
Light-Matter Interaction in Plasmonic
Systems and Atomic Vapor

by

Saumya Choudhary

Submitted in Partial Fulfillment of the

Requirements for the Degree

Doctor of Philosophy

Supervised by Professor Robert W. Boyd

Institute of Optics
Arts, Sciences and Engineering

Edmund A. Hajim School of Engineering and Applied Sciences

University of Rochester

Rochester, New York

2023



ii

To my family and all of my teachers ...



iii

Contents

Biographical Sketch viii

Acknowledgments xiii

Abstract xvi

Contributors and Funding Sources xviii

List of Figures xxxviii

List of Acronyms xxxix

1 Background 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Key Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3.1 Surface Plasmon Polaritons (SPP) . . . . . . . . . . . . . 4

1.3.2 Localized Surface Plasmons (LSPs) . . . . . . . . . . . . 6

1.3.3 Epsilon-near-zero (ENZ) . . . . . . . . . . . . . . . . . . 7

1.3.4 Filamentation in Atomic Vapor . . . . . . . . . . . . . . . 9



CONTENTS iv

2 Strongly Coupled Plasmon Polaritons in Bifilms of Gold and Epsilon-

Near-Zero Materials 12

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Experiment and TMM simulations . . . . . . . . . . . . . . . . . 15

2.2.1 The visibility of the lower polariton branch . . . . . . . . 19

2.3 Analytical Model of the SPP-ENZ Hybridization . . . . . . . . . 22

2.4 The Characteristics of Hybrid Polaritons . . . . . . . . . . . . . . 31

2.4.1 The Mode Profiles . . . . . . . . . . . . . . . . . . . . . 32

2.4.2 The Damping and Propagation Lengths . . . . . . . . . . 35

2.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3 Cooperative Radiative Broadening in a Dipolar Metasurface: “Weak

Superradiance" 41

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2 Experiment and Numerical Analysis . . . . . . . . . . . . . . . . 44

3.3 Analytical Model . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . 54

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4 Dark and Bright modes and their Coherent Control in Dipolar Meta-

surface Bilayers 60

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.2 Analytical Model . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.2.1 Single nanoantenna array . . . . . . . . . . . . . . . . . . 62



CONTENTS v

4.2.2 The bilayered structure . . . . . . . . . . . . . . . . . . . 66

4.3 Coherent perfect absorption . . . . . . . . . . . . . . . . . . . . . 74

4.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5 Linear Optical Properties of Meta-crystals of Dipolar Nanoantennas 80

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.2 Semi-Infinite Meta-crystal . . . . . . . . . . . . . . . . . . . . . 85

5.2.1 Scenario One: No Near-Field Coupling Between the Dipole

Planes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.2.2 Scenario Two: Nearest-Neighbor Near-Field Coupling Be-

tween the Dipole Planes . . . . . . . . . . . . . . . . . . 93

5.3 N-Layered Meta-Film . . . . . . . . . . . . . . . . . . . . . . . . 104

5.3.1 Meta-film Scenario One: No Near-Field Coupling Between

the Dipole Planes . . . . . . . . . . . . . . . . . . . . . . 105

5.3.2 Meta-film Scenario Two: Nearest-Neighbor Near-Field

Coupling Between the Planes . . . . . . . . . . . . . . . . 112

5.4 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . 130

6 Controlling Nonlinear Rogue Wave Formation Using the Coherence

Length of Phase Noise 134

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

6.2 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

6.3 Numerical Modeling . . . . . . . . . . . . . . . . . . . . . . . . 143

6.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146



CONTENTS vi

6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

7 Summary and Outlook 154

Bibliography 157

A Supplementary Materials for Chapter 2 183

A.1 Permittivity of indium tin oxide used in the bifilm samples . . . . 183

A.2 The Analytical Dispersion Model for Polaritons . . . . . . . . . . 184

A.3 The calculation of mode profiles . . . . . . . . . . . . . . . . . . 185

A.3.1 Mode profiles of Bifilms with dITO ≥ 65 nm . . . . . . . . 186

A.4 The properties of the upper polariton in bifilms B and C . . . . . . 189

B Fabrication Details for the Bifilm and the Nanoantenna Arrays 192

B.1 The Gold-tin-doped indium oxide (ITO) Bifilms . . . . . . . . . . 192

B.2 The Nanoantenna Arrays . . . . . . . . . . . . . . . . . . . . . . 192

C Analytical Model of a Single Nanorod 194

D Electric field from a 2D Lattice of Identical Electric Dipoles 197

E Supplementary Materials for Chapter 5 205

E.1 Basic Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

E.1.1 Single Nanoantenna Array . . . . . . . . . . . . . . . . . 205

E.1.2 Semi-Infinite Meta-Crystal . . . . . . . . . . . . . . . . . 207

E.2 The Effective Refractive Index . . . . . . . . . . . . . . . . . . . 209



CONTENTS vii

E.3 The Radiative Field at plane J in the Meta-crystal . . . . . . . . . 211

E.4 Solving the Dispersion Equations . . . . . . . . . . . . . . . . . . 213

E.5 The Polariton Amplitudes and Reflectance from the Meta-crystal

in Scenario Two . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

E.6 The Radiative Field at Plane J in the Meta-film . . . . . . . . . . 218

E.7 The Characteristic Equation for Polaritons in the Meta-film . . . . 224

E.8 Transmitted Field through the Meta-film . . . . . . . . . . . . . . 227

E.8.1 Scenario One . . . . . . . . . . . . . . . . . . . . . . . . 227

E.8.2 Scenario Two . . . . . . . . . . . . . . . . . . . . . . . . 230

E.9 Reflected Field from the Meta-film . . . . . . . . . . . . . . . . . 232

E.9.1 Scenario One . . . . . . . . . . . . . . . . . . . . . . . . 232

E.9.2 Scenario Two . . . . . . . . . . . . . . . . . . . . . . . . 234

E.10 The Bragg Mode . . . . . . . . . . . . . . . . . . . . . . . . . . 236

F Supplementary Materials for Chapter 6 239

F.1 Susceptibility of rubidium vapor . . . . . . . . . . . . . . . . . . 239

F.2 Power spectral density of the phase noise . . . . . . . . . . . . . . 240



viii

Biographical Sketch

Saumya Choudhary was born in Bhagalpur, Bihar, India in 1991. She graduated

from the Indian Institute of Technology, Dhanbad (known previously as the Indian

School of Mines, Dhanbad) in 2013 with a Bachelor of Technology in Electronics

and Communication Engineering. She then moved to the University of Ottawa,

Canada to pursue a Master’s in Applied Science in Electrical Engineering, which

she obtained in 2016. While in Ottawa, she worked on metamaterials and the

theory of parametric downconversion in the research group of Prof. Robert Boyd.

She then joined the Institute of Optics, University of Rochester in Fall, 2015 to

pursue her doctoral study, and continued her research with Prof. Boyd in Fall, 2016.

She has since worked on several projects in nonlinear optics and nanophotonics

under the guidance of Prof. Boyd.

The following publications were a result of the research conducted during her

doctoral study:



BIOGRAPHICAL SKETCH ix

Journal Articles

1. S. Choudhary, R. W. Boyd, and J. E. Sipe, “Linear optical properties of

meta-crystals of dipolar nanoantennas". In preparation.

2. Y. Xu, S. Choudhary, and R. W. Boyd, “Measurement of the bi-photon

OAM spectrum with stimulated emission tomography". In preparation.

3. S. Choudhary, A.N. Black, A. Antikainen, and R.W. Boyd, “Controlling

nonlinear rogue wave formation using the coherence length of phase noise".

Under review at Physical Review Research.

4. S. Choudhary, R.W. Boyd, and J.E. Sipe, “Dark and bright modes, and

their coherent control in dipolar metasurface bilayers". Physical Review A,

107, 023521, 2023, Editor’s suggestion.

5. S. Choudhary, S. Iqbal, M. Karimi, O. Reshef, M. Z. Alam, and R.W. Boyd,

“Ultra-strongly coupled plasmon polaritons in gold and epsilon-near-zero bi-

films". ACS Photonics, 10(1), pp.162-169, 2023. Featured on the cover of the issue.

6. A.N. Black, S. Choudhary, E. S. Arroyo-Rivera, H. Woodworth and R.W.

Boyd, “Suppression of nonlinear optical rogue wave formation using polarization-

structured beams". Physical Review Letters, 129, 133902, 2022.

7. A. Tcypkin, M. Zhukova, M. Melnik, I. Vorontsova, M. Kulya, S. Putilin,

S. Kozlov, S. Choudhary, and R. W. Boyd, “Giant Third-Order Nonlinear

Response of Liquids at Terahertz Frequencies". Physical Review Applied,

15(5), p.054009, 2021.

8. C. Liu, M. Z. Alam, K. Pang, K. Manukyan, O. Reshef, Y. Zhou, S. Choud-

hary, J. Patrow, A. Pennathurs, H. Song, Z. Zhao, R. Zhang, F. Alishahi, A.



BIOGRAPHICAL SKETCH x

Fallahpour, Y. Cao, A. Alamaiman, J. M. Dawalty, M. Tur, R. W. Boyd, and

A. E. Willner, “Photon Acceleration Using a Time-Varying Epsilon-near-

Zero Metasurface". ACS Photonics, 8(3), pp.716-720, 2021.

9. S. Choudhary, I. De Leon, S. Swiecicki, K.M. Awan, S.A. Schulz, J. Upham,

M.Z. Alam, J.E. Sipe, and R.W. Boyd, “Weak superradiance in arrays of

plasmonic nanoantennas". Physical Review A, 100(4), 043814, 2019.

10. S.A. Kozlov, A.A. Drozdov, S. Choudhary, M.A. Kniazev, and R.W. Boyd,

“Suppression of self-focusing for few-cycle pulses". Journal of the Optical

Society of America B, 36(10), pp.G68-G77, 2019.

11. S. Choudhary, R. Sampson, Y. Miyamoto, O.S. Magaña-Loaiza, S.M.H.

Rafsanjani, M. Mirhosseini, and R. W. Boyd, “Measurement of the radial

mode spectrum of photons through a phase-retrieval method". Optics letters,

43(24), pp.6101-6104, 2018.

12. S.G. Lukishova, A.C. Liapis, H. Zhu, E. Hebert, K. Kuyk, S. Choudhary,

R. W. Boyd, Z. Wang, and L.J. Bissell, “Plasmonic nanoantennas with

liquid crystals for nanocrystal fluorescence enhancement and polarization

selectivity of classical and quantum light sources. Molecular Crystals and

Liquid Crystals, 657(1), pp.173-183, 2017.

Conference Proceedings

1. A. Antikainen, D. Bhatt, S. Choudhary, and R. W. Boyd, “Nonlinear Prop-

agation of Polarization Knots", presented at Frontiers in Optics and Laser

Science, 2023.



BIOGRAPHICAL SKETCH xi

2. Y. Xu, S. Choudhary, and R. W. Boyd, “Efficient Measurement of Bi-

photon OAM Spectrum with Stimulated Emission Tomography", presented at

Frontiers in Optics and Laser Science, 2023.

3. S. Vijayakumar, K. Vyas, O. Reshef, S. Choudhary, M. Song, D. H. G.

Espinosa, R. W. Boyd, J. Cardenas, and K. Dolgaleva, “Third-harmonic

generation with higher-order phase-matching in silicon nitride waveguides",

in Optica Advanced Photonics Congress, Technical Digest Series (Optica

Publishing Group, 2022), 2022.

4. A.N. Black, S. Choudhary, and R.W. Boyd, “Suppression of caustic forma-

tion in polarization structured beams", in Nonlinear Optics Topical meeting,

2021.

5. S. Choudhary, S. Iqbal, O. Reshef, M. Karimi, M. Z. Alam, and R.W. Boyd,

“Tightly-confined, long-range hybrid polaritonic modes for high-efficiency

nonlinear guided wave interactions in gold and ITO bi-films", in Nonlinear

Optics Topical meeting, 2021.

6. S. Choudhary, S. Iqbal, O. Reshef, M. Karimi, M. Z. Alam, and R.W. Boyd,

“Ultra-strongly-coupled long-range, low-loss polaritonic modes in gold and

indium tin oxide bi-films at NIR frequencies", in Conference on Lasers and

Electro-Optics, 2021.

7. S. Choudhary, S.D. Swiecicki, I. De Leon, S. A. Schulz, J. Upham, J. E.

Sipe, and R. W. Boyd, “Superradiance in arrays of plasmonic nanoantennas",

Frontiers in Optics , 2016.

8. S. Choudhary, S.D. Swiecicki, I. De Leon, S. A. Schulz, J. Upham, J.



BIOGRAPHICAL SKETCH xii

E. Sipe, and R. W. Boyd, “Superradiance in two-dimensional arrays of

nanoantennas", in Conference on Lasers and Electro-Optics, 2016.



xiii

Acknowledgments

My transition from a fresh college graduate to a researcher has been quite long,

and very challenging at times. So first and foremost, I express my deep gratitude

to my advisor Prof. Robert Boyd who has been a constant source of inspiration,

support and guidance through this journey. His scientific intuition is unparalleled,

and his ability to explain a complicated point very clearly and succinctly in simple

language has always inspired me. Bob’s immense enthusiasm for physics, his

strong intuition, his attention to detail and his strong sense of ethics have been

instrumental in providing me a template of what makes a great scientist. I will

always value the freedom he gave to everyone of his students to pursue their ideas

and broaden their research interests by engaging in a wide variety of projects.

Next, I thank Prof. John Sipe, who through his meticulousness, insight and

attention to detail, has been invaluable in helping me develop my strength as a

part-time theorist. I would also like to thank my committee members Prof. Jaime

Cardenas and Prof. Pengfei Huo, and my committee chair Prof. Todd Krauss for



ACKNOWLEDGMENTS xiv

their valuable suggestions and time.

I consider myself extremely fortunate to have been surrounded by and have

worked with my labmates and colleagues whom I regard as a highly talented

group of scientists. I sincerely thank them for the collaboration, the enlightening

discussions and the help that I have received from them. I would like to single out

Nick Black, whom I worked very closely with during the latter half of my PhD.

Nick is a fantastic experimentalist with a great intuition and a strong work ethic.

He is also extremely organized and detail-oriented. Needless to say, I learned an

awful lot by working and having many discussions with him, both scientific and

otherwise. I thank the current and former members of the Boyd group in Rochester

whom I have overlapped with for being excellent office and lab mates, as well as

collaborators: Yiyu Zhou, Jiapeng Zhou, Boshen Gao, Mohammad Mirhosseini,

Omar Magana-Loaiza, Seyed Mohammad Hashemi Rafsanjani, Saleem Iqbal,

Long Nguyen, Dhanush Bhatt, Yang Xu, Yi Wang, Aku Antikainen, Surendar

Vijaykumar and E. Samuel Arroyo-Rivera. I also thank Jerry Kuper for helping

troubleshoot all of the various problems that popped up in the lab over these years,

and for handling all of the financial aspects of research. I also thank both current

and former members of the Boyd group in Ottawa for the invaluable collaboration

and camaraderie over the years: Israel de Leon, Akbar Safari, Jeremy Upham,

Sebastian Schulz, M. Zahirul Alam, Mohammad Karimi, Kashif Masud Awan,

Orad Reshef, Boris Braverman and Giulia Marcucci.

I thank all the friends that I made in Rochester who made my long stay here way

more interesting and fun: Amira Ahsan, Wooyoun Kim, Romita Chaudhuri, Sultan



ACKNOWLEDGMENTS xv

Abdul Wadood, Usman Ali Javid, Zachary Manning, Gregory Jenkins, Marissa

Granados-Baez, and Jesus Sanchez Juarez. They are all remarkable people who I

am sure will go on to do great things in life. I also thank the people from Institute

of Optics whom I have had the chance to interact with in various capacities.

Finally, I am immensely grateful for my family: my dear mother Ranjana

Kumari, my father Shiv Kumar Choudhary, and my brother Rishav Choudhary. I

am what I am today because of their love, support, and sacrifices that they made

along the way to make sure that I got the best possible education. My parents

had difficult childhoods, and had to overcome insurmountable odds in their lives.

Their honesty, fortitude and work ethic will always be a source of inspiration to me.

And lastly, my brother’s constant unwavering support has helped me get through

some of the most emotionally challenging times during grad school. He is a smart

and talented scientist in his own right, and his accomplishments and work ethic

continue to inspire me everyday.



xvi

Abstract

The interaction of light with a polarizable material at resonance can form hy-

brid states of light and matter called polaritons through strong coupling. Near-

resonant interaction with light, or a vanishing material permittivity (epsilon-near-

zero (ENZ)) can enhance nonlinear optical effects, such as self-focusing. We report

on our studies of light-matter interaction in three different systems. Our first system

is a bi-layered structure of a thin gold film on a thin ITO film that supports hybrid

polariton modes. We experimentally characterize the dispersion of these modes,

and show that they have propagation lengths of 4-8 µm while retaining mode

confinement greater than that of the LR-SPP mode in gold films by nearly an order

of magnitude. The unusual optical properties of ITO at ENZ frequencies make

these bifilms useful for the active tuning of strong coupling, ultrafast switching,

and enhanced nonlinear interactions at NIR frequencies.

In our second study, we show through experiment and an analytical model that

in the limit where radiative broadening dominates, the extinction linewidth of a
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planar array of dipolar nanoantennas scales linearly with the number of density

of nanoantennas. We then extend our analytical model to a bilayer formed by

stacking two such arrays with a sub-wavelength separation between them. We

explain the formation of non-radiative “dark" and radiative “bright" modes through

radiative coupling, and show the selective excitation of these modes through two

counter-propagating normally incident fields. We further generalize our analytical

model to a meta-crystal formed by multiple layers of such arrays, and derive closed

form expressions for the linear optical properties of a semi-infinite meta-crystal

and a thin meta-film. We observe a maximum effective refractive index of 4, and

an octave-wide photonic stop band at near-infrared frequencies for realistic design

parameters, and a very good agreement between their optical properties calculated

through FDTD simulations and our model.

In our third study, we examine the interaction of a saturable self-focusing

nonlinearity with phase instabilities on a field through the formation of rogue

waves in a laser beam with added weak phase noise propagating through a hot

rubidium vapor cell. We experimentally show that while the likelihood of rogue

wave formation increases with laser power when the coherence length is only

slightly smaller that the beam diameter, the likelihood is minimally affected by

change in laser power when the coherence length is significantly smaller than the

beam diameter. This result has implications for mitigating turbulence-induced

breakup of intense laser beams, and developing optical radiance limiters.
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1

1. Background

1.1 Introduction

The interaction of light with matter is a fundamental process behind a wide variety

of phenomena studied across various disciplines such as optics, condensed matter

physics, atomic physics and astrophysics. Light – an electromagnetic wave –

interacts with a dielectric medium by inducing dipoles. The density of these

induced dipoles is referred to as “polarization", which for sufficiently weak fields

(or linear interactions) is proportional to the field [1]. A purely classical picture of

this interaction is the Lorentz model in which each of these dipoles is modeled as

a harmonic oscillator driven by the time-harmonic electric field. This picture of

light-matter interaction is valid when both the field strength and the interaction are

weak enough. Closer to material resonances, light-matter interaction can be strong

enough to form hybrid states of light and matter called “polaritons". The dispersion

curves of these polaritons shows the characteristic avoided-crossing associated

with strong coupling of the photon and the material resonance. Some material

excitations that form polaritons through strong coupling with light include phonons
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in polar dielectrics, excitons in semiconductors [2], and plasmons in metals and

doped semiconductors [3].

At large field intensities, the polarization depends nonlinearly on the electric

field, and this scenario can be modeled by including anharmonicity in the Lorentz

model [4]. For most materials, the nonlinear optical response is much weaker than

the linear optical response. The nonlinear polarization is then obtained through the

perturbation expansion of the anharmonic Lorentz model as a power series of the

electric field. Examples of nonlinear optical effects include frequency conversion,

harmonic generation, temporal soliton formation, self-focusing, beam breakup [4],

and supercontinuum generation [5]. Under certain conditions, the nonlinear optical

response can become large enough that it cannot be considered a perturbation to

the linear optical response. One example is if the frequency of the driving field is

very close to a material resonance, such as an optical transition in an atomic vapor.

In the two-level approximation of this transition, the nonlinearity in this situation

involves the excitation of an electron in the atom to a higher energy state by the

field, and can saturate when most of the atoms have been excited. Another example

of a system with a non-perturbative nonlinearity is when the material permittivity

vanishes, also known as epsilon-near-zero (ENZ) [6–8]. In this regime, the change

in refractive index due to nonlinearity can become as large as the linear refractive

index [6].
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1.2 Overview

This thesis discusses light-matter interaction in three different systems, and broadly

touches on some of the aspects of this interaction mentioned above. In chapters 2-

5, we study the linear optical properties of plasmonic materials. In chapter 2,

we describe a bifilm structure that supports hybrid polariton modes formed by

strong coupling between a surface plasmon polariton (SPP) and an ENZ mode.

We discuss our experimental and theoretical characterization of the linear optical

properties of these modes, and show that they inherit the desirable features of their

constituent modes that make them good candidates for exploring nanophotonic

applications based on large ultrafast optical nonlinearities. In chapters 3-5, we

study a metamaterial made of plasmonic dipolar nanoantennas arranged in a crystal

lattice – or a meta-crystal – of sub-wavelength lattice constants. We introduce in

chapter 3 an analytical model based on the point dipole approximation to describe

the experimentally observed number density dependent scaling of the radiative

linewidth from a single array of nanoantennas. In chapter 4, we extend this

analytical model to a bilayer of two of these arrays separated by a sub-wavelength

distance and describe the formation of a bright (dark) mode that has a much larger

(smaller) radiative damping than a single array. In chapter 5, we further extend this

analytical model to a meta-crystal consisting of an infinite stack of such arrays, and

a meta-film consisting of a finite number of these arrays, and derive closed-form

expressions of their optical properties. We find that for realistic design parameters,

it is possible to achieve an effective refractive index as large as 4 and an octave-
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wide photonic stop band at near-infrared (NIR) frequencies. Additionally, our

analytical model can be used to probe a wide range of geometric and material design

parameters for the rational design of metamaterials for a plethora of nanophotonic

applications. Finally, in chapter 6, we study the formation of nonlinear caustics

and rogue waves in a laser beam with added phase noise propagating through hot

rubidium vapor, which has a saturable self-focusing nonlinearity at frequencies

close to the D2 transition of rubidium. The results of this study are relevant for the

understanding the propagation dynamics of intense laser beams through turbulent

media, and to prevent optical damage from the effects of turbulence-induced beam

breakup.

Although the three systems discussed in this thesis appear disparate with regards

to their platforms and application, they are connected through the overarching

motivation of finding and understanding better ways to control light for applications

related to communication, signal processing and computation. The next section of

this chapter introduces some key concepts related to each of the three systems.

1.3 Key Concepts

1.3.1 Surface Plasmon Polaritons (SPP)

Metals and doped semiconductors possess free electrons that determine their

interaction with light in contrast to dielectrics,wherein the interaction is dictated

by bound charges. The material permittivity of these materials is given by the

Drude model, and can have a large negative real part and a small imaginary part
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at frequencies smaller than the plasma frequency. In this regime, it is possible for

the free electron gas (or plasma) to support surface and volume charge density

oscillations. For noble metals such as gold and silver, and doped semiconductors,

this regime occurs at optical and NIR frequencies. A plasmon is a quantum of

these charge density oscillations [3]. Plasmons confined at the interface of a

metal (or a doped semiconductor) and a dielectric (with a positive real part of the

permittivity) can couple strongly with light to form surface plasmon polaritons or

SPP that can propagate along the interface. The SPP modes have a large near-field

enhancement within the metal, and can localize the field below the diffraction limit

at the interface. The field profile of these modes is evanescent in both media with

the evanescent tail within the metal being significantly shorter than in the dielectric.

The shorter evanescent tail within the lossier metal causes these modes to have

long propagation lengths. For instance, the propagation length of SPP excited at

the gold-air interface at a wavelength of 633 nm is ≈ 10 µm, and the length of the

evanescent tails is 28 nm in gold and 328 nm in air [3]. Further, the dispersion curve

of a SPP lies to the right of the dielectric’s light line as its momentum is always

larger than a photon propagating in the dielectric. Consequently, SPP modes cannot

be excited by plane waves incident from the dielectric. The momentum matching

condition that should be satisfied to excite these modes can be done through the

use of evanescent waves [9] or grating couplers [10].

A metallic film with dielectrics at both interfaces supports SPP modes at each

interface, which couple when the film thickness is very sub-wavelength. In a

symmetric structure with the same dielectric on both sides of the film, there are two
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coupled modes with even and odd field distributions about the center of the film.

The even mode propagates at higher frequencies than the odd mode for the same

propagation constant, and has lower losses and longer propagation than the odd

mode. As such, the even mode is referred to as the “long range SPP" or LR-SPP,

and the odd mode the “short range SPP" or SR-SPP [11]. In asymmetric structures

with different dielectrics on both sides of the film, the LR-SPP (SR-SPP) mode

becomes more confined along the interface with the dielectric of smaller (larger)

refractive index. These modes can be excited through the evanescent tail of TM

or p-polarized light that undergoes total internal reflection at the interface of a

high-index prism and the metal-dielectric structure. In the Kretschmann-Raethar

configuration of excitation, the metal film is directly in contact with the coupling

prism, and SPP is launched at the interface opposite to the prism at the appropriate

angle of incidence [9]. A successful excitation of the SPP manifests as a dip in the

power of the reflected light as the incidence angle on the prism-metal interface is

varied [3].

1.3.2 Localized Surface Plasmons (LSPs)

Localized surface plasmon(s) (LSP(s)) occur in metallic nanoparticles of sizes

comparable to optical and NIR wavelengths. Here, the free electron cloud con-

fined to their volume undergoes oscillations when excited by light at resonant

frequencies. These localized plasmons can strongly absorb and scatter light at

the resonance, and significantly enhance the local field [12, 13]. The optical

properties of these resonances are strongly influenced by the material parameters
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of the nanoparticle and its surrounding medium, as well as its shape and size

[12]. The lowest order plasmon resonance is an electric dipole in which the entire

electron cloud of the nanoparticle oscillates coherently with the electric field of

the incident light. Higher-order multipolar resonances such as that of an electric

quadrupole or a magnetic dipole can also contribute to the scattering and absorption

properties to varying degrees depending on the geometric and material attributes

of the nanoparticle. These properties are well described by the Mie theory for

small spherical nanoparticles, which gives the exact expressions of scattering and

absorption cross sections from solving the Maxwell’s equations [14, 15]. For larger

spheres, electrodynamic corrections associated with enhanced radiative damping

and depolarization across the volume of the nanoparticle must be included. This

analysis has also been extended to spheroids [12]. However, for nanoparticles

of other shapes, one must rely on numerical techniques such as discrete dipole

approximation (DDA), the multiple multipole method [16], and FDTD simulations

to model the optical properties.

