to show the viability
and functionality of the spaceplate.
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Chapter 2

Photon Drag Theory and Nonlinear
Propagation

In the present chapter, as per the results of Hogan et al. [62], we will develop an under-
standing of photon drag and light propagation through a rotating, anisotropic, birefringent
medium with a thermal nonlinear response and a nonlinear group index. The complexities
of the system will be modelled and simulated using coupled nonlinear Schrödinger equa-
tions that represent two beams that propagate through the medium. The evolution of the
fields through the crystal in space and time will be investigated. Furthermore, the weighted
average position of the intensity of the two beams will be used to track the dynamics in
the transverse plane. The average position of these trajectories can then be used to extract
the amount of transverse shift at the output facet of the medium.

2.1 Background

First predicted by Fresnel [90], and later experimentally proved by Fizeau [91], the propa-
gation of light in a medium in motion is subject to the photon drag effect. Depending on
the direction of medium motion relative to the optical path, light drag causes a longitudi-
nal or transverse shift in the beam, leading to a shift in the beam along or perpendicular
to the path of propagation, respectively. This effect has been studied in various media,
including those with large group indices [92–95]. Since the photon drag effect scales with
group index (ng), one can use fast or slow light to manipulate and even significantly en-
hance the shifts induced upon the beam [3,88]. The mechanism of interest to realize a large
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group index is coherent population oscillation (CPO) [3,88] in ruby with ng ≈ 106, which
allows for a much larger shift in the beam position when in motion. Appreciable speeds
are also necessary to produce a measurable optical beam shift. In the case of a transverse
shift, fast-speed medium translation is often practically difficult. Reaching large, constant
speeds is more viable with rotation, so it is used instead. The speeds achieved by rotation
serve twofold, as the rotation speed should match the lifetime of the atomic excitations
in the case of CPO, and the drag effect scales linearly with speed, so it should also be
considered. The tangential component of the rotation, provided far from the center of ro-
tation, is almost completely translational. Therefore, a beam can be dragged at significant
speeds. However, rotation requires additional considerations, such as a rotating reference
frame and birefringence in the case of a ruby rod. Therefore, modelling light propagation
in such a system must account for the rate of rotation, the birefringence, the group index,
and the impact of each on any nonlinear optical or thermal response.

To date, the photon drag effect has been modelled as a linear effect [3, 88, 90, 91, 96].
To more accurately model the dynamics of such a system, like the one in our experi-
mental work [5], one must distinctly consider the contributions of instantaneous versus
non-instantaneous regimes in a nonlinear context and how this affects the group index
and, ultimately, the photon drag effect. This states that when considering the nonlinear
response of thermal origin versus optical origin, the interaction’s timescale will affect the
beam’s trajectories depending on how fast the medium moves. Thermal nonlinearities are
non-instantaneous, and optical nonlinearity is often instantaneous. However, the optical
nonlinearity still has an associated timescale before the effect has impinged on the system,
usually associated with the lifetime of an excited state, as in the case of CPO [88]. For
CPO, the dielectric tensor that describes the systems has a non-trivial frequency derivative
that leads to distorted figure-eight-like trajectories in the transverse plane of the beam.
The rotation and nonlinear components will drastically modify this dielectric tensor in
time, changing the dynamics measured at the crystal output face. Therefore, one must
incorporate the rotation and nonlinear response to the dielectric tensor to accurately model
the system’s dynamics, affecting the group velocity and the transverse shift measured at
the crystal output.

Here, we model the dynamics of transverse photon drag in a rotating ruby rod experienc-
ing CPO, accounting for its uniaxial birefringence and its non-instantaneous self-focusing
nonlinearity. This modelling effort draws from our experimental work on such a system
presented in our paper [5], which we will talk about in the following chapter. Furthermore,
this modelling demonstrates that the contribution of the linear response of the photon drag
effect is negligible compared to the nonlinear contribution based on nNL

g . We will also show
that nNL

g depends on rotation speed, which is needed to match the simulations well with
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experimentally measured values.

Using a primarily general theory that describes the interaction of linearly polarized
light with a birefringent medium and considering rotation, nonlinear refraction, and the
nonlinear photon drag effect, we develop nonlinear Schrödinger equations for the ordinary
(o) and extraordinary (e) beams that fully describe the dynamics of the system. Our
model matches the linear and nonlinear dynamics of the system in the transverse plane,
following the rotary motion of the medium. This model can be applied to our experimental
work [5], as well as to the propagation of light in a rotating, nonlinear medium [97], and
has implications for applications in beam-steering [98], mode-sorting [99, 100] as the tra-
jectory of the light is tracked, and the transverse shift at the output is controllable based
on input intensity and rotation speed. Furthermore, detecting sensitivities to polarization
imperfection could be possible as they dictate a certain transverse trajectory. The beam
trajectory through the birefringent ruby rod is highly sensitive to the input beam polar-
ization, the rotation speed, and any nonlinear refraction. Furthermore, this work could
lead to investigations on the stability of complex electric field structures [99, 100] with
respect to whether a beam will filament or solitons [101–104] by tuning the dispersion and
nonlinear response of the medium.

This chapter focuses on creating a model to predict the beam path trajectory and
evolution through a rapidly rotating, birefringent medium that can experience Kerr and
thermal nonlinearities. This is also considered for cases such as non-normal incident beam
angle, which is often the case in experiments. Furthermore, the angle dependence is affected
by the birefringence tilt relative to the axis of rotation and index gradients. All of these
components will modify the transverse trajectories at the crystal output fact and the
transverse shifts. Therefore, we will begin by introducing the photon drag effect and how
it is extended to the nonlinear regime and incorporated into the nonlinear Schrödinger
equation.

2.2 Photon Drag Theory

2.2.1 Linear Drag

As light travels through a moving medium, the momentum of the medium is transferred to
the light, producing light drag. The effect is more subtle, resulting from different momen-
tum components having different phase shifts (in analogy to different frequencies having
a different phase producing a group velocity). This movement can be either along the
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propagation direction, producing an optical phase shift and longitudinal drag [105], or per-
pendicular to propagation, inducing transverse drag of the light [96]. From the derivation
of Carusotto et al. [96], we consider monochromatic, collimated light that interacts with
an isotropic, lossless, dispersive, linear medium in motion with constant speed, v, to find
an expression for the transverse shift due to photon drag.
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Figure 2.1: Schematic of the linear, transverse photon drag effect. A beam of light
passing through an isotropic, lossless medium of length L, moving transversely with speed
v, gets laterally shifted by ∆y due to a small angle deviation, θ.

Due to the motion of the medium, the beam is deflected from its original direction of
propagation. We suppose this transverse deflection is a small angle deviation, θ. We find
the angle θ as a function of phase index n0, and the group index ng [96]

tan θ =
v

c

(
ng −

1

n0

)
, (2.1)

where v is the medium speed, and c is the speed of light. We can find the amount of
transverse shift ∆y in terms of the medium length L, replacing tan(θ) = y/L to find

∆y =
vL

c

(
ng −

1

n0

)
. (2.2)

The transverse shift is a measurable quantity that is often the measure of the magnitude of
the photon drag effect. Knowing that group index is ng = n0 + ω0

(
dn0

dω

)
ω0
, and the phase

index is n0 =
√
ϵ =

√
ϵr + ıϵi ≈

√
ϵr (assuming a lossless medium), we find

∆y =
vL

c

[(
ϵr(ω0) +

ω0

2
√
ϵr(ω0)

(
dϵr
dω

)
ω0

)
−

(
1√

ϵr(ω0)

)]
. (2.3)

We will now consider how the assumption of a linear system no longer holds for an intense
laser beam and the associated implications.
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2.2.2 Nonlinear Drag

In the presence of an intense laser beam, certain media can exhibit large group indices
(|ng| ≈ 106 [4, 88]), therefore extending the linear photon drag effect to nonlinear. There-
fore, we must consider the lowest order correction to the indices n0 and ng. The correction
takes the form ∆n = n2I, arising from an instantaneous Kerr-type nonlinearity, where n2

is the nonlinear refractive index, and I is the input beam intensity. Therefore, the phase
and group indices become

nNL
0 = n0 + n2I,

nNL
g = n0

g + ng
2I,

(2.4)

where n0
g is the linear group index, ng

2 is the nonlinear group index

ng
2 =

(
n2 + ω0

(
dn2

dω

)
ω0

)
, (2.5)

and nNL
g represents the nonlinear change of the group index due to a Kerr-like nonlinear

response. Substituting the nonlinear group index, we find the transverse shift due to
nonlinear photon drag

∆yNL = L tan(θNL) =
Lv

c

(
nNL
g +

1

n0

)
. (2.6)

We note that θNL = θ ±∆θ, depending on the sign of nonlinear response of the medium,
where ∆θ is the nonlinear correction to linear output angle.

In the presence of slow light media, we can approximate |nNL
g | ≫ n0, and therefore find

the transverse shift as

∆yNL ≈ Lv

c
nNL
g , (2.7)

which is positive for normal (nNL
g > 0) dispersion [88] or negative in an anomalous (nNL

g <
0) dispersion regime [4, 60].

In Sec. 2.4.3, we will elaborate further on the effect of medium speed on nNL
g . When

considering the speed dependence, the nonlinearity is treated as approximately instanta-
neous; however, the nonlinearity is indeed non-instantaneous. We see that medium speed
is also important in the photon drag effect regarding the magnitude of the shift observed.
The nonlinear photon drag effect can be tuned using medium speed, creating a range of
transverse shifts.
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So far, the discussion has focused on the purely linear motion of an isotropic medium.
It is easier to achieve considerable transverse speeds using rotational motion in practice.
Therefore, we will use rotation, but we will also have to account for added complexity
arising when illuminating a rotating system.

2.3 Media in Rotation

𝒚"

𝒙" = 𝒂"𝟎

𝒙"'
𝒚"'

𝒛', 𝒛''

𝛀

𝛀𝐭
𝑟

Input beam

𝑣" ≈ rΩ

Figure 2.2: A laser beam incident on a rotating medium far from the center
of rotation. Far from the center, the beam experiences the tangential component of the
velocity in the direction according to the sign of the angular velocity, Ω, that rotates about
the z-axis. Two frames of reference are also shown. The lab frame is shown in (x, y, z)
and the crystal frame is (x′, y′, z′).

We have shown the nonlinear transverse shift scales with the group index, but our model
requires high, uniform speeds (v ≈ 1 m/s) to predict measurable shifts. Using rotation
to achieve large constant speeds over translational motion is experimentally favourable.
Therefore, we consider a rotating medium with a beam far from the centre of rotation,
that is r > w0, where r is the radius from the centre of the medium to the beam centre
and w0 is the beam waist, such that the beam experiences only the tangential component
of the rotation speed, representing approximately translational motion, seen in Fig. 2.2.
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Accounting for rotation and taking the speed to be v = rΩ, we can then substitute into
Eq. (2.7) and find the nonlinear photon drag effect as

∆yNL ≈ LrΩ

c
nNL
g , (2.8)

where Ω is the rotation speed of the medium. Therefore, to maximize the nonlinear pho-
ton drag effect, we need a medium that rotates easily about the transverse plane and a
medium with dispersion that creates a large group index to achieve large transverse shifts.
An example of such a medium is a ruby rod which has significant dispersion [106], has
been used to investigate slow and fast light experiments [3,70,94,107–110], and has a mea-
surable nonlinear effect like Kerr or others [107, 111–113]. However, it is not an isotropic
medium. Therefore, our model must incorporate the different refractive indices along the
ordinary and extraordinary axes of its crystal structure. Motivated by this example, we
will incorporate a rotating reference frame for a birefringent, nonlinear material into our
model.

2.3.1 Rotation and Anisotropy

Consider a solid, birefringent rod rotating about the z-axis with a constant rotation speed
Ω, as shown in Fig. 2.2. We wish to describe how incoming collimated, monochromatic
light interacts with this medium by utilizing a vector wave equation derived from Maxwell’s
equations

k× (k× E) +
ω2

c2
ϵE = 0. (2.9)

To adequately describe the system, we must define the vector quantities in two reference
frames: the lab frame, (x, y, z), and the rotating crystal frame (x′, y′, z′). The two reference
frames are used because light propagation is broken into parts using the Split-Step Fourier
Method, and each propagator must take care of its respective reference frame.

In the lab reference frame, the orthonormal basis of unit vectors is x̂, ŷ, ẑ. Furthermore,
the crystal rotates with constant angular velocity Ω, and away from the center of rotation,
the crystal moves with tangential velocity v = Ω× r, where r = xx̂+ yŷ+ zẑ. The crystal
reference frame is written as another orthonormal basis x̂′, ŷ′, ẑ′, however we take x̂ = â0,
where â0 is the crystal optic axis [114], as shown in Fig. 2.2. The crystal frame is accessed
by applying a rotation matrix to the lab frame and vice versa. In an ideal case, the crystal
basis is exactly aligned with the crystal axes, but we must account for circumstances where
they are not perfectly aligned. Therefore, we suppose the system has a slight tilt angle,
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γ, that rotates the xz plane, tilting into the crystal, as seen in Fig. 2.3. We will consider
γ ̸= 0; however, we highlight some simplifications when γ = 0.

Perfect Crystal Alignment γ = 0

Let us consider a change of basis matrix C to incorporate the rotating reference frame that
interchanges between lab to a crystal frame

C =

 cos(Ωt) − sin(Ωt) 0
sin(Ωt) cos(Ωt) 0

0 0 1

 = Rz(Ωt), (2.10)

where Rz(Ωt) is the rotation matrix about the z-axis, Ω is the rotation speed, and t is
time. To obtain the orthonormal basis in the crystal frame, we apply C to the column
vector (x̂, ŷ, ẑ) resulting in the crystal orthonormal basis set

x̂′ = cos(Ωt)x̂+ sin(Ωt)ŷ,
ŷ′ = − sin(Ωt)x̂+ cos(Ωt)ŷ,
ẑ′ = ẑ,

(2.11)

as sketched in Fig. 2.2.

One must apply an inverse matrix, C−1, from crystal to lab frame. Neglecting terms
O[(δn)2], where δn = no−ne (e.g. δn ≈ 0.008 for a ruby rod), one obtains the corresponding
dielectric tensor in the lab frame

ϵ(Ωt) = Cϵ′C−1 = ϵ′ + ϵ′′(Ωt). (2.12)

where

ϵ′ = ϵ0

 n2
e 0 0
0 n2

o 0
0 0 n2

o

 . (2.13)

and

ϵ′′(Ωt) = 2ϵ0noδn

 sin2(Ωt) −1
2
sin(2Ωt) 0

−1
2
sin(2Ωt) − sin2(Ωt) 0
0 0 0

 . (2.14)
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Imperfect Crystal Alignment γ ̸= 0

A slightly misaligned crystal induces a further rotation by γ considered to be between the
optic axis, â0, and the xy plane. We again set the optic axis to be along the unit vector
x̂ such that x̂′ = â0. The other units vectors ŷ′, ẑ′ are set according to x̂′, and the crystal
frame orthonormal basis becomes

x̂′ = cos(γ) cos (Ωt) x̂+ cos(γ) sin (Ωt) ŷ + sin(γ)ẑ,
ŷ′ = − sin (Ωt) x̂+ cos (Ωt) ŷ,
ẑ′ = sin(γ) cos (Ωt) x̂+ sin(γ) sin (Ωt) ŷ + cos(γ)ẑ.

(2.15)

𝜃
𝑘
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y
z’

x’

y’

Ω𝑡

𝛾

𝛾

Figure 2.3: Schematic of two different frames of reference. The reference frames
are laboratory (x, y, z) and crystal (x′, y′, z′). The wave vector comes in at an angle θ
in the xz plane. The reference frames become tilted by Ωt, where Ω is the rotation speed,
and t, time, and γ, the crystal orientation with respect to the optic axis. Ωt shifts the
coordinates in xy plane, and γ in xz plane.

Incorporating the tilt angle into the change of basis matrix C, we find

C = Ry (−γ)Rz (Ωt)

=

 cos(γ) cos (Ωt) cos(γ) sin (Ωt) sin(γ)
− sin (Ωt) cos (Ωt) 0

− sin(γ) cos (Ωt) − sin(γ) sin (Ωt) cos(γ)

 ,
(2.16)
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which is comprised of the rotation matrix about the z-axis Rz(Ωt) and Ry (−γ), the
matrix representing the tilt angle, γ, applied along the y direction. If γ = 0, we only find a
rotation about the z-axis, Rz(Ωt). A schematic of how the two matrices rotate the system
is depicted in Fig. 2.3.

Returning to lab frame, we apply C−1 to the dielectric tensor, neglect terms O[(δn)2],
and find

ϵ (γ,Ωt) = Cϵ′C−1 = ϵ′ + ϵ′′ (γ,Ωt) . (2.17)

We must consider the crystal symmetry when switching reference frames and its effect on
the dielectric tensor. Incoming light in the crystal frame will see the ordinary (no) and
extraordinary (ne) refractive indices. Assuming the optical axis is perpendicular to the
axis of rotation, the dielectric tensor is therefore [114]

ϵ′ = ϵ0

 n2
e 0 0
0 n2

o 0
0 0 n2

o

 . (2.18)

Assuming δn = no − ne ≪ 1 (i.e. for a unixial ruby rod, δn = −0.008), we find ϵ′′(γ,Ωt)

ϵ′′(γ,Ωt) = (2ϵ0δn cos(γ)2)

sin (Ωt)2 + sec(γ)2 − 1 − sin(2Ωt)/2 cos (Ωt) tan(γ)

− sin(2Ωt)/2 sin (Ωt)2 sin (Ωt) tan(γ)

− cos (Ωt) tan(γ) − sin (Ωt) tan(γ) tan(γ)2


γ=0−−→ 2ϵ0noδn

 sin2(Ωt) −1
2
sin(2Ωt) 0

−1
2
sin(2Ωt) − sin2(Ωt) 0
0 0 0

 .

(2.19)
One needs the permittivity tensor and the fields interacting with the crystal to understand
light propagation through the medium. So far, we have described the dielectric permittiv-
ity, including birefringence, tilt angle, and medium rotation, but one still needs to consider
how these quantities affect the fields.

2.3.2 Electric Fields in Rotating Media

Consider a monochromatic field propagating through a linear medium E = E0e
ı(k·r−ωt)

under the hypothesis of weak birefringence (δn ≪ 1) and v ≪ c (for which ∂2

∂t2
ϵE ≃ ϵ ∂2

∂t2
E).

That is to say, the speed of the medium does not create a time-varying permittivity over
the time the light spends in the medium. This is under the assumption that the medium
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is short enough such that the time it takes light to propagate through it is negligible
compared to all other time scales.

We aim to solve the vector wave equation in Eq. (2.9) in the lab frame as a linear
system of variables Ex, Ey, Ez, the electric field coordinates, satisfying A · E = 0, where

A = k2 − ω2

c2
ϵ. Non-trivial solutions of A · E are only found if the determinant of the

coefficient matrix is non-null (i.e. k2− ω2

c2
ϵ ̸= 0). We solve this equation using the dielectric

tensor in Eq. 2.17 as in Sec. 2.3.1 and the associated monochromatic field E for a rotating
birefringent medium.

Perfect Crystal Alignment γ = 0

We suppose that our initial wave vector k comes in at an angle θ between the optic axis
and the z-axis, where at time t = 0, x̂ = x̂′ = â0 (See Fig. 2.2). Neglecting all the
terms O [(n2

o − n2
e)

2] in A ·E and supposing that the crystal perfectly aligned case (γ = 0),
the conditions for which the wave vector coordinates kx, kz (ky = 0) resolve non-trivial
solutions in the lab frame are

k2
x

n2
e,2

+
k2
z

n2
e,2

=
ω2

c2
, (2.20)

k2
x

n2
o

+
k2
z

n2
e,1

=
ω2

c2
, (2.21)

where
ne,1(Ωt) = ne + δn sin2(Ωt),

ne,2(Ωt) = no − δn sin2(Ωt).
(2.22)

The quantities ne,1 and ne,2 represent the new refractive indices along x, y, respectively.
Indeed, while in the crystal, the refractive indices ellipsoid reads

(x′)2

n2
e

+
(y′)2

n2
o

+
(z′)2

n2
o

= 1, (2.23)

and in the lab frame, its expression is

x2

n2
e,1

+
y2

n2
e,2

+
z2

n2
o

= 1, (2.24)

as sketched in Fig. 2.4. We will now look at how the beams propagate through the crystal
following the newfound refractive indices.
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Figure 2.4: The refractive index ellipsoid in the lab’s frame. Four refractive indices
are labeled on the ellipsoid, no as a projection onto the z-axis, ne, which is equal to the
length from O to N, defined as ON , and ne,1 and ne,2 defined in Eq. (2.22). The point

N is on the edge of the index ellipsoid such that ON is perpendicular to k⃗, and therefore
corresponds to the point at which the refractive index is ne.

Figure 2.5 shows a schematic of two beams that propagate through the crystal. The two
beams are a result of the birefringence and have specific dynamics when considering linearly
polarized light illuminating the rotating crystal. Even if the crystal is uniaxial, the rotation
in the lab frame results in a biaxial-like crystal with time-dependent birefringence. That is
to say, at certain instances in time, only one beam is seen due to a lack of birefringence, like
in a biaxial crystal. However, in some cases, it is also possible to see one beam in a uniaxial
crystal. This inherent birefringence, or lack thereof, causes the incoming linearly polarized
light to interchange between beams, where o- and e-beams reach their maximum and zero
intensity each quarter turn of the crystal. Ultimately, predicting the exit position, exit
angle, and relative intensity will be necessary to compare to experiments. Also, looking at
the centre of intensity (COI) of these beams allows for a better method to compare to our
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experiment [62] as seen in Chapter 3. Since the o- and e-beams become large and hard
to distinguish in the experiment after propagation of the full crystal length, the COI is
preferred. In fact, the trajectory that is traced out following the COI is a figure-eight. The
figure-eight serves as a good marker to understand how much they distort or shift due to the
nonlinear contributions, which is simulated using the theory in this chapter and matches
well with the experimental measurements in Chapter 3. For the simulations, however,
the COI is generated and investigated by looking at both the o- and e-beam propagation
independently, an advantage over the experiment, and then the two individual trajectories
can be tracked together to create the COI trajectories.

Another key aspect is how the light interacts with the air-crystal and crystal-air inter-
faces. Assuming that the light illuminates at some angle of incidence θ like in Fig. 2.5, the
new ordinary and extraordinary refractive indices in the lab frame are

no(Ωt) = ne,2(Ωt), (2.25)

ne(Ωt, θ) =

[
cos2(θ)

n2
e,1(Ωt)

+
sin2(θ)

n2
o

]− 1
2

. (2.26)

Once the light sees the birefringence, two angles α and β emerge within the crystal, shown
in Fig. 2.5. A small deviation in angle θ can change the transverse trajectories at the output
due to a different set of indices. Using standard algebra and modified Snell’s law [114],

α(Ωt, θ) = arcsin

(
nair

no(Ωt)
sin(θ)

)
, (2.27)

β(Ωt, θ) = arcsin

(
nair

ne(Ωt, θ)
sin(θ)

)
− α(Ωt, θ). (2.28)

Upon propagation, the o-beam shifts transversely by a distance d′, found as the tangent
of the angle α multiplied by the crystal length L

d′(Ωt, θ) = L tan [α(Ωt, θ)] , (2.29)

Similarly, we can find the distance between o- and e-beams d using Eqs. (2.27), (2.28) and
(2.29)

d(Ωt, θ) = L tan [α(Ωt, θ) + β(Ωt, θ)]− d′, (2.30)

defined as the distance between the o- and e-beam in the xy plane. It is important to
know the distance between the two beams as the distance can change due to nonlinear
interactions when the intensity becomes large.
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Figure 2.5: Transverse movement of the ordinary (o) and the extraordinary
(e) beam upon rotation and the walk-off angle β. The o-beam propagates straight
through the crystal, while the e-beam revolves around it in a circular pattern. Also depicted
schematically is the centre of intensity (COI) of their intensities, tracing out figure-eight-
like patterns for the linear dynamics of the system.