1.3.3 Epsilon-near-zero (ENZ)

Materials can show some very interesting properties when their permittivity (ε)

vanishes [17], which is also referred to as epsilon-near-zero. A vanishing permit-

tivity also implies vanishing of the refractive index (n =
√

µε; µ is the relative

permeability of the material), divergence of wavelength (= λ0/n; λ0 is the wave-

length in vacuum) and phase velocity (= c/n; c is the speed of light in vacuum),

and negligible phase variation on propagation through the medium. The last feature
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also means that space and time are decoupled within the medium, and that the field

oscillates only in time, and not in space. Further, the electromagnetic boundary

condition that requires the continuity of the longitudinal component of electric

displacement field across an interface leads to a large field enhancement and lo-

calization within the medium at ENZ. The ENZ behavior occurs naturally close

to absorption resonances where the zero-crossing of the real part of permittivity

would occur from Kramers-Kronig relations. Examples include metals and doped

semiconductors at frequencies close to their plasma frequency, and polar dielectrics

close to their longitudinal optical phonon resonance [18]. Transparent conduct-

ing oxide(s) (TCO(s)) such as tin-doped indium oxide (ITO), aluminum-doped

zinc oxide (AZO) and gallium-doped zinc oxide (GZO) are degenerately-doped

semiconductors whose permittivity, like metals, is also given by the Drude model.

The plasma frequency of TCO(s) lies at NIR frequencies, and can be tuned by

varying the free carrier concentration through doping during fabrication or through

electrical gating [19]. Metamaterials such as a metal-dielectric stack can also be

designed to have an ENZ behavior at a specific spectral range [20–22]. However,

this ENZ behavior is usually anisotropic.

Some exotic linear optical phenomena that can occur in the ENZ regime in-

clude tunneling of fields through subwavelength channels and arbitrary bends in a

waveguide [23], enhanced directionality of emission [24, 25] and absorption [26],

inhibition or enhancement of spontaneous emission depending on the medium

dimensionality [27], and improved spatial coherence of thermal emission [28].

The vanishing of permittivity also leads to an enhancement of nonlinear optical
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processes such as harmonic generation [29–31], frequency conversion [32, 33],

optical rectification [34], and intensity-dependent change in the refractive index

[35] that could even become comparable to the linear refractive index [6]. This

enhanced nonlinear response can be partly attributed to the slight increase in the

third-order susceptibility, and to the aforementioned giant field enhancement and

localization within the material that occurs in this regime [8, 30]. Additionally,

the vanishing of refractive index relaxes the phase-matching conditions that must

be satisfied for an efficient nonlinear optical response [36, 37]. Specifically in

TCO(s), the origin of large nonlinearity at ENZ has been explained to be due to

Fermi-smearing. In this process, the electron distribution in the conduction band

changes on excitation by an intense optical field at frequencies smaller than the

band-gap. The non-parabolicity of the conduction band in these materials thus

leads to an intensity-dependent change in the effective mass of the electrons, and

consequently a change in the plasma frequency and in turn, of the permittivity [6].

1.3.4 Filamentation in Atomic Vapor

Self-action effects occur when an intense beam of light propagating through a

medium modifies its own propagation through the nonlinear optical response of

the medium [4]. These effects occur when the second-order nonlinear index of

refraction n2 is positive. The total refractive index n, which is given by the relation

n = n0 +n2I, (1.1)
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with n0 being the linear refractive index and I being the transverse intensity of the

beam, is larger where the beam intensity is higher. Typical laser beams have a larger

intensity at the center than in the periphery, and they induce a positive lens through

this nonlinear response. The beam would come to a focus within the medium,

or “self-focus", if its power is higher than the critical power for self-focusing Pcr,

which is given by [38]

Pcr = α
λ 2

0
4πn0n2

. (1.2)

Here, the parameter α depends on the initial intensity distribution of the beam, and

approximately equals 1.896 for a Gaussian beam. In the simplest case, wherein

there is no absorption within the medium and only the third-order nonlinearity

is present, beam diffraction is the only competing effect against self-focusing.

When self-focusing is perfectly balanced by the spreading of the beam due to

diffraction, the beam gets trapped into a single “filament" that can propagate for

several Rayleigh ranges without diffracting. At very high powers, the self-focusing

nonlinearity can also amplify wavefront perturbations on a beam through four-wave

mixing that could lead to beam breakup, wherein the beam acquires a random

intensity distribution with several filaments. This process has also been referred to

as small-scale filamentation [39], or multiple filamentation [40] in literature.

Atomic vapors can have a very large nonlinear response close to a resonant

optical transition that saturates at large enough intensities [4, 41]. At frequencies

higher (lower) than the resonance frequency, n2 is positive (negative) and self-

focusing (self-defocusing) can occur [42]. The absorption can also be very large
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close to the resonance, and can also saturate at large enough intensities. Hence, in

intense beams propagating through atomic vapors, the absorption as well as the

saturation of the nonlinear response counteract the effect of self-focusing along

with the diffraction. The saturation of nonlinearity and absorption can be fully

accounted for when modeling the nonlinear propagation of beams through atomic

vapor as the exact expression for the total intensity-dependent susceptibility is

known [4]. In the absence of Doppler broadening of the resonance, the total

intensity dependent susceptibility is given by [4]

χ =
−α0(0)
ωba/c

∆T2− i
1+∆2T 2

2 + |E|2/|E0
s |2

. (1.3)

Here α0(0) is the linear absorption coefficient at the resonance, ωba is the resonance

frequency of the transition, ∆ is the frequency detuning of the beam from the

resonance, T2 is the dephasing time of the transition dipole, and E0
s is the strength

of the field that saturates the resonant transition.
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2. Strongly Coupled Plasmon Po-

laritons in Bifilms of Gold and

Epsilon-Near-Zero Materials

2.1 Introduction

Two harmonic oscillators become strongly coupled when they exchange energy

faster than the rate at which energy decays from the system. The coupled system

has eigenstates that are a hybrid of those of the two uncoupled oscillators, and

which show a characteristic avoided crossing of their dispersion lines around the

degeneracy point of the uncoupled oscillators [43, 44]. Strong coupling between

dipolar oscillators and a cavity has been achieved previously either by reducing

the cavity mode volume, or by enhancing the oscillator strength [44–52]. SPPs

supported by a metal-dielectric interface also have small mode volumes that make

them excellent candidates for strong coupling to other localized modes [44, 53, 54].

The LR-SPP modes supported by thin metallic films can propagate for hundreds of
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microns while having a large field confinement along the metal-dielectric interface

[3, 55, 56].

Thin films of TCO(s), such as ITO, also support polaritons. Close to their

plasma frequency, the LR-SPP mode of very thin TCO films is modified such

that it has a very large and localized longitudinal field component within the

film, and, unlike the highly dispersive LR-SPP mode in metallic films, has a flat

dispersion line rendering it non-propagative. This special mode is referred to as

the “ENZ" mode [57]. It is a collective excitation of free electrons in the TCO

film that is strongly absorptive. Despite the considerable recent interest in the

unusual linear and nonlinear optical phenomena in the ENZ regime [6, 8, 17, 22,

29, 30, 35–37, 58–61] , the large absorption losses associated with most ENZ

materials has limited the experimental studies so far to sub-wavelength-thick films.

Metamaterial resonators strongly coupled to the ENZ mode of TCO and other

doped semiconductor films can enhance the nonlinear response through local field

enhancement [62–65]. However, these coupled systems are still limited by their

subwavelength interaction lengths. Hence, it is interesting to explore structures

that support hybrid modes formed by strong coupling between the ENZ mode and

guided modes, such as polaritons. Previous demonstrations of strong coupling

between polaritons and the ENZ mode have been performed with phonon polaritons

[66], and with plasmon polaritons [67] at mid-infrared frequencies.

IHere, we propose a bifilm structure consisting of a gold film deposited on a

thin ITO film backed by a float glass substrate. This structure supports guided

modes at NIR frequencies. Since the plasma frequency of gold lies in the ultraviolet
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Figure 2.1: (a) Schematic of the experimental setup for measuring the reflectance
maps using ATR spectroscopy in the Kretschmann-Raether [3] configuration. A
3D schematic of the sample is shown in the inset. (b) Permittivity spectrum of a
representative ITO sample. The grayed region shows the absorption band of the
ENZ mode. (c) Simulated reflectance map of TM-polarized light (RTM) for a bifilm
(inset in (a)) with 23-nm-thick film of the same ITO plotted against normalized
wavevector (kN = kx/k0; k0 is the propagation constant within the prism) and
frequency axes. The dispersion lines of the SPP mode (red, solid), and the ENZ
mode (dashed, blue) are overlaid. (d) Linecut (blue) of the RTM map in (b), and the
RTM spectrum of a standalone gold film (red) at an angle of incidence θin close to
crossing of the SPP and the ENZ dispersion lines. The dashed black line
indicates the ENZ frequency/wavelength.

region, the dispersion lines of the LR-SPP mode in the gold film and the ENZ

mode in the ITO film cross around the ENZ region of ITO, which occurs at NIR

frequencies. When placed in spatial proximity as in the bifilm structure [the inset

in Fig. 2.1(a)], these constituent modes couple strongly in this ENZ region with a



CHAPTER 2. STRONGLY COUPLED PLASMON POLARITONS IN BIFILMS OF GOLD
AND EPSILON-NEAR-ZERO MATERIALS 15

strength dependent on their spatial overlap. The two hybrid modes thus formed

have dispersion lines that show avoided (or anti) crossing, where they have at least

an order of magnitude larger confinement in the ITO film than the LR-SPP mode in

the gold film. Also, unlike the ENZ mode, they can propagate for several microns

because of significantly lower losses. In section 2.2, we describe our experimental

and simulation methods, and the results. We then examine the dependence of

coupling strength of the constituent modes on the thickness of the ITO film in

section 2.3, and show that ultra-strong coupling, wherein their coupling strength

becomes comparable to the anti-crossing frequency [68, 69], can be achieved at

certain thicknesses of the ITO film. Finally, we discuss the salient features of these

hybrid polaritons such as propagation length, mode confinement, damping and

field profiles in section 2.4.

2.2 Experiment and TMM simulations

Figure 2.1(c) shows an example of strong coupling behavior observed in the

reflectance map RTM of TM (or p)-polarized light obtained from TMM simulations

of a representative bifilm made of a 50-nm-thick layer of gold and a 23-nm-thick

layer of ITO. The permittivity (εITO) spectrum of ITO is shown in Fig. A.1(b).

The permitivity of gold determined by Johnson and Christy [70] is used for all

the calculations performed here. The hybrid polaritons are excited along the

gold-ITO interface through use of a high-index N-SF11 prism in the Kretschmann-

Raethar configuration [3, 9]. The dispersion of the coupling prism is excluded
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in Fig. 2.1(c) by plotting the reflectance spectra in the normalized wavevector

(kx/k0) and frequency (ν) space. The dispersion lines of the LR-SPP mode (red,

dot-dashed), and the ENZ mode (blue, dashed) are obtained from the locus of

minima of the reflectance map of a standalone gold film, and a standalone ITO

film, respectively. The LR-SPP (just called SPP from now on for convenience)

mode has a strongly wavevector dependent dispersion, while the ENZ mode has a

flat dispersion pinned at the ENZ frequency. The two distinct branches of minima

in the reflectance map correspond to the two hybrid modes of the bifilm, and

they asymptotically approach the dispersion lines of the constituent SPP and ENZ

modes away from their avoided crossing point.

(a) (b)

(c) (d)

Figure 2.2: Reflectance maps of the standalone gold sample (top panels), and
the standalone 23 nm thick ITO sample (bottom panels) obtained from TMM
simulations (left), and measured experimentally (right).
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We experimentally characterize the dispersion of bifilms through attenuated

total reflection spectroscopy measurements. The fabrication procedure for these

bifilms is described in appendix B.1. Figure 2.1(a) shows the schematic of the

experimental setup used to measure the reflectance maps through attenuated total

reflection spectroscopy. Broadband light from the halogen lamp is collimated using

the objective O1. The exit pupil of the objective is imaged on the bifilm sample

(cross-section shown in the inset) using the lens L1. The aperture A adjusts the

spot size to avoid clipping the beam from the edges of the prisms. The thin film

polarizer P transmits the TM-polarized component. The bifilm sample is kept in

contact with an N-SF11 prism Pr1 with index-matching oil in between (Cargille

series M 1.780). Another N-SF11 prism Pr2 redirects the reflected light from the

diagonal face of the prism (and the sample) parallel to the incoming light. The

prism and sample assembly is mounted on a rotation mount to vary the incidence

angle on the sample. Another lens L2 images the sample onto the entrance pupil of

a microscope objective O2, which couples the reflected light to a multi-mode fiber

coupled spectrometer. We use an OSA (Agilent 86142A) to record the spectra from

600 nm to 1600 nm. We use an InGaAs spectrometer (customized SM304 from

Spectral Products) to record the spectra from 1600 nm to 2300 nm. We take into

account the shape of the blackbody spectrum of the lamp, the spectral response of

the prisms and the oil, and the optical elements used in the setup by normalizing the

TM-polarized reflectance spectrum from the sample at a particular incidence angle

to the TE-polarized reflectance spectrum at the same angle. Before the spectral

normalization, the detector noise in each spectrum is smoothed over first by using
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(a) (b) (c)

(d) (e) (f)

Experiment

TMM Simulations

Bifilm A; dITO = 23 nm, λENZ = 1.317 μm Bifilm B; dITO = 65 nm, λENZ = 1.363 μm Bifilm C; dITO = 100 nm, λENZ = 1.357 μm

Figure 2.3: Simulated (top), and measured (bottom) reflectance maps of the three
bifilm samples in the kx/k0-ν space. The TM-polarized reflectance spectra RTM
are normalized to the TE-polarized spectra RTE at each incident wavevector to
exclude measurement artifacts. The range of wavevectors is limited by the critical
angle for the prism-substrate interface, and the maximum rotation of the
prism-sample assembly possible without clipping the incoming field.

a Savtizky-Golay filter, and then by applying the wavelet transform.

The reflectance (RT M/RT E) maps of the standalone gold sample are shown in

the top panels in Fig. 2.2, while the reflectance maps of the standalone 23-nm-

thick ITO [permittivity spectrum shown in fig A.1(a)] sample are shown in the

bottom panels. The simulated (measured) results are shown on the left (right)

panel. As expected, the frequencies of the reflectance dips of the SPP mode in the

standalone gold sample are strongly wavevector dependent, while the frequencies

of the reflectance dips of the ENZ mode in the standalone ITO sample stay almost

constant for all wavevectors. Figures 2.3(d)-(f) show the measured, and Fig. 2.3(a)-
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(c) the simulated reflectance maps of three bifilm samples A, B and C, each

with a 50-nm-thick gold film and ITO films with thicknesses (dITO) of 23 nm,

65 nm and 100 nm, respectively. The three ITO films have similar properties with

their ENZ wavelengths at 1.317 µm, 1.363 µm and 1.357 µm, respectively. The

permittivity spectra of the ITO films are shown in appendix A.1. We observe

both the high frequency (upper), and the low frequency (lower) polariton branches

in the measured (Fig. 2.3(d)) and the simulated (Fig. 2.3(a)) reflectance maps of

the thinnest bifilm (A). The simulated maps of bifilms B and C show that the

spectral separation between the two polariton branches, henceforth referred to as

the “polariton band gap", increases with dITO.

2.2.1 The visibility of the lower polariton branch

We note that polaritons are said to be critically coupled when the coupling losses

are balanced by the absorption losses [3]. The critical coupling condition at each

frequency ν is given by the solutions to the characteristic equation in the complex

wavevector kx and real frequency ν space for which the Im[kx] is minimized. These

solutions depend on the geometrical parameters of the bifilm. The same set of

parameters do not satisfy the critical coupling criterion for both the upper and the

lower polariton simultaneously due to large polariton band gap. Consequently,

while the upper polariton is coupled efficiently and has a prominent resonance dip,

the lower polariton with its comparatively smaller resonance dip is not coupled

as efficiently. This inefficient coupling and large absorption losses of the lower

polariton contribute to its visibility being smaller than the upper polariton. For
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bifilm C, the lower polariton branch is not visible in Fig. 2.3(c). However, it

becomes more prominent if the absorption losses within ITO are reduced. We

discuss the effect of losses on the visibility of the lower polariton branch below.

The measured reflectance maps of bifilms B and C do not show the lower polariton

branch as we are limited by the spectral range of our spectrometers and white light

source. However, the measured, and the simulated maps for all three bifilms are in

reasonable agreement in the spectral range shown here.

(a) (b) (c)

Figure 2.4: Reflectance map RTM/RTE obtained from TMM simulations in the
un-normalized wavevector kx and frequency space of (a) a bifilm with 35-nm-thick
gold and 23-nm-thick ITO with the same permittivity as in bifilm A, and of (b) bifilm
A, and (c) bifilm C with reduced losses in the ITO film. The spectra of εITO used in
(b) and (c) are shown in Figs. A.1(a) and A.1(c), respectively but with Im[εITO]
reduced by a factor of 10.

Figure 2.4(a) shows the reflectance map of a bifilm with a 35-nm-thick gold

film and 23-nm-thick ITO film obtained from TMM simulations in the frequency

ν and un-normalized wavevector kx space. The wavevector kx is defined such that

Re[kx(ω)] = (ω/c)sin[π/4+ arcsin(sinθi/np(ω))], where np(ω) is the refractive

index of the prism, and θi is the rotation angle of the prism-sample system [shown

in Fig. 2.1(a)]. The permittivity of the ITO layer is taken to be the same as bifilm A.
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Comparing Fig. 2.4(a) with the reflectance map of bifilm A in the kx-ν space shown

later in Fig. 2.5, we note that the choice of a thinner gold film in the former case

leads to a better coupling efficiency to the lower polariton. However, the thinner

gold film also leads to larger radiative damping of the upper polariton, which is

evident in its broader spectral linewidth. Hence, the choice of a 50-nm-thick gold

layer for our bifilms leads to efficient (inefficient) coupling to the upper (lower)

polariton.

Large absorption losses within the ITO film also contribute to the smaller

amplitude of the resonance dip for the lower polariton compared to the upper

polariton. Figure 2.4(b) shows the reflectance map of bifilm A obtained from TMM

simulations in the kx-ν space, wherein the losses in the ITO film have been reduced

by substituting the ITO permittivity εITO to be (Re[εITO] + iIm[εITO]/10) in the

TMM calculation. The reduced losses in the ITO film lead to much sharper dips for

both polariton branches when compared with the reflectance map calculated with

the full permittivity of the ITO film εITO [shown in Fig. 2.3(c)]. Additionally, the

reduced losses in ITO result in a well-defined lower polariton branch that continues

to exist until it approaches the prism light line. Figure 2.4(c) shows the reflectance

map of bifilm C with similarly reduced losses in the ITO layer, and we see a well

defined lower polariton branch that is pushed to smaller frequencies than for the

thinner ITO in bifilm A. This lower polariton branch is not as clearly visible with

the full ITO permittivity εITO. Hence, the losses in the ITO layer are responsible for

increasing both the wavevector uncertainty, and the spectral linewidth of the lower

polariton branch close to the avoided crossing region where the ENZ mode fraction
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becomes increasingly significant. Both factors also contribute to the reduced

visibility of the lower polariton branch in comparison with the upper polariton

branch.

2.3 Analytical Model of the SPP-ENZ Hybridiza-

tion

For an insight into the formation of these hybrid polaritons, we analytically model

the bifilm as a system of two coupled harmonic oscillators that describe the con-

stituent SPP and ENZ modes. With ω̃SPP(kx) and ω̃ENZ(kx) being the dispersion

relations of the two oscillators in the complex angular frequency ω̃ and real trans-

verse wavevector kx space, we write the interaction Hamiltonian of the coupled

system in the rotating wave approximation as [2, 66]

Ĥ(kx) =

ω̃SPP(kx) gR

gR ω̃ENZ(kx)

 , (2.1)

where gR is the coupling strength, also known as the vacuum Rabi splitting. The

complex frequency ω̃l(kx) = ωl(kx)− iγl(kx), where l = {SPP,ENZ}, ωl is the

resonance frequency of mode l at wavevector kx and γl(kx) is the associated damp-

ing. The eigen-frequencies ω̃U,L(kx) of Ĥ(kx) (also known as the Hopfield or

Hopfield-Bogliubov matrix [2, 66]) form the dispersion relations of the hybrid
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modes, and are given by

ω̃U,L =
ω̃SPP + ω̃ENZ±

√
(ω̃SPP− ω̃ENZ)2 +4g2

R

2
, (2.2)

where the suffixes U and L denote the upper and lower polaritons, respectively.

The eigenvectors of Ĥ(kx) are also know as Hopfield coefficients, and their squared

modulus denotes the relative mode fractions of the constituent SPP and ENZ modes

in the hybrid polaritons at each kx.

We obtain the dispersion lines of the hybrid polaritons in the bifilm, and the

SPP mode in the complex frequency ω̃ (= ω0− iγ), real wavevector Re[kx] space

by fitting an asymmetric Lorentzian fRe[kx](ω) defined below, to the extinction

(1−RT M/RT E) spectra at each Re[kx] [71] using the nonlinear least-squares method

fRe[kx](ω) =
2A/πγ(ω)

1+[(ω−ω0)/γ(ω)]2
+B+Cω, (2.3)

where

γ(ω) =
2γ0

1+ ea(ω−ω0)
. (2.4)

Here A is a fitting parameter that determines the peak of the extinction spectrum,

and a is the asymmetry parameter. When a is zero, we recover the normal sym-

metric Lorentzian function with a full width at half maximum (FWHM) linewidth

of 2γ0. The fit parameters B and C account for the frequency dependent linear

distortion of the extinction spectra due to the dispersion of the prism.

From the dispersion lines of the SPP mode ω̃SPP(kx), and the upper and the
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lower hybrid polaritons ω̃U,L(kx) calculated from their respective reflectance maps,

we estimate the coupling strength gR of the bifilm system by fitting the eigenvalues

of the Hopfield-Bogliubov interaction Hamiltonian matrix [2], shown in Eq. (2.3),

to the upper and the lower polariton dispersion lines

ω̃U,L =
ω̃SPP + ω̃ENZ±

√
(ω̃SPP− ω̃ENZ)2 +4g2

R

2
. (2.5)

We assume that the ENZ mode has a flat dispersion line given by

ω̃ENZ(kx) = ω0,ENZ− iγITO/2, (2.6)

where γITO is the damping in the Drude permittivity model of ITO, and the reso-

nance frequency ω0,ENZ is close to the ENZ frequency of ITO given by

ωENZ,ITO =

√
ω2

P
ε∞

− γ2
ITO, (2.7)

where γITO is the damping in the Drude model of the permittivity of ITO, which is

written as

εITO(ω) = ε∞−
ω2

p

ω(ω + iγITO)
. (2.8)

Here, ε∞ is the asymptotic value of permittivity for frequencies much larger than

the ENZ frequency, ωp is the plasma frequency, and we have neglected non-

local contributions to εITO(ω) [72]. For the ITO in bifilm A, ε∞ = 3.901, ωp =

2.8533× 1015 rads−1, and γITO = 2.116× 1014 rads−1. For the ITO in bifilm B,
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ε∞ = 3.6914, ωp = 2.6667× 1015 rads−1, and γITO = 1.193× 1014 rads−1. And

for the ITO in bifilm C, ε∞ = 3.7359, ωp = 2.6948× 1015 rads−1, and γITO =

1.289×1014 rads−1.

We calculate gR by performing a nonlinear least-squares fit of the hybrid

polariton dispersion lines to their Hopfield model expressions in Eq. (2.5). We

take ω0,ENZ to be an adjustable parameter in our fit, and not equal to ωENZ,ITO as

this assumption only holds true for an infinitesimally small thickness of the ITO

film [57]. As the ITO thickness increases, the symmetric polariton mode within

the ITO film transitions from an ENZ mode, which is asymptotically pinned to

ωENZ,ITO, to a long-range surface plasmon polariton mode, whose dispersion line

asymptotically approaches lower frequencies than ωENZ,ITO for large wavevectors.

We begin with ω0,ENZ = ωENZ,ITO, and use the nonlinear least squares method

to individually fit the dispersion lines of the upper and the lower polaritons to

their analytical dispersion relations given in Eq. (2.2). If the difference between

the two values of gR that we obtain from the upper and the lower polariton fits

is larger than 10%, we repeat the curve fit albeit with a slightly reduced value

of ω0,ENZ until the difference in gR obtained from both the upper and the lower

polariton fits is minimized. The average of the two gR values obtained after this

optimization procedure is the final calculated value of the coupling strength of the

hybrid polaritons, and the values themselves form the confidence interval of the fit.

Figure 2.5(b) shows the simulated dispersion lines of the hybrid polaritons

of bifilm A (blue, solid) and their Hopfield model fits (red, dashed), and the

dispersion lines of SPP (green, dot-dashed) and ENZ modes (purple, dot-dashed).
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Figure 2.5: (a) Simulated reflectance map of bifilm A in kx-ν space. (b) Dispersion
lines of the SPP mode (green, dot-dashed), the ENZ mode (purple, dot-dashed),
the hybrid polaritons in bifilm A (blue, solid) and their Hopfield model fits (red,
dashed). (c) The SPP (solid) and ENZ (dot-dashed) mode fractions for the upper
(red and maroon) and lower (cyan and blue) polaritons. The upper (lower)
polariton is formed by a symmetric (antisymmetric) superposition of the constituent
modes. (d) gR for bifilms with various values of dITO estimated from the simulated
(green circles) and measured (purple squares) reflectance maps of bifilms A, B
and C; and the simulated reflectance maps of bifilms with εITO assumed to be the
same as in bifilm A (blue circles). The errorbars for estimated gR from simulations
for dITO < 80 nm, and from measurements for bifilm A are given by the difference
in gR from fitting the upper and the lower polariton dispersion lines. The 95%
confidence intervals for gR estimated from fitting only the upper polariton
dispersion line form the errorbars for estimated gR from simulations for dITO ≥ 80
nm, and from measurements for bifilms B and C. The red line is the parabolic fit to
gR outside the gray region in which the Hopfield model yields large fitting errors.
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The Hopfield fits plotted for all kx agree reasonably well with the simulated bifilm

dispersion, and they clearly show the avoided crossing. The estimated value of gR

for bifilm A from the fits is 115.5±4.3×1012 rads−1, and being significantly larger

than the average decay rate of the constituent modes γavg [= (γSPP + γENZ)/2 ≈

54× 1012 rads−1], clearly satisfies the strong coupling criterion. The polariton

band gap ΩR (= 2gR) is approximately 0.176ω0,ENZ, which is close to the ultra-

strong coupling threshold where ΩR ≥ 0.2ω0,ENZ [68, 69]. Above this threshold,

depolarization effects within the ITO film and the related counter-rotating terms

– which are not included in our calculation of gR – become significant [73]. We

elaborate this point later in this section.