With the full description of the wave vectors in the case of a linear, rotating birefringent
medium, we can describe the respective fields and how they will propagate within the
crystal measuring in the lab frame. The sum of two fields describes the full field, the o-
and e-fields, with spatially varying functions A(x, y, z) and B(x, y, z) as

E(x, y, z, t,Ω, γ) = Êo(Ωt, θ)A(x, y, z)e
ı[ko(Ωt,θ)·r−ωt]

+ Êe(Ωt, θ)B(x, y, z)eı[ke(Ωt,θ)·r−ωt],
(2.31)

where Êo = x̂′, Êe = ŷ′, and x̂′, ŷ′ are defined in Eq. (2.15).

In most cases, the input optical beam is taken to be normal incidence. Alignment can
justify θ = 0, but a crystal can be cut in a non-optimal direction with respect to the easiest
axis of rotation. Therefore, due to the crystal-cut optical axes, we consider the beam at
normal incidence but imperfectly aligned (γ ̸= 0). However, the simulation allows small
angles in both γ and θ.

Imperfect Crystal Alignment γ ̸= 0

Assuming normal incidence and non-zero tilt-angle, we find the electric field for linearly
polarized light interacting with the medium as

E(x, y, z, t,Ω, γ) = Êo(Ωt, γ)A(x, y, z)e
ı[ko(Ωt,γ)·r−ωt]

+ Êe(Ωt, γ)B(x, y, z)eı[ke(Ωt,γ)·r−ωt].
(2.32)
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where Êo = x̂′, Êe = ŷ′, and x̂′, ŷ′ are defined in Eq. (2.15).

Due to linearly polarized light interacting with a rotating birefringent medium, we
observe interesting linear dynamics in transverse trajectories at the output. The crystal is
aligned such that, in the linear regime, the o-beam passes straight through, and the e-beam
rotates around the o-beam at a rate of Ω. The behaviour of these trajectories to the rotation
speed in linear and nonlinear regimes is discussed further in Sec. 2.6.3. Experimentally,
the COI is more easily measured, so we simulate and produce COI trajectories looking
for figure-eight-like trajectories [5] as seen in the experiment. The figure-eight shape arises
from tracking intensity that reaches a maximum and minimum over each 90-degree interval
between the o- and e-beams. COI is plotted in both simulation and experiment later in
the discussion; however, the two beam positions can be tracked independently through
simulation.

Applying Eq. (2.9) to the newly found fields of Eq. (2.32), we again search for non-trivial
solutions of the system A ∗ E = 0

A =

−k2
z +

ω2

c2
ϵ11

ω2

c2
ϵ12 kxkz +

ω2

c2
ϵ13

ω2

c2
ϵ21 k2

x − k2
z +

ω2

c2
ϵ22

ω2

c2
ϵ23

kxkz +
ω2

c2
ϵ31

ω2

c2
ϵ32 −k2

x +
ω2

c2
ϵ33

 . (2.33)

We solve the determinant to find refractive indices in the crystal frame as ni =
√
ϵii,

that is
n1 = ne,1 + δn cos2(γ)

[
sin2(Ωt) + tan2(γ)

]
,

n2 = ne,2 − δn cos2(γ) sin2(Ωt),

n3 ≃ no − δn sin2(γ).

(2.34)

One can then write the index ellipsoid in the lab frame as

x′2

n2
1

+
y′2

n2
2

+
z′2

n2
3

= 1, (2.35)

where in the limit of the tilt angle going to zero, i.e. γ = 0, one recovers Eq. (2.24). In
the simulation, we chose a value of γ = π/1800 = 0.1 degrees. We will now model how the
new refractive indices’ presence will alter the beam’s propagation in the crystal.

We model the propagation of light starting from the vector wave equation to derive a
nonlinear Schrödinger equation (NLSE) for the o- and e-beam by substituting the electric
field from Eq. (2.32) and eigenvalue solutions for the wave vectors in Eq. (2.33). We assume
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∇ · E ≃ 0, v ≪ c and weak birefringence to obtain two NLSEs for the o- and e-beams

− Êo∇2
[
Aeı(ko·r−ωt)

]
− Êe∇2

[
Beı(ke·r−ωt)

]
+

1

ϵ0c2
∂2

∂t2

[
ϵÊoAe

ı(ko·r−ωt) + ϵÊeBeı(ke·r−ωt)
]
= 0.

(2.36)

Being that Êo = (Eox, Eoy, Eoz) and Êe = (Eex, Eey, Eez) are orthogonal, we can sepa-
rate the o- and e- beams into two distinct coupled NLSEs

∇2
(
Aeıko·r

)
+

ω2

ϵ0c2
Êo · ϵÊoAe

ıko·r

+
ω2

ϵ0c2
Êo · ϵÊeBeıke·r = 0,

∇2
[
Beıke·r

]
+

ω2

ϵ0c2
Êe · ϵÊoAe

ıko·r

+
ω2

ϵ0c2
Êe · ϵÊeBeıke·r = 0.

(2.37)

Evaluating ∇2
[
Aeıko·r

]
and ∇2

[
Beıke·r

]
, and applying the slowly varying envelope

approximation, we obtain

2ıko · ∇A+∇2
⊥A+

(
ω2

ϵ0c2
Êo · ϵÊo − k2

o

)
A = 0,

2ıke · ∇B +∇2
⊥B +

(
ω2

ϵ0c2
Êe · ϵÊe − k2

e

)
B = 0,

(2.38)

where ∇2
⊥ = ∂2

∂x2 +
∂2

∂y2
is the transverse Laplacian, and k2

o,e(Ωt, θ) =
n2
o,e(Ωt,θ)ω2

c2
are the wave

vectors with refractive indices defined as in Eqs. (2.25), (2.26).

Suppose that dispersion is large such that the phase and group indices are significantly
different. As a result, the group indices can be written as

no → ng
o = no + ω0

(
∂no

∂ω

)
ω0

,

ne → ng
e = ne + ω0

(
∂ne

∂ω

)
ω0

,

(2.39)

where ng
o,e are the group refractive indices for the o- and e-beams, respectively.
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2.3.3 Nonlinear Group Index Contributions to NLSE

Everything up to this point has been considered linear; however, the large dispersion results
from a nonlinear contribution, a key feature of this work. We write this response as

ngo,e → neff
go,e ≈ ng

o,e +
1

2
ng
2Io,e. (2.40)

Here, we have introduced a nonlinear contribution to the group index, ng
2, being the non-

linear group index, and Io,e are the intensities for both the o- and e-beams, respectively.
It is important to note that we assume that both beams see the same magnitude of the
nonlinear contribution of self-focusing. However, the magnitude will change based on the
intensity that varies between the o- and e-beams as the crystal rotates. The implications
of this intensity dependence, as well as rotation speed dependence of the group index, will
be further discussed in Sec. 2.4.1. We can define an effective refractive index for the o-
and e-beams

neff2

o = no + ω0

(
dno

dω

)
ω0

+
ng
2|A|2

2
,

neff2

e = ne + ω0

(
dne

dω

)
ω0

+
ng
2|B|2

2
.

(2.41)

We must also apply a Lorentz transformation, ∆k, to be in a moving reference frame,

∆k = −ω2Ωx0

c
. (2.42)

Applying the transform and substitutions for the effective refractive indices, our transverse
beam profile becomes

A = a exp

(
ı

(
neff2

o − n2
o

)
2k2

oc
2

∆⃗k′
o · r̂

)
,

B = b exp

ı

(
neff2

e − n2
e cos (γ)

2
)

2k2
e cos (γ)

2 c2
∆⃗k′

e · r̂

 .

(2.43)

38



Substituting the fields into the two generalized coupled NLSEs, we arrive at

∂za =
ı

2ko
∇2

⊥a−
ko
no

∆nNLa−
ω2
(
neff2

o − n2
o

)
∆k

2k2
oc

2
∂ya,

∂zb =
ı

2ke cos(γ)
2∇

2
⊥b+

ke

ne cos(γ)
2∆nNLb

+ 2 tan(γ) (cos(Ωt)∂xb+ sin(Ωt)∂yb) + 2
ω2
(
neff2

e − n2
e

)
∆k

2k2
e cos(γ)

4c2
∂yb.

(2.44)

We have introduced a nonlinear index gradient caused by nonlinear refraction, ∆nNL(I),
where I is the beam intensity. This contribution becomes relevant with intense illumina-
tion, further discussed in Sec. 2.4.3. In general, the component ∆nNL(I) can contribute to
the system, but the nonlinear contributions that are large enough to affect the nonlinear
Schrödinger equations are only Kerr nonlinearities. Assuming monochromatic light, weak
birefringence (δn ≪ 1) and v ≪ c, the coupled nonlinear Schrödinger equations become

∂za =
ı

2ko
∇2

⊥a−
ıko
no

∆nNLa−
nNL
g

c
∂ya,

∂zb =
ı

2ke cos(γ)
2∇

2
⊥b+

ıke

ne cos(γ)
2∆nNLb+ 2 tan(γ) (cos(Ωt)∂xb+ sin(Ωt)∂yb) +

nNL
g

c
∂yb.

(2.45)

We simulate these two NLSEs and show the results of nonlinear propagation through the
2 cm long rotating birefringent ruby rod to extract the transverse trajectories of the COI
of the two beams and the amount of transverse shift at the output face of the crystal in
Sec. 2.6.4. The thermal nonlinear response of ∆nNL is important when the timescales
of interactions are long (i.e., non-instantaneous), and the nonlocal response is strong.
However, the simulations show that these effects are small in comparison to the nonlinear
response of the group index. That being said, a discussion on the thermal response is
included in Sec. 2.4.3. Therefore, we will now discuss the effects of the nonlinear group
index.
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2.4 Influence of Nonlinear Group Index

2.4.1 Definition of the Nonlinear Group Index of the COI

Starting from the general definition, we have the group refractive indices for the o- and
e-beams as

ng
o,e = no,e +

(
ω
∂no,e

∂ω

)
ωo

. (2.46)

We can represent the individual dependencies on the rotation speed and input intensities
of the group indices for the o- and e-beams by utilizing the Lorentz transformation in
Eq. (2.42) to find

ng
o = no +

(
neff2

o − n2
o + ng

on
g
2Ia

)
2n3

o

Ωx0

c
,

ng
e = ne +

(
neff2

e − n2
e + ng

en
g
2Ib

)
2n3

e cos(γ)
4

Ωx0

c
,

(2.47)

where
Ia ≃ |(−h) sin(Ωt) + v cos(Ωt)|2I0,
Ib ≃ |h cos(Ωt) + v sin(Ωt)|2I0.

(2.48)

These intensities are the individual intensities of the o- and e-beams, respectively. The
variables h and v represent the input polarization in the lab frame, whether H - and V -
linear polarization. We have made a correction to the lowest order to the ordinary and
extraordinary refractive indices that neff

o ≈ ng
o+

1
2
ng
2Ia and neff

e ≈ ng
e+

1
2
ng
2Ib. We can define

a collective nNL
g that describes the COI of these two beams as

nNL
g = n0

g + ng
2I, (2.49)

where I = Ia + Ib and we approximate n0
g = (ng

o + ng
e)/2 due to weak birefringence, and

ng
2I ≫ n0

g.

2.4.2 Rotation Speed and Intensity Dependence of Nonlinear
Group Index

We have shown in great detail that the o- and e-beams depend on the intensity and the
rotation speed for their respective ng

o,e. However, the transverse shift observed in the
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experiment is a result of their collective effect. The collective nonlinear group index nNL
g

is rotation speed and intensity-dependent, that is

nNL
g := nNL

g (Ω, I0), (2.50)

which controls the magnitude of the nonlinear photon drag effect.

One can draw an analogy to transverse self-steepening [115]. In a self-steepened pulse,
the group velocity of the region near the peak of the pulse, corresponding to its maximum
intensity, will travel faster than the wings. This effect is often considered along the prop-
agation direction, but one can also consider the transverse equivalent. In the transverse
case, since the medium is moving, the maximum index gradient, whether of thermal or
optical origin, is located at the place of maximum intensity. If the medium is rotating, the
maximum intensity moves and therefore beam deflects off of the moving index gradient,
changing the beam shape similar to that of a self-steepened pulse. This lateral shift in
the beam depends on the rotation speed’s magnitude and direction, which controls the
magnitude of the index gradient.

Our model has considered an instantaneous nonlinearity, which is the case for Kerr
nonlinearities. That is, however, a simplification of the system in question. The rotation
speed represents the non-instantaneous nature of the nonlinearity. The rotation describes
a temporal-like response, where the rate at which the heat dissipates within the crystal is
governed by the sampling time the rotation speed dictates. Fast timescales can act and
locally affect the beam when considering slow speeds. On the other hand, fast speeds see
the effects of more long-lived effects on an integer multiple of a full rotation of the crystal
due to the fact that the heat doesn’t fully dissipate over a full rotation. In the following
two sections, we will describe how the thermal and optical nonlinear response contribute
to the index gradient that controls the magnitude of the nNL

g and the amount of transverse
shift experienced by the optical beam upon propagation for a non-instantaneous, nonlinear
response.

Thermal Contribution

When considering slower rotation speeds, the thermal nonlinear response contributes most
of the nonlinear response of the nNL

g as the time scale of the interaction can locally affect
the beam, typically on the order of several hundred microseconds [116]. To understand
how the thermal nonlinear response impinges upon the crystal, a depiction of the heat
deposition and distribution of the crystal is shown in Fig. 2.6. Sufficiently slow speeds
keep the index gradient created by the input beam relatively constant in magnitude. That
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Figure 2.6: Schematic optical beam distributing heat over a rotating ruby rod
crystal face. The heat distribution circles about the crystal cause an index gradient with
varying magnitude depending on speed. The heat reaches different distances depending on
the rotation speed until it reaches fully around the crystal, producing a smaller magnitude
of index gradients at higher rotation speeds. The distribution can also reach a steady-
state-like response where the heat is equally distributed.

is to say, the movement causes an index gradient that does not change in time as quickly.
The transverse shift due to the index gradient steadily increases with rotation speeds up to
characteristic speed, Ωc. After this threshold, the beam sees less build-up of a moving index
gradient upon rotation and experiences less transverse shift. Both the thermal and optical
nonlinear response contribute to the size of the index gradient; however, both effects take
place over different timescales and, therefore, different rotation speeds. Here, we observe
a diminishing contribution from the thermal nonlinear response with increasing rotation
speed, or even a steady-state response like in the case of Ω4 in Fig. 2.6.

The characteristic speed is related to the timescale of the interaction. For example, if
the timescale of the interaction is τc = 3 ms, then the characteristic rotation speed in deg/s
would be Ωc = (2πτc)

−1 ≈ 60 deg/s. For a characteristic rotation speed of Ωc = 100 deg/s,
as is the case for our ruby rod [5], the time scale is τc = 1.6 ms. Above a characteristic
speed, Ωc, the nonlinearity becomes predominantly optical in nature.

The optical effect also occurs at slow speeds but with a smaller magnitude. The time
scale of the optical nonlinear response acts strongly when the rotation speed matches the
rotation time for an integer multiple of rotations. The exponential decay at slow speeds
has a relatively constant index gradient. At higher speeds, the beam samples only some of
the index gradient by the thermal nonlinear response. The maximum group index gradient
is represented as

∆ng
max(t) = ng

2I0e
−(t−t0)/τc , (2.51)
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where I0 is the input intensity, τc is a characteristic decay time of the nonlinear process, and
t0 is an offset time. We rewrite Eq. (2.51) as a function of the rotation speed, (t− t0)/τc =
(Ω−Ω0)/Ωc, where Ωc is a characteristic rotation speed, and Ω0 is an offset rotation speed.
This expression relates the temporal dynamics to the rotation speed such that we write
nNL
g ,

nNL
g = n0

g + ng
2I = n0

g + ng
2I0e

−(Ω−Ω0)/Ωc . (2.52)

The nNL
g in the form of Eq. (2.52) shows the general case when considering the system

dynamics. For Ω < Ωc, the nonlinear response is predominantly thermal, denoted Ωf =
(2πτf )

−1, where τf ≈ 200 µs [116] is a typical thermal timescale. The thermal contribution
to the nNL

g is therefore

nNL
g = n0

g + ng
2,thermI0, (2.53)

where ng
2,therm is the thermal nonlinear group index,

n2,therm = −αfn
g
2e

−(Ω−Ω0)/Ωf , (2.54)

and αf is a phenomenological scaling factor.

For Ω > Ωc, other nonlinear responses take over, denoted Ωs = (2πτs)
−1. Some optical

processes depend on the lifetime of the excited state of an atom, which can be on the order
of τs = 3 ∼ 5 ms [88] that fit into this region. If the effect was only a thermal nonlinear
process, the shift would progressively approach zero with higher rotation speeds.

Optical Contribution

In order to facilitate the explanation of the optical contributions, we’ll begin using exper-
imental parameters here. We input a Gaussian beam profile in the xy plane with a beam
waist of 10 µm at a position x0 = 0.8R, where R is the radius (R = 0.35 cm) and L is the
length (L = 2 cm) of the crystal, respectively. In the regime of Ω > Ωc, n

NL
g is the optical

nonlinear response of CPO, giving rise to large group indices [88]. Similarly, we write the
optical response of nNL

g

nNL
g = n0

g + ng
2,optI0, (2.55)

where the optical nonlinear group index takes the form

n2,opt = αsn
g
2e

−(Ω−Ω0)/Ωs , (2.56)

where αs is a scaling constant. We note the sign of the nonlinear contribution is now
positive. Certain systems exhibit a large negative group index ng ≈ −106 [4], and the

43



𝜃

Ω ≫ Ω!
Δ𝑦

𝜃

Ω ≈ Ω!Ω ≪ Ω"(a) (b) (c)

Figure 2.7: Schematic of curved trajectory induced by a moving index gradient
created by the nonlinear refraction. (a) shows the trajectory at very slow speeds,
(b) shows the largest transverse shift around Ω = Ωc, and (c) shows a smaller transverse
shift at high speeds.

value was set to be ng
2I0 = −1.1 × 106. The coexistence of the two nonlinear processes

results in a purely positive transverse shift at the output of the crystal. ng
2I0, however, can

be set to any value depending on the system at hand.

Since the system impinges an index gradient that moves with the medium, the trajec-
tory can be curved, contributing to the overall transverse shift. An example of a curved
trajectory is shown in Fig. 2.7, which conveys the idea of a non-zero output angle at the
end of the medium. It is crucial to measure this output angle to distinguish if nonlinear
deflection has also contributed to the transverse shift. The photon drag effect generally
exits the crystal parallel to the input beam. However, we stress that although the beam
exits at an angle that is not parallel, it propagates in a straight line from that output angle,
as expected in free space.

Intensity (W/cm2) Speed Range (deg/s) Variable Value

6.4× 104 5∼100 (n0
g/n

g
2I0)/αf/Ωf 166/1.4/21

6.4× 104 100∼9000 (n0
g/n

g
2I0)/αs/Ωs 11/151/576

3.3× 105 5∼100 (n0
g/n

g
2I0)/αf/Ωf 617/80/49

3.3× 105 100∼9000 (n0
g/n

g
2I0)/αs/Ωs 51/486/1190

Table 2.1: Results of the phenomenological fit for the nNL
g . Fit variables for the

expressions in Eq. (2.59) in the nonlinear (P = 100 mW, I = 3.3 × 104 W/cm2) and
highly nonlinear (P = 520 mW, I = 6.4 × 105 W/cm2) regimes for low-to-mid speeds
(Ω = 5 ∼ 100 deg/s) and mid-to-high speeds (Ω = 100 ∼ 9000 deg/s) are shown.
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Coexistence of Nonlinear Optical Responses on Nonlinear Group Index

Since the nNL
g depends on both the optical and thermal nonlinear responses, one can write

the full nNL
g as

nNL
g = n0

g + ng
2,optIo + ng

2,thermIo. (2.57)

Expanding this form using Eqs. (2.53, 2.55), we can rewrite nNL
g

nNL
g = n0

g + ng
2Io
(
αse

−(Ω−Ω0)/Ωs − αfe
−(Ω−Ω0)/Ωf

)
. (2.58)

The nonlinear group index is ng
2Io = 0.11 × 107m2/W, and fit constants αs and αf are

taken to be 0.97 and 0.94, respectively. Equation (2.58), however, is a simplified, compact
form of nNL

g . These values are found by comparing them to our experiment in Chapter
3. The behaviour of nNL

g is piece-wise about a characteristic speed Ωc, which captures
the dynamics above and below Ωc. We use the piece-wise form for nNL

g in our simulations
written as

nNL
g = ng

2I0 ×

 (n0
g/n

g
2I0)− αf exp

(
−Ω−Ωc

Ωf

)
Ω ≤ Ωc

(n0
g/n

g
2I0) + αs exp

(
−Ω−Ωc

Ωs

)
Ω ≥ Ωc.

(2.59)

Fit values for the piece-wise function are summarized in Table 2.1. Offsets are described
by a1,2, amplitudes b1,2, and characteristic speeds c1,2 for thermal and optical nonlinear
response. All constants are strictly positive and retrieved for low-to-mid (5∼100 deg/s)
and mid-to-high (100∼9000 deg/s) rotation speeds.

With complete knowledge of the system and the dynamics of nNL
g , nonlinear propaga-

tion of the two coupled NLSEs is simulated using the Split-Step Fourier Method (SSFM)
to extract the amount of transverse shift as well as the transverse trajectories at the crys-
tal output. The results of the simulated NLSEs are discussed in the following section.
Furthermore, the details of how the simulations are performed are described in Sec. 2.5.

2.4.3 Thermal Nonlinear Response

Although the index gradient impinged by a thermal nonlinearity does not contribute
strongly to the amount of transverse shift, analyzing the effect is worth noting. Let’s
consider intense illumination impinged on media with nonlinear refraction, creating an
index gradient modifying the dielectric tensor. Therefore, for first-order correction in the
crystal frame, the dielectric permittivity is

ϵ′ −→ ϵ′ +∆ϵ′NL, (2.60)
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where ∆ϵ′NL is written as

∆ϵ′NL = 2ϵ0∆n′
NL

 ne 0 0
0 no 0
0 0 no

 . (2.61)

The index gradient created by nonlinear refraction is also affected by the rotation of the
medium and tilt angle γ, where

∆n′
NL → ∆n′

NL(Ωt, γ). (2.62)

In thermal media [117], the index gradient due to thermal nonlinear response is

∆n′
NL =

(
∂n

∂T

)
0

∆T (r′), (2.63)

where
(
∂n
∂T

)
0
is the medium’s thermo-optic coefficient at thermal equilibrium (steady-state

response) and ∆T (r′) is the temperature variation about the point r′ = (x′, y′, z′). ∆T (r′)
for a stationary medium is governed by the 3D heat equation(

∂2
x′ + ∂2

y′ + ∂2
z′

)
∆T (r′) = −γ|E′(r′)|2, (2.64)

with γl = (Llossρ0cPDT )
−1, where Lloss is the loss characteristic length, ρ0 the material

density, cP the specific heat at constant pressure, and DT is the thermal diffusivity. The
solution can be written in terms of a Green function G(r′), which depends only on the sam-
ple geometry and the boundary conditions and expresses the nonlocality of the nonlinear
effect

∆T (r′) =

∫∫∫
dr̃′G′(r′ − r̃′)|E′(r̃′)|2. (2.65)

Around the neighborhood of the medium’s midpoint, i.e. z0 = L/2, in the longitudinal

parabolic approximation of characteristic width Lnloc =

√
|n2|

γl| ∂n∂T |0
∝

√
Lloss [117], n2 the

nonlinear refractive index, Lloss is the characteristic loss length, Eq. (2.65) reads

∆T⊥(r⊥
′) =

∫∫
dr̃′⊥G

′
⊥(r⊥

′ − r̃′⊥)I
′
⊥(r̃

′
⊥), (2.66)

with I ′⊥(r⊥
′) = 1

L

∫
dz′I ′(r⊥

′, z′), I ′(r′) = |E′(r′)|2 = |E(r)|2 = I(r), and r⊥
′ = (x′, y′).

Assuming absorption is low (L ≪ Lloss), we find ∆T (r′) ∼ ∆T⊥(r⊥
′) and ∂z′I

′(r′) ∼ 0. As
a result, the index gradient impinged on the crystal by the thermal nonlinear response is

∆n′
NL(r⊥

′) = n2

∫∫
dr̃′⊥K

′(r⊥
′ − r̃′⊥)I

′(r̃′⊥)− no,e, (2.67)
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Variable Functionality

Kγ Thermal Kernel Function(
∂n
∂T

)
0

Thermo-optic coefficient

∆T (r′) Temperature Variation
Lloss Characteristic Loss Length
ρ0 Material Density
cP Specific Heat at Constant

Pressure
DT Thermal Diffusivity
G(r’) Green’s Function
Lnloc Nonlocal Length
tN Non-instantaneous

timescale

Table 2.2: Summary of the relevant variables used to calculate the index gradient
∆nNL due to a thermal nonlinearity. The definition of the variables is used to clarify
the function of each variable within the derivative.

with n2K
′(r⊥) =

(
∂n
∂T

)
0
G′

⊥(r
′
⊥). The index gradient is now written as

∆nNL(x, y,Ωt, γ) = n2

∫∫
dx̃dỹKγ (∆x,∆y,Ωt) I(x̃, ỹ)− no,e, (2.68)

where Kγ is the nonlinear nonlocal kernel function affected by the weak birefringence,
written as

Kγ (x, y,Ωt, γ) = K ′ [cos(γ) (cos(Ωt)x+ sin(Ωt)y) ,− sin(Ωt)x+ cos(Ωt)y] . (2.69)

Understanding the importance of the kernel function further requires a definition in
Fourier space, as the NLSE adds the nonlinear response as a phase term. Therefore, the
kernel function in Fourier space is

Kγ (kx, ky,Ωt, γ) =
1

2π
[
(k′

x)
2 + (k′

y)
2
] [

1 + L2
nloc

(
1− exp

(
− t

τN

))] , (2.70)

where Lnloc is the nonlocal length, τN is the non-instantaneous timescale, and k′
x and k′

y

are the x and y wave vectors in the crystal reference frame. The nonlocality does not
play a huge role but scales the non-instantaneous response. The non-instantaneous part
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only plays a role when the timescales of the interactions are long-lived, on the order of
seconds or more. A summary of the variables and their functionality can be found in Table
2.2. With all relevant variables, we can define how the dielectric permittivity is affected
by an index gradient. Therefore in the lab frame, we write the dielectric tensor with all
perturbative terms under the assumption of weak birefringence

ϵ = ϵ′ + ϵ′′(γ,Ωt) + ∆ϵ′NL(x, y,Ωt, γ). (2.71)

2.5 Simulation Methods

We apply the SSFM to simulate nonlinear propagation through the rotating ruby rod of
length L. We input a Gaussian beam profile in the xy plane focused to a position far from
the centre of rotation.

2.5.1 Linear and Nonlinear Propagators

The NLSEs in Eq.(2.45) are propagated with the usual formalism of a linear propagator
D̂ and a nonlinear propagator N̂ . We can represent the NLSEs in the SSFM formalism as

∂za = (D̂o + N̂o)a,

∂zb = (D̂e + N̂e)a,
(2.72)

where the linear propagators are defined as

D̂o =
ı

2ko
∇2

⊥ −
nNL
g

c
∂y,

D̂e =
ı

2ke cos(γ)
2∇

2
⊥ +

nNL
g

c
∂y + 2 tan(γ) (cos(Ωt)∂x + sin(Ωt)∂y) ,

(2.73)

and the nonlinear propagators are defined as

N̂o =
ıko
no

∆nNL,

N̂e =
ıke

ne cos(γ)
2∆nNL.

(2.74)
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The fields a and b represent the o- and e- fields, respectively. We can interchange
between real space (a and b) and Fourier space (â and b̂) using a Fourier Transform (FT),
or vice versa with the inverse FT, that is

a(x, y, z) =
1

2π

∫∫
R2

dkxdkyâ (kx, ky, z) e
−ı(kxx+kyy),

â(kx, ky, z) =
1

2π

∫∫
R2

dxdya (x, y, z) eı(kxx+kyy).

(2.75)

where b and b̂ are written in a similar fashion.

We apply the linear propagators in Fourier space between the points z and z + h, that
is

exp

(
h

2
D̂o

)
= exp

(
−ıh

2

[
−1

2ko
(k2

x + k2
y)− ı

nNL
g

c
ky

])
,

exp

(
h

2
D̂e

)
= exp

(
−ıh

2

[
−1

2ke cos(γ)
2 (k

2
x + k2

y)− ı
nNL
g

c
ky + 2 tan(γ) (cos(Ωt)kx + sin(Ωt)ky)

])
.

(2.76)

The linear step is then applied by taking the inverse FT of the product of the linear
propagator in Fourier space and the FT of the field

K1n = hf(xn, yn),

K2n = hf(xn +
1

2
h, yn +

1

2
K1n),

yn+1 = yn +K2n +O(h3).

(2.77)

We then will apply the nonlinear propagators assuming the boundary conditions y′ =
f(x, y) and y(xo) = yo. At the nth step, we have

a = IFT

[
exp

(
h

2
D̂o

)
FT [a]

]
,

b = IFT

[
exp

(
h

2
D̂e

)
FT [b]

]
.

(2.78)

Recall that ∆nNL is dependent on both fields, that is ∆nNL := ∆nNL (|a|2 + |b|2).
Therefore, the nonlinear propagators are functions of both a and b. We apply the propa-
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gators in the following manner

A1n = hN̂o (an, bn) an,

B1n = hN̂e (an, bn) bn,

A2n = hN̂o

(
an +

1

2
A1n, bn +

1

2
B1n

)(
an +

1

2
A1n

)
,

B2n = hN̂e

(
an +

1

2
A1n, bn +

1

2
B1n

)(
bn +

1

2
B1n

)
,

an+1 = an + A2n

bn+1 = bn +B2n.

(2.79)

Once we have applied these propagators over the entire length of the crystal, one can
take the centre of intensity of the two beams and track the transverse trajectories at the
crystal’s output facet. Furthermore, we can take the average, weighted by the intensities,
of these trajectories to extract the transverse shift, which is controlled by the rotation
speed input intensity.

This section has allowed us to break up light propagation into linear and nonlinear
propagators, and this can capture the effects of the dynamics. With this, we can simulate
the transverse trajectories and extract the transverse shifts to match to experiment seen
in the following chapter.

2.6 Simulation Results

2.6.1 Fields along Propagation in Space and Time

The field is calculated frame by frame in time for a given z-position. Therefore, we can
look at how the beam looks in the linear, nonlinear and highly nonlinear regime for a given
speed at different z-positions to understand its evolution in space and time. The beam
impinges at normal incidence, with a slight tilt angle, γ = π/1800.

Although the positions of the o- and e-beams can be tracked, looking at the electric
field distribution is also often beneficial. Figure 2.8 shows the evolution of the beam along
z, rotation in time for three input powers P = 0.2 mW, P = 100 mW, and P = 520 mW
at a rotation speed of Ω = 100 deg/s. This speed was chosen to show the effects of both
nonlinear responses resulting from optical and thermal origin. We examine the overlapped
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o- and e-beam fields along z at three positions z = L/3, z = 2L/3, and z = L, where L = 2
cm. Figure 2.8(a) shows the beam size increases along propagation direction z and how
the beam rotates in time t in a linear regime; while Fig. 2.8(b) and (c) show nonlinear and
highly nonlinear regimes. For a fixed time t = 0.90 s, the beam transverse profile increases
in size along z due to the beam diverging. The beam also moves further out in x- and
y-directions with an increase in power. In the highly nonlinear case, the transverse profile
leaves a shadow-like beam behind. This shadow is a gradient impinged by the beam that
disappears over thermal time scales of a few hundred microseconds. Another point to note
about the transverse profile is that the beam is not structured, but takes on a structured
look, likely due to the interference of the two beams overlaid on top of one another in the
transverse plane. There is indeed no modal structure considered for the beams that are
propagating through the crystal.

For a fixed z-position in Fig. 2.8, the advancement in time shows the beam rotating
about the transverse plane. Tracking the beam movement is much more easily followed if
the centre of intensity (COI) is taken. The COI is the weighted average of the intensity of
the two beams by considering the relative weighting for a given point in time and space. If
one follows the COI, a figure-eight would be traced out for the case in the linear regimes.
The nonlinear and highly nonlinear regimes contain more complicated dynamics and show
transverse shifting and distortions to the figure-eight-like patterns discussed in Sec. 2.6.3.

In the linear regime (P = 0.2 mW), the medium rotation speed has little to no effect
on the beam trajectories and beam path. The beam paths will vary significantly with
rotation speed when considering the nonlinear and highly nonlinear regimes. Both optical
and thermal nonlinearities contribute to the dynamics and change the amount of transverse
shifting as well as how much a beam trajectory is distorted. At fast speeds, for example,
thermal nonlinear effects are essentially averaged out, while for slower speeds, the timescale
can act on the beam more locally and cause larger distortions. The optical nonlinear effect
is considered at faster speeds and affects the beam trajectories based on how well it affects
the same region over an integer multiple of rotation. Therefore, investigating different
speeds and input powers gives a much better understanding of the dynamics happening
within the system, as well as the crystal output.
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Figure 2.8: Numerical results for propagation and rotation effects on the electric
field distribution. The total electric field of the o- and e-beams is plotted for three z-
positions, z = L/3 cm, z = 2L/3, and z = L, where L = 2 cm, and over eight different
frames along the rotation in time for a rotation speed of Ω = 100 deg/s for three regimes:
(a) Linear (P = 0.2 mW), (b) Nonlinear (P = 100 mW) and (c) Highly Nonlinear
(P = 520 mW). Nonlinear effects can be observed leaving imprinted beams when the input
power is sufficiently high P > 100 mW. The field trajectories widen with increasing power
due to the nonlinear deflection as a result of the nonlinear group index. For a given z, the
time evolution shows beam rotation in the xy plane. Field structure is complicated for the
o- and e-beams overlapped, and therefore, the centre of intensity is favourable to track the
dynamics, seen in Fig. 2.10. For a given t, the field evolution increases in size and moves
more in the xy plane with higher powers. The field value is maximum in the yellow regions
and zero in the dark blue. The faint beam seen in the highly nonlinear regime is an index
gradient imprinted on the crystal. 52



Furthermore, the beam is shifted significantly more with increasing power as expected
with the increasing nonlinear deflection due to photon-drag. We have plotted only for a
rotation speed of Ω = 100 deg/s; however, it can be seen that if the rotation speed is
slow, the imprinted beams could cause deflection as expected from the thermal nonlinear
response. On the other hand, high speeds would allow integer multiples of one complete
rotation to experience the nonlinear optical effects as the time scales are longer. The
discretization of time and z-position can be much finer to see the temporal dynamics due
to the rotation speed, especially when considering the nonlinear regimes where the group
index contains intensity and rotation speed-dependent terms.
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Figure 2.9: Simulated transverse trajectories of the o- (blue) and e- (red) beams
for three input powers at positive/negative low/high rotation speeds. Linear
regime shows no transverse shift drag in either beam for different speeds, while nonlinear
and highly nonlinear regimes show increasing shifts for a given speed. The amount of
shift is seen more clearly in the o-beam movement. At the same time, the e-beam shows
deviations from a circular trajectory, which is due to the nonlinear response of the system.
Opposite speeds show opposing translations of each beam.
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2.6.2 Birefringence and the Associated Trajectories

Due to birefringence, we know that tracing the COI in transverse trajectories creates figure-
eight-like patterns. Tracking the o- and e-beam trajectories is necessary to produce these
figure-eights in simulations. Figure 2.9 shows the trajectories of the o-beam in blue and
the e-beam in red for three input powers in the low and high-speed regimes. The o-beam
shows a transverse shift with increasing power, while the e-beam revolving around starts
to cross and form a twisted pattern in the nonlinear regimes. It is important to note that
opposite speeds show opposing translations of each beam. An interesting point to note is
that the amount of transverse shift is visualized by the o-beam very well, but the e-beam
shift is less pronounced since it rotates about the o-beam. It can also be seen here that
at high speeds, the trajectory of the e-beam does not drastically deviate from a circle,
and therefore, the expected COI trajectory will have a resemblance to the linear regime.
However, as discussed, we will still see a transverse shift, which is reflected in the extent
to which the o-beam moves about the y-direction.

2.6.3 Trajectories of the COI

The COI is useful as it tracks the motion of both o- and e-beams, and it is often difficult
to distinguish them in experiments. Therefore, the simulation utilizes this technique to
understand the dynamics that are captured from both beams and will be matched to the
experiment in Chapter 3. The relative intensities of the o- and e-beams will go through
maxima and minima upon rotation, so the COI is a preferred method of analysis.

Taking the COI, we can see that the linear dynamics trace out a figure eight, and the
twisting of the e-beam trajectories creates the twisting seen in the nonlinear regimes. If
the intensity varies from o-beam to e-beam and the e-beam revolves around the o-beam,
this results in a figure-eight pattern. This results from the thermal and optical nonlinear
response the crystal impinges on the light as it passes through the crystal, resulting in
distorted patterns. The trajectory patterns get distorted and transversely shift relative to
one another based on the nonlinear photon drag effect. Incorporating the birefringence,
dispersion, and nonlinear response, we have observed that simulations produce transverse
trajectories that display key features of the linear and nonlinear dynamics of the system,
seen in Fig. 2.10. The COI for three rotation speeds of Ω = 10, 100, and 9000 deg/s
corresponds to i), ii) and iii), respectively. More specific conditions for the simulations are
compared to the experiment in Chapter 3, showing good agreement.

The transverse shift for experimentally measured data points, phenomenological fits,
and simulated curves due to the nonlinear deflection as a result of the nonlinear group
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Figure 2.10: Transverse trajectories for three input powers and three input
speeds (a) Ω = ±10 deg/s, (b) Ω = ±100 deg/s, and (c) Ω = ±9000 deg/s.
Simulated curves for the linear (P = 0.2 mW) regime show a figure-eight-like trajectory
for the COI, while nonlinear (P = 100 mW) and highly nonlinear (P = 520 mW) regimes
show deviations from a figure-eight, as well as transverse shifting along y. Blue and orange
curves correspond to positive and negative rotation speeds, respectively.

index. The COI trajectories drift apart for positive and negative speeds, where taking the
average positions of these trajectories gives the transverse shift as a function of rotation
speed and input intensity, as seen in Fig. 2.11. The fits plotted in dashed lines are based
on a slow and fast characteristic rotation speed following the exponential decay is also
shown following the experimental data points. These fits are incorporated into the group
index that modifies the dispersive terms within the nonlinear Schrödinger equations. The
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fit function, described by the continuous function in Eq. (3.3), suggests the characteristic
rotation speed to be Ωc = 100 deg/s. However, we incorporate the piece-wise function into
the NLSE to better describe the dynamics in the respective rotation speed ranges. The
simulation results for rotation speeds spanning 1∼9000 deg/s show excellent agreement
with experimental data.
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Figure 2.11: The transverse shift in the nonlinear and highly nonlinear regime
for various rotation speeds. The distribution shows a log-normal-like distribution
about Ω = 100 deg/s. The phenomenological fit (dashed lines) suggests a peak closer
to Ω = 150 deg/s, while the simulation values suggest Ω = 100 deg/s. About the peak
rotation speed, considered as some characteristic rotation speed of the system, the amount
of shift drops exponentially. The exponential behaviour is comprised of both optical and
thermal nonlinear response and is modelled using the nonlinear group index discussed in
Sec. 2.4.2. Several points are highlighted along the curve for comparison of the amount of
drag when considering different input powers. These shifts are taken as half the difference
between positive and negative rotation speeds.
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2.6.4 Transverse Shifts at the Crystal Output

Often, a saturable medium response is associated with a logarithmic dependence of the
power, but certain wavelengths show that ruby exhibits reverse saturable absorption [4],
which has an exponential dependence on the power. Indeed, this further supports the
exponential nature of the group index found in Eq. (2.59). The characteristic timescales
associated with the fit of the nNL

g like that in Eq. (3.3) will change based on input power
and rotation speed. The fast timescale, τf , follows a thermal dissipation timescale that
changes based on the beam intensity. That is to say, this timescale will increase with
lower intensities, or lower powers, due to Newton’s law of cooling [118]. This states that
a body heated from thermal equilibrium will dissipate heat from the system as a decaying
exponential with different rates based on the thermal gradient impinged on the system. As
such, the larger the thermal gradient, the faster the thermal dissipation rate and relates
to the scaling of nNL

g . High intensities will decay faster and thus diminish the value of
the group index at a much faster rate. This can be seen as a smaller average phase shift
for a more intense beam than a less intense one; thus, the group index will be smaller in
magnitude.

On the other hand, the optical timescale also plays a key role in nNL
g . Excited atoms in

ruby will decay from an excited state to the ground state within τs = 3 ∼ 5 ms. The more
photons available for the system to absorb, the faster the transition can reach an inverse
saturated response and decay back to the ground state. In the case of an input power of
P = 520 mW, τs ≈ 3.5 ms, but if the power is decreased to 100 mW, the time increases to
τs ≈ 6 ms. This difference in timescale can be attributed to the effect of reverse saturable
absorption [4], and similar to the thermal nonlinear response, higher intensity is associated
with fast decay rates.

2.7 Summary

In the present chapter, we have implemented an SSFM code that uses NLSEs to simulate
light propagation through a rotating, birefringent material while carefully accounting for
the impact of optical and thermal nonlinearities on both the refractive index and group
index, particularly accounting for their gradients across the propagating beam.

We believe that these are the necessary elements to account for to properly predict
beam propagation through such a medium that can also predict the beam propagation
as a function of rotation rate and input intensity while also allowing for experimental
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deviations of the beam incident angle and the orientation of the medium’s refractive index
ellipsoid relative to the axis of rotation (or direction of translational motion).

If experimental results match well with the predictions of this model, it would encour-
age us to believe that we have a robust model that describes beam propagation under
translational drag while accounting for the interplay of several complex but experimentally
significant phenomena.

While first and foremost, a predictive model to test our fundamental understanding
of strong light-matter interaction in slow/fast light media, a working model could also
be necessary if the nonlinear optical circumstances of slow/fast light are to be properly
implemented in aerospace guidance systems [119].

In the following chapter, based on the work by Hogan et al. [5], we will test our model
by measuring the transverse trajectories and transverse shifts at the output of the crystal
in linear and nonlinear regimes. We will also quantify the strength of the nonlinear refrac-
tion in the system and measure the effect of nonlinear deflection from the index gradient
created by the nonlinear refraction by measuring the output angle. The propagation of the
beam after the crystal will also be measured to gain an understanding of how the beams
propagate through the nonlinear medium by extrapolation. We will see that slow light
indeed enhances and manipulates the beam propagation, leading to larger, more easily
measurable transverse shifts and exotic transverse trajectories.
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Chapter 3

Photon Drag, Nonlinear Deflection,
and Nonlinear Refraction

In the previous chapter, we simulated the dynamics of a rotating ruby rod using coupled
Nonlinear Schrodinger equations (NLSE), including rotation, birefringence, thermal and
optical nonlinear response, and a nonlinear group index. The NLSEs were used to produce
transverse trajectories at the output of the crystal, as well as study the transverse shift as
a function of rotation speed and input power.

In the present chapter, we experimentally measure the transverse shift and transverse
trajectories at the output of a rotating ruby crystal, as presented in the work of Hogan et
al. [5]. We then compare the simulated results of our theory to the experiment, showing
good agreement. The transverse trajectories are also measured at two positions past the
crystal to investigate the output angle. Evidence of the nonlinear refraction is investigated
in the context of a Townes profile formation.

3.1 Background

Recall that the transverse shift a beam experiences, ∆y, traversing a medium of length L
moving with a transverse speed, v is written,

∆y =
v

c

(
ng −

1

nϕ

)
L, (3.1)

depicted schematically in Fig. 3.1(a).
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Figure 3.1: Schematics of the dynamics in the system. (a) A schematic showing laser
beam propagation in i) a stationary medium versus ii) a moving medium which exhibits
a transverse shift of ∆y. For simplicity of illustration, we show the laser beams as pulses.
(b) The edge of a rotary ruby rod is used to achieve an approximately linear motion in
the −y (+y) direction when the crystal rotates clockwise (counterclockwise). (c) A single
frame imaged at the input face of the crystal (z = −2 cm) that shows the o- and e-beams
propagated through the 2-cm-long ruby crystal. (d) A diagram showing the trajectories of
o- and e-beams at different crystal orientations highlighting each beam’s intensity change at
45-degree intervals. The red “×” shows the centre of intensity (COI) position for different
crystal orientations, highlighting the emergence of a figure-eight-like pattern. In contrast,
o- and e-beams are shown by green and blue dots, respectively, with varying transparency
to signify their relative intensities.
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Light propagation in a medium of length L is sketched for two cases: i) a stationary
medium and ii) a medium moving transversely at speed v. The rotational equivalent is
shown in Fig. 3.1(b), which highlights transverse shits for positive and negative rotation
speeds, which are approximately translational movements when far from the centre of
rotation. When the group index is large compared to the phase index, i.e. ng ≈ − 106

ruby at 473 nm [4], the transverse shift is simplified to

∆y ≈ ngL

(
rΩ

c

)
, (3.2)

where Ω is the medium’s rotational speed and the medium radius, r. Using the large neg-
ative group, one can expect a large negative transverse shift. This is a direct utilization of
slow (fast in the case of negative group indices) light, which results from coherent popu-
lation oscillations. We seek to experimentally measure the fast-light enhanced transverse
shift due to the large group index this optical effect creates. We also seek to measure the
transverse trajectories, which follow the dynamics of the two beams shown in Fig. 3.1(c).
At the output, these beams are large and overlap, and therefore, another analysis method
must be used: the centre of intensity (COI). The COI, as discussed in the previous chapter,
takes the relatively weighted intensity of the two beams and then follows a trajectory as
the e-beam revolves around the o-beam, which as spatially separated by walk-off due to
crystal alignment. Figure 3.1(d) shows a figure-eight trajectory for the linear regime, which
is a result of the o- and e-beam reaching maximum and minimum intensity on each quarter
turn depicted by green and blue dots and its respective filling of colour. The COI is shown
as a red ”×”. We will experimentally measure these transverse trajectories, as well as the
transverse shifts at the crystal output and two other positions for various rotation speeds
and input intensities, to see how the dynamics evolve. We will then compare to simulations
from the previous chapter.

As we will come to find out based on the modelling of the system from Chapter 2,
the ruby will exhibit a large nonlinear refractive index that causes a beam to deflect, and
therefore, the transverse shift will be affected by nonlinear deflection. We will also find
that the trajectories distort and shift from one another based on these nonlinear thermal
and optical responses. It is clear that due to the simultaneous presence of birefringence, an
intensity-dependent photon-drag, and strong nonlinearity, ruby is an interesting platform
rich in physics with lots of potential applicability and could lead to experiments in beam
steering [97, 120], polarization detection [99, 100], image rotation [3, 121], and velocime-
try [122].
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3.2 Methodology

z =	-2cm
z =	0

Figure 3.2: Experimental setup for measurement of transverse shifts. A 520 mW
continuous-wave laser beam at 473 nm is focused using a 100 mm focal length plano-convex
lens L1 to a spot size of 20 µm onto the input face of a rotating ruby rod. The rod spins
around its axis, driven by a stepper motor. The laser beam at the output of the crystal
is imaged onto a CCD camera with unity magnification using a 4-f system consisting of
two lenses L2 and L3 of focal length f = 150 mm. The CCD camera captures the beam,
with a frame rate of 1000 fps, as the stepper motor is rotated at various speeds. An ND
filter is placed between the dielectric mirror and lens L2 for nonlinear measurements and
between L1 and the ruby for linear measurements. The CCD camera images at different
z-positions using a translation stage. Measurements are taken at z = 0, z = 0.762 cm, and
z = 1.524 cm to measure the transverse shift, as well as the output angle of the beam as it
exits the crystal. Input beam power was controlled by a half-wave plate and a polarizing
beam-splitter before the ruby crystal. (M: Mirror, HWP: Half-wave plate, PBS: Polarizing
beam-splitter, BD: Beam dump, L1: Plano-convex lens [f = 100 mm], L2: Plano-convex
lens [f = 150 mm], L3: Plano-convex lens [f = 150 mm], FF: Fluorescence filter, DM:
Dielectric mirror, ND: Neutral density filter [O.D. 1], and a CCD: Charge-coupled device.)