From the Hopfield fit to the upper polariton mode, we note that its avoided

crossing is pushed to the left of the substrate light line due to the dispersion of the

coupling prism, and is therefore not accessible. Hence, only its mostly SPP-like tail

lies between the two light lines. The predominantly SPP-like nature of the upper

polariton is also evident in its mode composition which, as shown in Fig. 2.5(c), has

an SPP fraction larger than 0.9 throughout. We also note from Fig. 2.5(c) that the

ENZ mode contribution for both hybrid polaritons increases closer to the avoided

crossing. Comparing the simulated dispersion line of the lower polariton and its

Hopfield fit in Fig. 2.5(b), we note that its dispersion line is not well-defined for

wavevectors beyond the avoided crossing as a consequence of its largely ENZ-like

nature at those wavevectors. Here, both the spectral linewidth and the wavevector

uncertainty of the reflectance dip broaden as the absorption losses increase and the

dispersion flattens [44, 45].
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Since the spatial overlap between SPP and ENZ modes in the bifilm determines

gR (and ΩR), it can be varied using the material and geometrical parameters of

the ITO film. The SPP mode is confined to the gold-ITO interface with a long

evanescent tail extending into the substrate, while the ENZ mode is mostly constant

and localized to the ITO film. Hence, as we observe in Fig. 2.3, ΩR initially

increases with dITO. Figure 2.5(d) shows the estimated gR for various values of

dITO. For dITO smaller than 7 nm, gR increases almost linearly but remains below

the strong coupling threshold. Above this threshold, gR is proportional to
√

dITO

as shown by the fitted curve (red, solid), and exceeds the ultra-strong coupling

threshold for dITO larger than 30 nm. The major factor determining this scaling is

that the ENZ mode becomes more LR-SPP-like as dITO increases, and the Ez field

within the ITO film is no longer constant [57]. Furthermore, the ENZ mode is a

collective excitation of the free electrons within the ITO film with an oscillator

strength fENZ that scales with dITO. Since gR is proportional to
√

fENZ [44, 66], gR

should scale with
√

dITO. For dITO larger than 45 nm, gR saturates and deviates

from the
√

dITO dependence as the ENZ mode transforms into an LR-SPP mode

at these thicknesses, and its dispersion can no longer be approximated by a flat

line given by Eq. (2.6). We have identified this range of dITO by a shaded gray

region in Figure 2.5(d), and the values of gR extracted from the analytical model

in this region are not accurate, which is also reflected in the large fitting errors

(blue shaded area) in this region. For dITO larger than 65 nm, the fields at the

two interfaces of the ITO film also start to decouple, and the hybrid polaritons

morph into polaritonic modes confined at these interfaces [66]. Thus, dITO ≤ 45
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nm provides an upper limit to gR that can be achieved with modes that inherit the

desirable features of both the ENZ mode and the SPP mode.

For dITO larger than 80 nm, as a consequence of the large losses within the

ITO layer, and inefficient excitation in our Kretschmann configuration, the spectral

dips corresponding to the lower polariton branch become faint enough that it is

not possible to perform the asymmetric Lorentzian fits to extract the dispersion

line ω̃L(kx). Hence, we only plot the gR corresponding to the upper polariton fit in

Fig. 2.5(d) with ω0,ENZ taken to be the same as that obtained through optimization

of the bifilm with dITO of 70 nm. The blue shaded region shows the 95% confidence

interval of the fit parameter gR. We also use just the upper polariton branch to

estimate gR for the measured reflectance spectra of bifilms B and C, as the lower

polariton data is not available for these samples due to the limited spectral range of

our source and spectrometers.

In ultra-strong coupling regime (d > 30 nm), the simple analytical (Hopfield)

model for the hybrid polaritons based on two coupled harmonic oscillators is not

accurate due to several underlying assumptions made by the model. For instance,

the self-interaction term of the SPP and the ENZ modes, which is proportional to the

square of their respective polarizations, is neglected in the interaction Hamiltonian

[73]. In the complete interaction Hamiltonian written in the dipole gauge, this self-

interaction term is responsible for the renormalization of the respective uncoupled

mode frequencies. In the quantum-mechanical picture, this term corresponds to the

A2 term of the interaction Hamiltonian, which also includes the counter-rotating

terms that are neglected when making the rotating-wave approximation (RWA).
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This self-interaction term leads to deviations from the curves obtained from the

Hopfield model.
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Figure 2.6: Dispersion lines of the hybrid polaritons for a bifilm with a 50 nm thick
gold on a 40 nm thick ITO film (blue, solid), its Hopfield model fit (red, dashed), the
SPP mode in the standalone 50 nm thick gold film (green, dot-dashed), and the
ENZ mode in the 40 nm thick ITO film with permittivity shown in Fig. A.1(a). The
black dashed and dotted lines are the prism and the substrate light lines,
respectively.

For intersubband polaritons formed by ultra-strong coupling between a mi-

crocavity mode and the bound states in multiple quantum wells (which form a

collective Berreman mode for a large enough number of quantum wells), it has

been previously demonstrated that the low-energy polariton branch asymptotically

approaches a smaller energy than the high-energy polariton close to the avoided-

crossing [50]. As a consequence, the high reflectivity between the two energy

asymptotes opens up a so-called “polaritonic gap" in the dispersion line of the

intersubband polaritons. We observe a similar effect in the dispersion lines of

our bifilms that support ultra-strongly coupled SPP and ENZ modes, that is for

bifilms with dITO > 30 nm. As shown in Fig. 2.6, the frequency asymptote of the
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lower polariton (blue, solid) is smaller than the frequency at that specific trans-

verse wavevector in the fitted dispersion line (red, dashed). The reflectance in this

range of frequencies between the two frequency asymptotes, or in other words the

polaritonic gap, is high. This polaritonic gap also implies a progressively worse

agreement between the analytical dispersion model, and the actual dispersion of

the hybrid polaritons for larger dITO. Hence, there is a larger difference in the

values of gR estimated from the upper, and from the lower polariton fit [shown by

the blue shaded region in Fig. 2.5 (d)] in the ultra-strong coupling region.

2.4 The Characteristics of Hybrid Polaritons

The relevance of these hybrid polaritons for photonic applications can be examined

through parameters such as their mode confinement, field enhancement, propaga-

tion lengths, and decay rates. Following the method described in appendix B of

Ref. [74], we first develop an analytical dispersion model for the polaritons, and

then use its solutions to calculate their field profiles, mode confinement and field

enhancement. In short, we first assume an evanescent wave solution perpendicular

to the interfaces of the bifilm. The electromagnetic continuity relations at the prism-

gold, gold-ITO, and the ITO-substrate interfaces then yield a set of homogeneous

equations for the field coefficients. The complex frequency ω̃ that minimizes the

determinant of the ill-conditioned coefficient matrix of these equations at each

real-valued transverse wavevector kx gives the analytical dispersion relation of the

hybrid polaritons in the presence of only non-radiative losses [3]. We then calculate



CHAPTER 2. STRONGLY COUPLED PLASMON POLARITONS IN BIFILMS OF GOLD
AND EPSILON-NEAR-ZERO MATERIALS 32

the field distributions at points along the dispersion curve from the eigen-vectors

of the coefficient matrix, which are obtained after singular value decomposition

[75]. See appendix A.2 for details on the analytical dispersion model and the

calculation of mode profiles. We restrict our discussion from now on to bifilm A.

Appendices A.3 and A.4 have the details on the polaritons in bifilms B and C.

2.4.1 The Mode Profiles
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Figure 2.7: Electric field profiles of the longitudinal “z" (red) and the transverse “x"
(blue) components of the (a) standalone LR-SPP mode in a 50 nm gold film, and
the (b) standalone ENZ mode in a 23 nm ITO film at their point of degeneracy
(where their respective dispersion lines cross). The electric field profiles of the (c)
lower and the (d) upper polaritons for bifilm A (50 nm thick gold on 23 nm thick
ITO) close to the avoided crossing region.

Figures 2.7 (a) and 2.7 (b) show the electric field profiles of the LR-SPP
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mode in 50-nm-thick gold on float glass, and the ENZ mode in 23-nm thick-ITO

[with the permittivity shown in Fig. A.1(a)] on glass, respectively at their point

of degeneracy, or where their respective dispersion lines cross. As mentioned

previously, the SPP mode is mostly confined at the gold-substrate interface, with a

very small longitudinal field amplitude Ez in the gold layer. The ENZ mode, on the

other hand, is tightly confined within the ITO film, where Ez is enhanced almost by

a factor of three than at the ITO-substrate interface, and is largely constant within

the film. Figures 2.7(c) and (d) show the electric field profiles of the lower and

the upper polariton of bifilm A, respectively, close to the avoided crossing region,

where both modes are maximally hybridized between the SPP mode and the ENZ

mode. Accordingly, we see the characteristic features of both constituent modes in

the field profiles of the hybrid modes. Hence, both modes have a large and almost

constant Ez in the ITO film. On the other hand, Ex is enhanced along the gold-ITO

interface for the upper polariton, and along the ITO-glass interface for the lower

polariton. This difference emerges due to the fact that the upper (lower) polariton

is formed by a symmetric (anti-symmetric) superposition of the SPP and the ENZ

modes.

Figures 2.8(a) and (b) show the transverse |Ex|, and the longitudinal |Ez| electric

field profiles, respectively of the polaritons in bifilm A plotted at various kx along

their dispersion lines. From the continuity of the longitudinal component of the elec-

tric flux density Dz at the gold-ITO interface, we have Ez,ITO = (εAu/εITO)Ez,Au,

where Ez,ITO (Ez,Au) is the longitudinal electric field inside ITO (gold) at the in-

terface, and εITO (εAu) is its permittivity. As εITO vanishes close to the avoided
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Figure 2.8: Profiles of (a) |Ex| and (b) |Ez| for bifilm A plotted along the dispersion
lines of the hybrid polaritons. The polariton band gap is shown in gray, and the
interfaces by the white dashed lines. (c) Mode confinement of the same hybrid
polaritons (blue, solid) and the SPP mode (blue, dashed), and their longitudinal
field enhancement in ITO with respect to the field in gold at the gold-ITO interface
(red).

crossing, Ez is significantly enhanced within the ITO film and relayed from the

gold-ITO interface to the substrate while maintaining its large amplitude [57, 76,

77]. Away from the avoided crossing, both polaritons become more SPP-like with

a smaller Ez in ITO, and Ex confined along the ITO-substrate (gold-ITO) interface

for the lower (upper) polariton. The hybrid nature of the modes is evident in the

large amplitude of |Ez| within ITO, and an enhanced |Ex| at the edges of the ITO

film.

Figure 2.8(c) shows the enhancement in Ez for the hybrid polaritons in bifilm

A, and is defined as |Ez| at the center of the ITO film normalized to the |Ez| in gold

near the gold-ITO interface (red, solid). We note that the lower (upper) polariton

can have a field enhancement as large as 75× (32×) close to the avoided crossing.

We now define the mode confinement Φ as follows [78]

Φ =

∫
d |Ez(z)Hy(z)|dz∫
∞

−∞
|Ez(z)Hy(z)|dz

, (2.9)
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where [74] Hy(z) = (ωε(z))/(µ0ckx)Ez(z) is the magnetic field, and d denotes

the integration range of z. For the bifilm, we calculate Φ only within the ITO

layer, whereas we calculate Φ within the gold layer for the standalone SPP mode,

and within the ITO layer for the standalone ENZ mode. Figure 2.8(c) shows the

variation of Φ for the polaritons in bifilm A (blue, solid), and the SPP mode in

the standalone gold film (blue, dashed). We observe that although Φ for both

hybrid polaritons is lower than the bare ENZ mode (≈ 0.3, not shown here), they

substantially outperform the bare SPP mode throughout the spectral region of

interest with values of Φ approaching 0.14 (0.075) close to avoided crossing for

the lower (upper) polariton. This relaxation in mode confinement makes the hybrid

polaritons less lossy compared to the ENZ mode, which is reflected in their reduced

damping and enhanced propagation lengths.

2.4.2 The Damping and Propagation Lengths

To estimate the damping γ of the polaritons from the simulated and the measured

reflectance maps, we fit the asymmetric Lorentzians defined in Eq. (2.3) to the

spectral dips at each Re[kx] in the reflectance maps. Figures 2.9(a) and (b) show

representative fits to the extinction spectrum at the value of Re[kx] stated in the

inset for the lower and the upper polariton of bifilm A, respectively, along with

the estimated values of the damping γ normalized to γITO stated in the inset. To

estimate the propagation lengths of the hybrid polaritons, and the SPP mode from

their reflectance maps, we again perform a nonlinear least-squares fit of asymmetric

Lorentzians of the following form to the extinction (1−RTM/RT E) wavevector
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Figure 2.9: Asymmetric lorentzian fits (red, dashed) to the extinction
((1−RTM/RTE)) frequency spectrum (blue, solid) for the (a) lower and the (b)
upper polariton at a certain Re[kx], and to the extinction wavevector spectrum
(blue, solid) at a certain frequency ν for the (c) lower and the (d) upper polariton.
The 95 % confidence intervals of the estimated normalized damping γ/γITO and
the propagation lengths Lprop are stated in the inset of the top and the bottom
panels, respectively along with the corresponding values of Re[kx] (top) and
ν(bottom) at which the spectra have been obtained.

scan at each frequency

fω(kx) =
2C1/πσ(kx)

1+[(kx− kx0)/σ(kx)]2
+C2 +C3kx, (2.10)

where

σ(kx) =
2σ0

1+ ea(kx−kx0)
. (2.11)
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The fitting function is similar to the one assumed for extracting the decay rates γ0

from the reflectance maps. The fit parameter kx0 calculated from the wavevector

scans at various ω produces the dispersion line, albeit with back-bending present

where relevant [44, 79]. On the other hand, the propagation length Lprop of the

polariton is given by

Lprop =
1

2σ0
. (2.12)

Figures 2.9(c) and (d) show a representative example of the fits (red, dashed) to

the simulated extinction scans (blue, solid) at two frequencies in the lower, and

in the upper polariton branches of bifilm A, respectively. There is a reasonable

agreement between the fitted curve, and the actual scan. To calculate Lprop of the

hybrid polaritons from the analytical dispersion model, we solve the characteristic

equation |det(L)|= 0 in real frequency ω and complex wavevector kx space. Thus,

σ0 at each frequency is directly obtained from the imaginary part of the kx solution.

Similarly, to estimate the damping γ of the hybrid polaritons from the analytical

dispersion model, we solve the characteristic equation in real wavevector Re[kx]

and complex frequency ω̃ space. To calculate Lprop of the ENZ mode, we first

extract the linewidth γ of the spectral dip from the reflectance maps shown in

Figs. 2.2 (c) and (d). We then use the following relation from the supplement in

Ref. [78] to calculate the propagation length

Lprop =
dITO

4
ω4 + γ2ω2

ω2
pγω

. (2.13)

Figure 2.10(a) shows the damping γ (= |Im[ω̃]|), and Figure 2.10(b) the propa-
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(a) (b)

Figure 2.10: (a) Damping γ normalized to the decay constant in the Drude model
of ITO γITO, and the (b) propagation lengths of the of the upper (red), the lower
(blue) polaritons of bifilm A, the SPP mode in an isolated 50-nm-thick gold film
(green), and the ENZ mode in an isolated 23-nm-thick ITO film (purple). In (a) and
(b), the dot-dashed lines are the solutions of the analytical dispersion relation, and
the solid (experiment) and the dashed (TMM simulations) lines are the linewidths
of the dips in the respective reflectance maps smoothed over their fitting errors
(shaded areas around the lines).

gation lengths (= 1/(2Im[kx])) of the upper (red) and the lower (blue) polaritons

of bifilm A, the SPP mode in the standalone gold film (green), and the ENZ mode

in the standalone ITO film (purple). The estimated damping and propagation

lengths in both the simulated (dashed) and the experimental (solid) datasets have a

reasonable agreement in the presence of fitting errors, and differences between the

simulated and experimental optical constants. The analytical results (dot-dashed)

exclude radiative losses into the coupling prism [3]. The hybrid polaritons have a

significantly lower damping throughout compared to the ENZ mode, which has a

constant damping of 0.5γITO [not shown in Figure 2.10(a)] [57]. Additionally, the

lower (upper) polariton has a propagation length between 2–15 µm (4–8 µm) for

bifilm A, which is significantly larger than the propagation length of the ENZ mode

(≈ 0.08 µm for the 23-nm-thick ITO film). The damping (propagation length) of
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the lower polariton is maximized (minimized) close to the avoided crossing, and

approaches the values for the SPP mode away from it.

2.5 Conclusions

To summarize, we have proposed a bifilm structure consisting of a 50-nm-thick

gold film deposited on a thin ITO film backed by a float glass substrate that supports

hybrid polaritons formed by strong coupling between the SPP mode in the gold

film and the ENZ mode in the ITO film at NIR frequencies. These polaritons have a

much tighter mode confinement than the bare SPP mode, along with a propagation

length of several microns in contrast to the non-propagating ENZ mode. The large

mode confinement of these polaritons is accompanied by a significant enhancement

in the longitudinal component of the electric field within the ITO film. The coupling

between the constituent modes can be tuned through the thickness of the ITO layer,

and can even approach the ultra-strong coupling regime at certain thicknesses.

A propagation length of several microns implies an interaction length of several

wavelengths at these NIR frequencies. This large interaction length along with the

tight mode confinement, and the large sub-ps nonlinear response of ITO in its ENZ

region [6], make our device an ideal platform for electro-optical control of strong

coupling [80], ultrafast switching [81], and studying giant ultrafast nonlinearities

that do not rely on lossy optical resonances or require sophisticated fabrication

techniques. The use of a prism for coupling to the polaritons can also be done away

with through the use of appropriate grating couplers [10]. The ultrafast response
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of ITO should also allow for the observation of effects due to time refraction

and adiabatic frequency conversion [33, 82, 83], and exotic effects related to

ultra-strong coupling phenomena, such as the dynamic Casimir effect [84].
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3. Cooperative Radiative Broad-

ening in a Dipolar Metasurface:

“Weak Superradiance"

3.1 Introduction

Localized surface plasmon(s) (LSP(s)) supported by noble metal nanoparticles can

lead to strong resonant scattering and absorption of light [3, 13]. A collection of

these nanoparticles can be used to tailor the scattering and absorption of light at

the nanoscale, which has been the subject of extensive research during the past

decades for applications related to cloaking [85, 86], wavefront engineering [87–

89], harmonic generation [90], all-optical switching [91, 92], and for the artificial

engineering of optical properties such as permittivity and permeability [93–99].

As stated previously in chapter 1, the LSP(s) can behave like electric or magnetic

dipoles, and can be modeled as classical harmonic oscillators [100]. Dimers of

plasmonic nanoparticles can support coupled modes that have a broader spectral
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linewidth than the linewidth of each nanoparticle in the dimer [101–106]. Linewidth

broadening has also been observed in periodic arrays of subwavelength-size split-

ring resonators [107–111] and rod nanoantennas [112], as well as three-dimensional

arrangements of nanoparticles [113–116]. There are similarities in this regard with

the well-known phenomenon of “superradiance", wherein cooperative behavior

in a collection of N emitters can lead to broadening of the spectral linewidth by a

factor of N [117, 118]. In the electric-dipole approximation, this behavior indicates

the presence of a macroscopic dipole moment in the system equal to the sum

of dipole moments of the individual emitters, which results from the collective

radiative interactions between the emitters [117–121]. First predicted by Dicke in

1954 [117], superradiance has been demonstrated previously in quantum systems

such as gases [122], atomic vapors [123], Rydberg atoms [124], Bose-Einstein

condensates [125], trapped ions [126], superconducting qubits [127], Mössbauer

nuclei [128] and color centers in diamond [129].

Although there are quantum features to superradiance, the accelerated radiative

damping of a collection of mutually-coherent dipoles due to interaction with a

common radiative field is essentially a classical effect. In some plasmonic systems,

the linewidth broadening has either been explained by an enhanced scattering rate

due to non-radiative near-field dipole-dipole coupling, [102–106, 109, 110] or

by a retarded radiative interaction between the particles [111, 113]. On the other

hand, in systems such as gold nanospheres trapped in a linear array by a tightly

focussed laser beam [114], a plastic bead coated with gold nanospheres [115],

and random aggregates of gold and silver nanospheres [116], the linear scaling of
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linewidth of scattered light with the number of irradiated nanospheres has been

phenomenologically associated with a corresponding increase in the radiative decay

rate [114–116]. However, a detailed analysis of the emergence of the radiative

linewidth dependence on the number of irradiated plasmonic nanoparticles has not

yet been presented.

In this chapter, we describe our study of the collective behavior in a single

array of identical plasmonic nanoparticles through experiment, FDTD simulations,

and an analytical model. We show that the radiative linewidth of a planar array of

nanoantennas is directly proportional to the effective number of nanoantennas, Neff,

contained within a circle of radius equal to the resonant optical wavelength, λ0.

In addition, we show that in the dipole approximation this linewidth dependence

is due to the enhancement of the radiation reaction field of each nanoantenna by

that of its neighbors in the array, and is, therefore, a cooperative effect. Finally, we

draw a connection between the ‘plasmonic superradiance’ observed in our system

and Dicke superradiance and argue that the plasmonic system is analogous to a

system of weakly-excited emitters in the Dicke model. In section 3.2, we describe

our experimental setup, and compare the measurements of the extinction spectra

with the FDTD simulations. In section 3.3, we describe our analytical model and

compare the calculated extinction spectra with the results from the simulations

and the experiment. Lastly, in section 3.4, we discuss the scaling of the extinction

linewidth with the lattice constant of the arrays.
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3.2 Experiment and Numerical Analysis

Figure 3.1: (a) Schematic of the experimental setup. The labels on the schematic
are: collimating lens (L1), linear polarizer (P), microscope objectives, (O1: ×10
and NA = 0.25, O2: ×4 and NA = 0.1), imaging lenses (L2, L3, L4), OSA, folding
mirrors (M1, M2), flip mirror (M3). (b) A cross-section view of the sample showing
a nanoantenna array (gold bars). (c) Scanning electron micrograph of one of the
fabricated arrays. The solid white bar in the lower right corner is 100 nm long for
scaling. (d) Scattering (blue, dot-dashed), absorption ( red, dashed) and extinction
(gray, solid) cross-section spectra of a single nanorod obtained through FDTD
simulations. The inset shows the electric field profile at the scattering resonance.

Fig. 3.1(a) shows a diagram of the structure under study, which is a planar

square array of bar-shaped gold nanoantennas that are on average 185-nm-long,

105-nm-wide and 20-nm-thick, placed on a 1 mm thick BK7 (or float) glass

substrate. The background medium is made symmetric by covering the sample

with index-matched oil, which has the same permittivity as the substrate, followed

by a float glass cover slip. The arrays are excited by normally incident broadband

light, and we study the dependence of the linewidth of scattered light from the

array as a function of the number density of nanoantennas, or equivalently, of the

array’s lattice constant, a. The dimensions of the nanoantenna are chosen such that

the dominant damping mechanism is radiative, thereby allowing the observation of
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variations in radiative linewidth simply by measuring the transmission spectrum of

the array. This effect is evident in the scattering and absorption cross-sections of the

nanoantenna calculated through FDTD simulations. Figure 3.1(d) shows the spectra

of the scattering, absorption and extinction cross-sections of a a gold nanoantenna

with the aforementioned dimensions calculated through FDTD simulations. The

resonant scattering, which occurs at a wavelength (frequency) of 1181 nm (254

THz), is more than three times as strong as the absorption. The electric field profile

at resonance shown in the inset of Fig. 3.1(d) also shows that a predominantly

electric dipole mode is excited at the resonance.

We have fabricated eleven squared arrays of nanoantennas, with lattice con-

stants ranging from 250 nm to 500 nm in steps of 25 nm, using electron beam

lithography in a Raith Pioneer 30 kV e-beam system to form a patterned resist on a

1 mm thick float glass substrate. A gold film of thickness 20 nm is then deposited,

and the resist removed by the process of lift-off, leaving behind the patterned gold

on the substrate [130]. See appendix B.2 for more details on the fabrication. The

size of each array is 200 µm × 200 µm. The scanning electron micrograph image

in Fig. 3.1(c) shows a detail of one of the fabricated arrays.

The transmission spectra of the fabricated arrays are measured by transmission

spectroscopy using the setup depicted schematically in Fig. 3.1(b). The normalized

average transmission spectrum T of each array was obtained by taking the ratio of

the transmission spectrum of each array to the transmission spectrum of the glass-oil

assembly, with each spectrum averaged over three measurements. As the response

of a single nanoantenna to an incident field can be described by contributions from
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(a) (b)

Figure 3.2: Extinction spectra of nanoantenna arrays of different lattice constants
obtained from (a) FDTD simulations, and from (b) the experiment.

the excited multipoles [3], the collective response of nanoantennas in each array

also consists of multipolar contributions. However, as mentioned previously, for

the range of frequencies under consideration the dipole mode of the nanoantenna

is dominant. Hence, the radiative decay rate of the collective dipolar mode of each

array is given by the FWHM linewidth of the corresponding extinction spectrum,

(1−T ).

In Figs. 3.2(a) and Fig. 3.2(b) we compare the extinction spectra of the nanoan-

tenna arrays of different lattice constants obtained from FDTD simulations and

from the experiment, respectively. For both the FDTD simulations shown here, and

the analytical results discussed later, we use the permittivity data from Johnson and

Christy for gold [70], and the refractive index data from the Schott optical glass

datasheets [131] for the float glass. For the FDTD simulations, we apply periodic

boundary conditions at the transverse boundaries of a single unit cell of the array.

As a consequence, the uniformity of dimensions of the nanoantennas in each array

was implicitly assumed. On the other hand, for the fabricated arrays, there are un-

avoidable inhomogeneities in the dimensions of the nanoantenna, which contribute
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to inhomogeneous broadening. In addition, in the experiment the exciting field

could have some obliquely incident components despite the use of objectives with

low numerical apertures. These factors could explain the slight differences between

the simulated and the measured spectra. However, both measured and simulated

spectra show similar broadening of the extinction linewidth with decreasing array

lattice constant, which is consistent with the expectation that increasing the number

of dipoles within an optical wavelength broadens their radiative linewidth.

3.3 Analytical Model

Figure 3.3: (a) Diagram of the nanoantenna array with a lattice constant a, and
excited by a normally incident plane wave E inc. (b) Analytically calculated
extinction spectra for nanoarod arrays of various lattice constants.