As shown in Fig. 3.2, the laser source used in the experiment is a continuous-wave (CW)
diode-pumped solid-state laser operating at 473 nm with an output power of 520 mW. The
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power of the laser is controlled using a half-wave plate and polarizing-beam splitter. We
use a 2-cm-long ruby rod, 9 mm in diameter, with a Cr3+ doping concentration of 5%.
We focus the laser beam onto the input face of the crystal far from the centre of rotation
(r = 0.35 cm). The ruby was mounted in a hollow spindle whose rotation was controlled
by a stepper motor and belt. The fluorescence filter FF (high transmission near 473 nm)
minimizes fluorescence. The dielectric mirror DM is used as a neutral density filter with
low absorption to limit the beam intensity for high-power tests while minimizing image
distortions due to aberrations induced by thermal nonlinearities in a standard neutral
density filter. The crystal output face was then imaged using a 4-f lens system relaying
onto a charged-coupled device (CCD) camera.

Linearly polarized light illuminating a rotating birefringent medium sees two refractive
indices upon propagation, no = 1.770 and ne = 1.762. Due to the difference in refractive
index, the two beams (o- and e-beams) will propagate separated by an angle of γb ≈
no − ne = 8 mrad, regardless of nonlinearity or photon drag. Maximum and minimum
relative beam intensities are reached each quarter turn of the crystal (i.e., every 90◦). The
beam input is aligned such that, regardless of crystal orientation, the o-beam propagates
directly through the crystal, while the e-beam revolves around the o-beam as modelled
in Chapter 2. For analysis, the COI is taken to track the beam’s combined transverse
trajectory.

3.3 Results

3.3.1 COI Trajectories

We measure the COI at the output facet of the rod (z = 0) for three input powers of 0.2
mW, 100 mW, and 520 mW and various rotational speeds of Ω = ±50,±100,±1000, and
±9000 deg/s in clockwise (negative) and counterclockwise (positive) directions. Figure
3.3 shows the COI trajectories in the linear regime (i.e. a laser power of 0.2 mW). The
experimentally measured COI trajectories are shown in Fig. 3.3(a) and are compared to
the simulations in Fig. 3.3(b) using the theory from Chapter 2, showing good agreement.
The curves match the tilt of the figure-eights, as well as the movement the beam experiences
about the xy plane. The amount of transverse shift is negligible for all rotation speeds
since the group index is on the order of unity. The dynamics are captured in the simulation
using the birefringence and rotation in the linear regime. The discrepancy at the center
of the curves between the experiment and simulation is a result of polarization impurity.
Due to the limited extinction ratio of a polarizing beam splitter, light that is passed
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Figure 3.3: (a) Measured COI trajectories in linear (P0 = 0.2 mW) regime. (b)
Simulated COI trajectories in the linear regime. Legend of different rotation rates
(deg/s) applies to (a) and (b). Looking into the beam, (counter) clockwise rotation speeds
are (negative) positive. No significant shift is observed in y for trajectories at different
speeds because the group index and the nonlinear refraction are negligible.

through contains a mix ofH- and V -polarization, and in the linear regime, each polarization
component is comparable in magnitude. Therefore, the beam does not fully go to zero at
each quarter turn of the crystal, and therefore, the beam would be slightly displaced from
zero. The simulations in 3.3(a), however, assume a perfectly linear polarized light beam
in H-polarization. The overall shape of the transverse trajectories is observed to be figure-
eight-like trajectories for all speeds, but no transverse shift is measured. This is expected
as the group index is on the order of unity in the linear regime, and therefore, no transverse
drag is expected.

Figure 3.4 shows the experimentally measured COI trajectories in (a) and simulated
COI trajectories in (b) in the nonlinear regime (i.e. laser power of 100 mW). At low
speeds (Ω ≤ 100 deg/s), the o- and e-beams are coupled due to the intensity and overlap
of the beams. Each beam creates an index gradient for one another, causing significant
variation in the traces of the COI upon rotation. The nonlinear refraction of each beam
is affected by the intensity, which alternates between the o- and e-beam as the medium
rotates. Therefore each beam is pulled toward another when the intensity is high and
is modelled as coupled in our simulations since the intensity is written as I = Io + Ie,
where Io,e represents the intensity of each beam. At high speeds, the deviations from
a figure-eight-like pattern begin to resemble linear dynamics as seen in Fig. 3.3, but
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Figure 3.4: (a) Measured COI trajectories in nonlinear (P0 = 100 mW) regime.
(b) Simulated COI trajectories in the nonlinear regime. Legend of different rotation
rates (deg/s) applies to (a) and (b). Trajectories at low speeds are distorted due to
the index gradient formed by each beam at its respective max intensity. The gradient
diminishes at high speeds, and thus, the figure eights are recovered but transversely shifted
from one another based on the nonlinear deflection for a given rotation speed.

a measurable transverse shift is observed between trajectories associated with different
rotation speeds. The amount of transverse shifting the COI experiences matches well
between the experiment and simulation, where the maximum transverse shift is about
∆y = 120 µm, for a rotation speed of Ω = 100 deg/s. The transverse shift of the COI due
to birefringent walk-off is approximately zero since it follows the weighted position of both
beams. As seen in Chapter 2, both the thermal and optical nonlinear responses contribute
to the group index at different rotation speed regions. Our modelling of the response of
the nonlinear group index to rotation speed and intensity incorporated into the NLSE
from Chapter 2 matches the amount of transverse shift well. The interplay of thermal
and optical nonlinear response is reflected in the rotation speed such that the transverse
shift reflects the relative contributions of each nonlinear response at high rotation speeds.
No distortions are observed on the trajectories as a result of the diminishing contribution
of thermal nonlinear response but a remaining response from the optical nonlinearity.
However, when the beam intensity is very intense, the index gradient will be larger and,
therefore, cause more significant distortions that extend to higher rotation speeds, as in
Fig. 3.5.

Figure 3.5 shows more drastic deviations from a figure-eight pattern in the highly
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Figure 3.5: Experimentally measured (a) and simulated (b) COI trajectories in
the nonlinear regime (input laser power of 520 mW) for different rotational
speeds (Ω) in units of deg/s. At low speeds, trajectories are significantly distorted
and have similar paths to the 100 mW results but with more distortion due to stronger
nonlinear coupling between the beams. At high speeds, the coupling between the beams is
weaker due to the finite response time of the medium. For slow speeds, Ω ≤ 100 deg/s, the
trajectories are very noisy, and no discernable pattern is easily observed. This behaviour
is mainly due to the thermal gradient impressed on the crystal by the intense illumination,
and therefore, the transverse beam shape is drastically modified.

nonlinear regime (P0 = 520 mW), where trajectories are noisier. Experimentally measured
points are shown in Fig. 3.5(a), and simulated points in Fig. 3.5(b). As for the case
of P0 = 100 mW, the figure-eight pattern is recovered, but only at very high speeds, i.e.
Ω ≥ 9000 deg/s. This noise is likely due to a large thermal effect that locally affects the
beam frame by frame. With lower speeds, the figure-eight-like trajectories knot near the
center due to a larger index gradient created by the o- or e-beam. The amount of transverse
shifting the COI experiences matches well between the experiment and simulation for given
rotation speeds. The maximum transverse shift from zero y-position to the center point of
a trajectory is about ∆y = 300 µm, for a rotation speed of Ω = 100 deg/s. For rotation
speeds around Ω = 1000 deg/s, the curves resemble the patterns observed in Fig. 3.4 for
rotation speeds of Ω = 50−100 degs/s. This supports that the effects of the index gradient
are much larger and, therefore, do not wash out as quickly with faster rotation speeds.

In all cases of linear (P0 = 0.2 mW), nonlinear (P0 = 100 mW) and highly nonlinear
regimes (P0 = 520 mW), simulations are compared, showing good agreement in the shape
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of the trajectories and magnitudes of transverse shift. A noticeable discrepancy between
the experiment and simulations is that near the centre of the figure-eight, they do not
close due to the imperfect H-polarization caused by the optical elements. Moreover, if the
crystal faces are slightly non-parallel, the output angle of the light could be manipulated
depending on the crystal orientation and the birefringence effects.
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Figure 3.6: Experimental and simulated amount of shift in the beam’s transverse
position at the end of the crystal for 0.2 mW, 100 mW, and 520 mW input
beam laser power. The measured shift for the linear regime (i.e., P0 = 0.2 mW) for both
experiment and simulations is multiplied by a factor of 10, showing no discernible deviation
from zero shift. The magnitude of the transverse shift is shown against the magnitude of
the rotation speed. This shift is calculated between the position with no rotation, i.e. Ω = 0
deg/s, and the respective transversely shifted position. Simulations are plotted using dotted
lines in green and red for the nonlinear and highly nonlinear regimes for better comparison
to experimental data. The fits were based on a phenomenological exponential function in
Eq. (3.2). The fit is not a perfect match due to the simulated nonlinear response of the
material acting on the beams upon propagation through the crystal.
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In the nonlinear regimes P0 > 100 mW, the input polarization component of H-
polarization would become large compared to the V -component, and so the argument can
change slightly. The reason the curves do not close could be attributed to the rotational
movement approximated as translational movement along the y-direction. The beam is
not infinitely far from the centre of rotation and, therefore, could be dragged along the
x-direction as well. The amount of transverse shift is mainly witnessed in the y-direction,
however, so we will extract the transverse shift in y, looking at the dependency on rotation
speed and intensity.
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Figure 3.7: Power dependence of experimental and simulated transverse shifts.
The evolution of the transverse shift with power for various rotation speeds is shown for
both experiment and simulation.

We extract the average position of these COI trajectories over an integer number of
full rotations, and the results are plotted in Fig. 3.6. Here, we see the rotation speed
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dependence of the extracted transverse shift at z = 0 (crystal’s output face) for linear
(P0 = 0.2 mW), nonlinear (P0 = 100 mW), and highly nonlinear (P0 = 520 mW) regimes.
The transverse shifts appear to only show trends in the nonlinear and highly nonlinear
regime taking shape similar to that of a log-normal function centred around Ω = 100
deg/s.

Another representation of the amount of drag can be shown to highlight the effect of
the power or intensity on the amount of transverse shift. Figure 3.7 shows the amount
of drag for various rotation speeds for three input powers, which form an approximately
linear dependence on the input power. These plots agree and more directly show how the
maximum transverse shift is bounded by some characteristic speed near Ωc = 100 deg/s.

We note that the transverse spatial shift can, in principle, comprise photon-drag and
nonlinear deflection. While the photon drag predicts transverse shifts of the beam at the
output parallel to the input beam, the nonlinear deflection deflects the output beam at an
angle with respect to the input. We measure the transverse shifts at z = 0 and two other
locations after the crystal to find the output angle. It is important to note that we cannot
subtract out the deflection to get the true shift due to the photon-drag effect. However,
we model the deflection as a nonlinear group index, which is a result of the moving index
gradient created by the nonlinear refraction. This index gradient changes in the trajectory
inside the crystal by nonlinear deflection cannot be imaged. As expected from nonlinear
deflection, this angle is non-zero and intensity- and rotation-speed-dependent (Fig. 3.9).

3.3.2 Transverse Shift

The magnitude of the nonlinear deflection is proportional to the magnitude of the nonlinear
group index, controlled by the intensity and rotation speed. As discussed in Chapter 2,
the rotation speed changes the conditions for how quickly the heat dissipates through the
crystal and, thus, the magnitude of the index gradient. Sufficiently slow speeds seed an
index gradient that stays relatively constant in magnitude upon rotation and leads to an
increased transverse shift. The time scale typically needed to deflect the beam is always
very short (i.e. 2cm/(c/ng); however, once the maximum amount of transverse shift is met,
i.e. Ω ≈ 100 deg/s, the crystal starts rotating faster than the timescale needed to form
the index gradient. Increasing rotation speed sets that the beam sees less index gradient
and thus less transverse shift. The curve associated with transverse shift versus rotation
speed, seen in Fig. 3.6, is comprised of two decaying exponentials centred about Ω = 100
deg/s that gives rise to an asymmetric distribution. The index gradient decays slower for
slow speeds and faster for higher speeds.

69



Figure 3.8: Schematic showing the three positions imaged by translating a CCD
fast camera. With a frame rate of 1000 frames/s, we measure three positions moving
away from the output face of the crystal by using a 4-f system of lenses 2 and 3. A single
frame of a video of the beam at the output face (i.e. z = 0 mm) is shown in the inset of
which the COI is taken to show the movement of the COI and the amount the beam is
dragged over many frames. The frame shows a single large beam encompassing the o- and
e-beams. The two beams expand significantly upon propagation through 2 cm in the ruby
crystal, so they are no longer distinguishable on the camera.

A phenomenological fit for the transverse shift was created using the experimental data
in Fig. 3.6 with the form of a decaying exponential, as discussed in Chapter 2. Recall that
the nonlinear group index is a time-averaged response for a given speed and can be broken
up into a fast and slow contribution, like in Eq. 2.56, written as

neff
g = n0

g + ng
2Io

(
1

fs
e−Ω/Ωs − ffe

−Ω/Ωf

)
, (3.3)

Ωs and Ωf are slow and fast inverse time scales, where Ωs,f = 1/(2πτs,f ) and the timescales
are τs = 3.5 ms, and τf = 175 µs, respectively. The slow (optical) timescale is on the
order of the excited ion lifetime, typically 3 to 5 ms [3], and the fast (thermal) timescale
on the order of thermal diffusion (≈ 200µs) [116]. This averaged response modifies the
magnitude of the nonlinear group index, representing an approximate non-instantaneous
response alleviating computational expense as done in the simulations in Chapter 2. This
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is a good approximation, as the results are shown in Figs. 3.3, 3.4, and 3.5 show good
agreement amongst the trajectories and the transverse shift.

The input face of the crystal could be measured by moving the camera closer to the
crystal, measuring a seemingly negative drag effect, i.e. a beam shifted in the opposite
direction to crystal motion. However, this measurement would extrapolate the output
beam onto the crystal input face due to a large output angle. We can look at the evolution
of the beam as it propagates after the crystal to see how this extrapolation could be
realized.

3.3.3 Transverse Shift at Different Longitudinal Positions

The transverse shift is also measured at two other positions other than the crystal output
face, depicted in Fig. 3.8. The CCD can image at different points using a translation
stage with a range of ± 2.54 cm from z = 0. A set of measurements was taken at each
z-position, consisting of three powers, P0 = 0.2 mW, P0 = 100 mW, and P0 = 520 mW for
rotation speeds between 1∼9000 deg/s was measured at three z-positions and is plotted
in Fig. 3.10. The transverse shift grows along the direction of propagation. The spacing
between curves is non-uniform for different rotation speeds is a clear indicator that the
nonlinear response of the medium changes the output angle, discussed later in Sec. 3.3.3.
The transverse shift is plotted in Fig. 3.10 for powers of P0 = 100 and P0 = 520 mW. We
exclude the linear regime P0 = 0.2 mW since it is on the order of the system noise. One
can see that in the limits of high or low rotation speed, the amount of transverse shift is
roughly equal in magnitude. It is only in the region mid-range of speeds where the spacing
is very non-uniform. For a given rotation speed, the difference in transverse shift over the
distance propagated in z can give the output angle. The angle is directly calculated

θL = arctan

(
∆y

∆z

)
. (3.4)

The results of the output angle are shown in Fig. 3.9. A schematic of the points is shown
in Fig. 3.9(a), and the output angle is calculated for various rotation speeds and input
powers.
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Figure 3.9: Measurement of the output angle versus input power and rotation
speed. (a) a schematic showing the output beam’s angle after leaving the crystal. The
nonlinear response of the crystal changes the angle at the interface of the crystal output face
and, therefore, changes the propagation pathway. (b) The output angle and its uncertainty
are calculated from the beams’ transverse positions measured at three points along the z-
axis (z = 0, z = 0.762 cm, and z = 1.524 cm). The output angle increases as the laser’s
power increases, as expected from nonlinear deflection.
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Figure 3.10: Experimentally measured transverse shift in nonlinear (P0 = 100
mW), and highly nonlinear (P0 = 520 mW) regimes at different z-positions.
Measurements were taken at z = 0, 7.62 mm, and 15.24 mm to calculate the output angle.
The transverse shift approaches ∆y = 10 ∼ 15 µm for an input power P0 = 100 mW, and
∆y = 60 µm for P0 = 520 mW. The curve takes shape similar to a log-normal distribution,
but is modelled as the sum of two decaying exponentials with different decay rates centred
around a rotation speed of Ω = 100 deg/s.

One can calculate the output angle seen prior using the values for the transverse shifts
as ∆y and the difference between the z-positions along propagation ∆z, as seen in Fig.
3.10. The output angle is therefore tuned by the rotation speed and the beam’s intensity
since ∆y := ∆y(Ω, I). As such, this can be useful in applications where the position and
angle need to be controlled. Therefore, we can look at how the beam propagates along z
after the crystal is controlled by the rotation speed and intensity. Since we expect no shift
in the linear regime, we will only focus on the nonlinear and highly nonlinear regimes to
examine the amount of transverse shift along z.

73



0 5 10 15
z-position [mm]

0

20

40

60

80

100

120

Tr
an

sv
er

se
 S

hi
ft 

[
m

]

Nonlinear (P0 = 100 mW)Nonlinear (P0 = 100 mW)Nonlinear (P0 = 100 mW)Nonlinear (P0 = 100 mW)Nonlinear (P0 = 100 mW)Nonlinear (P0 = 100 mW)Nonlinear (P0 = 100 mW)Nonlinear (P0 = 100 mW)

(a)

0 5 10 15
z-position [mm]

0

100

200

300

400

Tr
an

sv
er

se
 S

hi
ft 

[
m

]

Highly Nonlinear (P0 = 520 mW)Highly Nonlinear (P0 = 520 mW)Highly Nonlinear (P0 = 520 mW)Highly Nonlinear (P0 = 520 mW)Highly Nonlinear (P0 = 520 mW)Highly Nonlinear (P0 = 520 mW)Highly Nonlinear (P0 = 520 mW)Highly Nonlinear (P0 = 520 mW)

=50
=100
=500
=1000
=3000
=5000
=7000
=9000

(b)

Figure 3.11: Extrapolation of transverse shift for input laser powers of P0 = 100
mW, and P0 = 520 mW. Evolution of the amount of transverse drag at three points,
including the crystal output face, and two positions hereafter, as shown in Fig. 3.8. The
extrapolation of these points in the highly nonlinear regime (P0 = 520 mW) also shows a
linear dependence on the transverse shift as the propagation distance increases, consistent
with a straight-line propagation of the COI. The difference from the nonlinear regime is
the magnitude of the slopes is much larger due to a larger nonlinear response in the system
for input powers of 520 mW. One could extrapolate these curves as a linear regression back
to the crystal input face z = −20 mm and see that the value does not reach zero. It is
clear in the range of speeds from Ω = 50 ∼ 1000 deg/s, where the value would be non-zero
at the crystal input face, and thus a nonlinear trajectory is suspected.

Here, we plot the transverse shift versus z-position to gain insight into the propagation
after the crystal. This also aids in understanding the propagation throughout the crystal
where imaging is ambiguous due to the nonlinear response in the measurements. One could
extrapolate the function to the crystal input face z = −20 mm and see the trajectory along
z. For the case of Ω = 100 deg/s, linear regression shows a non-zero value at the crystal
input face, showing evidence that the beam propagation is deviating from a straight-line
and could be curved based on the nonlinear response of the system. Figure 3.11(a) and
3.11(b) show the measured transverse shift values along the z-direction. The progression
of these beams should follow a linear regression as the drag is calculated taking an average
position of the COI trajectories, which follows a straight line. Instead, as stated before,
taking a linear regression gives non-zero values for certain rotation speeds. Thus, the
trajectory of the beam along z could be curved or deflected due to a moving index gradient
via nonlinear refraction. The linear regression in Fig. 3.11 is also consistent with the COI
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travelling in a straight line. The magnitudes of the output angle are much larger due to
the larger nonlinear response within the crystal. Although the curves slightly deviate from
straight lines, this can be attributed to the measurement error in our system.

3.3.4 Fitting Function for Effective Group Index
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Figure 3.12: A continuous fitting function consisting of the sum of two exponen-
tials. The transverse shift is plotted for the highly nonlinear regime P0 = 520 mW for three
positions along z: z = 0 (blue), z = 7.62 mm (yellow), and z = 15.24 mm (green). Similar
behaviour can be seen in the case of an input power of P0 = 100 mW with transverse shifts
of smaller magnitude. The form of the fitting function is f(Ω) = a−be−Ω/c+de−Ω/f , where
a, b, c, d, and f are fitting constants. One can see that the maximum drag should be closer
to Ωc ≈ 150 deg/s, while discrete points in Fig. 3.11 suggest 100 deg/s. It is clear that
the two exponentials indeed fit the discrete points from low to high rotation speeds and
provide strong evidence that the transverse shift scales with a sum of exponentials.

We create a continuous fitting function consisting of the sum of two exponentials and an
offset constant to fit the transverse shift. The transverse shift is plotted in Fig. 3.12 for the
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Fitting Parameters
Position (mm) a b c d f

0 28.4 334 46.3 302 959
7.52 31.0 362 42.7 326 1052
15.24 38.1 456 44.7 412.8 937

Table 3.1: Results of the fitting parameters are shown for the highly nonlinear
regime. a, b, c, d, f , g and h for the effective group index in the highly nonlinear (P0 = 520
mW) regime for all rotation speeds (Ω = 1 ∼ 9000 deg/s). We fit a continuous function
consisting of two exponentials and a constant offset of the form: f(Ω) = a−be−Ω/c+de−Ω/f .

highly nonlinear regime P0 = 520 mW for three positions along z: z = 0 in blue, z = 7.62
mm in yellow, and z = 15.24 mm in green. Plots for the nonlinear regime (P0 = 100 mW)
are not shown here but follow similar behaviour of smaller magnitude. The form of the
fitting function is f(Ω) = a−be−Ω/c + de−Ω/f , where a, b, c, d, and f are fitting constants.
When creating a continuous function, one can see that the maximum drag should be closer
to Ωc ≈ 150 deg/s, rather than the discrete points that suggest 100 deg/s. It is clear that
the two exponentials indeed fit the discrete points taken at low to high rotation speeds
and provide strong evidence that the transverse shift scales exponentially. Table 3.1 shows
the fit parameters for each position along z for an input power of 520 mW. The behaviour
follows two exponentials with an offset constant value that fits well with our data. This
is then used along with the simulation parameters to understand the full system and the
nonlinear propagation within and after the crystal. The fitting function acts on a higher-
order component of the generalized nonlinear Schrodinger equation seen in the main text,
manipulating the effective group index.

The speed regimes highlight different interaction timescales of the nonlinear response.
Both optical and thermal processes are relevant; however, thermal processes dominate at
slow speeds and optical at high speeds. Since the timescale of thermal processes is on
the order of several hundred microseconds [116], this would have a greater effect locally
with slower rotation speeds. However, we examine the effects over a complete cycle, and
therefore, high rotation speeds are affected more by optical timescales, which in our case
are on the order of 3∼5 ms.

We model the temporal dynamics in these two regimes using a phenomenological fit
consisting of two decaying exponentials discussed later in this chapter. We take an anal-
ogy to spatial self-steepening [50, 123]. The beam is shifted due to the group index, and
therefore, the group velocity which is intensity and rotation speed dependent. This rota-
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tion speed dependence, therefore samples the dynamics representing a non-instantaneous
temporal response of the system.

This behaviour could be considered an effective time-varying response. Time-varying
media often rely on highly nonlinear materials, such as epsilon-near-zero (ENZ) mate-
rials [16], that change the refractive index in time [18, 124], inviting optical effects like
non-reciprocity [125,126]. The strong nonlinear optical response of ruby could perhaps ex-
hibit non-reciprocity due to an effective time-varying effect, but further work needs to be
done. The magnitude of the index gradient induced by nonlinear refraction (∆n = 3×10−3)
is estimated and discussed in Sec. 3.3.3., as well as its use in the formation of a Townes
profile in the steady-state when observing a stationary medium case.

3.3.5 Townes Profile and Calculation of Nonlinear Refractive In-
dex

Intense linearly polarized light in a rotating birefringent medium causes o- and e-beams to
both experience nonlinear refraction as the maximum intensity continuously moves between
them, creating a moving index gradient. The gradient leads to nonlinear coupling between
the beams. The local index variation pulls one beam toward the other with the higher
refractive index, locally distorting the figure-eight-like COI trajectory. The magnitude of
the distortions is dictated by the rotation speed, where the speed controls the amount of
time that the beam imprints an index gradient on the crystal. The maximum strength of
beam coupling is observed at low speeds when the beams have sufficient time to imprint the
maximum nonlinear index. On the contrary, higher rotation speeds imprint less gradient,
blurring the effect of nonlinear refraction, and non-distorted figure-eight-like trajectories
are recovered. Quantification of the nonlinear refraction and the size of the index gradient
is useful to understand how it can manipulate the beam trajectory. The effects of nonlinear
refraction are interesting for both the cases of a moving medium and also in the stationary
case to understand the timescale of the interaction.
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Figure 3.13: The effect of input beam power on beam shape in a stationary
medium for a beam waist of 3 mm. Four powers are shown (a) P0 = 10 mW, (b)
P0 = 12 mW, (c) P0 = 398 mW, and (d) P0 = 520 mW, where the blue (P0 = 10
mW) and cyan (P0 = 12 mW) curves do not meet the threshold power to show nonlinear
refraction and thus self-focusing. Increasing laser power causes the input beam to self-
interact and self-focus, creating a spatial soliton. This solitonic behaviour is seen in the
yellow (P0 = 398 mW) and red (P0 = 520 mW) curves, which are significantly more
intense and show a change to the beam’s transverse profile. One can see that moderate
intensity (P0 = 398 mW) shows slightly less self-focusing than the red curve (P0 = 520
mW). The red curve approaches a stable solitonic-type solution known as the Townes
Profile. The tapering and stabilization of the beam waist for a Gaussian beam due to a
self-focusing nonlinearity is a well-known characteristic of spatial solitons. The Townes
profile observation here indicates a considerably large nonlinear index in the system at an
input wavelength of λ0 = 473 nm. A lens does not focus the beam in this case and is the
straight output of the laser with a beam diameter of 3 mm. Townes profile formation with
CW lasers is uncommon as most soliton solutions are formed using pulsed lasers that need
sufficiently long propagation distances to stabilize.
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Although the system is considered instantaneous in this work, it is interesting to study
the system’s time response and ability to reach a steady state. When the ruby crystal
is stationary, i,e. Ω = 0 deg/s, the system’s time response can stabilize and reach a
steady state where interesting solutions to wave propagation are possible. A self-focusing
nonlinearity was observed in a stationary version of this experiment, and thus, nonlinear
refraction contributes to the transverse shifting of the beam due to nonlinear deflection.
The index gradient impinged on the crystal would move with the rotation of the crystal,
causing the beam to follow in the direction of a higher index. The magnitude of this
gradient is

∆n ≈ n2
2P

πw2
o

= (10−12m2/W )
2× (520× 10−3W )

π(10−5m)2
= 3.3× 10−3, (3.5)

where n2 ≈ 10−12m2/W is the nonlinear refractive index, P is the power, and wo is the
beam waist. The value of n2 is not known at 473 nm; however, the value was measured at
514.5 nm and used in this calculation as an order of magnitude estimation [107]. Figure
3.13 shows evidence of forming a well-known soliton solution, the Townes Profile. This
supports the fact that our system has a self-focusing nonlinearity, and further studies are
needed to quantify the value of n2(λ = 473nm) and fit the Townes profile.

Figure 3.13 suggests that nonlinear refraction is strong enough to match the amount of
diffraction in the system and stabilize. The stabilization results in a steady-state solution.
The beam waist used here was much bigger than that used in the transverse drag experi-
mental data, and thus, the timescale to reach equilibrium is much longer. Here, the change
in the waist should be equivalent to the change in the index due to the nonlinear refraction.
Further work is needed to measure these values, but it is clear that the self-focusing length
scale is on the order of the diffraction length scale. Furthermore, the non-instantaneous re-
sponse of the system will be the subject of a further study to understand how the timescale
can affect the amount of transverse shift.

Furthermore, once the beam reaches a steady state, the transverse beam profile reaches
the form of the Townes profile. Since the system uses a continuous-wave laser passing
through a 2 cm long solid-state ruby rod, forming a soliton is interesting as most solitons
are created using pulsed lasers that propagate over several metres. Moreover, it would be
interesting to see if solitons are also subject to drag and can propagate without breaking
up.
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3.4 Summary

In this chapter, we have experimentally demonstrated and compared with simulation with
good agreement that a 2 cm long rotating ruby crystal illuminated with 473 nm light pro-
duces large transverse shifts and creates interesting transverse trajectories at the crystal
output. In rotating saturable media with self-focusing nonlinear refraction, one must mea-
sure the output angle to understand if nonlinear deflection is present in the system. Even if
the medium presents large negative group indices, nonlinear deflection can dominate over
negative drag when nonlinear refraction is large and positive. The maximum transverse
shift is found to be ∆y = +300 µm, and the maximum angular shift is found to be θ = 13
mrad at the output face of the crystal (z = 0). Since the position of the transverse pro-
file of the beam is controllable by the rotation speed of the crystal and input intensity of
the beam, one can imagine applications in beam-steering and image rotation, velocimetry,
as well as understanding the resilience of the state of polarization to the motion of the
medium. Due to slow-light enhancement, the scale of beam control is much larger, leading
to better integration into optical applications.

This closes the research topic of nonlinear optics in a rotating medium. In the following
chapters, we explore the effects of slow light in another concept, spaceplates.
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Chapter 4

Theory and Design of Multilayer
Stack-Based Spaceplates

In the two previous chapters, the manipulation of beam propagation was studied in a slow
media, particularly in the context of a rotating ruby rod, through simulation and exper-
iment. The transverse shifts observed were enhanced by the slow light effects and were
measured alongside the transverse trajectories of the centre of intensity at the crystal out-
put facet. Experimental measurements and simulation were found to match the dynamics
of the system well and allowed for an in-depth understanding of a complex rotating system
that could be used in a variety of optical applications.

In the present chapter, based on the work of Hogan et al. [2], we investigate a new
platform that uses the principles of slow light to achieve different functionality than the
previous chapters. The new platform in this chapter consists of devices known as space-
plates that replace space in an optical system. Space is replaced by carefully designing
structures that impose transverse shifts while conserving the angle of the input beam, and
the imaging plane, or beam focus, is therefore moved closer. By tailoring the phase re-
sponse in these devices as per the group delay, one can achieve a response dependent on
slow light that can be used to create devices that can help modern imaging systems. As in
the case of the rotating ruby rod, manipulating beam propagation by means of elongating
the response in time leads to optical functionality useful in any optical system.
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4.1 Background

Spaceplates (SPs) are devices that can mimic the effects of propagation through free space,
replacing the needed space with a much smaller device, and they do so by replicating the
transfer function of free space. SPs can be very useful in creating much thinner optics like
flat optics [15, 127, 128] but show promise in any optical system requiring long free space
propagation distances. Many different avenues can achieve this concept, whether it be
low-index materials submerged in an environment of a higher index or uniaxial crystals [1],
photonic crystals [129], multiple lens systems [130], and the focus of this chapter, thin film
multilayer stacks [13]. We will go into more detail on these designs later in the chapter,
but each follows a basic theory that describes their functionality. We will discuss the
parameters that characterize an SP, like the compression factor (R), numerical aperture
(NA), and bandwidth (∆λ), and we will use the Transfer Matrix Method (TMM) to develop
their basic theory.

4.1.1 Basic Theory of Spaceplates

The compression factor is a figure of merit assigned to devices that replace space in an
optical system, which characterizes how well it can compress space. If we consider a certain
distance of propagation in free space as the effective distance we wish to represent, denoted
deff , we can relate it to the actual thickness of the device we are using, d as in Fig. 4.1.

The ratio of these two distances gives the compression factor [1] written as

R = deff/d. (4.1)

Therefore, we see that if d < deff , R > 1, which is the condition for which we see spatial
compression and devices can be termed as SPs. For the other regimes, R = 1 is the case
of free space propagation, and R < 1 represents the majority of optics when the optical
path length in the material represents a longer propagation distance than in free space.

Consider inserting an SP in the path of a focusing beam. If R > 1, the beam would
focus earlier than in the free space case, while R < 1 would push the focus forward. The
focal shift is due to a transverse shift of the beam, particularly the transverse walk-off,
∆x, shown in Fig. 4.1. The amount of shift is calculated based on the phase the device
accumulates upon propagation and will be discussed and quantified later in this chapter.
However, a key point to note is that the phase response is tailored such that the angle is
conserved upon propagation through an SP, unlike for a lens, which conserves position.
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Figure 4.1: A schematic of how an SP device of thickness d acts as an effective
distance of free space propagation, deff . The distance w represents the lateral shift
over a certain distance propagated in free space where the angle of the input ray, θ, is
conserved for both free space and the SP. The distance between an apparent ray, in dashed
lines, and the actual ray is the transverse walk-off, ∆x.

If we consider a plane wave normally incident on a lens, the lens will locally affect
the beam on a position-by-position basis and manipulate the angle such that all rays will
converge to a point. The lens performs a unitary process, a local operation on the input
light that conserves spatial position upon propagation of the optic. An SP also performs
a unitary operation on the input beam but acts nonlocally [131]. An SP acts on the wave
vectors such that the angle is conserved, but the spatial position is not. In general, SPs
and lenses can be considered complementary optics in terms of local (position-dependent)
and nonlocal (wave-vector-dependent) phase response. Both optics will affect the focus,
but the key difference for an SP is the mechanism by which the SP shifts the focus closer to
the device, conserving the angle and transversely shifting the beam. We have made it clear
that the phase response is important in understanding lenses and SPs in the scope of their
phase response to input light. Therefore, we will take time to understand the associated
phases and how the response is considered local or nonlocal.
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4.1.2 Lens Phase vs. Spaceplate Phase

Lenses are widely used optics in almost every optical application. In the geometric optics
picture, a lens takes all input rays and converges them to a point. This operation is done
by imprinting a position-dependent phase, a local-phase response. This phase response has
the form

ϕ(x, y) = k
√

f 2 − x2 − y2, (4.2)

where f is the focal length, and x and y represent the transverse position in Cartesian
coordinates. This states that if we situated the origin at the center of the lens, therefore
setting x = y = 0, the amount of phase accumulated is ϕ = kf . As such, if the beam is
located at any other point on the lens, the light ray will experience a different amount of
phase that will change the angle and cause all rays to converge to a point at the point f
only if an object is placed at infinity, according to Lens maker’s equation [132]

1

f
=

1

so
+

1

si
. (4.3)

Here, so refers to the object distance, and when set to infinity, the image forms at si = f ,
known as the image distance.

In the case of an SP, the phase response is considered nonlocal. The phase response is
considered nonlocal in that the phase acts on the wave vectors, conserving the angle but
changing the output position once the light has traversed the optic. The nonlocal phase
response of an SP [1] is written as

ϕSP (kx, ky, deff) = kzdeff = deff

√
|⃗k|2 − k2

x − k2
y, (4.4)

where k⃗ describes the wave vector with components in x, y, and z. Acting on the wave
vectors, the phase accumulated upon propagation can impinge a transverse shift in a ray
position, like in Fig. 4.1. This behaviour is best discussed as a group delay imposed on
the input light based on a difference in the group velocities of different light components.
This topic will be discussed further in Sec. 4.5.

4.1.3 Types of Spaceplates

Although not many experimental studies have demonstrated spatial compression, it has
been theoretically studied in depth [14,128,129]. As mentioned, one approach uses a low-
index material surrounded by a higher-index material. This was inspired by using epsilon-
near-zero (ENZ) materials, which have a refractive index approach zero, leading to things
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like enhancement of the nonlinear refractive index [36], or use in easing phase-matching
conditions [133]. However, regarding SPs, the low-index ENZ material allows for spatial
compression by surrounding the medium with a higher-index material [1]. The resulting
compression factor is quantified by the index contrast of the two materials. Therefore, the
closer to zero the refractive index can reach, the compression factor could be infinite in
theory. However, in reality, the compression factor achievable is closer to R = 1.48, where

R = n2/n1. (4.5)

and n1 is the ENZ index, and n2 is the surrounding medium index.

It has also been experimentally demonstrated that a uniaxial crystal is aligned along
its optical axis with the input light, the light will also experience spatial compression. This
was also shown using a uniaxial crystal [1], where a similar concept is applied. However, it
is important to note that both the uniaxial crystal method and the low-index SP method
are limited by the constituent materials and, therefore, cannot lead to large compression
factors due to the material index contrast. Moreover, in both cases, the polarization of
light can affect the device’s performance, making the application of such devices more
difficult. Furthermore, the size of the system is quite large and would not allow for the
miniaturization of modern imaging systems.

Another avenue was using photonic crystals to produce spatial compression [129]. This
mechanism relies on the strategic placement of the guided mode in the photonic crystal,
which is placed between two dielectric stacks such that the light experiences spatial com-
pression. The periodic nature of the photonic crystal can be exploited to help achieve the
SP effect. The photonic crystal creates a Fano-resonance, and the phase rapidly changes
near this resonance. Using the guided resonance, the band dispersion is quadratic in phase,
which can be used to match the SP phase. This method is less dependent and is more
focused on utilizing resonances rather than straight material parameters, resulting in larger
compression factors; however, realizing such SPs seems difficult in practice.

The fourth avenue that achieves spatial compression is using a three-lens setup [130].
The conditions of the two external lenses are the same focal length, f2, and the third lens
located at the focus of the other two has a focal length, f1, less than the others, resulting
in a compression factor of

R =
f2
2f1

− 1. (4.6)

The condition that R > 1 is only if the outer lens f2 > 4f1. Placing a lens in the Fourier
plane of a 4-f system, in the paraxial approximation, inputs a phase like an SP, where
the condition above must be met to match the quadratic term of the phase. Indeed,
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lenses complement SPs but do not provide the same base functionality. The 3-lens system,
however, indeed behaves as an SP and has experimentally shown modest compression
factors of R = 15.6 and is polarization insensitive. However, the space needed to match
these conditions is costly for a miniaturized optical system. On the other hand, if long-
scale spatial compression is needed, the system size multiplied by the compression factor
can serve as a great tool to alleviate long propagation distances in free space. A few
disadvantages are that the outside lens must be large to ensure that no aberrations impinge
on the input light, and the NA is very limited (NA=0.017). Moreover, moving a large
system like this would be cumbersome.

The final proposed platform uses multilayer stacks. Many variations of this platform
can serve to produce spatial compression; however, some perform better than others. One
considers a Fabry-Perot (FP) cavity coupled by a quarter wave layer [13]. All other layers
are set to integer value multiples of a quarter wave, except the cavity of length λ/2. The
basic design consists of alternating layers of low and high refractive indices and has the
form [L,H, 2L,H]n, where L represents the low index layer, H represents the high index
layer, and n is the number of unit cells. As more unit cells are added to the structure, the
compression will moderately increase, reaching a value of R = 5 ∼ 6 over a large NA and
wavelength range. Often, a device’s NA and bandwidth can become limited when reaching
large compression factors [14]. In this thesis, we will present two different approaches to
multilayer stacks that increase the compression factor significantly. Two design philoso-
phies will be discussed later when considering high-performing multilayer stack-based SPs
with a more limited angular range and bandwidth but much larger compression factors.
The NA and bandwidth trade-offs will also be discussed later in this chapter.

4.2 Transfer Matrix Method

TMM is a useful tool for characterizing the optical properties of thin films or multilayer
stacks [134–136]. TMM allows for easy analysis of multiple layers by considering two types
of matrices that describe all interactions between input light and the full structure. TMM
comprises two matrices that describe the interaction of input light with an interface, known
as the T-matrix, and the propagation of light through a layer with a refractive, n, referred
to as the P-matrix, which describes the phase accumulated on propagation. The resulting
matrix, M , that describes a thin film multilayer structure can predict the reflection and
transmission phase, the transmittance, reflectance, and other properties that are key to
understanding the expected performance of a device. Moreover, since the phase of an SP
must be tailored to mimic the transfer function of free space, the results of TMM can be
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used to match the correct conditions for a multilayer stack such that it indeed behaves as
an SP.

Since the multilayer stacks are built of many different materials, their response will
vary based on input polarization. Therefore, it is important to note that when considering
suitable materials to create an SP, the response can be tailored based on the response
due to the input polarization of the light. The simplest case is p-polarized or s-polarized
light, which relates to how the electric field is oriented with respect to a surface. A way to
represent the polarization is using a plane containing unit vectors along incident, reflected
(transmitted), and normal to the surface. P -polarization will be parallel to the plane,
and s-polarization will be perpendicular. The s- and p-fields will interact with a surface
differently and lead to different responses, particularly when deviating away from normal
incidence. The interaction at the interface can be defined by a matrix, T , comprised of the
fields before and after the interface.

Let us suppose that we are at the boundary of two materials with refractive indices, n1

and n2, respectively, and medium 2 has a finite thickness d. In this case, let us build up
the interface and phase matrices, T and P , to describe the full interaction of input light
at an angle, θi ̸= 0 passing through a material of thickness d and refractive index n2.

First, we should consider the simplest case of light at an interface described by Snell’s
Law [137], where

n1 sin(θi) = n2 sin(θt) = n1 sin(θr), (4.7)

and θi is the angle of incidence, θt is the transmitted angle, and θr is the reflected angle.
Since the reflected light is in the same medium, we find that θi = θr, as seen in Fig. 4.2.

Considering the fields, if we have input light interact with the surface with a field
amplitude Ei, a reflected field amplitude Er, and a transmitted field amplitude Et, we can
start to define quantities known as the Fresnel coefficients [132]. These coefficients will be
useful in developing the interface matrix toward the total matrix from TMM, describing
the full interaction of the input light with the material.
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Figure 4.2: Schematics of the incident, reflected and transmitted fields for (a) a

single interface and (b) a multilayer stack interface. An incident field E⃗i interacts

with a surface at an angle θi for the normal, and creates a reflected field E⃗r, at angle θr = θi,
and a transmitted field E⃗t, at an angle θt. For a single interface of infinitely thin thickness,
the interaction is governed by Snell’s Law in Eq. (4.7) relating the refractive indices n1 and
n2 and the angles θi, θr, and θt. The fields are related by Fresnel coefficients, discussed in
Eqs. (4.8)- (4.11). For a multilayer stack, the stack is described by a matrix, M , calculated
using TMM to relate the inward and outward fields discussed in more detail later in the
chapter. Propagation and interface matrices can be defined in between layers i and i+ 1,
which will be used to calculate the full matrix M of the device.
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4.2.1 Interface Matrix

Generally, the interface matrix is written using coefficients rs, rp, ts, and tp, referred to
as Fresnel coefficients. These coefficients represent how the input light is reflected and
transmitted based on the angle of incidence of the input light and the refractive index of
each material in question.

Fresnel Coefficients

Fresnel coefficients represent the ratios of the electric fields when considering an interface.
Supposing that we impinge light at an angle θi, and the transmitted angle is θt, we can
define the reflection Fresnel coefficients for p- and s-polarized light as

rp =

(
Er

Ei

)
p

=
n2 cos(θi)− n1 cos(θt)

n1 cos(θt) + n2 cos(θi)
=

n2 cos(θi)− n1

√
1−

(
n1

n2
sin(θi)

)2
n1

√
1−

(
n1

n2
sin(θi)

)2
+ n2 cos(θi)

, (4.8)

and

rs =

(
Er

Ei

)
s

=
n1 cos(θi)− n2 cos(θt)

n1 cos(θi) + n2 cos(θt)
=

n1 cos(θi)− n2

√
1−

(
n1

n2
sin(θi)

)2
n1 cos(θi) + n2

√
1−

(
n1

n2
sin(θi)

)2 . (4.9)

Furthermore, we can define the transmission Fresnel coefficient using the transmitted and
incident field amplitude ratios. The transmission

tp =

(
Et

Ei

)
p

=
n1 cos(θi)

n1 cos(θt) + n2 cos(θi)
=

n1 cos(θi)

n1

√
1−

(
n1

n2
sin(θi)

)2
+ n2 cos(θi)

, (4.10)

and

rp =

(
Et

Ei

)
s

=
2n1 cos(θi)

n1 cos(θi) + n2 cos(θt)
=

2n1 cos(θi)

n1 cos(θi) + n2

√
1−

(
n1

n2
sin(θi)

)2 . (4.11)

These constituent Fresnel coefficients describe what happens with light at an interface but
are more closely related to energy transfer at the interface. When light interacts with a
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surface, we expect to have energy conservation, as well as momentum conservation. This
discussion will focus on energy conservation related to relevant physical quantities that
describe the system. Using the reflection Fresnel coefficients, we can define the reflectance,
R, which describes the total energy reflected at an interface. Similarly, we can define the
transmittance, T , which describes the total energy transmitted at an interface. When con-
sidering a lossless medium, we know that T +R = 1 is based on energy conservation [132].
This can be generalized to include absorption (A) of the medium, diffusion(D), and other
properties, which can have more or less weight depending on the material and the response
to a given wavelength. If we include the other effects, the energy conservation would look
like A + D + R + T = 1 [138]. In general, this type of light-matter interaction is always
considered a conservation law. However, some cases are not conservative, typically when
work is applied to the system, and energy is lost by heat. However, this is out of the
scope of this thesis and will not be elaborated on further. Instead, we will represent the
transmittance and reflectance as functions of the Fresnel coefficients.

The reflectance writes as
Rs = |rs|2, (4.12)

and
Rp = |rp|2. (4.13)

The absolute value is taken since the Fresnel coefficients can be complex as a result of the
refractive index.

Considering the simplest case, one would expect the transmittance to be just T = 1−R;
however, the impedance mismatch, or otherwise stated wave vector mismatch, must also
be considered. The transmittance, therefore, is written as

Ts =
n2 cos(θt)

n1 cos(θi)
|ts|2, (4.14)

and

Tp =
n2 cos(θt)

n1 cos(θi)
|tp|2. (4.15)

Now, with the full description of the transmittance, the energy conservation relationship
is conserved for T +R = 1.

Although this is a complete overview of one interface, optical systems have finite thick-
nesses and often comprise multiple layers with many interfaces. Therefore, we should first
represent the interface matrix using Fresnel coefficients before moving on to the phase
matrix upon propagation.
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Supposing that we have multiple layers of materials, where each layer can be represented
as the i-th layer, i = 0, 1, 2, 3, ..., and each interface, represented by i is located between
the i-th and (i+ 1)-th layer, as in Fig. 4.2, we can write

Ti =
1

ti

[
1 ri
ri 1

]
. (4.16)

The T -matrix can simply represent the interaction for s- or p-polarized light by substituting
the Fresnel coefficients. We will return to how this matrix is incorporated into the whole
picture of a multilayer system later. For now, we will consider the matrix that describes
light propagation through a medium, the P-matrix.

4.2.2 Propagation Matrix

Suppose input light impinges the system at an angle θi and passes through a layer, picking
up a certain amount of phase over the layer thickness. If we assume we have multiple
layers, where the i-th layer has a thickness di and refractive index ni, we can describe the
phase accumulated on propagation as

δi =
2π

λ
nidi cos(θi), (4.17)

where λ is the wavelength of the input light. We can see that the amount of phase depends
on various parameters. Therefore, if we want to control the amount of phase accumulated
upon propagation in the SP, we must consider the input angle, the layer thicknesses, and
the spectral response based on the input wavelength. This phase is applied to the input
wave as an exponential of the form e−ıδ. Using this form, we write the P -matrix as

P =

[
eıδi 0
0 e−ıδi

]
. (4.18)

Now that we have both the T - and P -matrices, we can build up the full matrix that
describes the light-matter interaction in a multilayer stack.

The full matrix, as described by TMM, goes in order from the last interaction to the
first, such that we have

M = T1P1T2P2...Tn =

[
M11 M12

M21 M22

]
. (4.19)
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The components Mi,j, where i, j = 1, 2 are useful in calculating specific system parameters.
If we want the effective Fresnel coefficients t and r, we can use the constituents of the M -
matrix. Using the M11 element, we have that

t =
1

M11

. (4.20)

Similarly, for the effective reflection Fresnel coefficient, we can write

r =
M21

M11

. (4.21)

To find the overall transmittance of the structure, we can make a similar approach to the
case of one layer, where

T =
kout
kin

|t|2, (4.22)

and
R = |r|2. (4.23)

Since the layers incorporate the angular response and wavelength dependence of the input
light, both T and R are functions of the angle of incidence and input wavelength. This
is incredibly valuable as we can investigate the spectral response to resonant features and
look at the allowed angles when a structure becomes more complex. Moreover, since the
polarization affects the Fresnel coefficients, and one can write subscripts s or p for the given
polarization, T and R are also calculated for the respective polarization. The remaining
quantity that is important to understand and be able to manipulate is the total phase of
propagation. In this case, we can use the argument of t and r to find the transmitted light’s
total phase and the reflected light’s total phase to match it to the SP phase, which we will
talk about later. Therefore, the total transmission and reflection phases of the structure
are

ϕt(θ, λ) = arg(t(θ, λ)), (4.24)

and
ϕr(θ, λ) = arg(r(θ, λ)). (4.25)

Here, we have dropped the subscript i where θ represents the angle of incidence defined
at the beginning of a structure for simplicity of writing. Now, through TMM, we can
characterize the transmittance, reflectance, and their associated phase for a multilayer
structure of an arbitrary amount of layers. We will now discuss the specific designs used
for the SPs, the ideal phase that we wish to match the device phase, and the philosophies
that go into the design process. Moreover, we will look at the spectral response outside
the design region to see the possibilities of achieving spatial compression in other spectral
windows, even when designing for a targeted wavelength.
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4.3 Device Design

Using TMM targets a more specific subset of SPs, specifically multilayer stack-based SPs,
which are the focus of this chapter and the next. However, TMM can still describe any
system that can be broken down into interfaces and propagation layers. Regardless of the
type of SP, we can describe the phase needed from an SP according to a few key parameters.