For physical insight into the relation between the radiative linewidth and the

lattice constant, we now introduce an analytic model to describe the scattered

field from an array of nanoantennas. We approximate each nanoantenna as a point

dipole of electric dipole moment p, and introduce the polarizability tensor
↔
α0 in the

electrostatic limit. For ease of analytical calculations, we model each nanoantenna
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as an ellipsoid of same volume and aspect ratios as the nanorod, and assume

the coordinate system to be aligned along the principal axes of the ellipsoid [see

Fig. C.1(d)] The tensor
↔
α0 is then represented by a diagonal matrix, and its elements

are proportional to the volume of the ellipsoid. The diagonal elements, α0,ii for i =

{x,y,z}, describe the response of the electric dipole excited along the corresponding

axis, and depend on the exact shape and permittivities of the nanoantenna as well

as the surrounding medium [see Eqs. (C.1)-(C.2) for an ellipsoid]. The implicit

dependence of
↔
α0 on the frequency ω includes the effects of material dispersion

of both the nanoantenna and the surrounding medium. The resonance frequency

ω0 of the dipole is obtained from the condition Re[α−1
0,ii(ω0)] = 0. In addition, the

damping of the dipole is purely non-radiative in the electrostatic limit, and the

FWHM linewidth of the corresponding extinction spectrum [Eq. (C.5)] depends

only on the material losses (characterized by Im[α−1
0,ii]).

We first consider an isolated ellipsoidal nanoantenna, excited by an incident

field of frequency ω that has a value E inc at the center of the nanoantenna. There

are two features in the response that arise when we go beyond electrostatics. First,

in the neighborhood of the nanoantenna there is a field contribution from the

nanoantenna itself that is out of phase with its dipole moment, but proportional

to it, and is responsible for radiation reaction. Second, if the volume V of the

nanoantenna is not significantly smaller than λ 3
0 , there is a part of the field from the

nanoantenna which varies across the nanoantenna due to retardation. The effects

due to these two features of the response on the electric dipole moment p of the

nanoantenna induced can still be captured within a point dipole model, but with
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the replacement of E inc by a modified field Emod. That is, we can write

p = ε0n2 ↔
α0 ·Emod. (3.1)

where

Emod = E inc +
1

4πε0

2
3

inω̃
3 p+

↔
β 0 ·

1
ε0n2 p. (3.2)

Here n is the refractive index of the surrounding medium (here BK7 glass), and

ω̃ = ω/c. In Eq. (3.2), the second term on the right is the radiation reaction

field from the nanoantenna itself, and the dyadic
↔
β 0, sometimes referred to as the

‘dynamic depolarization term’, depends on the size and shape of the nanoantenna,

is purely real, and is associated with the variation of the full electric field over the

nanoantenna due to retardation [12, 132]. See appendix C for the expression of
↔
β 0

for our ellipsoids.

The aforementioned electrodynamic contributions to the response of the nanoan-

tenna to the incident field can alternately be captured by introducing a new polariz-

ability
↔
α that relates p to the incident field E inc as follows [133]

p = ε0n2↔
α ·E inc, (3.3)

where
↔
α is also a diagonal matrix in the chosen coordinate system. From (3.1)

and (3.3), and using the property that the diagonal matrices
↔
α0 and

↔
α , and their
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inverses, all commute with each other, we then write

↔
α
−1
·Emod =

↔
α
−1
0 ·E inc. (3.4)

Then using Eqs. (3.2) and (3.3) in Eq. (3.4), we can write after some simplification

↔
α
−1
=
↔
α0
−1
− i

6π
(nω̃)3↔U −

↔
β 0, (3.5)

where
↔
U is the unit dyadic. Recall that in general Im[

↔
α0
−1
] describes nonradiative

losses due to electron collisions within the nanoantenna, and free carrier absorption

and interband transitions in the gold [100]. While the losses due to electron scatter-

ing are not relevant for the dimensions of the nanoantennas considered here, the

losses due to bulk free-carrier absorption and interband transitions (the latter being

negligible for our wavelengths) are captured by using the frequency-dependent

complex dielectric constant for gold. In addition to these non-radiative losses, we

can identify the radiation reaction term in (3.5) as describing radiative losses due

to the scattering of the electromagnetic field from the nanonantenna. Both the ra-

diative and non-radiative losses will broaden its extinction spectrum. The dynamic

depolarization term, on the other hand, leads to a shift in the resonance frequency

from its value in the electrostatic limit. We note that similar expressions for the

dipolar polarizability of spheres and spheroids have been calculated previously

from the modified long wavelength approximation (MLWA) [12] or from Padé

approximations of Mie scattering coefficients [134].
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We now consider a square lattice of these dipoles lying in the xy-plane. All the

dipole moments in the array will be identical for a normally incident plane wave,

and so we write

p = ε0n2 ↔
α0 ·E tot, (3.6)

where E tot includes the field Emod, given by (3.2), along with the field from the

remaining nanoantennas in the array,

E tot = E inc +
1

4πε0

2
3

inω̃
3 p+(

↔
β 0 +

↔
β ) · 1

ε0n2 p. (3.7)

The dyadic
↔
β is the ‘dynamic interaction constant’ of the array [135], and is given

by
↔
β = ∑

R6=0

↔
G (−R), (3.8)

with
↔
G being the periodic Green dyadic [136], such that

↔
G (−R) · p represents the

electric field at the origin due to a dipole moment p at a lattice site R. We note that

Im[
↔
β ] and Re[

↔
β ] include the radiative and non-radiative near-field contributions

at the origin from all the other nanoantennas in the array, respectively.

Similar to our model of an isolated nanoantenna, we now redefine the polar-

izability of each nanoantenna in the array with respect to the incident field as

p = ε0n2↔
α eff ·E inc, (3.9)

and we find that the effective polarizability
↔
α eff of a nanoantenna in a square array
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is given by
↔
α
−1
eff =
↔
α0
−1
− i

6π
(nω̃)3↔U −(

↔
β 0 +

↔
β ). (3.10)

To calculate the the poorly convergent
↔
β , we use the Poisson summation method

followed by singularity cancellation discussed in Refs. [135, 136]. For the incident

electric field polarized along the major axis of the nanoantenna (aligned with the

x-axis, see diagram of the array and the excitation geometry in Fig. 3.3(a)), only

the dipole along the x-axis is excited. Hence, the response of the array is given

by the diagonal component of the effective polarizability [αeff]xx. For our system

as depicted in Fig. 3.3(a), the exact analytic result for Im[βxx], also known as the

‘lattice sum’, can be obtained from equations (76) and (110) in Swiecicki and Sipe

[136], and is given by

Im[βxx] =−
1

6π
(nω̃)3 +

nω̃

2a2 . (3.11)

In contrast, Re[βxx] does not have a closed-form expression, and is actually an

infinite series [135, 137]. We numerically evaluate the series in our calculations by

including as many terms required until convergence is achieved for the extinction

spectrum. For our system, including the non-radiative contributions at the origin

from a 100×100 array of dipoles is sufficient for Re[βxx] to converge.

From Eqs. (3.11) and (3.10), now we can write [αeff]xx, while dropping the

suffix xx, as

α
−1
eff = α

−1
0 −

i
6π

(nω̃)3Neff− (β0 +Re[β ]), (3.12)
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where Neff = 3λ 2/4πn2a2 is the effective number of dipoles enclosed within a

circle of radius equal to the wavelength in the background medium, λ/n. We

note that the effective depolarization term of the dipole in the array, Re[α−1
eff ], is

enhanced by the ‘collective retardation’ term, Re[β ], which is responsible for the

shift in the resonance frequency (given by Re[α−1
eff (ω0)] = 0, or the maxima of the

extinction spectra) for different arrays observed in Figs. 3.2(a) and 3.2(b). We also

note from (3.12) that there are no collective contributions to the non-radiative losses

due to absorption, which are once again represented by the term Im[α−1
0 ]. On the

other hand, the radiative damping term has the form of the radiation-reaction term

of Neff dipoles. This collectively enhanced radiative damping is responsible for the

observed linewidth broadening in Figs. 3.2(a) and 3.2(b). Finally, the transmittance

T and reflectance R spectra of the array depend on αeff(ω) as follows [138]

R = |r|2 = (nω̃)2|αeff|2

4a4 ,

T = |t|2 = 1+R− nω̃

a2 Im[αeff].

(3.13)

Since the effective number of dipoles Neff within a wavelength-sized area is pro-

portional to a−2, in the regime where scattering dominates absorption, the FWHM

linewidth of the extinction spectrum (1−T ) should decrease according to a−2 as

the lattice constant of the planar array is increased.

Figure 3.3(b) shows the analytically calculated extinction spectra of the equiva-

lent ellipsoid arrays for various lattice constants. The dimensions of the ellipsoid

(semi-principal axes of ae = 112 nm, be = 63.85 nm, ce = 12.25 nm) are chosen so
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Figure 3.4: FWHM linewidths vs lattice constant of extinction spectra obtained
from experiment (circles, blue), simulations (triangles, red) and analytical
calculations (solid-green). The black-dashed curve represents the fitted curve
δν =C1 +C2a−2 to the analytical data, where C1 =−0.1694 THz and
C2 = 7.73×106 THz nm2.

as to have the closest agreement between the cross-section spectra of the ellipsoid

calculated analytically through the use of Eqs. (C.5)-(C.7), and of the nanorod

calculated through FDTD simulations. See appendix C for more details on this

calculation. We note that the analytically calculated extinction spectra shown in

Fig. 3.3(b) agree reasonably well with the corresponding measured and simulated

extinction spectra shown in Fig. 3.2.

3.4 Results and Discussion

In Fig. 3.4 we show the dependence of the FWHM linewidths estimated from

the measured, FDTD simulated, and analytically calculated extinction spectra

on the lattice constant of the array a. For the datasets obtained from FDTD
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simulations (red triangles) and the experiment (blue circles), only the linewidths of

the spectra shown in Figs. 3.2(a) and 3.2(b) respectively are plotted in Fig. 3.4.

For the analytical dataset, the extinction spectra of equivalent ellipsoid arrays were

calculated for arrays with lattice constants varying from 250 nm to 500 nm in steps

of 1 nm. The FWHM linewidth of these analytically calculated spectra are plotted

in Fig. 3.4 as a continuous (green) line. The error bars on the experimental data

indicate the experimental error in determining the FWHM from the OSA readout

due to detector noise.

A simple expression for the dependence of the FWHM on the lattice con-

stant is difficult to extract even for the analytic model, because the resonance

frequency itself depends on the lattice constant a. However, for the form of the

polarizability α0 adopted (see appendix C), and recognizing that the shift of the

resonant frequency due to the real part of β and the linewidth itself are reasonably

small compared to the resonant frequency ω0, a linewidth dependence of the form

δν =C1 +C2a−2 can be expected, where C1 captures the effects of absorption and

C2a−2 the effects of radiative broadening. The constants C1 and C2 are obtained

by fitting the aforementioned curve to the analytical dataset. The fitted curve

(C1 = −0.1694 THz and and C2 = 7.73× 106 THz nm2) is shown as a dashed

black line in Fig. 3.4, and we see a good agreement between the analytical dataset

and the fitted curve. Comparing the numerical values of C1 and C2, we note that

the term C2a−2 has a significantly larger contribution to δν , thereby indicating that

the radiative broadening effects dominate over those of absorption.

For lattice constants larger than about 375 nm there is an excellent quantitative
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fit between experiment, FDTD simulation, and the analytic model. At smaller

lattice constants we see that the results of the FDTD simulations differ from those

of the analytic model. This may be in part due to the fact that the FDTD simula-

tions were done for the actual array of rod-shaped nanoparticles, which includes

contributions from all multipolar excitations of the nanoparticle as well as their

interactions with the other nanoparticles in the array. In contrast, the analytic model

relies on a fit to the response of an isolated nanoparticle with ellipsoidal shape,

and the use of a point dipole approximation for calculating the interaction between

the nanoparticles in the array. The validity of these features of the analytic model

become questionable for very small lattice constants, giving a possible reason for

the difference between the FDTD simulations and the analytic model for small

values of a. We also see that at small lattice constants the experimental results differ

from the results of the FDTD simulations, which may be due to inhomogeneities in

the properties of the fabricated nanorods. The inevitable fabrication imperfections

would contribute to some inhomogeneous broadening in the experimental case,

which is not an issue in the analytical model as well as FDTD simulations due

to our assumption of all the nanoantennas being identical. The effect of these

inhomogeneities in the fabricated nanorods can be expected to have a larger effect

at smaller lattice constants where the response of a given nanorod is more sensitive

to the details of the near field from its neighbors, and thereby could also contribute

to the mismatch between the experiment and the simulations for smaller lattice

constants.

Nonetheless, within a reasonable margin of error our results indicate that the
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observed Neff-fold radiative linewidth broadening in the arrays of nanoantennas

is a collective effect. We have also shown through the closed form expression in

Eq. (3.12) of the imaginary part of the effective polarizability of each nanoantenna

within the array that the observed Neff-dependent linewidth scaling is because the

radiation-reaction of the array is proportional to Neff. In addition, since we have

explicitly designed our nanoantennas to have a much larger scattering cross-section

than the absorption cross-section, we conclude that the observed linewidth broaden-

ing is due to the interaction of the plasmonic scatterers with the common radiation

field.

The scaling of the linewidth with the number density of dipoles indicates a

connection with Dicke superradiance, where the interaction with the common

radiation field is also the important physics. Dicke’s treatment dealt with two-level

systems [117]. While our plasmonic scatterers can be well described by a harmonic

oscillator model, in general one would only expect a correspondence with two-level

systems in the weak excitation limit. With that in mind we look at the first excited

state in the Dicke model, which consists of a single excitation “shared" among the

N two-level systems. The total dipole matrix element between this lowest excited

state and the ground state is a factor of
√

N larger than the dipole matrix element

between the excited state and the ground state of a single two-level system, and so

if the N two-level systems are confined within a wavelength of light the emission

rate from this first excited state will be a factor of N larger than for a single excited

two-level system, leading to a linewidth that is a factor of N times that for a single

excited two-level system. This can be called “weak superradiance," to distinguish
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it from the behavior of other excited states in the Dicke model that have much

enhanced decay rates. In a scattering problem in the semiclassical approximation,

where the radiation field is treated classically, it is the dipole moment between the

ground state and the first excited state of the Dicke model that is relevant for weak

enough incident fields. There again one finds a linewidth that is N times as large as

would be seen if only a single two-level system were considered [133, 139–143].

Now if only the ground state and the first excited state are considered, then the

Dicke model is essentially equivalent to a set of harmonic oscillators, since for the

latter system the first excited state also consists of a single “shared” excitation, here

shared between the harmonic oscillators. Thus we see that the behavior considered

here for plasmonic oscillators mimics the corresponding behavior of two-level

systems. And so whether considering plasmonic oscillators or two-level systems

under weak excitation, for planar arrays of effective atoms the relevant N is the

number of those atoms within a square wavelength of light.

3.5 Conclusion

To summarize, here we have shown that the linewidth of light scattered by a pla-

nar array of plasmonic nanoantennas scales linearly with the effective number of

nanoantennas contained within an area equal to the square of the resonant optical

wavelength. Through an analytical model, we have shown that this is a collective

effect resulting from the enhancement of the radiation-reaction of a particular
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nanoantenna by the radiation-reaction of all the other nanoantennas in the array,

which in turns leads to an Neff-fold enhancement of the radiative linewidth. In

an effort to elucidate the relationship between the collective radiative behavior

of plasmonic scatterers and the behavior of Dicke superradiance, we have also

discussed the different radiative behaviors of plasmonic scatterers and dipolar emit-

ters. We have argued that the collective radiative behavior of a system of plasmonic

scatterers, and a corresponding system of ‘weakly’-excited emitters (wherein only

one emitter is initially excited on an average) are analogous. Accordingly, we

have termed this effect ‘weak-superradiance’. In the subsequent chapters, we

will build upon the analytical model developed in this chapter to bi-layered and

multi-layered structures made of dipolar arrays, and discuss the interesting linear

optical properties of these structures.
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4. Dark and Bright modes and their

Coherent Control in Dipolar Meta-

surface Bilayers

4.1 Introduction

We now extend the analytical model developed in chapter 3 for a single dipolar

nanoantenna array to a stack of two such arrays with a sub-wavelength separation

between them. In a single array we have one collective mode with an enhanced

radiative damping compared to an isolated dipole. For two such arrays, the strong

radiative coupling between the arrays should lead to the emergence of hybrid

modes with interesting scattering properties. Mode hybridization in a plasmonic

dimer, where two identical nanoparticles are placed at a sub-wavelength separation,

has been studied extensively [144–149]. These dimers can support “dark" modes

that have a significant local field enhancement in their interstices. They are “dark"

in the sense that, if the variation of the incident field over the dimer is neglected,
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they cannot be excited because of their vanishing dipole moment. [144, 147, 148].

Dark modes in dimers can, however, be excited by linearly polarized light incident

along the dimer axis, because of higher order multipole moments of the structure.

The large field enhancement [150] and narrow absorption linewidths, which result

because of the weak radiation from these higher order multipole moments, make

these “bilayered" dimer structures a promising platform for nonlinear optical

applications [92], including plasmonic nanolasers [151, 152]. The anti-parallel

polarization distribution of these dark modes forms a quasi-current loop with an

effective magnetic dipole, which can be a useful building block for an effective

negative index material [153, 154]. Previous studies of cooperative modes in

metasurface bilayers have been restricted to spherical or disc-shaped nanoparticles

made of noble metals with resonances at visible or NIR frequencies [25, 155–158].

These nanoparticles have a low scattering efficiency due to their small dipolar

polarizability [12, 15, 159, 160], and are also affected by the presence of multipolar

modes and large absorption losses in most plasmonic materials due to interband

transitions at ultraviolet frequencies.

In this chapter, we show that radiative coupling in this bilayer leads to the

formation of bright (symmetric) and dark (anti-symmetric) modes [143], and

discuss how the short-range non-radiative coupling shifts these resonances. We

show that the “dark" modes can make a significant contribution to the optical

response; although they are weakly driven, their weak radiation rate leads to

significant excitation. We also discuss the selective excitation of these dark and

bright modes by varying the relative phase between two equal intensity counter-
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propagating fields. In section 4.2, we describe our analytical model for the bilayer

with misalignments between the lattice points in the two arrays. We then also

compare the reflectance and absorption spectra calculated from our analytical

model with those obtained from FDTD simulations for both perfectly aligned

and slightly misaligned bilayers. Finally, in section 4.3, we discuss the selective

excitation of these modes through two equal intensity counter-propagating fields,

which is also referred to as the coherent control of absorption or coherent perfect

absorption (CPA) [161, 162].

4.2 Analytical Model

We now have two square arrays of dipolar nanoantennas with in-plane lattice

constant of a that are separated by a sub-wavelength distance b. Figure 4.1 shows

a diagram of the bilayer along with the assumed coordinate system. The first array

is assumed to be in the (z = −b/2) plane, and the second array in the (z = b/2)

plane. We again assume the incident wave to be a normally incident plane-wave

polarized along the long axis of the nanoantenna E inc = Eincei(ω̃nz−ωt)x̂, and make

the point dipole approximation as in chapter 3.

4.2.1 Single nanoantenna array

The total electric field E tot at each point dipole of dipole moment p in a single

array is given by Eq. (3.7) derived in chapter 3, which we have restated below for
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Figure 4.1: Diagram of the bilayered strucutre of two nanoantenna arrays spaced
by a separation b, and excited by a normally incident plane wave E inc.

convenience:

E tot = E inc +
1

4πε0

2
3

inω̃
3 p+(

↔
β 0 +

↔
β ) · 1

ε0n2 p, (4.1)

where once again

p = ε0n2 ↔
α0 E tot, (4.2)

↔
α0 is the electrostatic polarizability of the nanoantenna, and the dyadics

↔
β 0 and

↔
β account for the retardation over the volume of the nanoantenna, and the radi-

ation reaction as well as retardation from all the other nanoantennas in the array,

respectively.

The resonance frequency ω0 in the electrostatic limit is once again given by the

condition Re[α−1
0,ii(ω0)] = 0. We now define an effective polarizability

↔
α shift that

includes the electrostatic response of each nanoantenna along with the resonance

shifts due to the retardation contributions
↔
β 0 and Re[

↔
β ],

↔
α
−1
shift=

↔
α
−1
0 −ε0n2(

↔
β 0 +Re[

↔
β ]). (4.3)
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Figure 4.2: Spectra of the (a) real and (b) imaginary parts of polarizabilities
normalized to the volume of a cuboidal gold nanoantenna (185 nm long, 105 nm
wide and 20 nm thick, and embedded in BK7 glass) in the electrostatic limit (blue,
solid), including only the retardation of the nanoantenna and the array (red,
dashed), and including both retardation and radiation reaction of the nanoantenna
and the array (black, dot-dashed). The nanoantenna polarizability model is taken
to be the same as in [163], and the array lattice constant is assumed to be 250 nm.

The term Im[
↔
α
−1
shift] is the same as Im[

↔
α
−1
0 ], which accounts for absorption losses

in the nanoantenna. The term Im[
↔
β ] is the collective radiation reaction, and for

the excitation geometry shown in Fig. 4.1, is given by Eq. (3.11), which we rewrite

below for convenience

Im[βxx] =−
1

6π
(nω̃)3 +

nω̃

2a2 . (4.4)

From Eqs. (4.2) - (4.4), we can write after some simplification

α
−1
shift,xx px = ε0n2

(
Einc +

iω̃
2ε0na2 px

)
. (4.5)
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We drop the suffixes x from now on, and from Eq. (4.5) write

α
−1
eff = α

−1
shift−

iω̃n
2a2 , (4.6)

where αeff has been defined in chapter 3 such that p = ε0n2αeffEinc. Figure 4.2(a)

and (b) show the spectra of the real and imaginary parts, respectively of α0 (blue,

solid), αshift (red, dashed), and αeff (black, dot-dashed) of a representative gold

nanoantenna in a square lattice with lattice constant a of 250 nm. The nanoantenna

parameters are taken to be the same as in chapter 3, and we keep a fixed at 250

nm in all the results presented here. As before, we also use the permittivity data

from Johnson and Christy for gold [70], and the refractive index data from the

Schott optical glass datasheets [131] for the float glass. We note from Fig. 4.2 that

the effect of retardation is to shift the nanoantenna resonance, while the radiation

reaction term contributes to its broadening.

We now define the polarization P of the nanoantenna array as the dipole moment

per unit area, which is essentially the product of dipole moment p of a nanoantenna

in the array and the number density of these nanoantennas (= 1/a2 for a square

array with lattice constant a). So we write

P =
ε0n2αeff

a2 Einc. (4.7)

The x component of the electric field from this lattice of electric dipoles at a

position (l1a+∆x, l2a+∆y,z), with (l1, l2) being the lattice indices in the xy-plane
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and ∆x,y being the displacements from the lattice points (l1a, l2a), is given by

Ex(Rl +∆,z) =
iω̃

2ε0n
Peiω̃n|z|+

π

ε0an2 Txx(∆,z)P, (4.8)

where Rl = l1ax̂+ l2aŷ, and ∆ = ∆xx̂+∆yŷ. The first term on the right is the

long-range radiative field, whereas the second term is the short-range near-field

that decays rapidly with z. See appendix D for the full derivation of Eq. (4.8), and

the expression for Txx(∆,z).

4.2.2 The bilayered structure

We now consider the bilayered structure, wherein the two lattice planes are assumed

to be laterally misaligned such that the lattice points in the second (first) plane are

displaced by ∆ (−∆) with respect to lattice points in the first (second) plane. The

field at each dipole plane now includes not only the incident field E inc, but also

the radiated field and the near-field from the other plane. Hence, we can write the

polarization of both dipole arrays as

P2,1 =
ε0n2αeff

a2

[
Eince±iω̃nb/2 +Ex(±∆,±b/2)

]
, (4.9)

where we consider the unit cell to be centered at the origin for simplicity. Multiply-

ing both sides of Eqs. (4.9) by α
−1
eff and substituting Eq. (4.6), we get after some
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simplification

α
−1
shiftP2,1 =

ε0n2

a2 Eince±iω̃nb/2 +
iω̃
2a2 (P2,1 +P1,2eiω̃nb)± π

a3 Txx(∆,b)P1,2, (4.10)

where we have used Txx(∆,b) = Txx(−∆,−b). We then define PA = (P1 +P2)/2

and PM = (P2−P1)/2 using Eq. (4.10), the first being the average of the plane po-

larizations, and the second half the difference between them. After some algebraic

manipulation, we have

PA =
ε0n2αA

a2 Einc cos(ω̃nb/2), (4.11)

PM = i
ε0n2αM

a2 Einc sin(ω̃nb/2), (4.12)

where

α
−1
A = α

−1
shift +S(∆,b)− iω̃n

a2 cos2
(

ω̃nb
2

)
, (4.13)

α
−1
M = α

−1
shift−S(∆,b)− iω̃n

a2 sin2
(

ω̃nb
2

)
, (4.14)

and

S(∆,b) =
ω̃n
2a2 sin(ω̃nd)− π

a3 Txx(∆,b). (4.15)

The resonance frequency ωA(ωM) of the A(M) mode is given by the condition

Re[α−1
A,M] = Re[α−1

shift]±S(∆,b) = 0. Hence, the purely real term S(∆,b) leads to

equal and opposite shifts in resonances for the A and M modes with respect to

the resonance of a single layer. The terms Im[α−1
A,M] include the absorption losses
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Im[α−1
shift], and the radiative damping terms given by the last terms on the right

in Eqs. (4.13) and (4.14). For very small separations b, such that ω̃nb� 1, the

symmetric A mode has almost twice the radiative damping than a single layer.

In contrast, the radiative damping of the anti-symmetric M mode is very small.

For such small separations the A mode is a nominally bright mode with a wider

linewidth than the single array, while the M mode is a nominally dark mode with

a significantly narrower linewidth that in practice is limited by absorption losses

within the nanoantenna. Hence, at the resonance of the M mode (Re[α−1
M ] = 0),

the polarizability αM can be made to be significantly larger than αeff with a careful

choice of design parameters a and b. For this condition, the amplitude PM of the

nominally dark mode can be much larger than the amplitude PA of the nominally

bright mode, which essentially implies that the dipole moments of the nanoantennas

in the different layers are mostly out of phase. We note that the retardation of the

incident field between the two arrays is large enough to allow the excitation of the

M mode at normal incidence for even perfectly aligned arrays [164].

Using P1 = PA−PM and P2 = PA +PM, we calculate the expressions for the

transmittance ‘T’, reflectance ‘R’ and absorbance ‘A’ of the bilayer. The forward

propagating field from the bilayer at a distance z� b/2 is given by

Eforward(z) = eiω̃nz
[
Einc +

iω̃
2ε0n

(P1eiω̃nb/2 +P2e−iω̃nb/2)
]
, (4.16)

where the first term on the right is simply the retarded incident field, and the

remaining terms are the long-range radiative fields from both nanoantenna arrays.
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Figure 4.3: Absorption spectra of a bilayer structure with no misalignments
between the layers, and (a) b/a = 0.4 and (d) b/a = 0.6 obtained from Eqs. (4.17)
and (4.19) without (blue, dot-dashed) and with (red, solid) the near-field terms
Txx(0,d). The black dashed lines are the respective absorption spectra obtained
from FDTD simulations. The reflection spectra for the b/a = 0.4 and b/a = 0.6
structure are shown in panels (b) and (e), respectively. The polarization spectra of
PA (solid) and PM (dot-dashed) for the two aforementioned bilayers without and
with absorption losses in the nanoantennas are shown in panels (c) and (f),
respectively along with the Peff for a single nanoantenna plane (black, dashed)
without and with the absorption losses.