4.3.1 Ideal Spaceplate Phase

As mentioned before, an SP is supposed to mimic free space propagation. The SP phase,
therefore, must match accordingly. We will consider the free space phase as the ideal case,
and so the ideal SP phase is written [1]

ϕSP = −2π

λ
nBGdeff cos(θ), (4.26)

where nBG is the background index referring to air and, therefore, can be set to equal to
one. We write the effective distance in this description of the ideal SP, as this is what we
wish to mimic using an SP. We know that deff = Rd, thus we can write the SP phase as

ϕSP = −R
2π

λ
d cos(θ). (4.27)

We can then fit the total transmission phase ϕt to the device and extract the value of the
compression factor, R, over a certain angular range. An example of the total phase for a
device is shown in Fig. 4.3 for both p- and s-polarization.

There are several jumps in the phase, but the most important section is the first rapid
change of the phase near normal incidence. Another thing to note is that the phase starts
from zero rather than a value. This is due to a subtraction of a global phase term. If
the cos(θ) term in the phase is Taylor expanded with respect to θ, the global phase does
not have any dependence on the angle. Only higher-order terms in the Taylor expansion
with respect to the angle can contribute to matching the transmission phase to an ideal SP
phase. Since the phase is related to cos(θ), we look for fitting based on the quadratic term
in the expansion of the cosine. The initial term merely moves the two curves to another
position and, therefore, does not affect the fitting of the SP phase to the device phase. That
being said, we must fit the SP to this region to accurately measure the compression factor
of the device. For this chapter, we will be able to extract the compression factor using
solely the phase calculated from TMM and fit it to an ideal spaceplate phase. However,
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Figure 4.3: Fitting an ideal SP phase to the transmission phase of a device. Phase
is shown over the full angular range of θ = 0 ∼ 90◦ and a smaller region θ = 0 ∼ 5◦ for
both s- and p-polarization. The smaller angular range allows for a better fit to the device’s
phase and, therefore, provides a correct quantification of the compression factor for this
given device.

in practice, as in Chapter 5, it is more preferential to measure the transverse walk-off and
extract the compression factor from it. Therefore, we will present how one can calculate
the transverse walk-off, ∆x, from the phase using the derivative of the phase as a function
of angle.

Given that an SP conserves angle, we should restrict our attention/fits to the region
where the slope of the transverse walk-off, determined by the derivative of the phase, is
nearly constant near small angles. If we zoom in, as in the case of the two lower panels
of Fig. 4.3, we can see that the phase starts to plateau around θ = 2.5◦, where we denote
∆x → 0 in the experiment. ∆x refers to the transverse walk-off, a good measure of the
device’s compression factor, as seen in Fig. 4.4. The true measure of the transverse walk-
off consists of a tilted SP and measuring the shift ∆xsp.. We will show how to extract R
from ∆xsp shortly; however, it must be said that the fit now should consider the region
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Figure 4.4: A schematic of the transverse walk-off for a given incident angle
θ. The measured transverse walk-off ∆xsp comprises components of the addition of the
apparent walk-off, ∆x and the SP walk-off, ∆x′

sp [1].

associated with half of the angular range at which ∆xsp → 0. This region refers to the
range of angles where the angle is conserved, and the effect can be deemed as an SP. To
accurately determine the R of a given device, the transmission phase must be fit to the
region where the angle is conserved or otherwise stated, where the transverse walk-off has
a linear dependence on the angle. We relate the transverse walk-off to the phase by its
derivative [11], that is,

∆x =
∂ϕt

∂kx
=

1

k cos(θ)

∂ϕt

∂θ
, (4.28)

where kx represents the x-component, or otherwise written kx = k cos(θ). This supposes
that the spaceplate is tilted by θ rather than the input beam tilted from normal. Let us also
suppose that ϕt can be written as the wave vector component in the xz plane projected
onto the z-axis. In that case, ϕt = kxd = kd cos(θ). Therefore, we find the transverse
walk-off to be

∆x =
1

k cos(θ)
(kd sin(θ)) = d tan(θ). (4.29)

This transverse walk-off represents the walk-off for any optic in consideration. However,
we wish to determine the transverse walk-off for an SP. The ideal phase for an SP is given
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Figure 4.5: A schematic of the evolution of the transverse walk-off for an SP.
Spatial compression is witnessed in the blue region, denoted SP region. The device’s NA,
±θdevice, is set based on the region between where the slope of the transverse walk-off
goes to zero. ∆xmax/min show the maximum and minimum transverse walk-off measured
within the SP region. The yellow regions show a region where R starts to decrease from its
maximum value until the device reaches a zone where it is no longer spatially compressing
but acting larger than its given size, indicated in red. This region is usually seen after
±2θdevice.

by Eq. (4.27), and if we derive the walk-off for an SP, we find

∆x′
SP = −deff tan(θ) = −Rd tan(θ). (4.30)

However, as presented by Reshef [1], this does not completely describe the transverse shift.
Therefore, the component of this shift is taken by adding the apparent and SP walk-off
and taking the component along x, i.e. multiplying by cos(θ) to find the actual transverse
walk-off given by

∆xSP = (∆x′
SP +∆x) cos(θ) = −(R− 1)d sin(θ). (4.31)
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Figure 4.6: Schematic representation of a Gaussian beam waist evolution for
three cases for a beam with a waist w0 = 10 µm. The beam waist evolution of free
space is plotted in black, and the waist is situated at z = 0. The evolution of beam waist
for a 3 mm thick piece of glass is shown in red and for a 10 µm thick SP (R = 80) in blue.
These two cases for a piece of glass and an SP highlight the focal advance and retraction,
respectively. The advance in focus is denoted as ∆Fgl, and the focal retraction is denoted
∆Fsp.

as seen in Fig. 4.4.

This relationship for the transverse walk-off will be used extensively in Chapter 5 to
extract the compression factor of the devices to measure their spectral response and oper-
ating angular ranges. A schematic of the behaviour of the transverse walk-off as a function
of angle is shown in Fig. 4.5. We can see that the slope of the transverse walk-off at small
angles is negative, as expected for an SP.

The focal shift is another metric that can be used to understand the SP effect. The
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focal shift [11] can be represented similarly using the transmission phase, taking the form

∆F = k
∂2ϕt

∂k2
x

=
1

k cos2(θ)

(
− tan(θ)

∂ϕt

∂θ
+

∂2ϕt

∂θ2

)
. (4.32)

Assuming the same phase ϕt = kd cos(θ), we find the focal shift of a regular optic to be

∆F = d sec2(θ). (4.33)

Similarly, for an SP, the focal shift would be

∆F ′
SP = −deff sec

2(θ). (4.34)

Using the same logic to calculate the real focal shift, we find

∆FSP = (∆F +∆F ′
SP ) cos(θ) = (d− deff)sec(θ). (4.35)

Assuming the small angle approximation, we find the focal shift due to an SP to be

∆FSP ≈ d− deff (4.36)

Therefore, this is in accordance with our original claim that the focal shift is ∆FSP =
d− deff < 0, and therefore a focal retraction as expected for an SP. A schematic depicting
this shift in shown in Fig. 4.6, highlights the focal shift of glass advancing the focus by an
amount ∆Fgl, and the SP focal shift ∆FSP , both with respect the focus position in free
space.

4.4 Characterization of Spaceplates

4.4.1 Design Philosophies

The focus of this chapter is to design and characterize multilayer stack-based SPs; however,
there are different approaches one can take to develop a high-performance SP. We have
taken two different philosophies to create four distinct SPs. Two are inspired by the design
process of Chen et al. [13] but adapted differently. The other designs were created by an
algorithm using gradient descent by Pagé et al. [139]. These designs have thicknesses that
are not determined by the input wavelength, that is, some fraction of the wavelength, but
are chosen based on the optimization to have a global effect leading to large compression
factors. In both cases, we will discuss the implications of each design, their characterization,
and other resonant features away from the design wavelength.
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(a) (b)

Figure 4.7: Unit cells of two SP devices using a coupled resonator approach. The
unit cell in (a) is repeated four times, resulting in three peaks in the wavelength dependence
of the transmittance for device CR1. The unit cell in (b) is repeated eight times, resulting
in seven peaks in the wavelength dependence of the transmittance for device CR2. The
resonance peaks result from interference of multiple cavities formed in the device, and the
amount of peaks is governed by n − 1 unit cells. nH > nL, where nH are the blue layers,
and nL are the orange layers.

Coupled Resonator Approach

The first approach is referred to as a coupled resonator approach. The basic design pro-
posed by Monticone consists of three core components: a coupling layer, two mirrors, and
an FP cavity [13]. Each of these layers must obey the condition of integer multiples of a
quarter wave. This design was further elaborated on by manipulating the length of the
cavity, coupling layer, as well as the structure of the mirror within the device. Two designs
in Fig. 4.7 follow this coupled resonator approach. The low-index layer is indicated in
orange, and the high-index layers are in blue. The coupling layer is set to a length of λ/2,
the mirrors are λ/4 in length, and the FP cavity is 3λ/4 in length. Together, these com-
ponents make up a unit cell replicated many times to create the entire SP. The unit cell
associated with the design in Fig. 4.7(a) is repeated eight times. The resonant wavelength
of the device would be at

λres = 2Lc, (4.37)

where Lc is the length of the Fabry Perot cavity. In this case, λres = 1.5λ. However,
when another unit cell is added, the coupling layer then becomes the cavity between two
mirror-like sections of the device of form

2L//[H, 3L,H][2L][H, 3L,H], (4.38)

and so on for more unit cells. If two adjacent layers are the same, they effectively do
not add phase to the input wave, except for the placement of the cavity. Therefore, the
structure can be simplified to

[H,L,H][2L][H,L,H]. (4.39)
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Therefore, this would give a resonant wavelength at the target wavelength λres = λ. As
more unit cells are added, the cavities will interfere with one another, and resonance
positions will appear. Resonances will appear at constructive positions for an even number
of unit cells and destructive positions for an odd number, with the number of resonant
peaks corresponding to n − 1, and n is the number of unit cells. This also holds for the
design seen in Fig. 4.7(b). However, the simplified design is more complex. The design
for two unit cells is

2L//[H, 3L,H,L,H, 3L,H][2L][H, 3L,H,L,H, 3L,H]. (4.40)

We can simplify this structure to be

[H,L,H,L,H, L,H][2L][H,L,H,L,H, L,H]. (4.41)

As we can see from the structure, the simplified version creates a long Bragg mirror [140]
on either side of an FP cavity that supports a resonant wavelength of λ.

As we add more unit cells, the interference effect between these cavities is also seen.
The interference of many unit cells also allows for sharp resonant features that significantly
increase the compression factor for these devices. In the case of Fig. 4.7(b), the unit cell
is repeated four times.

Gradient Descent

The next two designs were built using an algorithm to optimize the layer thickness. The
optimization was calculated to maximize the compression factor for a given angular range.
Since there is no overall periodic structure, the device imposes more effective resonance
associated with large compression factors.

Figure 4.8(a) is a design with 17 layers that creates a larger working angular range
(larger NA) (θ ± 10◦) with a moderate compression factor (R = 18), while Fig. 4.8(b) is
a much larger compression factor (R = 238), but a more limited angular range (θ = ±1◦).
The refractive indices of the low- and high-index layers are silica and silicon at λ = 1.55
µm, resulting in nL = 1.458 and nH = 3.196.

The nomenclature that is chosen for the four devices is CR1 and CR2 for the “Cou-
pled Resonator” devices in Fig. 4.7(a) and (b), respectively, and MS1 and MS2 for the
”Multilayer Stack Gradient Descent” devices in Fig. 4.8(a) and (b), respectively. We will
now apply TMM to each of these four devices to quantify the compression factor for each
device and understand the operating angular ranges and bandwidth.
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(a)

(b)

Figure 4.8: Unit cells of two SP devices using gradient descent. (a) shows a
design (MS1) with a moderate angular range (θ ± 10◦), and a modest compression factor
(R = 18), while (b) shows a design (MS2) with a small angular range (θ = ±1◦) and a
large compression factor (R = 238).

4.4.2 TMM Characterization of Devices

As stated previously, TMM is a powerful tool for modelling the interaction of light with
a multilayer structure. The phase and transmittance can be extracted to understand each
given device’s angular and spectral response. In the simulations, the designs were targeted
for an input wavelength of λ = 1.55 µm; however, due to fabrication imperfections, the
central wavelength was shifted in simulation to match the response better. The telecom-
munication wavelength of 1.55 µm was chosen based on a large index contrast of usable
materials when considering the fabrication and a low loss for the constituent materials at
this wavelength. Silicon and silica are also very robust and resistant to oxidation. In an
ideal world, the SPs would be manufactured without a base substrate; however, since the
structure is on the order of a few wavelengths, from approximately d = 2.5 ∼ 14 µm,
the feasibility of a free-floating SP is experimentally limited. However, the simulations
are done solely for an SP. Although the materials have a small amount of absorption, the
TMM is calculated based on only the real part of the refractive index. The transmission
would drop if absorption were included, but the other parameters are left unaffected.

The first device, CR1, has an angular range of θ = 3.5◦, with a compression factor of
R = 3.48. Figure 4.9 shows the TMM results of the simulation of CR1. The transmission
phase is shown in Fig. 4.9(a) over two times the operating angular range of the device. This
angular range corresponds to the point that the transverse walk-off should return to zero.
Figure 4.9(b) shows a transmittance that remains relatively constant over the working
angular, but the area of interest corresponds to spectral peaks seen in Fig. 4.9(c). Since
there are eight unit cells, the device should show seven resonant peaks in the transmittance
spectrum. Indeed, the device has seven peaks, but only five are shown to highlight the
peaks near the design wavelength. Comparing the resonance peaks in transmittance, the
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Figure 4.9: An example of the simulated characterization methods for an SP
(CR1) is shown. (a) shows transmission phase calculated from TMM is plotted in
blue and fitted to an ideal SP phase (See. Eq. (4.27)). The device is fit over θ = 3.5◦;
however, the fit is shown for twice that range. (b) shows the transmittance as a function
of angle. The inset in the plot shows the device that is characterized, showing one unit
cell comprised of varying layer thicknesses and alternating low/high index. (c) shows the
transmittance as a function of wavelength, where five resonance peaks are shown. The unit
cell in b) is repeated eight times, resulting in seven peaks in the wavelength dependence of
the transmittance; however, only five are shown near the operating range of the laser. The
resonance peaks result from coupling because the cavity is formed in the device, and the
amount of peaks is governed by n− 1 unit cells. (d) shows the corresponding compression
factor as a function of wavelength.

compression factor dependence on the wavelength matches well. As the peaks move further
from the design wavelength, the other peaks further away show larger compression factors
and more narrow bandwidths. The increase in a compression factor is an interference effect;
however, the theory that describes this is unclear. More work is needed to understand the
scaling of the compression factor and the narrowing of the bandwidth; however, we will
take some time to discuss this idea.
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The side peaks result from the interference of unit cells with one another. Considering
two unit cells, the resonance wavelength shows a certain resonance peak. If we continue
to increase to four unit cells, there are new conditions to consider. Four unit cells create
three FP cavities that can interact with one another. If there are an odd number of FP
cavities, the original resonant wavelength will always be λc. Although the sole FP cavity
creates the central peak, the sideband peak positions can also be determined using the free
spectral range (FSR) calculation for an FP cavity [132,141]. The FSR is calculated as

∆λ =
λ2

2neffL cos(θ)
, (4.42)

where λ is the input wavelength, neff is the effective refractive index of the medium, L is the
length of the FP cavity, and θ is the deflection angle. In this case, we will take the angle to
be approximately zero. We can find an approximate value for the effective refractive index
by a weighted average of the indices in the structure. Let us consider CR1 as an example,
with eight unit cells, and define the new FP cavity, its length, and the effective refractive
index. This can be done by looking at two unit cells. When considering two unit cells, the
structure looks like

2L//[H, 3L,H][2L][H, 3L,H] → 2L//[H, [3L,H, 2L,H, 3L], H], (4.43)

where now the FP cavity is [3L,H, 2L,H, 3L] surround by two high-index mirrors. The
effective refractive index would be

neff =
NL

Ntot

nL +
NH

Ntot

nH , (4.44)

where NL and NH refer to the number of low or high index layers, respectively. Using the
CR1 structure, the effective index is neff,CR1 = 1.95. To figure out the cavity length, we
must consider that each of these layers has a thickness

di =
λ

4ni

. (4.45)

Thus the total thickness of the FP cavity would be

Ltot = (3 + 2 + 3)

(
λ

4nL

)
+ 2

(
λ

4nH

)
. (4.46)

Substituting the proper values, we find that Ltot = 2.37 µm. Now, using L = Ltot, and the
calculated neff , we find the FSR of CR2 to be

∆λCR1 =
1.552µm2

2 ∗ (2.37µm) ∗ 1.95
= .346 µm = 346 nm. (4.47)

103



Looking at Fig. 4.9, this FSR calculation matches the spacing of the resonances well.
However, calculating the effective refractive index is an estimate and may slightly change
the results. Moreover, the spacing could also increase if a very small angle is introduced.

This idea was pushed further to the design CR2, which follows the same philosophy but
a more complex structure. Here, a larger compression factor comes with a more stringent
angular range. The compression factor predicted for the device is R = 66.6, and the angular
range is θ = ±1◦. However, the characterization methods of the device still follow the same
procedure as CR1. Figure 4.10 shows the full characterization of CR2, where Fig. 4.10(a)
shows the transmission phase over θ = 2◦ and relatively constant transmittance over the
operating range of the device in Fig. 4.10(b). The transmittance spectrum is shown in
Fig. 4.10. Fig. 4.10(c), with three resonant peaks due to four unit cells. Moreover, the
compression factor peak positions in Fig. 4.10(d) match well with the resonance peak
positions in Fig. 4.10(c).

The spacing can be calculated in a similar fashion. However, the effective index of the
medium will change, as well as the FP cavity length. Let us take a look at the 2 unit cell
case for CR2. Two unit cells would look like

2L//[H, 3L,H,L,H, 3L,H][2L][H, 3L,H,L,H, 3L,H]

→ 2L//[H, [3L,H,L,H, 3L,H, 2L,H, 3L,H,L,H, 3L], H].
(4.48)

This configuration based on the methods used in the previous calculation would yield
Ltot = 4.99 µm, and an effective index of neff = 1.99. Using these values, the FSR for CR2
is found to be

∆λCR2 =
1.552µm

2 ∗ (4.99µm) ∗ 1.99
= .120 µm = 120 nm. (4.49)

The remaining two designs were designed based on gradient descent [139]. These designs
show only one resonant peak near the design wavelength. This is likely due to an effective
resonant effect over the whole structure rather than cavities and interference between
cavities like that in CR1 and CR2. Figure 4.11 shows the results of a 17-layer SP based on
gradient descent. Although the optimization was done by Pagé [139], the designs can be
simulated through TMM to look at the transmission phase and transmittance. The goal of
MS1 was to create a device with a modest compression factor with a larger angular range.
The device has shown the largest angular range out of any other device while holding a
larger R than the CR1 design.

MS1 was designed to have a compression factor of R = 18 and an angular range of
θ = ±10◦. The sidebands of CR1 do reach slightly higher R values but are out of the range
of the working laser readily available to test in the experiment. Although the transmittance
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Figure 4.10: An example of the simulated characterization methods for an SP
(CR2) is shown. (a) shows the transmission phase calculated from TMM plotted in blue
and fitted to an ideal SP phase. The operating angular range of the device is θ = ±1◦. (b)
shows the transmittance as a function of angle. The inset in the plot shows the device that is
characterized, showing one unit cell comprised of varying layer thicknesses and alternating
low/high index. (c) shows the transmittance as a function of wavelength, where three
resonance peaks are shown. The unit cell in (b) is repeated four times, resulting in three
peaks in the wavelength dependence of the transmittance. The resonance peaks result
from coupling because the cavity is formed in the device, and the amount of peaks is
governed by n−1 unit cells. (d) shows the corresponding compression factor as a function
of wavelength. The resonant features are more narrow due to a large compression factor.

seems low, as seen in Fig. 4.11(b), it is not zero and still shows transmitted light. This
device has much higher transmittance at higher angles of incidence but still rapidly drops
at the working angular range of the device. Figure 4.11(c) and (d) show the transmittance
and compression factor as a function of wavelength, showing a much larger bandwidth than
those seen in the coupled resonator approach.

Moreover, the design was optimized to have a compression factor of 18, but the TMM
results predict a value much higher. The reasoning is that the compression factor fits
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(d)

Figure 4.11: An example of the simulated characterization methods for an SP
(MS1) is shown. (a) shows the transmission phase, TMM in blue, and the ideal SP
phase in red. The device is fit over θ = 10◦. (b) shows the transmittance as a function
of angle. (c) shows the transmittance as a function of wavelength, where one peak with
a much larger bandwidth is shown, compared to the central peak of CR1 and CR2. (d)
shows the corresponding compression factor as a function of wavelength. The maximum
compression factor was found to be R = 40, roughly two times the size of the predicted R
by gradient descent.

the phase calculated from TMM rather than by gradient descent, which could provide a
compression factor more closely related to the compression factor expected near normal
incidence rather than the full angular range of the device. This device serves the purpose
that larger compression factors are still attainable with large bandwidth and NA, but the
devices have to be optimized carefully to find such conditions. However, if the goal is to
have large spatial compression without worrying about a large angular range, MS2 is a
much higher-performing design.

Figure 4.12 shows the results of a 49-layer SP based on gradient descent. MS2 has a
significantly higher compression factor of R = 238 but a much more narrow bandwidth
and angular range. The operating angular range is θ = ±1◦, as seen in Fig. 4.12(a). The
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Figure 4.12: An example of the simulated characterization methods for an SP
(MS2) is shown. (a) shows the transmission phase, TMM in blue, and the ideal SP phase
in red. The device is fit over θ = 1◦. (b) shows the transmittance as a function of angle.
(c) shows the transmittance as a function of wavelength, where one peak with a more
narrow bandwidth is shown, compared to CR1 and CR2. (d) shows the corresponding
compression factor as a function of wavelength. The maximum compression factor was
R = 238, matching the predicted R by gradient descent.

transmittance again reaches a maximum at a non-zero angle. However, the transmittance
near normal incidence is higher, as seen in Fig. 4.12(b). Figure 4.12(c) and (d) show
the transmittance and compression factor with a very narrow resonant peak. This device,
however, fits much better regarding the results of the optimization methods of gradient
descent and the results of TMM.

Although all these devices were designed to work near λ = 1.55 µm, the multilayer stack
structure supports other resonances in different sections of the EM spectrum. Therefore,
we will take some time to show interesting features outside the proposed design wavelength.
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Figure 4.13: Spectral behaviour when changing the number of unit cells for CR2.
(a)-(d) shows a long range spectral response of CR2 with increasing amount of unit cells
from n = 1, to n = 4. (e)-(h) show only the region near the design wavelength of λ = 1.55
µm with an increasing amount of unit cells according to (a) through (d). Peaks present
resonance locations according to constructive and destructive interference positions, with
the number of peaks determined by n− 1 unit cells.
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4.4.3 Spectral Response of Devices

Since the coupled resonator designs follow layer thickness as integer multiples of a quarter
wave, it is clear that other harmonics of the design wavelength should be supported as well.
Let us assume the dispersion is relatively flat for the two constituent materials over a large
wavelength range. In reality, dispersion could play a role; however, this investigation is to
demonstrate that a device could work elsewhere than expected. CR2 was designed with
four unit cells, but the resonant features change depending on the number of unit cells.

As explained before, the amount of peaks near the design wavelength goes at n −
1 resonances for n unit cells in Fig. 4.13(a) through (d), the amount of unit cells is
incrementally increased from n = 1 to n = 4. In the region of the λ = 1.55 µm, the
resonances increase as n− 1. To stress the idea of the originally Fabry Perot cavity length
of 3λ/4, a resonance is seen at 1.5λ in Fig. 4.13(a), corresponding to one unit cell. Figure
4.13(e) through (h) show the zoomed-in response around the design wavelength of CR2.
However, one can see that other resonant features are also present as a result of interference
of unit cells with lengths of 3λ/4 and 3λ/2. A similar behaviour can be expected in
the compression factor but is not shown here. Moreover, CR1 would also have similar
behaviour, but the compression factors are lower and add no extra value to the discussion.
Therefore, it is understood that one can design multiple resonance structures that work
over many different regions, which is more valuable when considering an application to
modern-day imaging systems.

Perhaps a more interesting case is regarding the two designs based on gradient descent.
Since the structure does not follow a rule of quarter wave thicknesses but thicknesses gov-
erned by an optimization method, one may think that other regions over the EM spectrum
would not show interesting features. The design is less regular because the layers are not
periodically repeated, but any repetition would have exhibited similar effects. However,
regardless of repetition, the characteristics of the single resonance feature observed at the
design wavelength of λ = 1.55 µm, like the bandwidth, are reflected in other spectral
regions, as in Fig. 4.14.

The devices have an effective dependence on the input wavelength and show resonances
at lower and higher wavelength regions. Understanding the positions is likely linked to
harmonic positions but for an effective wavelength λeff , again assuming dispersion is flat.
Figure 4.14 shows the proposed design wavelength in Fig. 4.14(a) and (c) for designs MS2
and MS1, respectively, and other resonant features for the devices in Fig. 4.14(b) and
(d). The resonant features of MS2 are reflected with very narrow features in Fig.4.14(b).
At the same time, the features in higher and lower wavelengths for MS1 reflect the larger
NA and bandwidth of the design wavelength in 4.14(d). Overall, the devices also show
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promise in other regions of wavelengths, making them a much more appealing device to
applications.

(a) (b)

(c) (d)

Figure 4.14: Transmittance for devices MS2 and MS1 are plotted around their
design wavelengths and over a larger range. (a) shows the design range of MS2, while
(b) shows an extended range with rich, resonant features in lower and higher wavelengths.
(c) shows the design range of MS1, while (d) also shows an extended range with rich,
resonant features in lower and higher wavelengths, but features are much more narrow
than MS1. This reflects the sharp feature seen around the design wavelength.

These devices have multiple resonant features in transmittance that correspond to
points of spatial compression. These resonant features are associated with areas where
the phase rapidly changes, impacting how the input light propagates through the mate-
rial. The implications of sharp features and how they contribute to the group index were
discussed in Chapter 1. Therefore, there is merit in discussing how the resonant features
of these devices are related to the idea of slow light. Although it was assumed that the
dispersion was flat when considering the design of the devices, a key component of SPs is
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to imprint a phase equal to that of free space propagation by acting on the wave vectors.
Therefore, the dispersion around the features could be flatter and can be discussed as an
effective group delay to the light propagating through. As such, we will spend some time
discussing the SP effect and its relation to group velocity and dispersion.

4.5 Group Velocity and Group Delay in Spaceplates

The theory behind how the SP is related to group velocity was discussed by Shastri et
al. [14]. They showed that the group velocity along the transverse direction, assuming 1D,
along x, is manipulated when trying to mimic free space propagation using SPs. If the SP
is supposed to change the input light to conserve angle but replace space by imprinting a
phase of free space propagation, it is clear that this phase is conserved in another variable.
The group delay, and therefore large group index, delays the light long enough to travel
a distance in the transverse plane to mimic free space. These types of actions are, of
course, limited by physical parameters such as the NA and bandwidth of the devices. All
of these constraints must go into a calculation of the group delay to understand how large
compression factors can be.

Following the derivation by Shastri et al. [14], let us first suppose the beam is moved
by an amount ∆Lx in the transverse plane. This distance is written as

∆Lx = (deff − d) tan(α), (4.50)

where α is the angle with respect to the normal of the surface. The transverse shift Lx can
be written as the product of a transverse group velocity vgx and a total time delay τ such
that

Lx = vgxτ. (4.51)

If we wish to find the difference ∆Lx related to these variables, we need a reference position
from which the beam enters, denoted x0. Therefore, the beam will be shifted by Lx away
from x0 upon propagation of the device of length d. Another way of writing this is

∆Lx = (x, z)− (x0, 0) = (x0 + Lx, d)− (x0, 0). (4.52)

This invites the use of the group velocity and time delay and takes the form

∆Lx = vgxτ − v0gxτ
0 = c sin(α)τ, (4.53)

The initial group velocity is the component of the speed of light along x and set equal to
c, assuming the light is in the air before entering the material. The other parameter τ 0
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represents the delay as if the wave were to travel the same distance through the background,
in this case, air, with the form

τ 0 =
d

c cos(α)
=

dnb

c0 cos(α)
, (4.54)

where nb is in the case of a background refractive index, not in the air.

Here, it is clear that spatial compression is enhanced in two ways. The first is increasing
the transverse group velocity, which is limited by an upper bound of the speed of light or
by increasing the total time delay with respect to the background. Generally, materials’
transverse group velocity decreases, so specific conditions must be met to increase the SP
effect. They can also be manipulated for the time delays but pose an interesting point.
Time delays τ and τ 0 show importance as their difference limits the bandwidth of the
device. The larger the total time delay in the device, the larger the spatial compression
experienced, but more narrow bandwidths. This is linked to the delay-bandwidth product,
which is conserved. It is the excess time delay that limits the bandwidth, and therefore, it
should be stated that the excess time is written as

∆T = τ − τ 0 =
∆Lx + (sin(α)− vgx/c)d sec(α)

vgx
. (4.55)

This value should be non-zero and positive to see an SP effect. Using this expression, we
can find how the bandwidth is limited regarding the group velocity and the dependence on
the NA. It can be seen that the effects of slow light manipulate these devices and, therefore,
must be treated carefully.

If we assume that an SP has a maximum angular range αm, the corresponding transverse
shift would be ∆Lm = (deff −d) tan(αm). We know that the compression factor R = deff/d.
Furthermore, we can introduce the concept of numerical aperture, defined as

NA = nb sin(αm). (4.56)

Substituting the compression factor and NA into the excess time delay in Eq. (4.55), we
find

∆T =
d(R ·NA/nb − vgx/c)

vgx
√
1− (NA/nb)2

. (4.57)

Formally, the delay-bandwidth product is conserved and follows the relationship

∆T∆ω ≤ κ, (4.58)
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where κ is described by the properties of the structure as a whole. If we want to find the
bandwidth of the resonance, consider the central angular frequency ωc, or corresponding
central wavelength λc; the bandwidth of the resonance is written as

∆ω =
1

2π

κωc

d/λc

√
1− (NA/nb)2vgx/c

(R ·NA/nb − vgx/c)
. (4.59)

Any excess time delay that is zero or positive up to ∆T will produce an SP effect, but the
values are limited based on this value. We can see here that higher-order dispersion directly
affects the bandwidth, relating to the group delay. However, it can be written more simply
in terms of the transverse group velocity. We can also see that the slow-light effects also
affect the NA. Therefore, understanding the dispersion of the materials is crucial in both
linear and nonlinear optical systems.

4.6 Summary

In this chapter, we presented four different multilayer stack-based SP designs based on two
different design philosophies, coupled resonators, and optimization by gradient descent.
We used TMM to calculate the transmission phase as a function angle and wavelength for
each device and extract the dependency of the wavelength on the compression factor. We
then developed a basic theory to predict the resonance positions, spacing, and bandwidth
of the devices.

The coupled resonator approach provided a new avenue to create multi-resonant designs
useful for various optical applications, such as an all-optical resonance tuning device or
spatial compression of frequency combs. The utility that multilayer stacks could also be
relevant to the field of flat optics. The capability of simulating a multilayer stack-based
spaceplate’s performance using TMM shows it is a fundamental building block of optical
design. When integrated with metalenses, SPs show promise to play a key role in creating
ultrathin optical systems and will be easily integrated due to their ultrathin size.

In the following chapter, we will experimentally test these devices to realize their per-
formance. The devices’ transverse walk-off will be measured and used to extract the com-
pression factor as a function of wavelength. Moreover, the transverse walk-off will allow
us to understand the numerical aperture of the device, as well as the bandwidth when
looking at the response of compression factor versus wavelength. The capability of using
the devices for imaging will also be tested by measuring the focal shifts of the imaging
plane. Characterization of the beam quality will also be investigated.
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Chapter 5

Experimental Observation of Spatial
Compression using Multilayer
Stack-Based Spaceplates

In the previous chapter, four spaceplate (SP) designs using multilayer stacks were pro-
posed based on two design philosophies: coupled resonators and gradient descent. These
four designs were characterized using the Transfer Matrix Method (TMM) to extract the
simulated transmittance and transmission phase dependencies on the wavelength and an-
gle. The transmission phase was then used to investigate the compression factor as a
function of wavelength matching the resonance positions of the transmittance spectra. A
brief theory was discussed to predict resonance positions and spacing of resonances for the
case of coupled resonator SP.

The current chapter, based on the work of Hogan et al. [2], aims to experimentally
test the devices studied in Chapter 4 to see the extent of their performance by quantifying
their respective compression factors. The transverse walk-off of the four devices is mea-
sured and then used to extract the compression factor as a function of wavelength. The
transverse walk-off versus angle and compression factor versus wavelength reveal two im-
portant quantities: the numerical aperture of the device and the bandwidth, respectively.
The viability of its performance is also tested by relaying an image through the SP to show
focal retraction. The beam profile is also studied as certain high finesse features in resonant
structures can affect the beam quality. With a full depiction of their functionality and the
compactness of their design, multilayer stack-based SPs show promise in realizing much
smaller modern-day imaging systems, and therefore, we will spend some time motivating
them.
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5.1 Background
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Figure 5.1: Schematic of beam propagation for three different cases. A different
focal plane is shown in the case of a beam propagating (a) in free space, (b) through a
tilted 3-mm long piece of glass, (c) through a tilted 10-µm multilayer stack based SP, and
(d) the combined tilted system comprised of the glass and the SP. With respect to the
imaging plane of free space, the glass advances the focus and positively shifts the beam
to a different transverse position. The focus retracts in the case of the SP, and the beam
negatively shifts in the transverse plane. The combined system shows that a 10 µm SP
can undo the effects of the glass slide, leading to an unaffected beam.
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The growing demand for the miniaturization of optical devices is often limited by the
distance needed for an image to come into focus and any operations, like defocusing,
hereafter. Several works have utilized meta-lens [142–145] and other optical elements to
control the position of the focal plane and then attempts to push towards the realization of
flat optics [15,127,146–148]. To achieve flat optics, one must be able to mimic the action of
standard optics in a spatially compact way. This can be done if the phase of the incoming
light field can be fully controlled. As described by Chen et al. [149], the transverse phase
of the light field can be controlled by manipulating the electric field on a position-by-
position basis. As discussed in Chapter 4, a position-dependent phase response is said to
be a local response. While a metalens locally influences the wave vector angle through its
position-dependent response, an SP nonlocally influences the transverse position through
its angle-dependent response. To realize an ultrathin flat optical system, both a meta-lens
and an SP would be required.

In recent years, theoretical studies have examined SPs to understand the physical limits
of compressing space [13,14,129]. However, an experimental demonstration of those limits
is still pending. As we saw in Chapter 4, Reshef et al. [1] tested two prototypical SP designs
and showed that using low-index media or uniaxial crystals can achieve spatial compression.
The devices exhibit modest spatial compression, but the material index contrast of the
constituents limits their performance. However, another design was proposed consisting
of alternating high and low indices that show promise of much larger spatial compression.
This idea was analyzed theoretically by Chen et al. [13], Pagé et al. [139], as well as Shastri
et al. [14] who have shown larger compression factors at the cost of numerical aperture (NA)
and device bandwidth. Photonic SPs [129] also exhibit moderate spatial compression and
angular range but again suffer from limitations imposed by the optical properties of the
materials. The idea of an SP is inspired by earlier works of optical filters that examine
the lateral and longitudinal shifts using the group delay as a characteristic metric [7–12].
Although these studies show lateral and longitudinal shifts, the SP effect is not discussed in
these works. The SP effect does diminish the amount of space required in optical systems
but still needs some space to operate properly in an optical system [84].

As discussed in Chapter 4, it is possible to quantify the performance of these devices
in terms of a metric known as the compression factor, R, defined as R = deff/d, where deff
is the effective distance, and d is the device thickness. We can determine the compression
factor in one of two ways: 1) by observing a focal shift along propagation ∆F , which moves
the focal plane closer to the object, or 2) by observing the transverse walk-off ∆x(θ), which
shifts the beam transversely as a function of input angle in the opposite direction of the
tilt. Figure 5.1(a)-(d) shows the focus advancement/retraction and the transverse walk-off
for three different cases, namely a glass slide, an SP, and the two together. Here, we show
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pictorially how the effect of a 10 µm SP with a compression factor of R = 150 can nearly
cancel the effect of a 3 mm glass slide. If we place an SP in an optical system such as
a modern camera, we can shrink the imaging system by 3 mm and enable a much more
compact system.

5.2 Methodology

5.2.1 Design and Characterization

Recall that for an ideal SP, the transverse walk-off takes the form

∆x(θ) = − (R− 1) d sin (θ) , (5.1)

where θ is the angle of incidence. Fitting this expression over small angles allows us to
extract R, which is proportional to the slope. However, calculating the transverse walk-off
directly from the phase can estimate what to expect from a device.

From Chapter 4, we used TMM to extract the transmittance and phase response of
the device as a function of the angle of incidence and input wavelength to simulate the
expected response of the compression factor. Figure 5.2 shows the general protocols for
characterizing a given device, in this case, CR2. From the dependence of the angle on the
phase, one can deduce the angular range of which the device shows spatial compression.
Figure 5.2(a) shows the simulated phase as a function of angle in blue and the ideal SP
phase in red. The highlighted region in blue in Fig. 5.2(a) shows the range at which the
simulated phase is fit to an ideal SP phase. The blue region dictates the operating angular
range of the device, which we call the SP region.

We fabricated four devices based on multilayer stacks following the designs in Chapter
4. Two devices were created, inspired by the Fabry-Perot SP proposed by Chen et al. [149]
using multiples of integer value quarter-wave thicknesses. One device (CR1) showed mod-
erate spatial compression but a larger angular range and, consequently, a larger bandwidth.
Another device (CR2) had much larger spatial compression but a limited angular range
and bandwidth. Two other devices, MS1 and MS2, will be tested where MS1 showed
moderate spatial compression, sizeable angular range, and MS2, large spatial compression,
limited angular range. Devices were all designed to thicknesses of approximately 12 µm or
less, except MS1, which was about four times smaller. These devices were fabricated and
grown on fused silica of thicknesses d = 3.03 mm for CR2, MS1, and MS2, and d = 2.84
mm for CR1. Alternating high and low indices comprise silicon (nH = 3.196 at 1550 nm)
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Figure 5.2: Characterization methods for an SP. (a) Transmission phase calculated
from TMM is plotted in blue and fitted to an ideal SP phase in red. The device is fit over
the SP region shown in light blue. (b) Transverse walk-off is calculated from the derivative
of the phase in (a). (c) Transmittance as a function of angle is plotted and maximized
over the SP region. (d) The corresponding SP multilayer stack unit cell is shown with low
(nL) and high (nH) refractive indices layers quarter-wave thickness. The device consists
of a unit cell repeated four times, creating a coupled resonator-like response with sharp
resonances that exhibit larger compression factors. (e) Transmittance as a function of
wavelength is plotted, showing three resonance peaks. The number of peaks follows n− 1
unit cells. (f) The corresponding compression factor is shown calculated from (b) for
various wavelengths.
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Device Unit cell configura-
tion

# of
unit
cells

Device
Length
(µm)

Effective
device
length
(µm)

Compression
Factor

Angular
Range (◦)

CR1 [2L,H,3L,H] 8 12.57 43.76 3.368 3.5
CR2 [2L,H,3L,H,L,H,3L,H] 4 11.51 767 43.0 1
MS1 Gradient Descent 17∗ 2.48 44.7 18.0 10
MS2 Gradient Descent 49∗ 13.42 3196 238.2 1

Table 5.1: Device parameters for four devices: CR1 and CR2 comprise integer-
valued multiples of quarter-waves for low and high index layers represented as L and H,
respectively, and two other devices of an alternating index, with thicknesses determined by
gradient descent. The number of unit cells indicates the repetition count of the unit cell.
The compression factor denotes the effective to the real device length ratio. The number
of layers is indicated with a star for the gradient descent devices. The device’s angular
range is also displayed. Note that all devices are quoted for p-polarized light, although s-
polarized light exhibits comparable performance in a limited angular range of θdevice ≤ 10◦.

and silica (nL = 1.458 at 1550 nm), respectively. An anti-reflective coating was placed on
the device to minimize reflection and counteract any curvature of the sample due to the
stress of the films after growth. The device parameters are summarized in Table 5.1.

Characteristics like the angular and wavelength dependence of the transmittance are
necessary to investigate to understand the feasibility of an SP. The wavelength dependence
directly links with the structure and order of the layers, so we pictorially show an example of
a unit cell for device CR2 in Fig. 5.2(d). Figure 5.2(e) shows the transmittance spectrum
for CR2. However, due to fabrication intolerances, the device is centred on λdevice = 1.54685
µm rather than 1.550 µm. The compression factor is extracted for each wavelength so to
show the spectral response, and this result is plotted in Fig. 5.2(f). As expected from
the compression factor as a function of wavelength, the peak positions match with the
transmittance in Fig. 5.2(e). Both the bandwidth and resonance positions are in great
agreement with those seen in transmittance. The highlighted regions in Fig. 5.2(e) and
5.2(f) show regions of which the compression factor is larger than unity.

Another characterization method for the compression factor is measuring how much the
device shifts the focus, i.e., how close the imaging plane is to the object. We show that these
devices significantly increase performance compared to the previous experiments [1, 130].
Therefore, multilayer stack-based SPs are key in modern technologies requiring miniatur-
ized imaging systems pushing toward ultrathin monolithic devices. We will now show
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the performance of said devices to show their viability and performance. We will now
discuss how we experimentally test these devices for their angular range and wavelength
dependence, showing trade-offs of spatial compression versus NA and bandwidth.

5.2.2 Experimental Setup

We use a 1.6 mW tunable laser, from 1525 nm to 1630 nm with a resolution of 0.1 pi-
cometers, to measure the compression factor of four different SP devices. We couple the
laser to a fibre collimator that outputs a collimated beam with a diameter of ∼7 mm.
We then use two c-coated plano-convex lenses L1 and L2, with focal lengths f1 = 5 cm
and f2 = 25 cm, respectively, to minify the beam by a ratio of M = −f1/f2, where M
is the magnification. We then pass the beam through a quarter-wave plate (QWP) to set
a known input polarization state and through a half-wave plate (HWP) and a polarizing
beam-splitter (PBS) to control the power. Another set of QWP and HWP is used after the
PBS to control the polarization input into the SP, whether it be s-polarized, p-polarized,
right- or left-circularly polarized. We set the input to p-polarization, and then the beam
is focused onto the sample using a third lens L3 with focal length f3 = 25 cm. The spot
size of the beam is found to be 2w0 = 310 µm. The beam size is tuned to be focused to an
angular range smaller than the device’s designed angular range, where the angular range
is θhalf = 0.2◦.

The SP is placed at the focus on a mount that is connected to a rotation stage controlled
by a K-cube, as shown in 5.3. The SP is rotated about normal incidence within the device
angular range to measure the transverse walk-off. The beam is then re-collimated using
another lens L4 with focal length f4 = 10 cm placed a focal length away from the sample,
creating a 4f system. Another 4f system is created, placing a fifth lens L5, of focus
length f5 = 15 cm, at a distance z = f4 + f5 away from L4. The beam is focused onto
an Indium-Gallium-Arsenide (InGaAs) infrared red charge-coupled device (CCD) camera
(Bobcat 320 Gig-E). The CCD camera is placed on a translation stage to image the device
in the imaging plane (Fourier plane), allowing measurement of the focal shifted image plane
due to an SP. All data were corrected to account for a magnification of M = 1.48 due to the
4f system of L5 and L4, which increased the transverse walk-off measured at the camera.
Imaging measurements in Fig. 5.8, discussed in Sec. 5.3.3, were done by replacing lens L4

and L5 with two lenses with focal lengths of f = 10 cm, and therefore unity magnification.
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Figure 5.3: Experimental setup to measure transverse walk-off and focal shifts.
A 1.6 mW continuous-wave tunable laser at 1550 nm with a spot size of 7 mm is minified
by a factor of five by a telescope consisting of two plano-convex lenses L1 (f = 25 cm),
and L2 (f = 5 cm). The beam is then sent through a quarter wave plate (QWP) to set
the input polarization, followed by a half-wave plate (HWP) and polarizing beam-splitter
(PBS) to control the power. The beam is then sent through another QWP, and HWP,
set such that p-polarization illuminates the sample. The QWP and HWP can have p-
and s-polarization and circular polarization if needed. The beam is then focused by a
plano-convex lens L3 (f = 25 cm) down to a spot size of approximately 2w0 = 310 µm,
with a half angle divergence of θhalf = 0.2◦. At the focus, an SP is placed on a rotation
mount controlled by a K-cube to measure the transverse walk-off as a function of the
angle. The beam is then recollimated by another plano-convex lens L4 (f = 10 cm) and
refocused using a plano-convex lens L5 (f = 15 cm) to be imaged on a camera situated
on a translation stage with 2.54 cm range of motion, controlled by another k-cube. The
imposed magnification was calibrated to be M = 1.48, and all measurements were scaled
accordingly. Imaging measurements were done by switching L5 for another plano-convex
lens of f = 10 cm, imposing unity magnification. The camera is an Indium-Gallium-
Arsenide (InGaAs) infrared red charge-coupled device (CCD) camera (Bobcat 320 Gig-E).
The camera is placed on the translation stage to measure the beam spot size along the
direction of propagation.
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5.2.3 Measured Transmittance

Figure 5.4: Measured transmittance of four devices. CR1 and CR2 show side peaks
due to multiple resonances based on integer-valued multiples of λ/4 layer thickness. Devices
MS1 and MS2 show one single resonance peak due to layer thickness based on gradient
descent. Designs were simulated using the TMM centred at λdevice = 1550 nm. Fabrication
intolerances push the actual central wavelengths λm to different locations, where λm,CR1 ≈
1547 nm, λm,CR2 ≈ 1531 nm, λm,MS1 ≈ 1562 nm, and λm,MS2 ≈ 1566 nm. Devices were
fabricated on top of 3 mm thick fused silica, with an anti-reflective coating on the films to
minimize stress and maximize transmission. The lowest transmittance was measured to be
approximately 25% at the peak of device MS2. Transmittance peaks correspond to regions
of spatial compression, where the magnitude of spatial compression governs the device’s
resonance bandwidth and angular range [2].

With most optical elements, high transmittance is important to realize imaging applica-
tions. As such, we use TMM to plot the transmittance of the device CR2 as a function
of angle, showing high transmittance over the SP region in Fig. 5.2(c). This angular re-
sponse is plotted for a particular wavelength; however, it is important to note that devices
CR1 and CR2 were designed with a quarter-wave condition at λdevice = 1550 nm. There-
fore, the transmittance should also be sensitive to the input wavelength. The measured
transmittance of each device is shown in Fig. 5.4. Fabrication intolerances push the actual
central wavelengths λm to different locations, where λm,CR1 ≈ 1547 nm, λm,CR2 ≈ 1531 nm,
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λm,MS1 ≈ 1562 nm, and λm,MS2 ≈ 1567 nm. Devices were fabricated on top of 3 mm thick
fused silica, with an anti-reflective coating on the films to minimize stress and maximize
transmission. The lowest transmittance was measured to be approximately 25% at the
peak of device MS2.