Rewriting P1 and P2 in terms of PA and PM, and using Eqs. (4.11) and (4.12), we

get after some simplification

t ≡ Eforward(z)
Einceiω̃nz = 1+

iω̃n
a2

(
αA cos2 ω̃nb

2
+αM sin2 ω̃nd

2

)
, (4.17)

where t is the transmission coefficient, and T = |t|2 gives the transmittance. Sim-

ilarly, the backward propagating reflected light from the bilayer at a distance
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z�−b/2 is given by

Ebackward(z) =
iω̃

2ε0n
e−iω̃nz(P1e−iω̃nb/2 +P2eiω̃nb/2). (4.18)

Following a simplification procedure similar to that used in deriving Eq. (4.17), we

can write

r ≡ Ebackward(z)
Eince−iω̃nz =

iω̃n
a2

(
αA cos2 ω̃nb

2
−αM sin2 ω̃nb

2

)
, (4.19)

where r is the reflection coefficient, and the reflectance R = |r|2. The absorption is

then given by A = 1−R−T.

Figures 4.3(a) and (d) show the absorption spectra of perfectly aligned bilayers

(∆ = 0), with relative separations b/a of 0.4 and 0.6, respectively. For both

bilayers, there is a narrow absorption peak around 215 THz that, as we discuss

later, corresponds to the resonance of the dark M mode. Including the Txx(0,b)

terms in the analytical model redshifts this absorption peak, and results in a better

agreement between the analytically calculated spectra and the FDTD simulations.

The dip in the reflectance spectrum, shown in panels 4.3(b) and (e), occurs at

the spectral overlap of the bright A mode and the dark M mode. The reflectance

spectrum is largely flat between this dip until 320 THz, with an average reflectance

of 80%, and essentially forms a stop band. The broad absorption resonance of the

A mode can be observed in the analytical spectra beyond 350 THz, and blueshifts

as b is reduced. In the FDTD result, an additional absorption peak around 320 THz

is due to the electric quadrupolar mode of the nanoantenna (see appendix C), and
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Figure 4.4: Normalized real (left panels) and imaginary (middle panels) parts of
the field polarization Px(x,z) = ε0εr(x,z)Ex(x,z)/a2 in a single unit cell of a bilayer
structure with b/a = 0.4 in the xz-plane. The field distribution Ex is obtained from
FDTD simulations, and εr is the relative permittivity of the medium at a point (x,z).
The top (bottom) panels show the polarization distributions at the resonance of the
A (M) mode. The panels on the right show linecuts of the respective modes along
the z-axis (black dotted lines in the left and middle planels), or Px(0,z)/|Px(0,z)|.
The yellow shaded regions represent the z locations of the nanoantennas.

overshadows the absorption peak of the A mode for both bilayers. Ignoring this

multipolar contribution at frequencies larger than 320 THz, our dipolar analytical

model is able to largely reproduce the results from the full-wave FDTD simulations

with a reasonable accuracy.

Figures 4.3(c) and (f) show the spectra of PA (solid) and PM (dot-dashed)

of the two bilayers without and with the absorption losses, respectively. The

polarization spectra of a single nanoantenna array Peff (black, dashed) without

and with the absorption losses are shown in the respective panels. The absorption

losses are excluded by replacing α
−1
shift by Re[α−1

shift] in Eq. (4.6), which, as observed
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in Fig. 4.3(c), leads to narrower resonances throughout. However, for a single

array the collective radiation reaction of the array is significantly larger than

the absorption losses. Hence, ignoring the absorption losses leads to a barely

perceptible narrowing of the spectrum of Peff. For the bilayer, the PA and PM modes

have equal and opposite resonance shifts with respect to the resonance of Peff. The

resonance linewidth of (dark) PM is also much narrower than (bright) PA, and PM is

significantly larger than both PA and Peff at its resonance even with the absorption

losses. Figure 4.4 shows the normalized field polarization (Px = ε0εrEx/a2) at the

resonances of the A (top) and M (bottom) modes in the xz-plane of a single unit

cell of the bilayer with b/a = 0.4. Here εr is the relative permittivity at a given

location, and Ex is the local field obtained from FDTD simulations. Consistent with

our predictions, we observe that for the A (M) mode, Px within both nanoantennas

has the same (opposite) phase. The large field enhancements at the corners of

the nanoantennas are due to the large field gradient at these metallic corners, also

known as the “lightning rod" effect [165, 166].

We now consider the effect of misalignments between the layers, which is a

typical fabrication error in multilayered metasurfaces. Figure 4.5 compares the

reflectance spectra of bilayers (a) without and (b) with misalignments [{∆x,∆y}=

{0.2a,0.2a}] for various separations b/a between the layers indicated in the legend.

The solid lines are the reflectance spectra obtained from the analytical model, while

the dashed lines are obtained from FDTD simulations. We note that the positions

of the reflectance dip in the simulated and the analytically calculated spectra for

both perfectly aligned and misaligned structures agree reasonably well with an
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Figure 4.5: Reflectance spectra of (a) perfectly aligned, and (b) misaligned
bilayers with {∆x,∆y}= {0.2a,0.2a} with various separations b/a shown in the
legend. The solid reflectance curves were calculated using the full analytical
model with the near-field terms Txx(0.2a,0.2a,b), and the dashed curves were
obtained from FDTD simulations.

accuracy larger than 95%. Additionally, the effect of misalignments becomes

more pronounced as separation between the layers is reduced. This effect is not

surprising, as the Txx(∆,b) terms that lead to retardation induced resonance shifts in

both PA and PM get larger as b is reduced, and are sensitive to lattice misalignments.

For the smallest separation considered here, this misalignment-induced resonance

shift is as large as 12 THz (or about 75 nm). Hence, along with b and a, the lattice

misalignments {∆x,∆y} are another set of parameters that can be used for designing

broadband spectral filters.



CHAPTER 4. DARK AND BRIGHT MODES AND THEIR COHERENT CONTROL IN
DIPOLAR METASURFACE BILAYERS 74

4.3 Coherent perfect absorption

Our analysis so far has been restricted to a single incident field on the bilayers,

which behaves as a one port system. We now consider the situation when the bilay-

ers are excited by two counter-propagating fields E1ei(ω̃nz−ωt)x̂ and E2e−i(ω̃nz+ωt)x̂,

which is essentially a two port scenario. Both the phases and the amplitudes of

the incident fields E1,2 now constitute another set of parameters for the coherent

control of scattering and absorption of light [161, 162, 167, 168]. We note that

even with misalignments, the bilayers are symmetric with respect to the direc-

tion of excitation under normal incidence, which is also evident in the relation

Txx(∆,b) = Txx(−∆,−b). Accordingly, we define a 2× 2 symmetric scattering

matrix Sscat that relates the vector of incoming fields [E2 , E1]
T to the outgoing

fields [E−2 , E−1 ]T as

E−2

E−1

= Sscat

E2

E1

=

r t

t r


E2

E1

 , (4.20)

where r and t are the transmission and reflection coefficients that have been defined

in Eqs. (4.17) and (4.19), respectively.

For the specific set of input fields where there are no outgoing fields, i.e.

[E−2 , E−1 ]T is a null vector, the incoming radiation is converted to trapped radiation

that dissipates non-radiatively within the system. This effect has been referred

to as coherent perfect absorption (CPA), and is the time-reversed counterpart of

laser action [161, 162, 168]. Setting [E−2 , E−1 ]T to a null vector in Eq. (4.20) leads
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to the condition that for a non-trivial solution of Eq. (4.20) to exist: |det(Sscat)|

approaches zero, or |r2− t2| ≈ 0. The symmetric solution (r+ t)≈ 0 corresponds

to the eigenvector [E2 , E1]
T = [1 , 1]T , which implies that the CPA condition is

satisfied when E2 = E1. Similarly, the anti-symmetric solution (r− t)≈ 0 corre-

sponds to the eigenvector [E2 , E1]
T = [1 ,−1]T , or the CPA condition is satisfied

when E2 =−E1. We also note that it is not possible to satisfy either of the CPA

conditions with a single array of dipolar nanoparticles that is not backed by a

reflector [169].

From Eqs. (4.17) and (4.19), we write the anti-symmetric CPA condition as

r− t =−
(

1+
2inω̃

a2 αM sin2 ω̃nb
2

)
= 0, (4.21)

which on using Eq. (4.14) simplifies to

α
−1
shift−S+

inω̃

a2 sin2 ω̃nb
2

= 0. (4.22)

At the resonance of the M mode, Re[α−1
shift]− S = 0. Recalling that Im[α−1

shift] =

Im[α−1
0 ], and that Im[α−1

0 ](= −Im[α0]/|α0|2) is negative, we get the following

simplified anti-symmetric CPA condition at the resonance of the M mode

|Im[α−1
0 ]|= nω̃

a2 sin2 ω̃nb
2

. (4.23)

Similarly, the simplified symmetric CPA condition at the resonance of the A mode
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Figure 4.6: (a) Spectra of |det(Sscat)| for various separations b of perfectly aligned
bilayers. Absorption spectra of a bilayer with (b) b/a = 0.34, and (c) b/a = 1.08 for
a single normally incident field (black, dashed), and two counter-propagating
normally incident fields with equal amplitude and same phase (blue) and opposite
phase (red). (d) The joint absorption A as the phase difference φ between the
two fields E1,2 is varied (solid lines) for bilayers with b/a = 0.34 (blue) and
b/a = 1.08. The respective maximum single incident field absorption values are
shown by dashed lines.

can be written as

|Im[α−1
0 ]|= nω̃

a2 cos2 ω̃nb
2

. (4.24)

The CPA conditions given by Eqs. (4.23) and (4.24) can also be interpreted as

critical coupling conditions to the M and the A mode of the bilayer, respectively,

wherein the absorption losses are balanced by radiative coupling losses to the

respective mode. For very small separations between the bilayers, such that
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ω̃nb� 1, the right-hand side of Eq. (4.23) becomes proportional to (b/a)2, while

the right-hand side of Eq. (4.24) becomes proportional to 1/a2. For the nanoantenna

arrays with significantly larger collective radiation reaction than absorption, it

is straightforward to see that the anti-symmetric, and not the symmetric, CPA

condition given by Eq. (4.23) should hold true when ω̃nb� 1. Figure 4.6(a) shows

the spectra of |det(Sscat)| for various separations b/a of perfectly aligned bilayers.

The minima, indicated by the blue regions in the plot, indicate the separations

b/a where the CPA conditions are satisfied for a particular range of frequencies.

The black (white) contours identify the anti-symmetric (symmetric) sets of CPA

solutions. We note that the variation of |det(Sscat)| shown in Fig. 4.6(a) is very

similar to the variation of the absorption spectra of a perfect absorber consisting of

a single dipolar metasurface backed by a reflector [169].

As a metric for CPA, we define the joint absorption A [162] as follows:

A = 1−
|E−1 |2 + |E

−
2 |2

|E1|2 + |E2|2
. (4.25)

Specifically for equal amplitude fields with a phase difference of φ , or E2 = E1eiφ ,

from Eq. (4.20) we get, after some simplification,

A = 1−|r|2−|t|2− (r∗t + rt∗)cosφ . (4.26)

The spectra of A for symmetric (φ = 0, solid blue) and anti-symmetric (φ = π

rad, solid red) excitation, and the absorption spectrum A for a single incident

field (dashed black) are shown in Figs. 4.6(b) and 4.6(c) for two perfectly aligned
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bilayers with separations b/a of 0.34 and 1.08, respectively. As shown in Fig. 4.6(a),

the separation b/a of 0.34 (1.08) satisfies the anti-symmetric (symmetric) CPA

condition. Accordingly, the joint absorption A in Fig. 4.6(b) approaches unity for

anti-symmetric excitation (red) at the resonance of the M mode, and is significantly

smaller than the absorption A for single incident field around the resonance of

the A mode. On the other hand, A under symmetric excitation (blue) is almost

twice the absorption A for single field excitation around the resonance of the A

mode, and is significantly smaller than the corresponding single field absorption

around the resonance of the M mode. The opposite trend holds true for the bilayer

that satisfies the symmetric CPA conditions shown in Fig. 4.6(c) as the symmetric

(anti-symmetric) mode becomes the dark (bright) mode for this bilayer.

Thus the excitation by two counter-propagating fields of equal intensity is a

way of mode-matching the incident fields to either the bright mode or the dark

mode by adjusting the relative phase of the fields. Figure 4.6(d) shows the variation

with respect to the relative phase φ of A at the single field absorption resonance

frequency of the two bilayers shown in Figs. 4.6(b) (blue, solid) and 4.6(c), respec-

tively. The maximum variation in A achievable at the CPA condition is given by

the magnitude of the difference in A for in-phase (φ = 0) and out-of-phase (φ = π)

excitation after substituting the CPA conditions r =±t in Eq. (4.26). After some

simplification, we get the maximum achievable variation in A to be approximately

4R, with R being the reflectance of the bilayer for a single incident field. We

observe a variation in A as large as 0.9 for b/a = 0.34, and 0.82 for b/a = 1.08 at

the respective CPA frequency. These estimated values of the variation in A are
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close to the values of 4R for the respective bilayers with a single field excitation.

This property makes these bilayers useful for applications such as all-optical mod-

ulation and switching without the need of any optical nonlinearity. The relative

phase dependent absorption also implies that the bilayer essentially behaves as an

absorptive interferometer at the CPA point, and has applications in areas such as

pattern recognition [170, 171].

4.4 Conclusions

To summarize, we have extended our analytical model for a single dipolar nanoan-

tenna array to bilayers of two such arrays. Through this model, as well as full-wave

FDTD simulations, we have studied the formation of dark and bright modes in

these bilayers. We have discussed how the radiative coupling between the layers

leads to resonance shifts as well as linewidth variations, wherein the bright (dark)

mode has a larger (smaller) radiative damping than the single layer. The dark mode

with its large polarization amplitude can make a significant contribution to the

optical response of the system. The extended analytical model now also accounts

for near-field interactions between the two arrays, and can model the scattering and

absorption behavior of the bilayer structure with a reasonable accuracy, including

the effects of misalignments between the two layers. Finally, we have shown that

these dark and bright modes can be selectively excited through two equal intensity

counter-propagating fields by varying the relative phase between them. And so the

scattering and absorption behavior of these bilayers can be coherently controlled.
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5. Linear Optical Properties of Meta-

crystals of Dipolar Nanoanten-

nas

5.1 Introduction

Natural materials typically have refractive indices that vary between 1-4 at optical

and NIR frequencies. In the absence of a magnetic response, the refractive index

of a medium scales with the product of the number density and the electric dipole

polarizability of each atom through the Lorentz-Lorenz equation [172], with the

assumption that the medium surrounding an atom can be modeled as a smooth

dielectric while ignoring the granularity of the neighboring atoms [173]. Hence,

the possible values of the atomic number densities and transition dipole moments

in natural media determine the upper limit to the off-resonance refractive index. On

resonance, various line broadening mechanisms also limit the maximum index. We

note, however, that an individual atom does interact very strongly with light, which



CHAPTER 5. LINEAR OPTICAL PROPERTIES OF META-CRYSTALS OF DIPOLAR
NANOANTENNAS 81

is evidenced by an atom’s scattering cross-section being several orders of magnitude

larger than its physical size [174]. Even still, the refractive indices observed in

dense atomic ensembles saturate to be of the order of unity. This saturation has

been explained to be fundamentally electrodynamic in origin, wherein multiple

scattering and near-field effects in the ensemble contribute to inhomogeneous

broadening of the atomic resonance [173]. Artificially structured (meta-)materials

can be used to further engineer the refractive index, or equivalently, the material

permittivity and permeability. Large positive refractive indices are desirable for

developing high numerical aperture optics for imaging, solar concentrators [175]

and immersion lithography [176], and to enhance the radiative decay rate of emitters

[177]. The nonlinear optical response also increases with the linear refractive index

as per Miller’s rule [4]. On the other end, near-zero [8, 17] and negative indices

[178] also enable some very exotic linear and nonlinear optical phenomena.

The real part of permittivity can diverge in arrays of perfectly conducting

spheres for packing fractions larger than 0.3 [179]. At optical frequencies, the gap

plasmon modes in closely-packed gold nanoparticles can have highly localized

electric field in the interstices leading to an enhancement of the overall polarization,

which also enhances the effective permittivity, and in turn, the refractive index

[25, 157, 180–184]. However, the overall nanoparticle size should be smaller

than the skin depth in order to ensure that the reduction in permeability due to

their diamagnetic response is negligible. A maximum refractive index of 5.4 has

been recently reported for large superlattices of gold spheres with sub-nanometer

gaps [184]. Such closely-packed crystals of plasmonic nanoparticles also interact
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very strongly with light, and can even show evidence of deep strong light-matter

coupling with the dispersion curves of the crystals’s polariton modes showing a

vacuum Rabi split approaching 1.8× the isolated nanoparticle’s plasmon resonance

[185]. Octave-wide photonic band gaps can also form in plasmonic meta-crystals

for lattice separations approaching the Bragg condition due to purely radiative

coupling between the nanoparticles [186]. The metal volume fraction in these

meta-crystals are small enough that their optical behavior can be modeled through

the use of effective medium theories such as the Maxwell Garnett model [155, 187,

188]. These meta-crystals can also support collective Bloch modes that have a

transparency window within the band gap due to the vanishing dipole moment, and

are localized throughout the crystal volume [189].

In this chapter, we generalize our analytical model from chapters 3 and 4 to

a three-dimensional meta-crystal formed by multiple layers of dipolar nanoan-

tenna arrays. We first derive closed-form expressions for the dipole moment of

a nanoantenna in the crystal on excitation with a plane wave incident normally

on the interface of the crystal. We then derive the expressions for the effective

“microscopic" refractive index, reflectance and transmittance of a semi-infinite

meta-crystal and a thin meta-film, and calculate these optical parameters using

the same design parameters assumed in chapters 3 and 4. For our chosen material

and geometric parameters, we observe a maximum effective refractive index ≈ 4

along with an octave-wide photonic stop band at NIR frequencies. We find that the

reflectance and transmittance of the example meta-films calculated using our ana-

lytical model agree reasonably well with those calculated through full wave FDTD
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simulations with significantly reduced computational requirements. Our model

is thus considerably advantageous for exploring the huge structural and material

parameter space for the rational design of 3D-metacrystals, and complements the

existing effective medium theories in the regime of larger metal volume fractions

where they are less accurate [190].

To model the linear optical properties of a meta-crystal formed by dipolar

nanoantennas, we utilize the microscopic theory of plane-wise summation method

first discussed by Mahan and Obermeir [191] in the context of calculating the

reflectivity of normally incident light from a semi-infinite crystal of dipoles, which

was later extended by Philpott to oblique incidences and to thin films [192]. In this

method, at first, the dipole-dipole interaction over all atoms in each plane J parallel

to the interface of the crystal are summed up to yield the in-plane polarization PJ .

The inter-plane interaction terms – both near and far-field – then yield coupled

equations for PJ and the vector potential AJ . The solutions of these coupled

equations are the various normal “polariton" modes supported by the bulk crystal

with their own microscopic propagation constants and effective refractive indices.

For N inter-plane interaction terms that contribute to PJ , there are N +1 polariton

modes required to satisfy the boundary conditions at each interface. Hence, for

the situation where we only account for the nearest neighbor inter-plane coupling,

or when N = 1 and is a realistic approximation for our system parameters, there

will be two polariton modes supported by the crystal. Of these two modes, one of

them will have a negative real part of the effective index implying the presence

of an effective local magnetic response with a net negative permeability [193],
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and a much larger imaginary part of the effective index implying its evanescent

nature. Spatial dispersion also arises in our system as the field varies on the

scale of the lattice constant of the crystal, and the dipole-dipole interaction terms

throughout the crystal must be included to calculate the effective polarizability of

an individual atom within the crystal [191]. While this behavior has been called

non-local [191, 192], Sipe and Kranendonk [143] have clarified that all the spatially

dispersive contributions to the field at any point within the crystal can be included

in the local field, and that the local susceptibility would remain independent of

the wavevector. Hence, this spatially dispersive behavior is essentially local. In

section 5.2, we first extend our analytical model from previous chapters to a semi-

infinite meta-crystal formed by stacking an infinite number of dipolar arrays. In

section 5.2.1, we derive the optical properties of the meta-crystal assuming no near-

field coupling between the planes, which we refer to as “scenario one" throughout.

In section 5.2.2, we perform these derivations assuming that only the nearest

neighbor near-field coupling, which we refer to as “scenario two" throughout. Then

in sections 5.3.1-5.3.2, we derive the expressions for the optical properties of a

meta-film formed by stacking a finite number of dipolar arrays in scenario one and

scenario two, respectively. Lastly, we compare the reflectance and transmittance

spectra calculated using these expressions of representative meta-films with the

spectra obtained from FDTD simulations.
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5.2 Semi-Infinite Meta-crystal

The first system under study consists of planar square arrays of gold nanoantennas

with an in-plane lattice constant of a stacked in a semi-infinite meta-crystal and

surrounded by a homogeneous dielectric of refractive index n assumed to be the

same as that of BK7 glass. The separation between the arrays is denoted by b.

Both a and b are sub-wavelength in the spectral range of interest. Figure 5.1 shows

a representative diagram of the system along with the orientation of the coordinate

axes and the exciting plane wave. The permittivity data for gold is taken from

Johnson and Christy [70], and the refractive index data for BK7 glass is taken from

the Schott optical glass datasheets [131]. The nanoantenna parameters are assumed

to be the same as in our previous works [163, 194].The lattice planes are placed

at zJ = Jb, with J being an integer varying from 1 to ∞. The incident field on the

stack is assumed to have the form E0ei(ω̃nz−ωt)x̂. We model the electrodynamic

response of nanoantennas as point electric dipoles, wherein each nanoantenna in

the plane J has a dipole moment pJ , and is excited by the retarded incident field

E0ei(ω̃nJb−ωt)x̂, the field from all the dipoles within plane J, and the radiative and

near-field contributions from all the other dipole planes. We also assume that the

lattice points in all the planes are in perfect alignment.

For the x-polarized incident field, the x-polarized component of pJ is given by

pJ = ε0n2
αatomE(J), (5.1)

where we have dropped the suffixes for convenience. Here, αatom is the effec-
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Figure 5.1: Diagram showing the semi-infinite meta-crystal formed by stacked
layers of nanoantenna arrays excited by a normally incident plane wave E0
polarized along the length of the nanoantenna. The in-plane lattice constant for
each array is a, whereas the separation between each layer is b.

tive electrostatic polarizability of the nanoantenna including the effect of field

retardation over its volume,

E(J) = E0eiφJ +
iφ

2ε0a2bn2

∞

∑
K=1

eiφ |J−K|pK +L(J), (5.2)

with

φ = ω̃nb, (5.3)

and

L(J) =
π

ε0a3n2

∞

∑
K=1

T(|zJ− zK|)pK, (5.4)

and T(|zJ− zK| (see Eq. (E.1.1.6) of Appendix E.1 for the expression) denotes the

near-field contribution at plane K from the dipoles in the plane J assuming perfect

alignment between the lattices in the two planes. We solve this system of coupled

equations for two specific scenarios:

1. Each plane is only radiatively coupled to all the other planes: Here, only the
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in-plane non-radiative coupling term T (0) survives in Eq. (5.3), which gives

us

L(J) =
π

ε0a3n2 T (0)pJ =
1

ε0a2bn2 s0 pJ, (5.5)

where

s0 =
πbT (0)

a
. (5.6)

So each dipole plane essentially behaves as a continuous current sheet, and

the exact transverse arrangement of the lattice planes in the meta-crystal is

immaterial to its overall optical response. Additionally, there is no distinction

between a surface plane and a bulk plane, and pJ is proportional only to

the total electric field in plane J, which also implies that there is no spatial

dispersion.

2. Each plane is radiatively coupled to all the other planes and non-radiatively

coupled to its nearest-neighboring planes: For the bulk planes (or J > 1),

the near-field contribution L(J) is

L(J)=
π

ε0a3n2 [T (0)pJ+T (b)pJ+1+T (−b)pJ−1] =
1

ε0a2bn2 [s0 pJ+s1(pJ+1+ pJ−1)],

(5.7)

where we have used T (b) = T (−b), and defined

s1 =
πbT (b)

a
. (5.8)

For the plane at the surface (J = 1) of a semi-infinite meta-crystal, only the
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plane at J = 2 contributes to the near-field. So we have

L(1) =
1

ε0a2bn2 [s0 p1 + s1 p2]. (5.9)

For the meta-film, which we study later, we have another surface at L = N

for which only the plane at J = N−1 contributes to the near-field. So we

have

L(N) =
1

ε0a2bn2 [s0 pN + s1 pN−1]. (5.10)

We do have spatial dispersion in this scenario as pJ depends on the total electric

field in not only the J-th planes, but also the adjacent planes.

For the plane wave excitation considered here, we assume the normal mode

solutions to Eq. (5.1) to have the form of a single plane wave (scenario one), or a

superposition of two plane waves (scenario two) with complex effective refractive

index(ices). We first determine the dispersion relation of these effective indices

from Eq. (5.1). We then determine the modal amplitudes from the boundary

conditions at the interface, and hence pJ , from which we determine the reflectance

of the meta-crystal. We also note that these effective indices are microscopic

indices that relate the polarization and electric field at each lattice point within

the meta-crystal. In the continuum limit, wherein φ � 1 and the granularity of

the meta-crystal can be ignored, these microscopic indices would approach the

macroscopic refractive indices that would relate the macroscopic versions of the

polarization within the medium and the electric field.
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5.2.1 Scenario One: No Near-Field Coupling Between the

Dipole Planes

We assume the solution for Eq. (5.1) to have the form of a plane wave as follows

pJ = Pein0φJ, (5.11)

where the amplitude P and the refractive index enhancement n0 are to be deter-

mined. We call n0 the index enhancement as the total refractive index neff would

be the product of the background substrate’s index n and the enhancement n0, or

neff = nn0. See appendix E.2 for justification. Substituting Eqs. (5.6) and (5.11)

in (5.2), we get after simplification (detailed in appendix E.3)

E(J) = eiφJ

(
E0 +

iφP

2ε0a2bn2(e−i(n0−1)φ −1)

)
+

+
Pein0φJ

ε0a2bn2

(
φ sinφ/4

sin2 n0φ

2 − sin2 φ

2

)
+

s0Pein0φJ

ε0a2bn2 .

(5.12)

Here, the first term on the right with the phase term evolving as eiφJ is the plane

wave propagating within the crystal with the same phase velocity as in the back-

ground substrate (= c/n). The second and third terms on the right contribute to

the plane wave that propagates within the meta-crystal with a new effective phase
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velocity (= c/(nn0)). Now from Eqs. (5.1), (5.11) and (5.12), we have

Pein0φJ = ε0n2
αatomeiφJ

(
E0 +

iφP

2ε0a2bn2(e−i(n0−1)φ −1)

)
+

+Pein0φJ αatom

a2b

(
φ sinφ/4

sin2 n0φ

2 − sin2 φ

2

+ s0

)
.