Device transmittance was measured for each of the four devices at normal incidence,
shown in Fig. 5.3. CR1 and CR2 show multiple sideband peaks centred around their cen-
tral working wavelength. These sideband peaks result from the quarter-wave thicknesses,
representing other resonant wavelengths within these devices. Devices were designed to
maximize transmittance, with the lowest transmittance at approximately T = 0.25 for
MS2. The central wavelength is designed for λdevice = 1550 nm; however, due to fabrica-
tion intolerances, peaks are slightly shifted from the proposed design. The device designs
aim to achieve maximum spatial compression near the transmission peaks. The bandwidth
seen in the simulation and measured is directly proportional to the bandwidth of the device
compression factor.

5.3 Results and Discussion

5.3.1 Angular Dependence of Transverse Walk-off

Often with these devices, it is beneficial to measure the transverse walk-off to extract the
compression factor of a given device. Figure 5.5 shows the measured transverse walk-off
for a 3 mm thick piece of glass (in blue), an 11.51 µm thick SP (CR2) on top of a 3 mm
thick glass (in red), and the 11.51 µm thick SP (CR2) only (in green). The transverse
walk-off for the SP alone is calculated by taking the difference of the walk-off measured
for SP on glass and the walk-off for glass. The effective distance of the 11.51 µm thick SP
completely undoes the effect of a 3 mm piece of glass over an angular range of about 1.5◦.

The transverse walk-off serves as a good indicator of the device’s performance. There-
fore, we experimentally measured the transverse walk-off as a function of the incident angle
for four different devices. The designed devices were found to work experimentally within
the angular range of θ = ±1◦ for devices CR2 and MS2, θ = ±3.5◦ for CR1, and θ = ±10◦

for MS1.
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Figure 5.5: Experimentally measured transverse walk-off for glass (blue curve),
SP+glass (red curve), and the SP alone (green curve). The result is shown for the
device CR2, at an input wavelength of λ = 1532.905 nm, corresponding to the left peak
seen in Fig. 5.2(d). The red curve, associated with an 11.51 µm thick SP on top of a 3
mm thick glass, shows no transverse walk-off over an approximately two-degree interval.
The red curve shows that the effect of the small SP cancels the walk-off of a large piece of
glass.

Figure 5.6(a) shows the angular response of four devices at the peak position in trans-
mittance, where the highlighted zones show the operating range of the device, or SP region,
in which the SP effect was designed. A larger negative slope in the transverse walk-off cor-
responds to a larger compression factor. Figure 5.6(b) shows the angular response of the
transverse walk-off for the central position of each of the three resonances measured in the
transmittance spectra of CR2, as shown in Fig. 5.4. Side peaks show roughly a factor of
two enhancement in the measured compression factor. The physical origin of enhancing
the side peaks’ compression factor will be studied in future works.
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Figure 5.6: Experimentally measured transverse walk-off for all devices. Curves
show transverse walk-off as a function of angle over a region larger than the SP region
of four devices in (a) and different peaks of CR2 in (b). (a) The SP region of θ = ±1◦

for devices CR2, and MS2, θ = ±3.5◦ for CR1, and θ = ±10◦ for devices CR2. Fitting
the devices over their respective SP region, maximum compression factors of R = 176,
R = 42, R = 30, and R = 3.4 are found for the central resonance peaks of devices MS2,
CR2, MS1, and CR1, respectively. (b) Angular dependence of the transverse walk-off for
the central position of each resonance peak for CR2. The left and right peaks show larger
spatial compression than the central, resulting in compression factors of Rl = 96, Rc = 42,
and Rr = 49. Simulated transverse walk-off curves are plotted in solid lines, showing good
agreement with the experiment. Further study is needed to understand the compression
factor scaling with observed side peaks.
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Figure 5.7: Experimentally measured and simulated wavelength dependence of
devices. (a) The performance of CR2, with the three maximum compression factors,
observed to be Rl = 96 ± 2, Rc = 41.9 ± 0.6, and Rr = 48.6 ± 1.4, corresponding to
the left, central, and right peaks, respectively. Bandwidths of the peaks are found to be
∆λl = 143 ± 4 pm, ∆λc = 282 ± 6 pm, and ∆λr = 147 ± 5 pm. (b) The performance of
MS2, reaching a maximum value of R = 176± 14, with a bandwidth of ∆λ = 55± 7 pm.
(c) The performance of MS1, reaching a maximum value of R = 30± 3, with a bandwidth
of ∆λ = 2.8 ± 0.3 nm. Experimentally measured compression factors (red) match the
simulated results (blue) well for three devices.
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5.3.2 Wavelength Dependence of Compression Factor

Since the devices are sensitive to the input wavelength, the amount of transverse walk-off
can vary. The transmittance curve correlates to the device’s bandwidth, and therefore, the
four devices were measured over the resonant wavelengths. We measured the transverse
walk-off over the input angle for several input wavelengths and extracted the corresponding
compression factor as a function of wavelength. Figure 5.7 shows the wavelength depen-
dence of the top three performing devices, CR2, MS2, and MS1. The experimentally
measured points in red are compared to the simulated response plotted in blue, showing
good agreement. Furthermore, as predicted by the transmittance curves, the simulated and
experimentally measured compression factors of the devices correspond to the predicted
resonance positions.

Figure 5.7(a) shows the wavelength response of CR2 containing three resonances. The
three maximum compression factors measured for CR2 were Rl = 96± 2, Rc = 41.9± 0.6,
and Rr = 48.6 ± 1.4, corresponding to the left, central, and right peaks, respectively. At
the cost of bandwidth, larger compression factors can be achieved. As a result, we found
the bandwidths of the three resonances to be ∆λl = 143 ± 4 pm, ∆λc = 282 ± 6 pm and
∆λr = 147± 5 pm.

Figure 5.7(b) shows the spectral response of the compression factor for MS2, reaching
a maximum compression factor of Rc = 176 ± 14 with a bandwidth of ∆λr = 55 ± 7
pm. Similarly, if a larger bandwidth is needed, the compression is smaller in magnitude
but extends over a larger wavelength range. The performance of MS1, with a maximum
compression factor of Rc = 30 ± 3, with a bandwidth of ∆λ = 2.8 ± 0.3 nm is shown in
Fig. 5.7(c).

5.3.3 Focal Retraction and Imaging

One of the interesting functionalities of an SP is to observe a focal retraction of the imaging
plane. A focal retraction would mean negative focal shifts of the image plane rather than
advancing the focus with most other optics. Figure 5.8(a)-(c) displays the measured
beam waists upon propagation along z for free space, SP on glass, and glass, respectively.
Experimentally measured points show the beam waists as functions of the z-position, and
the solid line indicates the fitted beam waist.

Figure 5.8(d) shows the fitted beam waist evolution of the three cases in (a)-(c) and a
predicted beam waist evolution for a free-standing SP. That is, the free space beam waist
evolution shifted by an amount ∆Fsp calculated by the difference in the focus of glass
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and SP on glass. Moreover, an image was propagated through the system, shown in Fig.
5.8(e), highlighting the colour-coded focal positions of the glass, free space, and SP on
glass, corresponding to the top, middle and bottom rows, respectively.

Focus points 

Δ𝐹!"

Spaceplate: 
𝑧 = 	6.58	mm
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Figure 5.8: Focal retraction and imaging of an SP. The beam waist evolution is
plotted against the z-position for (a) free space, (b) SP on top of glass, and (c) glass,
highlighting the focus points of each. Extracting the beam waists and their positions, we
plot the beam waist evolution in (d) for each case (a)-(c), as well as the predicted SP
beam waist evolution (cyan). The focal retraction produced by the SP is denoted Fsp, from
which we plot the predicted SP effect using the free space evolution shifted by Fsp. The
corresponding images of the measured beam waist are plotted in (e), showing the focus
points of each corresponding case. The top row of images is for free space, the middle row
is SP on glass, and the bottom row is glass.
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Beam Shape Analysis
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(a)

Figure 5.9: The Strehl ratio of design MS2 and transverse beam profiles for
CR2 and MS2. The Strehl ratio plotted over the SP region of θ = ±1◦ and over the
resonance peak in wavelength in (a). Strehl ratio reached a minimum of S = 0.86, above
the diffraction-limited threshold of 0.8. (b) and (c) show the transverse beam profile
for the peak positions of devices CR2 and MS2 at normal incidence, respectively. The
transverse beam profile of CR2 is unaffected, while MS2 shows some distortions in the
beam profile. The distortions are likely due to thermal fluctuations that locally change the
resonance response.

When an SP exhibits significant compression, the transverse profile of the beam is slightly
modified from its original Gaussian profile. The difference in shape is characterized by
the Strehl ratio. Since the devices are measured over various angles and wavelengths, the
Strehl ratio will also show dependence on these parameters. Figure 5.9 plots the Strehl
ratio of our highest performing SP, MS2, over the SP region of ±1◦, and the resonance
observed in experimentally measured transmittance in Fig. 5.3.
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The Strehl ratio is a metric used to quantify the quality of a beam by examining the
residuals of a Gaussian fit. Noting that an imperfect match of the predicted versus ideal
SP phase could cause the beam profile to experience distortions in the form of aberrations
or other parasitic optical effects. However, in a recent study by Pagé et al. [139], the Strehl
ratio is not affected significantly by the oscillation in the phase response.

A beam with a Strehl ratio S > 0.8 is diffraction-limited. Therefore, if a device is above
this threshold, the beam profile can be considered good and usable for application. Often,
with high-performing devices with a large compression factor, the angular range is narrow,
and the beam is subject to aberrations. However, the beams passing through the devices
of this study did not exhibit significant distortions, except for MS2. The distortions in the
beam are likely due to the very narrow linewidth of the resonance. When resonances are
sharp, thermal heating can cause the beam to change shape locally due to a shift in the
resonance position. However, when the beam is in thermal equilibrium, the beam should
travel unaffected. We can quantify how much the transverse beam shape has been modified
by using the residuals of a Gaussian beam superimposed. That is,

S = e−δ2 , (5.2)

where δ represents the residuals. Fitting the beam to find the residuals, we find that
MS2 showed S was no lower than 0.86, which is still reasonably above the diffraction-
limited case. The dip in the Strehl ratio is observed around normal incidence and near the
resonance peak position corresponding to the position of highest compression. Moreover,
the transverse beam shape is also shown for SPs CR2 and MS2 in Fig. 5.9(b) and (c),
respectively, showing the distortion of the beam shape. The distortions are likely due to
thermal fluctuations that locally change the resonance response.

5.3.4 Full Description of Transverse Walk-off

When investigating the transverse walk-off, one can look at a different representation to
further understand how the SPs work. The 3D representation could be used more directly
to understand the bandwidth and numerical aperture of a device with a given compression
factor, as discussed in the previous chapter. Figure 5.10 shows the transverse walk-off for
the CR2, showing the three resonances expected by a device with four unit cells.
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Figure 5.10: Transverse walk-off spectral and angular response for CR2. The
transverse walk-off is shown for device CR2, highlighting the three resonance peaks re-
sulting from four unit cells. The values ∆x and R shown here are not scaled by the
magnification and are, therefore, M = 1.48 larger than the value measured at the SP. The
3D representation highlights local changes in ∆x, possibly due to fabrication intolerances.
The spectral response corresponds to the measured linewidth in the compression factor in
Fig. 5.7(a).

There is no clear drifting in the response of the resonances for CR2, and the reso-
nance widths match what is shown for the transmittance and compression factor spectral
response. Figure 5.11 shows more interesting features in the 3D transverse walk-off rep-
resentation, where the walk is not linear around normal incidence for device MS2. In the
design, the phase response of the device was fit to a global phase evolution rather than the
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Figure 5.11: Transverse walk-off spectral and angular response for MS2. The
transverse walk-off is shown for device MS2, highlighting one narrow resonance peak. The
values ∆x and R shown here are not scaled by the magnification and are, therefore, M =
1.48 larger than the value measured at the SP. The 3D representation highlights local
changes in ∆x, possibly due to fabrication intolerances. However, the design of MS2
has local changes in the phase response as a function of angle, and these are reflected in
the transverse walk-off, as expected accordingly to ∆x ∝ dϕ

dθ
. The compression factor is

measured as a global value over the working range of angles of the device. For a given
angle, however, the value of R may be larger or smaller than the global R value. As the
value is a global measure, the spectral response corresponds approximately to the measured
linewidth in the compression factor in Fig. 5.7(b).

variations in phase [139].

With a very narrow resonance, thermal effects from heating by the laser could locally
change the R for a given angle and wavelength but still give a large global compression
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factor. This change in phase against a global phase fit for the compression factor could
lead to such variation in the transverse walk-off. In any case, the device MS2 shows a
large compression factor, which can drastically reduce the propagation distance needed in
a modern-day imaging system.

5.4 Summary

In this chapter, we tested the performance of four SP devices based on multilayer stacks to
understand the trade-offs between compression factor, bandwidth, and angular range. We
found that device CR2 had three maximum compression factorsRl = 96±2, Rc = 41.9±0.6,
and Rr = 49 ± 1.4, with corresponding bandwidths ∆λl = 143 ± 4 pm, ∆λc = 282 ± 6
pm, and ∆λr = 147 ± 5 pm over an angular range of θ = ±1◦. Furthermore, MS2 was
the highest performing device with a compression factor of Rc = 176± 14, a bandwidth of
∆λr = 55± 7 pm, and an angular range of θ = ±1◦. We found that MS1 has a moderate
compression factor of Rc = 30± 3 with a larger angular range and bandwidth of θ = ±10◦

and ∆λ = 2.8 ± 0.3 nm, respectively. CR1 was measured for its angular range, showing
θ = ±3.5◦ with low compression factors of roughly R = 3.5. We have shown experimentally
that multilayer stack-based SPs can drastically increase the compression factor, over 10
times larger than previously reported results. Angular range and bandwidth trade-offs were
discussed when designing and measuring high-performance SPs. We further showed that
an image could be focally shifted backward according to the compression factor. This work
shows that multilayer stack-based SPs will be an integral part of the movement toward
the miniaturization of modern-day imaging systems and the realization of flat optics. It
is clear that SPs are incredibly useful and can realize functionality that can advance the
forefronts of optical and photonic research.

133



Chapter 6

Conclusion and Outlook

6.1 Conclusion

In this thesis, we have investigated the effects of slow and fast light in a rotating ruby rod
and multilayer stack-based spaceplates. Starting from Maxwell’s equations, we derived the
nonlinear Schrödinger equation (NLSE) that describes light propagation through media,
including dispersion and nonlinear effects. We derived an NLSE for a more complex system
comprised of a rotating ruby rod to predict the transverse shifts and transverse trajectories
at the output of a crystal. The transverse shifts and transverse trajectories were measured
and compared with simulations, showing good agreement.

We then took a different approach for the latter chapters, which consisted of slow-
light angular devices called spaceplates based on multilayer stacks. Using the Transfer
Matrix Method (TMM), we found specific conditions from the amplitude and phase of
the light that match the characteristics of free space propagation and, therefore, could
spatially compress optical systems. We tested these design results from the TMM in the
experiment, and the four designs successfully showed spatial compression, provided with a
limited numerical aperture and bandwidth. These two media platforms, i.e. a rotating ruby
rod and multilayer stack spaceplates, use dispersive properties that significantly enhance or
benefit the light-matter interaction. The dispersive properties, when manipulated precisely,
can be incredibly beneficial to the field of optics.

In Chapter 2, ”Photon Drag Theory and Nonlinear Propagation,” we developed a the-
ory of the nonlinear propagation of light through a rotating ruby rod to model and extract
transverse shift and transverse trajectories at the crystal output face. We extended the cur-
rent linear photon drag theory to nonlinear, as the medium shows an intensity-dependent
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group index that seeds the photon drag effect. We then discussed the importance of refer-
ence frames and how medium rotation affects optical properties, especially in the case of
a birefringent medium. Then, we proceeded to discuss the effects of the nonlinear group
index on the propagation equations for o- and e-beams. We provided a theory describing
how rotation speed and intensity affect the nonlinear group index and how thermal and
optical effects can both contribute, further complicating the trajectories and propagation.
We discussed how we used SSFM in the simulations and presented results of the field evolu-
tion, the o- and e-beams trajectories, the centre of intensity trajectories, and the transverse
shift due to these nonlinear effects. Although the model developed in this chapter focuses
primarily on a rotating birefringent nonlinear medium in this thesis, the NLSEs can be
easily manipulated to represent other media. The model can also be used to predict which
conditions are most favourable for any optical applications, as the rotation speed, intensity,
and other physical parameters can be tuned to choose where the beam exits the crystal.
Therefore, the model in this chapter shows versatility in both application and fundamental
understanding of nonlinear propagation through complex moving media.

In Chapter 3, ”Photon Drag, Nonlinear Deflection, and Nonlinear Refraction,” we
experimentally investigated the system modelled in Chapter 2. By imaging the output facet
of a 2 cm long rotating ruby rod, we observed exotic figure-eight-like transverse trajectories
following the centre of intensity of two beams in linear (P0 = 0.2 mW), nonlinear (P0 = 100
mW), and highly nonlinear (P0 = 520 mW) regimes. We found that the trajectories became
distorted in the presence of an intense beam and transversely shifted from one another
based on the intensity and rotation speed. The amount of transverse shift increased with
an increase in intensity but reached a maximum transverse shift around a rotation speed
of Ω = 100 degs/s. The dynamics were attributed to the coexistence of thermal and
optical nonlinear responses affecting a nonlinear group index, which impinged a nonlinear
deflection on the beam. The output angle was measured by measuring the transverse shift
at two other positions after the crystal, and the output angle was found to be non-zero.
The non-zero angle was found as evidence to support the idea of nonlinear deflection from
the nonlinear component of the group index. The strength of the nonlinear refraction
was estimated and observed also by the formation of the Townes Profile. Experimentally
measured transverse shifts and trajectories were found to match well with simulations and
support the utility of this system to control the beam propagation for applications such as
beam steering.

In the latter two chapters, the focus changed from slow light-enhanced nonlinear optics
to designing, characterizing, and testing spaceplates, otherwise known as slow-light angu-
lar devices. In Chapter 4, ”Theory and Design of Multilayer Stack-Based Spaceplate,”
we developed a basic theory of spaceplates, distinguishing between the effects of a lens
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and a spaceplate. We discussed many types of schemes used to deploy spaceplate effects,
promoting the advantages of multilayer stack-based spaceplates, which are focused on in
this thesis. We then described how, using the TMM, we could quantify the properties of a
multilayer stack, such as the transmission phase and transmittance of a device. We then
used the predicted behaviour of the multilayer stacks, particularly the phase response, to
mimic the phase upon free space propagation and minimize the working distance needed
for images to focus, the main functionality of a spaceplate. We discussed the philosophies
of four different designs that show a range of properties from large compression factors and
low angular range to moderate compression factors and moderate angular ranges, as well as
associated bandwidths. We characterized these four devices and extended this characteri-
zation to other spectral regions besides their design wavelength region. We hypothesized a
theory to predict the resonance positions and bandwidth of devices. Finally, we discussed
the theory of how the device compression factor is related to NA and bandwidth, as well
as how the slow light aspect of the device is incorporated, looking at the transverse group
velocity and the overall group delay.

Finally, in Chapter 5, ”Experimental Observation of Spatial Compression using Mul-
tilayer Stack-Based Spaceplates,” we experimentally tested the four designed spaceplates
from Chapter 4 to understand their performance and ability. The transverse walk-off was
measured for each device and used to quantify the compression factor as a function of
wavelength. Moreover, the transverse walk-off was used to examine the numerical aperture
of the device and understand the working range of each device. The largest compression
factor was found to be R = 176, which shows a tenfold increase in performance compared
to previously measured values in the experiment. The large compression factor and com-
pactness of the design (d ≈ 10 ∼ 12 µm) show great promise for optical research, as these
designs are easily integrated into any system. We then tested the imaging capability of the
spaceplate by examining the focal retraction and found that, indeed, the focus is moved
back as a result of the spaceplate. Spaceplates of this calibre could be designed to be
freestanding and mounted similarly to pellicle beamsplitters and therefore do not occupy
a large amount of space in an optical setup. Moreover, the spaceplate devices consist of
materials that are used widely in fabrication and are not costly, showing their vast appli-
cability. Furthermore, the use of materials like thin films of silicon and silica makes the
devices relatively cost and design-effective since there is no need for expensive rare earth
elements or intricate structuring of nanoparticles on the surface of the device. Overall,
the compactness and utility of the materials show that spaceplates could be suitable for
a wide variety of applications, but most importantly in modern-day imaging. Therefore,
we will take time to discuss possible applications and follow-up experiments for multilayer
stack-based spaceplates, as well as the rotating ruby rod in the context of slow light.
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6.2 Outlook

The relevance of slow light in optics still shows promise today. As we have discussed,
many optical effects are enhanced with slow light and allow for enhanced light-matter
interaction. Although this is particularly useful to nonlinear optics, we have seen that it
can be used in linear optical systems to compress space, particularly by introducing a group
delay. Manipulating material dispersion and optical properties allows us to have a wide
variety of optical effects and applications that were not nearly as accessible without the
slow light enhancement. I would like now to highlight a few works that could be interesting
follow-ups.

Firstly, we have found that spaceplates have limited bandwidth and NA when the com-
pression factor is large. However, since the material properties can range drastically, the
parameter space leaves room for a large numerical aperture device or more broadband
devices that may suit other applications better. Moreover, since the spaceplates are built
around the idea of resonances, there could be some interesting possibilities for nonlinear
experiments. Assuming that the dispersion is relatively flat, with exceptions being the
resonant peaks in question, the harmonics of design wavelength for the spaceplates also
resonate with the structure and, therefore, would show some degree of spatial compression.
We have shown that adding unit cells allows for multiple sideband peaks, and these effects
have yet to be studied in other regions of the electromagnetic spectrum. Therefore, study-
ing our spaceplates capability with a different laser at the harmonics or using a sufficiently
intense laser to induce higher harmonics could be an interesting experiment.

Moreover, this could be useful in creating a broadband device with a higher numerical
aperture at a different design wavelength. Also, since the structures can have a polarization
sensitivity when going to larger angles, i.e. the Fresnel coefficients start to differ, they could
provide an avenue for polarization-dependent responses and optical effects. One possible
idea is to look at polarization rotation, leading to spin-orbit coupling. However, more work
should be done on the field within the material and how it relates to the near-field and
far-field response.

Another interesting work regarding the nonlinear response of the spaceplate is by sub-
stituting the low index layer with an ENZ medium, particularly a material such as ITO [36].
Although the absorption would have to be monitored such that light could propagate the
full length of the device, an ENZ medium could give a larger index contrast which would
enhance the spaceplate effect. Not only would the ENZ medium be advantageous in boost-
ing the index contrast, but one could exploit the ultrafast nonlinearity to have ultrafast
dynamic control of the focal region and, therefore, ultrafast imaging. Moreover, tilting the
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structure would lead to different transverse walk-offs and could be used to realize ultrafast
3D imaging.

As for the slow-light enhanced optical effects in the ruby rod, there are other key
factors that could merit further study within the system. It was shown that ruby could
have a large negative group index, but the effects of nonlinear deflection complicate this
measurement. It could be interesting to look at a similar experiment with a pulsed laser to
investigate the time dynamics more closely. This helps with studying the Townes profile
and the timescales it forms. The Townes profile formation for a continuous-wave laser is
also interesting, as often long propagation distances are needed to realize solitons. In the
case of our system, the soliton solution forms over the length scale of the ruby crystal, i.e.
2 cm. In either continuous-wave or pulse-laser experiments, the platform could be used
to understand the conditions needed for solitons and the conditions where they break or
filament.

Another idea based on the response of the ruby rod that could be implemented is an
enhancement of four-wave mixing signals. In the case of photonic chips, slow light is used
to enhance nonlinear interactions like four-wave mixing. However, this interaction could
be extended back to the ruby rod. Since the efficiency of four-wave mixing scales to the
fourth power of the slow light factor on-chip and the ruby rod has shown very large group
indices, this nonlinear interaction could be very efficient. Moreover, since the sign of the
group index is negative, the slow ”but fast” light effect could increase the efficiency of
backward four-wave mixing, rendering the need to phase match the interaction much less
important.

There are many more possibilities when considering slow light, even in these two ma-
terial platforms considered in this thesis. It is clear that although the media slows down
light, the field is not slowing down and, indeed, has much more to explore.
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