(5.13)

Comparing the coefficients of the exponential terms on both sides, we note that the

coefficient of eiφJ should vanish. So we have

E0 +
iφP

2ε0a2bn2(e−i(n0−1)φ −1)
= 0, (5.14)

which means that the incident field within the crystal is canceled out by a compo-

nent of the field form the induced dipoles within the crystal. Eq. (5.14) is thus the

microscopic analog of the Ewald-Oseen extinction theorem [1], from which we

also get the expression for the dipole amplitude P as

P =
2iε0a2n

ω̃
(e−i(n0−1)φ −1)E0. (5.15)

Dispersion Relations for n0

Now, comparing the coefficients of ein0φJ , we get the dispersion relation for n0 as

1− αatom

a2b

(
φ sinφ/4

sin2 n0φ

2 − sin2 φ

2

+ s0

)
= 0, (5.16)
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which can also be written as

sin2 n0φ

2 − sin2 φ

2
φ sinφ/4

=
αatom
a2b

1− s0
αatom
a2b

. (5.17)

Eq. (5.17) is analogous to the Lorentz-Lorenz equation [1] that has to be solved to

yield n0. In appendix E.4, we show that this solution for n0 is given by

n0 =
1
φ

sgn[Im(ArccosZ0)]ArccosZ0, (5.18)

where

Z0 = cosφ +
φ sinφ

4ξ
, (5.19a)

ξ =−a2b
[
α
−1
atom−

1
a2b

s0

]
. (5.19b)

Now the polarization PJ of the J-th dipole plane, defined as the product of the

dipole moment pJ and the number density of nanoantennas in the plane (= 1/a2),

is given by

PJ =
pJ

a2 =
P

a2 ein0φJ. (5.20)
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Reflectance from the Meta-crystal

The reflected field ER at a plane z, where z < 0 is given by the sum of the fields

radiated by all the dipole planes. So we write [172]

ER(z) =
iω̃

2ε0n

∞

∑
K=1

PKeiω̃n|z−zK | =
iω̃

2ε0n

∞

∑
K=1

PKe−iω̃nzeiω̃nbK. (5.21)

Substituting Eq. (5.20) in (5.21) and simplifying, we get

ER(z) =
iω̃

2ε0a2n
Pe−iω̃nz

∞

∑
K=1

ei(n0+1)φK =
iω̃

2ε0a2n
Pe−iω̃nz 1

e−i(n0+1)φ −1
.

(5.22)

Now, using Eq. (5.15) in (5.22), we get

ER(z) =−e−iω̃nz e−i(n0−1)φ −1
e−i(n0+1)φ −1

E0, (5.23)

which gives us the reflectance from the meta-crystal as

R =

∣∣∣∣∣ ER(z)
E0e−iω̃nz

∣∣∣∣∣
2

=

∣∣∣∣∣e−i(n0−1)φ −1
e−i(n0+1)φ −1

∣∣∣∣∣
2

. (5.24)
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5.2.2 Scenario Two: Nearest-Neighbor Near-Field Cou-

pling Between the Dipole Planes

We now have two polariton solutions that are plane wave-like and propagate with

their own complex propagation constants and refractive indices. Hence, we define

pJ =
2

∑
α=1

Pαeinα φJ, (5.25)

where Pα=1,2 are the dipole amplitudes, and nα=1,2 the refractive index enhance-

ments of the two polariton modes that need to be determined. Also, the effective

indices of the two modes are neffα=1,2 = nnα=1,2. As before, we substitute Eq. (5.25)

in (5.2) and after some simplification (see appendix E.3), we get

E(J) = eiφJ

(
E0 +

1
2ε0a2bn2

2

∑
α=1

Pα

iφ
e−i(nα−1)φ −1

)
+

+
2

∑
α=1

Pα

einα φJ

ε0a2bn2

(
φ sinφ/4

sin2 nα φ

2 − sin2 φ

2

)
+L(J),

(5.26)

where L(J) is given by Eqs. (5.7)-(5.9). Once again, using Eqs. (5.1), (5.25)

and (5.26), we have

2

∑
α=1

Pαeinα φJ = ε0n2
αatomeiφJ

(
E0 +

1
2ε0a2bn2

2

∑
α=1

Pα

iφ
e−i(nα−1)φ −1

)
+

+ ε0n2
αatom

2

∑
α=1

Pα

einα φJ

ε0a2bn2

(
φ sinφ/4

sin2 nα φ

2 − sin2 φ

2

)
+ ε0n2

αatomL(J).

(5.27)
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The second and third terms on the right have phase factors that evolve with einα φJ

as on the left side of the equation. However, the first term on the right has

the phase factor that evolves with eiφJ as for a plane wave propagating in the

background substrate. Hence, its coefficient should disappear, which again gives

us the microscopic analog to the Ewald-Oseen extinction theorem [1] as

E0 +
1

2ε0a2bn2

2

∑
α=1

Pα

iφ
e−i(nα−1)φ −1

= 0. (5.28)

From the rest of the terms in Eq. (5.27) we get

2

∑
α=1

Pαeinα φJ =
αatom

a2b

2

∑
α=1

Pαeinα φJ

(
φ sinφ/4

sin2 nα φ

2 − sin2 φ

2

)
+ ε0n2

αatomL(J).

(5.29)

Dispersion Relations for nα=1,2
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Figure 5.2: The spectra of (a) real and (b) imaginary components of effective
refractive indices of metacrystal A (a = 250 nm, d = 110 nm) calculated analytically
in scenario one (neff,0 = nn0, blue, dot dashed) and in scenario two (neff,2 = nn2,
red, solid). The red dashed lines show the effective indices in scenario two with
dissipation excluded. (c) The spectra of real (blue) and imaginary (red) parts of
the permittivity of metacrystal A with (solid) and without (dashed) dissipation.
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To get the dispersion relations for nα=1,2, we consider Eq. (5.29) for the planes

in the bulk, or J > 1. Hence, substituting Eq. (5.7) in (5.29), we get

2

∑
α=1

Pαeinα φJ

(
1−αatom

a2b
φ sinφ/4

sin2 nα φ

2 − sin2 φ

2

)
−αatom

a2b
[s0 pJ+s1(pJ−1+ pJ+1)]= 0.

(5.30)

Then, using Eq. (5.25) in (5.30) we get

2

∑
α=1

Pαeinα φJ

(
1− αatom

a2b
φ sinφ/4

sin2 nα φ

2 − sin2 φ

2

− αatom

a2b
[s0+s1(e−inα φ +einα φ )]

)
= 0,

(5.31)

which can only be satisfied if the following relation holds true

1− αatom

a2b
φ sinφ/4

sin2 nα φ

2 − sin2 φ

2

− αatom

a2b
[s0 + s1(e−inα φ + einα φ )] = 0. (5.32)

Eq. (5.32) is the dispersion relation for nα=1,2, which can also be written as

sin2 nα φ

2 − sin2 φ

2
φ sinφ/4

=
αatom
a2b

1− αatom
a2b (s0 +2s1 cosnαφ)

. (5.33)

The two solutions nα to the above dispersion relation are given by (see ap-

pendix E.4)

nα =
1
φ

sgn[Im(ArccosZα)]ArccosZα , (5.34)
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where

Zα =
(4s1 cos2 φ

2 −ξ )±
√
(4s1 sin2 φ

2 −ξ )2 +4s1φ sinφ

4s1
, (5.35a)

ξ =−a2b
[
α
−1
atom−

1
a2b

(s0 +2s1)
]
. (5.35b)

From here on, we refer to the index for which the numerator in Zα is summed

with the subscript “1" (as n1 and neff,1 as the case maybe), and the index for

which the numerator in Zα is the difference of the two terms with the subscript

“2" (as n2 and neff,2). The dispersion of neff,2 will be qualitatively similar to

that of neff,0 in scenario one. The polariton “1" will have a larger Im[neff,α ], and

consequently higher losses. We also note that αatom is in general complex due

to absorption losses (or dissipative damping) within the nanoantenna that are

proportional to Im[α−1
atom]. The radiative and non-radiative interactions between the

nanoantennas are included in the s0 and s1 terms, respectively. So we can calculate

the parameters of an “ideal" meta-crystal in which there are no dissipation losses

by setting Im[α−1
atom]→ 0 in the calculation of indices nα .

Figs. 5.2(a) and (b) show the spectra of the real and imaginary parts of the

effective refractive indices neff,0 (blue, dot-dashed) and neff,2 (red, solid) for a

meta-crystal with lattice parameters a = 250 nm and b = 110 nm, which from here

on we refer to as the meta-crystal “A". Comparing the spectra for both indices, we

note that the effect of the nearest-neighbor interaction (the s1 dependent terms in

the dispersion relation) is to not only shift the polariton resonance, but also lead

to additional damping. This damping is quite evident in a significant broadening
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Figure 5.3: The spectra of (a) real and (b) imaginary components of effective
refractive indices of metacrystal A (a = 250 nm, d = 110 nm) calculated analytically
in scenario two ((neff,1 = nn1) with (solid) and without (dashed) dissipation.

of the resonance, which also consequently reduces the maximum achievable on-

resonance refractive index from≈ 4.32 to≈ 3.14. In red dashed lines, we show the

spectra of neff,2 calculated with the dissipative damping ignored. Unsurprisingly,

the exclusion of dissipation losses in the nanoantennas causes the resonant features

in both the real and imaginary indices to become slightly sharper. The maximum

on-resonance refractive index achievable for this “ideal" meta-crystal is ≈ 3.76

for the chosen lattice parameters. The enhancement of refractive index over that

of the background substrate, which has refractive index of 1.51, is also present

off-resonance at lower frequencies where the effective index levels off to ≈ 2 for

all three cases shown. We also show in Fig. 5.3 the spectra of the real (left) and

imaginary (right) parts of neff,1 with (solid) and without (dashed) dissipation. The

dispersion line of this polariton mode is quite different from both neff,0 and neff,2,

and as evidenced by the much larger value of its imaginary part throughout, is also

lossier than its counterpart. We also note that, unlike neff,2, the real part of neff,1

is negative throughout, which indicates that this polariton mode has an associated
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effective negative permeability. This result is not surprising even if we have only

included the electric dipolar response of each nanoantenna in our model as the

near-field coupling between the arrays could support anti-symmetric modes that

can form current loops with an effective magnetic response locally [193]. Indeed

the dark mode of the bilayered structure discussed in chapter 4 is an anti-symmetric

mode.
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Figure 5.4: The spectra of (a) real and (b) imaginary parts of effective refractive
indices, and the (c) real (solid) and imaginary (dashed) components of the
effective permittivities of metacrystal A (a = 250 nm, b = 110 nm), B (a = 250 nm,
b = 150 nm), and C (a = 220 nm, b = 110 nm) calculated analytically in scenario
two.

Fig. 5.2(c) shows the spectra of the real (blue) and imaginary (red) parts of

effective permittivity εeff,2(= n2
eff,2) calculated with (solid) and without (dashed)

dissipation for meta-crystal A. The effect of dissipation is once again evident

in widening of the much sharper resonant features present for the ideal meta-

crystal without any dissipation. Additionally, the meta-crystal behaves as a lossy

dielectric through most of the spectral range where Re[εeff,2] > 0 except in the

frequency range 300-376 THz where the behavior is metallic with Re[εeff,2]< 0.

The existence of a negative permittivity regime for the meta-crystal is not surprising
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as the system under study shares similarities with hyperbolic metamaterials [195].

However, a full exploration of this aspect is beyond the scope of this work. We

further note the presence of an epsilon-near-zero (ENZ) point at 376.5 THz where

εeff,2 = 0+0.264i, and the effective refractive index is 0.393+0.337i, which has

interesting implications for the various exotic optical phenomena that are possible

in this regime [8, 17].
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Figure 5.5: The variation of the maximum of real part of effective refractive index
neff,2 with lattice parameters a and b.

For the same nanoantenna design, the polariton dispersion can still be engi-

neered through the appropriate choice of lattice parameters a and b. The radiative

coupling between nanoantennas broadens the polariton resonance while coopera-

tively enhancing the dipole moment of each nanoantenna within the crystal. On

the other hand, as shown earlier in Fig. 5.2, the near-field coupling between the

planes leads to additional non-radiative damping and broadening of the polariton

resonance that reduces the maxima of both the real and imaginary parts of the

index. Hence, with regards to achieving the maximum possible refractive index
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in these meta-crystals, radiative and near-field interactions are competing effects.

In Fig. 5.4, we compare the spectra of the real (left panel) and imaginary (middle

panel) parts of the effective index neff,2 of meta-crystals with three different lattice

parameters: A with a = 250 nm and b = 110 nm (blue, solid), B with a = 250 nm

and b = 150 nm (red, dot-dashed), and C with a = 220 nm and b = 110 nm (green,

dashed). Of the three configurations, C has the largest number density of nanoan-

tennas (= 1
a2b ), and hence the highest radiative coupling between the nanoantennas

and the highest near-field coupling between the planes. Consequently, the maxima

of real and imaginary parts of the refractive index are the highest for this configura-

tion along with the widest resonance bandwidth. On the other hand, configuration

B has the smallest number density and the largest separation between the planes.

So even though the radiative coupling between the nanoantennas is reduced, the

effect of smaller interplane near-field coupling than in configuration A leads to

further narrowing of the resonance linewidth, which leads to a comparatively larger

effective index.

In Fig. 5.5, we show the variation of the maximum of Re[neff,2] with the lattice

parameters a and b. Reducing the in-plane lattice constant a increases the maximum

achievable index monotonically due to in-plane radiative coupling that increases

with 1/a2 [163]. However, the maximum index does not increase monotonically

with inter-plane separation b due to the aforementioned counteracting contributions

from the inter-plane near-field coupling. The maximum achievable refractive index

of ≈ 4.02 at 1312 nm occurs for the lattice parameters a = 210 nm and b = 130

nm with the same nanoantenna design parameters. For in-plane (interplane) lattice
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constants below 210 nm (100 nm), the shape-dependent near-field interactions

become significant enough that we cannot use the current point dipole model

without further corrections. So we set a = 210 nm and b = 105 nm as the lower

limits for our parameter sweep. Also,for b > 200 nm, we start to satisfy the Bragg

criterion (b = λ/4n) in the spectral range under study. So we set the upper limit

of for b as 200 nm. For b > 200 nm, another high reflectance stop band appears

at the higher frequencies and redshifts with increasing b. At b = 350 nm, the

Bragg condition and the polariton resonance overlap, which leads to an even wider

stop band with a spectral shape that has been previously reported in Refs. [186,

189]. See appendix E.10 for further discussion and plots of the spectra. Lastly, in

Fig. 5.4(c), we show the spectra of effective permittivity for the three meta-crystal

configurations. The variation of resonance linewidth and the maximum permittvity

is similar to that of the indices. The key takeaway here is that the choice of lattice

parameters can be used to tune the ENZ point and the negative permittivity regime

for the meta-crystal.

Reflectance from the Meta-crystal

To determine the dipole amplitudes Pα , we use the boundary conditions at the

surface (J = 1) and the extinction relation (5.28). Substituting J = 1 in Eq. (5.31),

we get

2

∑
α=1

Pαeinα φ

(
1− αatom

a2b
φ sinφ/4

sin2 nα φ

2 − sin2 φ

2

− αatom

a2b
[s0+ s1(e−inα φ +einα φ )]

)
= 0,

(5.36)
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Figure 5.6: The reflectance spectra of meta-crystals A (blue, solid), B (red,
dot-dashed) and C (green, dashed) calculated using the analytical model in
scenario (a) one and (b) two, respectively.

Also, substituting J = 1 in (5.29) and using Eq. (5.9) for L(1), we get

2

∑
α=1

Pαeinα φ

(
1− αatom

a2b
φ sinφ/4

sin2 nα φ

2 − sin2 φ

2

− αatom

a2b
[s0 + s1einα φ)]

)
= 0. (5.37)

For both Eqs. (5.36) and (5.37) to hold true, we must have

2

∑
α=1

Pα = 0. (5.38)

The above boundary condition relating the polarization amplitudes of the two

polaritons is analogous to the Dirichlet additional boundary conditions (abc) in-

troduced by Pekar in the context of describing propagation of light in crystals

close to strong exciton resonances where the macroscopic polarization is spatially

dispersive [196]. These abc enforce the disappearance of macroscopic polarization

due to the two polaritons excited within the crystal at the crystal boundary.

Now solving Eqs. (5.28) and (5.38) together ( see appendix E.5), we get the
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dipole amplitudes Pα as follows

P1 =
2iε0a2n

ω̃

(
(e−i(n1−1)φ −1)(e−i(n2−1)φ −1)

(e−i(n2−1)φ − e−i(n1−1)φ )

)
E0, (5.39a)

P2 =−
2iε0a2n

ω̃

(
(e−i(n1−1)φ −1)(e−i(n2−1)φ −1)

(e−i(n2−1)φ − e−i(n1−1)φ )

)
E0. (5.39b)

We now follow similar steps as in scenario one (see appendix E.5) to calculate the

reflected field now that pJ is determined, and we get

R =

∣∣∣∣∣(e−i(n1−1)φ −1)(e−i(n2−1)φ −1)
(e−i(n1+1)φ −1)(e−i(n2+1)φ −1)

∣∣∣∣∣
2

. (5.40)

Fig. 5.6 compares the reflectance spectra of the meta-crystals A (blue, solid), B

(red, dot-dashed) and C (green, dashed) calculated with (right) and without (left)

including the nearest-neighbor near-field coupling. A large on-resonance index

contrast between the surrounding medium and the meta-crystal leads to a very

high reflectance. This region of high reflectance is essentially a photonic stop

band that spans almost an octave for the three meta-crystals under consideration.

We note that this stop band is qualitatively different from the photonic band gap

in (plasmonic) photonic crystals as the interplane spacing b considered here is

smaller than the Bragg criterion (nb < λ0/4, where λ0 ≈ 1 µm and n = 1.51 for

BK7 glass) [186, 188]. The stop band here depends on the characteristics of the

polariton mode(s) excited in the volume of the meta-crystal instead of arising from

interference at the Bragg condition as in a photonic crystal. Further, comparing the

reflectances in both scenarios, we note that the effect of nearest-neighbor interplane
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near-field coupling is to broaden the stop band, which is consistent with its effect

on broadening the spectrum of neff,2 shown earlier in Fig. 5.2. However, the overall

increase in the reflectance in scenario two cannot be understood from the behavior

of neff,2 versus neff,0 as the contribution from the polariton “1" must also be taken

into consideration at the interface, which can also be noted from the expression

for R in Eq. (5.40). From Fig. 5.3, we see that polariton “1" has a large negative

Re[neff,1] along with a large positive Im[neff,1], and hence has an even larger index

contrast with the surrounding medium than polariton “2". Hence, we observe a

further enhancement of the reflectance in scenario two over scenario one.

5.3 N-Layered Meta-Film

When now consider a thin film comprised of N dipolar planes with the same trans-

verse and longitudinal lattice constants as the semi-infinite meta-crystal. Fig. 5.7

shows a diagram of the meta-film and the excitation geometry. The planes are

located at z = b, z = 2b and so on until z = Nb. The dipole moment in the J-th

layer is again given by Eq. (5.1), where E(J) now becomes

E(J) = E0eiφJ +
iφ

2ε0a2bn2

N

∑
K=1

eiφ |J−K|pK +L(J). (5.41)

The effective refractive index, being a bulk parameter, should remain the same

for the meta-film and the semi-infinite meta-crystal. However, in contrast to the

meta-crystal, the meta-film has an additional interface or surface layer, which mod-
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Figure 5.7: Diagram showing the meta-film with N stacked layers of nanoantenna
arrays. The excitation configuration, and the material and geometric parameters
are taken to be the same as for the semi-infinite meta-crystal.

ifies the fields at each plane. The reflections from an additional boundary should

cause the reflectance spectrum to exhibit additional features. Also, analogous to

thin dielectric films, we will now have transmission through the meta-film.

5.3.1 Meta-film Scenario One: No Near-Field Coupling

Between the Dipole Planes

From Eqs. (5.1), (5.6) and (5.41), the dipole moment pJ is given by

pJ = ε0n2
αatom

(
E0eiφJ + iC

N

∑
K=1

eiφ |J−K|pK +
1

ε0n2a2b
s0 pJ

)
, (5.42)

where C = φ

2ε0a2bn2 . We now define

αs0 =
αatom

1− αatom
a2b s0

, (5.43)
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to write Eq. (5.41) in a simpler form and also reference the incident field with

respect to half longitudinal lattice spacing before the first plane, or to the position

z = b/2, or

EI = E0e
1
2 iφ , (5.44)

and

pJ = ε0n2
αs0EJ = ε0n2

αs0

(
EIe

iφ
(

J− 1
2

)
+ iC

N

∑
K=1

eiφ |J−K|pK

)
, (5.45)

where EJ is the electric field at z = Jb. The polariton solutions will still be

characterized by a single effective refractive index as in the semi-infinite crystal.

However, due to the additional boundary in a thin film, we will now have both

forward and backward propagating polaritons. So we assume solutions for pJ of

the form

pJ = A′0eiΦ0(J− 1
2 )+B′0e−iΦ0

(
J− 1

2

)
, (5.46)

where the phase Φ0 (= n0φ , with n0n being the effective refractive index) and the

coefficients A′0 and B′0 have to be determined.
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Dispersion Relations for n0

Doing the sums in Eq. (5.42), we get (see appendix E.6)

pJ = ε0n2
αs0

[
eiφ
(

J− 1
2

)(
iA′0C

e−
1
2 i(φ−Φ0)

1− e−i(φ−Φ0)
+ iB′0C

e−
1
2 i(φ+Φ0)

1− e−i(φ+Φ0)
+EI

)

+ e−iφJ

(
iA′0e−

1
2 iΦ0C

ei(φ+Φ0)N

1− e−i(φ+Φ0)
+ iB′0e

1
2 iΦ0C

ei(φ−Φ0)N

1− e−i(φ−Φ0)

)

+ eiΦ0(J− 1
2 )

(
− iA′0C

1
1− e−i(φ−Φ0)

− iA′0C
1

1− e−i(φ+Φ0)
+ iA′0C

)

+ e−iΦ0(J− 1
2 )

(
− iB′0C

1
1− e−i(φ+Φ0)

− iB′0C
1

1− e−i(φ−Φ0)
+ iB′0C

)]
.

(5.47)

For both Eqs. (5.46) and (5.47) to be true, the following must be satisfied

iA′0C
e−

1
2 i(φ−Φ0)

1− e−i(φ−Φ0)
+ iB′0C

e−
1
2 i(φ+Φ0)

1− e−i(φ+Φ0)
+EI = 0, (5.48a)

iA′0e−
1
2 iΦ0C

ei(φ+Φ0)N

1− e−i(φ+Φ0)
+ iB′0e

1
2 iΦ0C

ei(φ−Φ0)N

1− e−i(φ−Φ0)
= 0, (5.48b)

ε0n2
αs0

(
− iA′0C

1
1− e−i(φ−Φ0)

− iA′0C
1

1− e−i(φ+Φ0)
+ iA′0C

)
= A′0, (5.48c)

ε0n2
αs0

(
− iB′0C

1
1− e−i(φ+Φ0)

− iB′0C
1

1− e−i(φ−Φ0)
+ iB′0C

)
= B′0. (5.48d)

Similar to the meta-crystal, Eq. (5.48a) signifies that the incident field EI interferes

destructively with the fields from dipoles within the film that propagate with the

same phase velocity as the incident field in the surrounding medium (= c/n).

Eq. (5.48b) signifies that the backward propagating fields from all the dipoles in

the meta-film that propagate with the same phase velocity as in the surrounding
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medium should also vanish. Thus, the only surviving fields at each plane J will

be the forward and backward propagating polaritons introduced in Eq. (5.46).

Eqs. (5.48c) and (5.48d)) are the same, and can be simplified (see appendix E.7) to

give
sin2 Φ0

2 − sin2 φ

2
φ sinφ/4

=
αs0

a2b
=

αatom
a2b

1− αatom
a2b s0

≡ χ0, (5.49)

which is the dispersion relation for n0 that we obtained earlier in Eq. (5.17).

Fields at the Plane z = Jb

We now determine the amplitudes of forward (A′0 ) and backward (B′0) propagating

modes. From Eq. (5.48b), we have

B′0
A′0

= e2iNΦ0

(
e−iφ − e−iΦ0

1− e−i(φ+Φ0)

)
. (5.50)

And from Eqs. (5.45) and (5.46), we have

EJ = E+
J +E−J =

A′0
ε0n2αs0

eiΦ0(J− 1
2 )+

B′0
ε0n2αs0

e−iΦ0(J− 1
2 ), (5.51)

where E+
J (E−J ) denote the forward (backward) propagating polariton fields. We

can define the meta-film boundaries to be between z = b/2 and z = (N + 1/2)b

even though the surface planes are located at z = b and z = Nb. Then we have from

Eq. (5.51)
E−

N+ 1
2

E+
N+ 1

2

=
B′0
A′0

e−i2NΦ0, (5.52)
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and using Eq. (5.50), we get

E−
N+ 1

2

E+
N+ 1

2

=
e−iφ − e−iΦ0

1− e−i(φ+Φ0)
≡ r10,0, (5.53)

where we have introduced r10,0 as the effective Fresnel reflection coefficient from

the surrounding medium into the meta-film. The field inside the film at the interface

z = b/2 can be obtained from Eq. (5.51) as

E 1
2
=

A′0
ε0n2αs0

+
B′0

ε0n2αs0

= E++E−, (5.54)

where E+ =
A′0

ε0n2αs0
and E− =

B′0
ε0n2αs0

.

Now using Eqs. (5.50) and (5.53), we can simplify (5.48a) as

EI =−iA′0C

(
e−

1
2 i(φ−Φ0)

1− e−i(φ−Φ0)
+ r10,0ei2NΦ0

e−
1
2 i(φ+Φ0)

1− e−i(φ+Φ0)

)
, (5.55)

or

EI =−iA′0C
e−

1
2 i(φ−Φ0)

1− e−i(φ−Φ0)
(1− r2

10,0ei2NΦ0). (5.56)

Using Eqs. (5.54) in (5.56), we have

EI =−iε0n2
αs0C

e−
1
2 i(φ−Φ0)

1− e−i(φ−Φ0)
(1− r2

10,0ei2NΦ0)E+. (5.57)
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In appendix E.7, we show that

iε0n2
αs0C =

(1− e−i(φ−Φ0))(1− e−i(φ−Φ0))

e−2iφ −1
, (5.58)

which we substitute in Eq. (5.57) to get

EI = E+
1− e−i(φ+Φ0)

(1− e−2iφ )e
1
2 i(φ−Φ0)

(1−r2
10,0ei2NΦ0)=

1
t01,0

(1−r2
10,0ei2NΦ0)E+, (5.59)

where

t01,0 ≡
(1− e−2iφ )e

1
2 (φ−Φ0)

1− e−i(φ+Φ0)
. (5.60)

Here, we have introduced t01,0 as the effective transmission coefficient into the

meta-film from the surrounding medium. Now going back to Eq. (5.51), we have

EJ = E+

(
eiΦ0(J− 1

2 )+
B′0
A′0

e−iΦ0(J− 1
2 )

)
, (5.61)

and using Eqs. (5.53) and (5.59) we get

EJ =
t01,0

1− r2
10,0e2iNΦ0

(
eiΦ0(J− 1

2 )+ r10,0e2iNΦ0e−iΦ0(J− 1
2 )
)

EI. (5.62)

So we have determined the expression for the electric field at plane z = Jb.

Transmittance and Reflectance from the Meta-film

The transmitted field ET through the meta-film is the forward propagating field

plane wave at a plane z > Nb. We assume z = (N + 1
2)b, and we write from
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Eq. (5.45)

ET = EN+ 1
2
= EIeiφN + iC

N

∑
K=1

eiφ(N+ 1
2−K)pK, (5.63)

which on further simplification (see appendix E.8) gives us

ET =
t01,0t10,0eiNΦ0

1− r2
10,0e2iNΦ0

EI. (5.64)

Here we have defined

t10,0 ≡
(1− e−2iΦ0)e

1
2 i(Φ0−φ)

1− e−i(φ+Φ0)
(5.65)

as the effective Fresnel transmission coefficient from the meta-film to the surround-

ing medium with the following relation holding true as in continuum electrody-

namics

1− r2
10,0 = t10,0t01,0. (5.66)

Hence, the effective transmittance of the meta-film is

T =

∣∣∣∣∣ET

EI

∣∣∣∣∣
2

=

∣∣∣∣∣ t01,0t10,0eiNΦ0

1− r2
10,0e2iNΦ0

∣∣∣∣∣
2

. (5.67)

The reflected field ER is similarly given by the backward propagating wave

from the film at the plane z < b. Assuming z = b
2 , we have

ER = iC
N

∑
K=1

eiφ(K− 1
2 )pK, (5.68)
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which we can write after further simplification (see appendix E.9) as

ER =
r01,0 + r10,0e2iNΦ0

1− r2
10,0e2iNΦ0

EI =

(
r01,0 +

t01,0r10,0t10,0e2iNΦ0

1− r2
10,0e2iNΦ0

)
EI. (5.69)

Here we have defined

r01,0 =−r10,0 (5.70)

as the effective Fresnel reflection coefficient from the meta-film into the surround-

ing medium. Hence the effective reflectance of the meta-film is given by

R =

∣∣∣∣∣ER

EI

∣∣∣∣∣
2

=

∣∣∣∣∣r01,0 +
t01,0r10,0t10,0e2iNΦ0

1− r2
10,0e2iNΦ0

∣∣∣∣∣
2

. (5.71)

5.3.2 Meta-film Scenario Two: Nearest-Neighbor Near-

Field Coupling Between the Planes

From Eqs. (5.1), (5.7) and (5.41), the dipole moment pJ can be written as

pJ = ε0n2
αatomE(J) = ε0n2

αatom

[
EIeiφ(J− 1

2 )+ iC
N

∑
K=1

eiφ |J−K|pK +L(J)
]
, (5.72)

where we have once again referenced the incident field as in Eq. (5.44). We will

again have two polariton solutions, as in the semi-infinite meta-crystal, each with

forward and backward propagating components due to the additional boundary in
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the meta-film. So we assume

pJ =
2

∑
α=1

(A′αeiΦα (J− 1
2 )+B′αe−iΦα (J− 1

2 )), (5.73)

where the phases Φα=1,2 (= nα=1,2φ ), with nnα being the effective refractive

indices of the two polariton solutions), and the amplitudes A′
α=1,2 and B′

α=1,2 are

to be determined.

Dispersion Relations for nα

Doing the sums in Eq.(5.72) (see appendix E.6), we get

pJ = ε0n2
αatom

[
eiφ(J− 1

2 )

{
EI +

2

∑
α=1

(
iA′αC

e−i 1
2 (φ−Φα )

1− e−i(φ−Φα )
+ iB′αC

e−i 1
2 (φ+Φα )

1− e−i(φ+Φα )

)}
+

+ e−iφJ
2

∑
α=1

(
iA′αCe−

1
2 iΦα

ei(φ+Φα )N

1− e−i(φ+Φα )
+ iB′αC

1
2 iΦα

ei(φ−Φα )N

1− e−i(φ−Φα )

)
+

+
2

∑
α=1

{
eiΦα (J− 1

2 )

(
− iA′αC

1
1− e−i(φ−Φα )

− iA′αC
1

1− e−i(φ+Φα )
+ iA′αC

)
+

+ e−iΦα (J− 1
2 )

(
− iB′αC

1
1− e−i(φ+Φα )

− iB′αC
1

1− e−i(φ−Φα )
+ iB′αC

)}
+L(J)

]
,

(5.74)
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where

L(J)=



1
ε0n2a2b ∑

2
α=1[{A′αeiΦα (J− 1

2 )+B′αe−iΦα (J− 1
2 )}·

·{s0 + s1(eiΦα + e−iΦα )}], if1 < J < N,

1
ε0n2a2b ∑

2
α=1[A

′
αei Φα

2 (s0 + s1eiΦα )+B′αe−i Φα
2 (s0 + s1e−iΦα )], ifJ = 1,

1
ε0n2a2b ∑

2
α=1[A

′
αeiΦα (N− 1

2 )(s0 + s1e−iΦα )+B′αe−iΦα (N− 1
2 )(s0 + s1eiΦα )], ifJ = N.

(5.75)

To get the dispersion relations for nα , we use the expression for pJ in the bulk, or

when 1 < J < N. Substituting Eq. (5.75) in (5.74) and combining the terms with

the same J dependence, we have

pJ = ε0n2
αatom

[
eiφ(J− 1

2 )

{
EI +

2

∑
α=1

(
iA′αC

e−i 1
2 (φ−Φα )

1− e−i(φ−Φα )
+ iB′αC

e−i 1
2 (φ+Φα )

1− e−i(φ+Φα )

)}
+

+ e−iφJ
2

∑
α=1

(
iA′αCe−

1
2 iΦα

ei(φ+Φα )N

1− e−i(φ+Φα )
+ iB′αCe

1
2 iΦα

ei(φ−Φα )N

1− e−i(φ−Φα )

)
+

+
2

∑
α=1

{
eiΦα (J− 1

2 )

(
− iA′αC

1
1− e−i(φ−Φα )

− iA′αC
1

1− e−i(φ+Φα )
+ iA′αC+

+
A′α

ε0n2a2b

(
s0 + s1(eiΦα + e−iΦα )

))
+ e−iΦα (J− 1

2 )

(
− iB′αC

1
1− e−i(φ+Φα )

−

− iB′αC
1

1− e−i(φ−Φα )
+ iB′αC+

B′α
ε0n2a2b

(
s0 + s1(eiΦα + e−iΦα )

))}]
.

(5.76)
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Comparing the coefficients of the exponentials in Eqs. (5.73) and (5.76), we get

EI + iC
2

∑
α=1

(
A′α

e−i 1
2 (φ−Φα )

1− e−i(φ−Φα )
+B′α

e−i 1
2 (φ+Φα )

1− e−i(φ+Φα )

)
= 0, (5.77a)

iC
2

∑
α=1

(
A′αe−

1
2 iΦα

ei(φ+Φα )N

1− e−i(φ+Φα )
+B′αe

1
2 iΦα

ei(φ−Φα )N

1− e−i(φ−Φα )

)
= 0, (5.77b)

2

∑
α=1

A′αeiΦα (J− 1
2 )

[
iC

(
1− 1

1− e−i(φ−Φα )
− 1

1− e−i(φ+Φα )

)
+

+
1

ε0n2a2b

(
s0 + s1(eiΦα + e−iΦα )

)
− 1

ε0n2αatom

]
= 0,

(5.77c)

2

∑
α=1

B′αe−iΦα (J− 1
2 )

[
iC

(
1− 1

1− e−i(φ−Φα )
− 1

1− e−i(φ+Φα )

)
+

+
1

ε0n2a2b

(
s0 + s1(eiΦα + e−iΦα )

)
− 1

ε0n2αatom

]
= 0.

(5.77d)

For both Eqs. (5.77c) and (5.77d) to be satisfied, we must have

iC

(
1− 1

1− e−i(φ−Φα )
− 1

1− e−i(φ+Φα )

)
+

+
1

ε0n2a2b

(
s0 + s1(eiΦα + e−iΦα )

)
− 1

ε0n2αatom
= 0,

(5.78)

which simplifies to (see appendix E.7)

sin2 Φα

2 − sin2 φ

2
φ sinφ/4

=
αatom
a2b

1− αatom
a2b (s0 +2s1 cosΦα)

≡ χα , (5.79)

which is again the same dispersion relation that we obtained earlier for the polari-

tons in a semi-infinite meta-crystal. The solutions for Φα = (φnα) are then given
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by Eqs. (5.34)-(5.35). This result is not surprising as the presence of an additional

boundary for a meta-film should not affect the mode dispersion in the bulk.

Fields at the Plane z = Jb

We now calculate the four mode amplitudes A′α and B′α . Of the four equations

required to calculate these amplitudes, Eqs. (5.77a) and (5.77b) are the first two.

The remaining two equations are obtained by applying the boundary conditions

at J = 1 and J = N to the expression for pJ in Eq. (5.74).As before, Eq. (5.77a)

implies that the forward propagating incident field EI vanishes within the meta-film

due to radiative contributions from all the dipoles within the film. Eq. (5.77b) then

implies that all backward propagating fields from the dipoles within the meta-film

with the same phase velocity as in the surrounding medium (= c/n) also vanish.

From Eq. (5.77b) we have

2

∑
α=1

A′α
eiΦα (N+ 1

2 )

1− e−i(φ+Φα )

{
1+

B′α
A′α

e−2iΦα (N− 1
2 )

(
1− e−i(φ+Φα )

1− e−i(φ−Φα )

)}
= 0. (5.80)

So the coefficients of the exponentials eiΦα (N+ 1
2 ) should vanish on both sides,

which gives us

1+
B′α
A′α

e−2iΦα (N− 1
2 )

(
1− e−i(φ+Φα )

1− e−i(φ−Φα )

)
= 0. (5.81)

We can then write
B′α
A′α

= r10,αe2iNΦα , (5.82)
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where we have introduced r10,α as the effective Fresnel reflection coefficient from

the meta-film to the surrounding medium for the polariton mode α , which is given

by

r10,α =
e−iφ − e−iΦα

1− e−i(φ+Φα )
. (5.83)

Now from Eqs. (5.72) and (5.73), we have

E(J) =
2

∑
α=1

(E+
J,α +E−J,α) =

2

∑
α=1

(
A′α

ε0n2αatom
eiΦα (J− 1

2 )+
B′α

ε0n2αatom
e−iΦα (J− 1

2 )

)
,

(5.84)

where E+
J,α (E−J,α ) is the forward (backward) propagating polariton mode α . Also,

we define

E±J =
2

∑
α=1

E±J,α . (5.85)

As in scenario one, we define the field just inside the first boundary of the meta-film

at z = b
2 as

E+ = E+
1
2
=

1
ε0n2αatom

2

∑
α=1

A′α . (5.86)

Now we consider the dipole moments at the boundary layers J = 1 and J = N. For
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the first boundary (J = 1), we get from Eqs. (5.74) and (5.75)

p1 =
2

∑
α=1

(A′αei Φα
2 +B′αe−i Φα

2 )

= ε0n2
αatom

[
eiφ 1

2

{
EI +

2

∑
α=1

(
iA′αC

e−i 1
2 (φ−Φα )

1− e−i(φ−Φα )
+ iB′αC

e−i 1
2 (φ+Φα )

1− e−i(φ+Φα )

)}
+

+ e−iφ
2

∑
α=1

(
iA′αCe−

1
2 iΦα

ei(φ+Φα )N

1− e−i(φ+Φα )
+ iB′αCe

1
2 iΦα

ei(φ−Φα )N

1− e−i(φ−Φα )

)
+

+
2

∑
α=1

{
ei Φα

2

(
− iA′αC

1
1− e−i(φ−Φα )

− iA′αC
1

1− e−i(φ+Φα )
+ iA′αC+

+
A′α

ε0n2a2b

(
s0 + s1eiΦα

))
+ e−i Φα

2

(
− iB′αC

1
1− e−i(φ+Φα )

−

− iB′αC
1

1− e−i(φ−Φα )
+ iB′αC+

B′α
ε0n2a2b

(
s0 + s1e−iΦα

))}]
.

(5.87)

Comparing the coefficients of e±i Φα
2 on both sides of Eq. (5.87), we get the follow-

ing equations

2

∑
α=1

A′αei Φα
2

[
iC

(
1− 1

1− e−i(φ−Φα )
− 1

1− e−i(φ+Φα )

)
+

+
1

ε0n2a2b

(
s0 + s1eiΦα

)
− 1

ε0n2αatom

]
= 0,

(5.88a)

2

∑
α=1

B′αe−i Φα
2

[
iC

(
1− 1

1− e−i(φ−Φα )
− 1

1− e−i(φ+Φα )

)
+

+
1

ε0n2a2b

(
s0 + s1e−iΦα

)
− 1

ε0n2αatom

]
= 0.

(5.88b)
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Now the Eqs. (5.77c) and (5.77d) also hold true for J = 1, which gives us

2

∑
α=1

A′αei Φα
2

[
iC

(
1− 1

1− e−i(φ−Φα )
− 1

1− e−i(φ+Φα )

)
+

+
1

ε0n2a2b

(
s0 + s1(eiΦα + e−iΦα )

)
− 1

ε0n2αatom

]
= 0,

(5.89a)

2

∑
α=1

B′αe−i Φα
2

[
iC

(
1− 1

1− e−i(φ−Φα )
− 1

1− e−i(φ+Φα )

)
+

+
1

ε0n2a2b

(
s0 + s1(eiΦα + e−iΦα )

)
− 1

ε0n2αatom

]
= 0.

(5.89b)

So from Eqs. (5.88a) and (5.89a), and then from Eqs. (5.88b) and (5.89b), we have

2

∑
α=1

A′αe−i Φα
2 = 0, (5.90a)

2

∑
α=1

B′αei Φα
2 = 0. (5.90b)

Solving Eqs. (5.86) and (5.90a) together, we get

A′1 = a1ε0n2
αatomE+;a1 =

1

1− e−
i
2 (Φ1−Φ2)

(5.91a)

A′2 = a2ε0n2
αatomE+;a2 = 1−a1. (5.91b)

So with Eqs. (5.82) and (5.91), we know A′α and B′α in terms of E+. To now obtain



CHAPTER 5. LINEAR OPTICAL PROPERTIES OF META-CRYSTALS OF DIPOLAR
NANOANTENNAS 120

E+ in terms of the known incident field EI , we rewrite Eq. (5.77a) as

EI =−iC
2

∑
α=1

A′α
e−i 1

2 (φ−Φα )

1− e−i(φ−Φα )

(
1+

B′α
A′α

e−iΦα
1− e−i(φ−Φα )

1− e−i(φ+Φα )

)

=−iC
2

∑
α=1

A′α
e−i 1

2 (φ−Φα )

1− e−i(φ−Φα )

(
1+ r10,αei2NΦα

e−iΦα − e−iφ

1− e−i(φ+Φα )

)

=−iC
2

∑
α=1

A′α
e−i 1

2 (φ−Φα )

1− e−i(φ−Φα )

(
1− r2

10,αei2NΦα

)
,

(5.92)

where we have used Eqs. (5.82) and (5.83) in the second and third steps. Now

substituting Eqs. (5.91) above, we get

EI =−
iCε0n2αatomE+

1− e−
i
2 (Φ1−Φ2)

[
e−i 1

2 (φ−Φ1)

1− e−i(φ−Φ1)

(
1− r2

10,1ei2NΦ1
)
−

− e−i 1
2 (Φ1−Φ2)e−i 1

2 (φ−Φ2)

1− e−i(φ−Φ2)

(
1− r2

10,2ei2NΦ2
)]

.

(5.93)

We also have (see appendix E.7)

iCε0n2
αatom =

αatom

a2bχα

(1− e−i(φ−Φα ))(1− e−i(φ+Φα ))

e−2iφ −1
, (5.94)

where χα has been defined previously in Eq. (5.79). So from Eqs. (5.94) in (5.93),



CHAPTER 5. LINEAR OPTICAL PROPERTIES OF META-CRYSTALS OF DIPOLAR
NANOANTENNAS 121

we get

EI = E+

[(
αatom

a2bχ1

)( 1

1− e−
i
2 (Φ1−Φ2)

)
e−

i
2 (φ−Φ1)(1− e−i(φ+Φ1))

1− e−2iφ

(
1− r2

10,1ei2NΦ1
)
+

+
(

αatom

a2bχ2

)( −e−
i
2 (Φ1−Φ2)

1− e−
i
2 (Φ1−Φ2)

)
e−

i
2 (φ−Φ2)(1− e−i(φ+Φ2))

1− e−2iφ

(
1− r2

10,2ei2NΦ2
)]

.

(5.95)

Now we define the effective Fresnel transmission coefficients for the polariton α

from the surrounding medium into the meta-film as

t01,α = t ′01,α
(1− e−2iφ )e

i
2 (φ−Φα )

1− e−i(φ+Φα )
, (5.96)

with

t ′01,α =

(
αatomaα

a2bχα

)−1

, (5.97)

and aα has been introduced previously in Eqs. (5.91). We can then rewrite Eq.(5.95)

in a more straightforward form as

EI =
2

∑
α=1

E+,α , (5.98)

where

E+,α =
1

t01,α
(1− r2

10,αei2NΦα )E+. (5.99)

We note the similarities in the expressions for EI obtained for scenario one

(Eq. (5.59)) and those obtained for scenario two (Eqs. (5.98)-(5.99)). Of course in
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scenario two, we must sum up the field contributions from both polariton modes in

the film in contrast to scenario one, wherein we only have the one polariton mode.

We now go back to the expression for E(J) in Eq. (5.85), and we have

E(J) =
1

ε0n2αatom

2

∑
α=1

A′α

(
eiΦα (J− 1

2 )+
B′α
A′α

e−iΦα (J− 1
2 )

)
. (5.100)

Then using Eqs. (5.82) and (5.91) above, we get

E(J) = E+

2

∑
α=1

aα [eiΦα (J− 1
2 )+ r10,αei2NΦα e−iΦα (J− 1

2 )]. (5.101)

And finally, using Eqs. (5.98)-(5.99) above, we get the final expression for the

electric field in plane J as

E(J) = EI
∑

2
α=1 aα [eiΦα (J− 1

2 )+ r10,αei2NΦα e−iΦα (J− 1
2 )]

∑
2
α=1

1
t01,α

(1− r2
10,αei2NΦα )

. (5.102)

We also then have the expression for the dipole moment pJ as

pJ = ε0n2
αatomEI

∑
2
α=1 aα [eiΦα (J− 1

2 )+ r10,αei2NΦα e−iΦα (J− 1
2 )]

∑
2
α=1

1
t01,α

(1− r2
10,αei2NΦα )

. (5.103)

Transmittance and Reflectance from the Meta-film

The transmitted field ET (z) through the meta-film is the sum of the incident field

and the forward propagating radiative contributions from all the dipole planes at a
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plane z > Nb. So we write

ET (z) = EIe−i φ

2 eiω̃nz + iC
N

∑
J=1

eiω̃n(z−bJ)pJ, (5.104)

where pJ is given by Eq. (5.103). The above expression simplifies to (see ap-

pendix E.8)

ET (z) =−iCe−i φ

2 eiω̃nz
2

∑
α=1

A′α
e−

i
2 (φ−Φα )

1− e−i(φ−Φα )
e−iN(φ−Φα )(1− r2

10,α). (5.105)

Now from an earlier expression for EI in Eq.(5.92), we can write the transmittance

as

T =

∣∣∣∣∣ ET

EIe−i φ

2 eiω̃nz

∣∣∣∣∣
2

=

∣∣∣∣∣∑
2
α=1 A′α

e−
i
2 (φ−Φα )

1−e−i(φ−Φα ) e
−iN(φ−Φα )(1− r2

10,α)

∑
2
α=1 A′α

e−
i
2 (φ−Φα )

1−e−i(φ−Φα )

(
1− r2

10,αei2NΦα

)
∣∣∣∣∣
2

, (5.106)

or

T =

∣∣∣∣∣ ∑
2
α=1 aα

e−i(φ−Φα )(N+ 1
2 )

1−e−i(φ−Φα ) t10,αt01,α

∑
2
α=1 aα

e−
i
2 (φ−Φα )

1−e−i(φ−Φα )

(
1− r2

10,αei2NΦα

)
∣∣∣∣∣
2

, (5.107)

where we have used Eqs. (5.91), and introduced the effective Fresnel transmission

coefficient for the polariton α from the meta-film into the surrounding medium as

t10,α =
1

t ′01,α

(1− e−2iΦα )e
i
2 (Φα−φ)

1− e−i(φ−Φα )
, (5.108)

and t ′01,α has been defined earlier in Eq. (5.97).

The reflected field ER(z) from the meta-film is the sum of backward propagating
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Figure 5.8: Reflectance (top) and transmittance (bottom) spectra of a meta-film of
N = 3 dipole planes with the design parameters taken to be the same as for
meta-crystal A (a = 250 nm, b = 110 nm, left), meta-crystal B (a = 250 nm, b = 150
nm, middle) and meta-crystal C (a = 220 nm, b = 110 nm, right). The dashed
(dot-dashed) lines are the spectra calculated from the analytical model in scenario
one (two) and the solid lines show the spectra obtained from FDTD simulations.

radiative fields from all the planes within the meta-film at a plane z < 0. So we

have

ER(z) = iC
N

∑
J=1

e−iω̃n(z−bJ)pJ = iCe−iω̃nz
N

∑
J=1

eiφJ pJ. (5.109)

Using Eq. (5.103) above, we get

ER(z) =
iCε0n2αatomEIe−iω̃nz

∑
2
α=1 aαeiφJ[eiΦα (J− 1

2 )+ r10,αei2NΦα e−iΦα (J− 1
2 )]

∑
2
α=1

1
t01,α

(1− r2
10,αei2NΦα )

,

(5.110)
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which simplifies to (see appendix E.9)

ER(z) =−
iCε0n2αatomEIe−iω̃nz

∑
2
α=1 aα

ei Φα
2

1−e−i(φ−Φα ) [r01,α + r10,αei2NΦα ]

∑
2
α=1

1
t01,α

(1− r2
10,αei2NΦα )

.

(5.111)

Here we have defined as in scenario one

r01,α =−r10,α , (5.112)

which is the effective Fresnel reflection coefficient for the polariton mode α

from the meta-film into the surrounding medium. Now using the definition of C

introduced earlier in Eq. (5.42), we finally have the expression for the reflectance

as

R =

∣∣∣∣∣ ER(z)
EIe−iω̃nz

∣∣∣∣∣
2

=

∣∣∣∣∣
iφ
2

αatom
a2b ∑

2
α=1 aα

ei Φα
2

1−e−i(φ−Φα ) [r01,α + r10,αei2NΦα ]

∑
2
α=1

1
t01,α

(1− r2
10,αei2NΦα )

∣∣∣∣∣
2

, (5.113)

Lastly, the effective Fresnel coefficients defined for each polariton mode (Eqs. (5.112), (5.108),

(5.96), and (5.83)) also satisfy the relation from continuum electrodynamics

1− r2
10,α = t10,αt01,α . (5.114)

The expressions for R and T of the meta-film obtained so far in both scenarios

share similarities with the corresponding expressions for a dielectric film of thick-

ness Nb. While the similarity for scenario one, in which we have a single polariton
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mode excited within the meta-film, is explicit, the corresponding expressions for

scenario two are a bit more complicated due to the excitation of two polariton

modes. For a meta-crystal with a single interface, only the effective indices of the

media at the interface determine R and T , which is also evident in the expression

for R of a meta-crystal derived previously. For the meta-film, as is also evident

from their expressions, these quantities will also depend on the effective thickness

Nb. To recall, the reflectance of a normally incident field at wavelength λ0 from a

dielectric film has extrema when the optical thickness of the film is either an odd

multiple of λ0/4, or a multiple of λ0/2 [1]. Hence, given the highly dispersive and

broadband spectra of the polariton indices of our meta-crystals, there should be

multiple extrema in the reflectance spectra depending on the number of planes N

in the meta-film apart from the uniform stop-band observed for the meta-crystals

in Fig. 5.6.

In Fig. 5.8, we show the reflectance (top panels) and transmittance (bottom pan-

els) spectra of meta-films consisting of 3 dipole planes and with lattice parameters

taken to be the same as those for the meta-crystals A (left panels), B (middle panels)

and C (right panels). The spectra calculated using the analytical model in scenario

one (two) are shown as dashed (dot-dashed lines). To compare the accuracy of

our analytical models, we also show the results from finite-difference time-domain

(FDTD) simulations (solid lines) of the meta-films to the corresponding panels.

For N = 3, we only have one “bulk" plane in the center, and the other two planes

form the interfaces. In contrast to the corresponding reflectance spectra of the

semi-infinite meta-crystals shown in Fig. 5.6, we note the presence of more ripples
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Figure 5.9: Reflectance (top) and transmittance (bottom) spectra of a meta-film of
two (left), six (middle) and ten (right) dipole planes with the design parameters
taken to be the same as for meta-crystal A (a = 250 nm, b = 110 nm). The solid
green lines show the spectra obtained from FDTD simulations, and the dotted
blue and dot-dashed red lines show the spectra calculated using the analytical
model in scenario one and two, respectively. The black dashed lines in the top
panels show the reflectance from a semi-infinite meta-crystal with the same lattice
parameters as the meta-film calculated using the analytical model in scenario two.

in the wings of the stop band, which occur when the aforementioned conditions

for the reflectance extrema are met. Also, while the maximum reflectance reaches

approximately 0.8 within the stop band, the transmittance becomes negligibly small.

Of course, this reflectance maxima is limited by absorption losses or dissipation

within the nanoantennas. The spectra obtained from FDTD simulations show a

better agreement with the spectra calculated using the analytical model in scenario

two at the lower frequencies. Hence, including only the nearest-neighbor near-field

coupling between the planes is sufficient to calculate the optical response of these
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meta-films through our analytical model. At higher frequencies, the disagreement

of both analytical models with the FDTD results is likely due to contributions from

the quadrupolar mode of the nanoantenna, whose resonance frequency is around

320 THz. These higher-order multipole contributions are of course not accounted

for in our point dipole approximation for the nanoantennas.

In Fig. 5.9, we show the reflectance (top panels) and transmittance (bottom

panels) spectra of meta-film A consisting of two (left), six (middle) and ten (right)

dipole planes. The reflectance spectrum of the semi-infinite meta-crystal (black,

dashed) is also shown for comparison. The addition of more planes, and hence

increasing thickness of the meta-film, leads to more ripples in the wings of the

stop band as the condition for the extrema of reflectance is satisfied at more

frequencies for thicker films. Also, the reflectance spectra of the meta-film (red,

dot-dashed) and the semi-infinite meta-crystal (black, dashed) have increasingly

better agreement within the stop band even with six dipole planes. The inclusion of

more dipole planes also widens the transmittance dip due to enhanced absorption

in the wings of the stop band.

The widening of the transmittance dip is even more evident in Fig. 5.10(b),

where we show the transmittance spectra of meta-film A with 20 (blue), 50 (red),

100 (green) and 400 (purple) planes. With 400 planes, we have negligible trans-

mittance for most of the spectral range under consideration. The reflectance of

these “thick" meta-films (shown in Fig. 5.10(a)) is also negligible in the wings

of the stop band, and the reduction in transmittance with increasing number of

planes is due to the enhanced absorption (A = 1−R−T ) in the wings as shown
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Figure 5.10: (a) Reflectance, (b) transmittance and (c) absorption spectra of a
meta-film of N dipole planes (solid lines) indicated in the legend calculated using
the analytical model in scenario two assuming the same lattice parameters as for
meta-crystal A (a = 250 nm, b = 110 nm). The dotted black line on the left shows
the reflectance of a semi-infinite meta-crystal with the same lattice parameters as
the meta-films calculated using the analytical model in scenario two.

in Fig. 5.10(c). Also from Fig. 5.9, we note that the number of ripples in the

wings of the reflectance stop band increase with the number of dipole planes while

also decreasing in amplitude. For 400 dipole planes, the reflectance spectra of

the meta-film and the semi-infinite meta-crystal are indistinguishable. We only

show the results from the analytical model in scenario two in Fig. 5.10 as the

FDTD simulations become computationally very intensive for such a large number

of planes. As an aside, the home-developed MATLAB code for the analytical

model can perform these calculations for arbitrarily large number of planes in less

than a second on a laptop computer. This computational advantage offered by our

analytical model makes it a convenient tool to sweep the already huge material and

structural parameter space for rationally designing 3D-metamaterials.
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5.4 Conclusions and Future Work

To summarize, we have studied the linear optical properties of a meta-crystal

made of dipolar plasmonic nanoantennas with sub-wavelength lattice constants by

describing the propagation of a normally incident field through the meta-crystal in

terms of polaritons induced by the field within the meta-crystal. We have derived

closed-form expressions for the microscopic effective refractive index of these

polaritons for two specific scenarios: (1) when there is no near-field coupling

between the planes of nanoantenna arrays in the meta-crystal, and (2) when there is

nearest-neighbor near-field coupling between the planes. We have also derived the

expressions for quantities such as reflectance and transmittance for a semi-infinite

meta-crystal and a meta-film consisting of a few planes of nanoantenna arrays.

We have also compared the reflectance and transmittance spectra of meta-films

consisting of 3-10 planes of nanoantenna arrays calculated using our analytical

model with the results from finite-difference time-domain simulations, and found

that the results from our model and the full-wave numerical simulations agree

reasonably well. The meta-films in our study can support an octave-wide photonic

stop band at near-infrared frequencies, and have a maximum effective refractive

index of 4 at these frequencies. The stop band also has a range of frequencies

where the effective permittivity is either negative or vanishes. The use of our

model to calculate the optical properties of meta-crystals provides a significant

computational advantage for the rational design of these 3D-metamaterials in the

regime where effective medium theories become less accurate. Our model can be
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used to perform large sweeps of the structural and material parameter space where

the traditional numerical tools such as FDTD and finite element method (FEM)

become unwieldy. The latter numerical tools can then be used to finesse the design

to account for fabrication tolerances.

As in our previous study [194], the choice of material and structural parameters

in our study are based on our previous successful demonstration for a single

nanoantenna array and our in-house fabrication capabilities. These parameters

can be chosen as per the requirement, and allow for a wide range of tunability for

the aforementioned optical properties. Our model can be further generalized to

include oblique incidence of the incoming field, higher-order multipoles in the

nanoantennas, and misalignments and rotations of the lattices. This more general

model would allow for greater flexibility in the choice of materials and shapes for

the nanoantennas, as well as lattice structures. In particular, we could model the

optical properties of meta-crystals made of dielectric nanoparticles that have the

advantage of significantly smaller dissipation compared to plasmonic nanoparticles.

More interesting lattice structures such as Moiré lattices [197] and lattice defects

[198, 199] can also be modeled with this generalized model. Extending the model

to oblique incidences would also enable the calculation of dispersion curves for

the meta-crystals, and provide more insight into the stop band. The anisotropic

octave-wide stop band of these meta-crystals with a large (≈ 0.85) and nearly flat

reflectance spectrum has potential applications for devices such as broadband notch

filters, mirrors and polarizers. Introducing defects in the meta-crystal should also

enable realizing wavguides and nanocavities for controlling spontaneous emission
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[200, 201], realizing nanolasers [202, 203], nonlinear optics and cavity quantum

electrodynamics [204].

Future efforts for experimentally characterizing the optical properties of these

plasmonic meta-films and then to possibly utilize them for nanophotonic applica-

tions require fast and efficient methods for fabricating several layers of nanoantenna

arrays while maintaining the orientation and alignment of the nanoantennas in

each layer. The conventional lithographic methods for fabricating 3D plasmonic

metamaterials are cumbersome [205]. These top-down techniques involve layer-

by-layer electron beam lithography followed by metal evaporation and lift-off and

subsequent deposition of dielectric spacers [186, 206]. There are also bottom-up

techniques such as colloidal self-assembly [207–211] that can be used to fabricate

large “superlattices" of nanoparticles with areas approaching 1 cm2 [184]. Colloidal

self-assembly involves slow evaporation of a colloidal solution of nanoparticles

leading to the agglomeration of similarly-sized nanoparticles into ordered super-

lattices governed by van der Waals and electrostatic forces, and by entropy [207].

The inter-particle spacing is usually controlled through the choice of appropriate

ligands such as various polymers and proteins [212]. DNA strands offer a lot of

versatility as ligands due to the controllable strengths of hydroden bonding in their

base pairings [211]. Highly-ordered 3D arrangements of plasmonic nanoparticles

can be self-assembled by functionalizing individual nanoparticles with specific

DNA strands [213, 214], or on templates formed by DNA strands [215]. In inter-

facial self-assembly, thin films of nanoparticles can assemble at the liquid-air or

liquid-liquid interfaces and then transferred to the appropriate substrate through
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the use of the Langmuir-Blodgett technique [216, 217]. In short, these techniques

are encouraging developments towards efficient and fast fabrication of plasmonic

meta-films.



134

6. Controlling Nonlinear Rogue Wave

Formation Using the Coherence

Length of Phase Noise

6.1 Introduction

The formation of rare but extreme (or “rogue") amplitude waves in optical [218–

223], microwave [224], and hydrodynamic systems [225] have attracted consider-

able recent interest [226–228]. A random phase fluctuation with sufficient strength

imposed on an optical field can develop on propagation into network-like intensity

patterns that are commonly referred to as “caustics" [220, 223, 229]. Light can

concentrate very tightly in caustics, which facilitates rogue wave formation and

leads to long-tailed statistics for the intensity and non-Rayleigh statistics for the

amplitude. Rogue waves in linear systems can develop through the constructive

interference of several waves with random phases and amplitudes [230], or through

the directional focusing of these waves [231]. Speckle formation in optical sys-
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tems is also a linear phenomenon, and a fully developed speckle field has circular

Gaussian statistics with a Rayleigh distribution of the amplitude [232]. Long-tailed

intensity statistics in linear systems can occur due to multiple scattering through

a medium [233], due to the spatial inhomogeneity-induced clustering of speckles

with different grain sizes [234], and through the redistribution of energy among

several speckle grains in the farfield due to higher-order correlations encoded onto

the field [235].

The presence of nonlinearity in an optical system can considerably influence

the formation of rogue waves. Rogue events have been observed during supercon-

tinuum generation in nonlinear fiber-optics systems and are the result of collisions

between “breather" solitons formed by nonlinear amplification of modulational

instability in the system [218, 227, 236, 237]. Rogue waves can also form in

spatially extended nonlinear systems either by means of self-focusing seeded by

wavefront perturbations on the field [221, 223, 238] or by hypercycle amplifica-

tion after the breaking of spatial symmetry in optical cavities [239]. Small scale

filamentation is another phenomenon that occurs when a large self-focusing non-

linearity amplifies angular spectral sidebands through four-wave mixing, leading

to the formation of several localized structures called “filaments" such that each

filament has the same (critical) power Pcr [4, 240]. Rogue waves can also form

in a beam undergoing small-scale filamentation when filaments merge because of

medium inhomogeneities [240]. A self-focusing nonlinearity can enhance rogue

wave formation in laser beams containing weak phase noise [223]. However, a

non-uniform polarization structure on the beam can suppress rogue waves under
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certain conditions [241]. Rogue waves are more likely to form in speckle patterns

of a particular coherence length propagating through a photorefractive crystal due

to the saturation of nonlinearity once a rogue feature reaches a certain minimum

width [222]. Light scattered through a medium with tailored disorder can also

show a similar enhancement of rogue wave formation at a particular coherence

length of the disorder [242].

Here, we study how the transverse spatial coherence length of phase noise

affects rogue wave formation in the presence of a self-focusing nonlinearity. We

measure the intensity statistics of the beam after it propagates through a hot

rubidium vapor cell for various coherence lengths (or grain sizes) of the phase

noise and various beam powers. We observe that the intensity statistics have a

diminished sensitivity to nonlinearity when the coherence length of the phase

noise is much smaller than the beam width. We also study the mechanism behind

this effect through numerical simulations of nonlinear beam propagation. Our

simulations show that small-grained phase noise induces the redistribution of beam

power into multiple filaments of reduced intensity, thereby limiting the maximum

intensity in a rogue feature relative to the background. Our study complements Refs.

[222, 223, 241], and is relevant for the development of better optical power limiters,

and for probing a turbulent medium and mitigating its effect on the propagation of

intense laser beams. In section 6.2, we describe our experimental setup and the

results of our measurements of the intensity statistics. In section 6.3, we describe

our numerical simulations of the propagation dynamics of the beam within the

medium to understand the interaction between phase noise of various coherence
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lengths and self-focusing nonlinearity of the medium that leads to rogue wave

formation. Then in section 6.4, we discuss the results of these simulations for

beams of various powers and added phase noise of different coherence lengths.

6.2 Experiment

Figure 6.1(a) shows the schematic of our experimental setup. Our saturable non-

linear medium is a cell containing natural abundance rubidium. We heat the cell

to 115 °C, and blue detune our laser source by 600 MHz above the 87Rb D2

F = 1→ F ′ = 2 transition in order to have a self-focusing nonlinear response. A

horizontally polarized beam from our laser source diffracts from a phase grating

impressed on a spatial light modulator (SLM1) and forms a Gaussian beam of

diameter 2.5 mm (D0) in the first diffractive order. We isolate this diffractive order

by letting the light propagate over 2 m, and add a conjugate defocus on SLM1

to compensate for the accumulated defocus on the beam. Both SLM1 and SLM2

are liquid-crystal-on-silicon (LCOS) phase only SLMs from Hamamatsu that have

identical resolution (600× 800) and pixel size (20 µm). SLM2 adds a random

phase mask with a spatial coherence length Lcoh and a maximum amplitude of π

rad onto the beam. To determine the random phase mask, we generate a 600×800

matrix of uniformly distributed random numbers between 0 and 1, and apply to

this salt-and-pepper noise matrix a Gaussian filter of width 1/Lcoh defined below
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Figure 6.1: (a) Schematic of the experimental setup. H-polarized light from a
tunable diode laser is diffracted by a phase-only grating on SLM1 forming a
Gaussian beam of diameter D0 (to 1/e2 values of the intensity) in the first
diffractive order. SLM2 adds a random phase mask (example shown in the inset)
with coherence length Lcoh and amplitude of π rad on the beam. SLM2 is then
imaged using lenses L1 and L2 onto the entrance facet (purple dashed line) of a
7.5 cm-long rubidium cell heated to 115 °C . The output facet (green dashed line)
of the cell is then imaged by lens L3 onto the image plane of the camera.
Measured caustic patterns formed by noisy beams with Lcoh/D0 of (b, f) 0.135, (c,
g) 0.075, (d, h) 0.045, and (e, i) 0.015, after linear (top), and nonlinear (bottom)
propagation through the cell are also shown. The beam power at the input of the
cell (Pin) was 90 mW for the nonlinear results. The focal lengths of the lenses L1,
L2 and L3 are 1 m, 75 cm and 30 cm, respectively.
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[243], which acts as a blur

G(kx,ky) =
L2

coh
2π

exp
[
−

k2
x + k2

y

2
L2

coh
]
. (6.1)

We then multiply the matrix by π so that the maximum phase amplitude of the

added phase noise is π rad. Limiting the maximum phase amplitude to π rad

ensures, as we show later, that the caustics formed after purely linear propagation

through the cell are weak enough to not yield long-tailed intensity statistics [223].

The lenses L1 and L2 image the active area of SLM2 onto the entrance facet of

the rubidium cell. The waveplates before the cell convert the polarization of the

beam to left-handed circular to match the handedness of the σ+ atomic transition.

The lens L3 images the output facet of the cell onto the image plane of the camera,

which records the intensity at the cell output.

Figures 6.1(b)-(e) show the recorded output intensity distributions after linear

propagation through the cell for representative phase masks with Lcoh/D0 of 0.135,

0.075, 0.045, and 0.015, respectively. For all linear measurements, we increase the

value of detuning from 600 MHz to 65.04 GHz and fix input beam power Pin to 4

mW. As shown in Figs. 6.1(b)-(e), the added phase noise leads to redistribution

of the beam intensity upon linear propagation, but is weak enough that no sharp

caustics are formed. As we decrease the Lcoh/D0 of noise (left to right), more

“hotspots" are formed in the beam such that the intensity corresponding to the

smallest Lcoh/D0 [Fig. 6.1 (e)] becomes more granular. Figures 6.1(f)-(i) show the

recorded intensities for the same phase masks as in the top panels (b)-(e), but with
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the nonlinearity turned on by changing the detuning to 600 MHz, and the beam

power Pin to 90 mW. The nonlinearity sharpens the hotspots formed during linear

propagation while preserving their underlying structure [223].
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Figure 6.2: (a) Measured intensity histograms (markers), and their respective
Weibull distribution fits (lines) after (a) linear, and (b) nonlinear propagation
through the rubidium cell for Lcoh/D0 of 0.135 (blue, solid), 0.075 (red,
dot-dashed), 0.045 (green, dashed), and 0.015 (purple, dotted). The value of Pin
for the nonlinear datasets is 90 mW. The shaded regions around the respective
plot markers represent the uncertainty of counts in the corresponding bins. The
value of the parameter β for each fit is stated in the legend. (c) The variation of β

with Lcoh/D0 for linear measurements (black triangles), and nonlinear
measurements with Pin of 30 mW (blue circles), 60 mW (red squares), 90 mW
(green diamonds), and 115 mW (purple triangles). The gray shaded region
indicates the range of β corresponding to long-tailed intensity statistics.

To quantify the intensity statistics, we record output intensity patterns for

an ensemble of 500 random phase masks with the same Lcoh. We acquire these

intensity datasets for nonlinear propagation through the cell at various incident

beam powers Pin (30 mW, 60 mW, 90 mW, and 115 mW) and various Lcoh values

(varied from 50 µm to 450 µm). We also record datasets for linear propagation

through the cell. These intensity histograms NH(IN) are well described by a Weibull
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distribution defined as follows [244]

NH(IN) = Ntotal
β

α

(
IN

α

)β−1

exp

[
−

(
IN

α

)β]
, (6.2)

where IN = I/〈I〉e is the beam intensity normalized to the ensemble average of

intensities in the entire dataset 〈I〉e, Ntotal is the total number of counts in the dataset,

and the parameters α and β are the scale and shape parameters of the distribution,

respectively. Fully developed speckle patterns have an exponential distribution of

intensities [245] and correspond to the scenario when β = 1. Long-tailed statistics

have values of β smaller than 1 with caustic formation and rogue wave behavior

becoming more likely with smaller values of β . We estimate β for our measured

intensity histograms by performing maximum likelihood estimation (MLE) fits

to the Weibull distribution followed by Monte-Carlo simulations to obtain the

uncertainties of the fit parameters.

Figures 6.2(a) and (b) show the measured intensity statistics along with their

respective Weibull distribution fits for linear and nonlinear propagation through

the rubidium cell, respectively, for Lcoh/D0 of 0.135 (blue circles and dotted line),

0.075 (red diamonds and dashed line), 0.045 (green squares and dot-dashed line),

and 0.015 (purple triangles and solid line). The input beam power Pin for the

nonlinear datasets in Fig. 6.2(b) is 90 mW. The values of β estimated from the fits

to each dataset are indicated in the legend. The nonlinear datasets in Fig. 6.2(b)

show long-tailed statistics throughout, which is also manifested in the smaller

estimated values of β for all Lcoh/D0 compared to the linear datasets in Fig. 6.2(a).
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Additionally, we note that phase noise of smaller Lcoh/D0 has a wider angular

spectral bandwidth [see Fig. F.2 in appendix F.2]. This broadband noise seed should

cause further broadening of the angular spectrum of the beam through four-wave

mixing and lead to sharper caustics and longer-tailed intensity statistics. However,

we do not observe a monotonic increase in the “tailiness" of intensity statistics as

Lcoh/D0 is reduced in Fig. 6.2(b), which is also reflected in the associated values

of β given in the legend. Instead, β is minimized for Lcoh/D0 of 0.075, and its

distribution is the most long tailed.

Figure 6.2(c) shows the variation of β with Lcoh/D0 for linear measurements

(black triangles) and nonlinear measurements with Pin of 30 mW (blue circles), 60

mW (red squares), 90 mW (green diamonds), and 115 mW (purple triangles). The

shaded gray region represents the region where β < 1 and rogue wave behavior

is likely. As also shown in Fig. 6.2(a), β > 1 for purely linear propagation for

all values of Lcoh/D0 considered here and we do not observe either rogue wave

behavior or the formation of a fully developed speckle pattern. The reasons for

this result are: (i) The propagation distance (length of the cell) is short enough

to be in the Fresnel region of the incident beam. Consequently, the number of

scattering centers on the phase mask contributing to the field at any point on the

observation plane is small enough for the central limit theorem to not be valid in

a random walk statistical model of the field, which leads to non-Gaussian field

statistics [246]. This argument is especially true for larger values of Lcoh/D0 for

which there are fewer scattering centers for the input beam. (ii) The maximum

phase amplitude of the added phase noise is π , and hence small enough to not lead
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to strong focusing into sharp caustics after propagation through the cell [223]. The

value of β for nonlinear measurements is smaller than β for linear measurements

for all Lcoh/D0, which is consistent with the aforementioned increase in sharpness

of caustics due to nonlinearity. The noteworthy feature, however, is that for

nonlinear measurements, β is significantly more sensitive to the beam power Pin

when Lcoh/D0 is larger than 0.075 than it is for smaller Lcoh/D0. This diminished

sensitivity of the broadening of angular spectrum of the beam to nonlinearity

when seeded by broadband phase noise shares similarities with the reduced effect

of nonlinearity on the broadening of the modulational instability spectrum in an

optical fiber for a low amplitude partially coherent broadband seed [247]. We

further explore this observed phenomenon through numerical simulations.

6.3 Numerical Modeling

The propagation of a field E(r, t) = E(x,y)ei(kz−ωt)êL + c.c. through a spatially

extended nonlinear medium, such as our rubidium cell, can be described by the

(2+1)-D nonlinear Schrödinger equation (NLSE) [4] given below

∂E
∂ z
− i

2k
∇

2
⊥E =

ik
2ε0

P, (6.3)

where E(x,y) is the field envelope, ω is the angular frequency of the laser, k is the

wave number, ∇2
⊥ = ∂ 2/∂x2 +∂ 2/∂y2 is the transverse Laplacian, P = ε0χ(E)E

is the atomic polarization, and χ(E) is the total atomic susceptibility that includes
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Figure 6.3: (a) Simulated caustic patterns at the output of the cell for Pin of 90
mW, and Lcoh/D0 of (a) 0.135, (b) 0.075, (c) 0.045, and (d) 0.015. The phase
masks used for these calculations were the same as the ones used in the
experiment to capture the caustic patterns shown in Figs. 6.1(b)-(e). (e) Simulated
intensity statistics for Pin of 90 mW, and Lcoh/D0 of 0.135 (blue circles), 0.075 (red
diamonds), 0.045 (green squares), and 0.015 (purple triangles).

the linear as well as all orders of nonlinear response [4]. In our calculation of total

susceptibility, we include the contributions from all the D2 transitions of rubidium.

See appendix F.1 for more details. We use the split-step Fourier method [248] to

solve Eq. (6.3), and obtain the field at any location (x,y,z) within the rubidium

cell. We use Fresnel propagation for all linear propagation calculations [249]. For

all simulations, we assume a transverse resolution of 2048 × 2048 pixels, a pixel

size of 4.89 µm, and a longitudinal step size of 0.5 mm. We account for the slight

longitudinal misalignment in our experimental setup by assuming that the beam

waist is located 6 mm before the cell and add 1 cm of linear propagation after the

cell.

Figures 6.3(a)-(d) show the simulated output intensities for the same set of



CHAPTER 6. CONTROLLING NONLINEAR ROGUE WAVE FORMATION USING THE
COHERENCE LENGTH OF PHASE NOISE 145

phase masks used in the experiment that were used for the measured output in-

tensities shown in Figs. 6.1(f)-(i). We also include an amplitude mask on the

Gaussian beam to match the intensity of the Gaussian beam in our experiment

[see Fig. 6.4(a)]. The simulated intensities in Figs. 6.3(a)-(d), and the measured

intensities in Figs. 6.1(f)-(i) have very similar underlying intensity structures and

sharpness of caustic features. Figure 6.3(e) shows the simulated intensity statistics

for Pin of 90 mW, and Lcoh/D0 of 0.135 (blue circles), 0.075 (red diamonds), 0.045

(green squares), and 0.015 (purple triangles). We use 200 realizations of random

phase masks of a particular Lcoh/D0 to calculate these intensity statistics. The

simulated statistics show a good qualitative agreement with the measured statistics

shown in Fig. 6.2(b) for the same set of parameters, and in both scenarios, the

histogram corresponding to Lcoh/D0 of 0.075 is the most long tailed. We em-

phasize that we do not expect a complete agreement between our measurements

and numerical simulations due to several contributing factors, such as nonlocality

in the nonlinear response of rubidium vapor [250], temperature variation within

the cell leading to a spatial variation in the nonlinear susceptibility, aberrations

in the imaging optics and the windows of the cell, and the pixel size of SLMs.

Furthermore, the reinforcing nature of the self-focusing nonlinearity implies that

our system is highly sensitive to any noise present in the experiment, which is

difficult to account for in our simplified numerical model completely. However,

the good qualitative agreement between our measurements and simulations allows

us to study and draw reasonable conclusions about the propagation dynamics of

the beam within the cell.
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6.4 Discussion

Figure 6.4: (a) Input Gaussian beam intensity. Phase gradient map |∇φ(x,y)| for a
sample mask with Lcoh/D0 of (b) 0.015 and (c) 0.045. The top panels (d)-(h) show
the beam intensity at various propagation distances z within the cell for the phase
gradient map shown in (b), and the bottom panels (i)-(m) show the beam intensity
at various z for the phase gradient map shown in (c). The beam power Pin is 90
mW throughout. The intensity distributions in all panels are normalized with
respect to the maximum intensity in the respective frames.

To understand the interplay between phase noise induced distortion of the

beam and the self-focusing nonlinearity, we use our simplified numerical model

to study the nonlinear propagation dynamics through the cell. Our use of the

numerical model to understand the propagation dynamics is motivated by the

fact that we cannot experimentally image the beam inside the nonlinear medium.

Figure 6.4(a) shows the intensity of the input Gaussian beam generated in our

setup, which we also assume as the input intensity in our numerical simulations.

We select one realization of the random phase masks of a particular coherence
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length, and monitor the intensity profiles at various distances z within the rubidium

cell calculated through numerical simulations. Figures 6.4(b) and (c) show the

phase gradient maps |∇φ(x,y)| of one realization of the phase masks of coherence

lengths Lcoh/D0 of 0.015 and 0.045, respectively. The top panels (d)-(h) show

the normalized intensities of the beam at various propagation distances z stated

in the panel label for the phase gradient map shown in Fig. 6.4(b). Similarly, the

bottom panels (i)-(m) show the normalized intensities of the beam at various z for

the phase gradient map shown in Fig. 6.4(c).

Figure 6.5: The top panels (a)-(c) show the beam intensity at various propagation
distances z within the cell for the phase gradient map shown in Fig. 6.4(b), and the
bottom panels (d)-(f) show the beam intensity at various z for the phase gradient
map shown in Fig. 6.4(c). The beam power Pin is 180 mW throughout. The
intensity distributions in all panels are normalized with respect to the maximum
intensity in the respective frames.

As shown in Figs. 6.4(d) and (i), the beam at first reorganizes by focusing

along the minima of the respective phase gradient maps. This initial reorganization
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occurs at smaller z for phase noise of smaller grain size. The intensity hotspots on

this reorganized beam then continue to self focus until at least one of the hotspots

reaches the size of a filament that has a FWHM size ∆r of 25±2.5µm as shown

in Figs. 6.4(f) and (k). With the field being very concentrated in a small number of

hotspots, the intensity contrast in this plane is very large. A Gaussian beam of width

∆r and an average power of 1.4 mW (say, Pcr) forms a self-trapped filament that

propagates for at least 1.3 cm in the rubidium vapor without any change in its width

before diverging due to absorption and diffraction. The collapse of the filament is

also limited by absorption, saturation of the nonlinearity, and non-paraxiality [251].

For Lcoh/D0 of 0.015, multiple filaments of width ∆r are formed at z = 4.5 cm,

and each filament has power smaller than Pcr required for forming a self-trapped

filament that can propagate for several cm. Hence, these filaments diffract within a

few mm as the other hotspots also self-focus and subsequently diffract. Around

z = 6 cm, absorption losses reduce the effect of nonlinearity, and the filaments start

to diverge. Figures 6.5 (a)-(c) show the beam evolution through the cell for the

same phase gradient map as shown in Fig. 6.4(b), but at a beam power Pin of 180

mW. Similarly, Figs. 6.5(d)-(f) show the beam evolution for the phase gradient map

as shown in Fig. 6.4(c), and at a beam power Pin of 180 mW. Comparing Fig. 6.4(d)

with Fig. 6.5(a), and Fig. 6.4(e) with Fig. 6.5(d), we note that the initial beam

reorganization stage involving focusing along the minima of the respective phase

gradients remains similar despite the higher power. Comparing Fig. 6.4(f) with

Fig. 6.5(b), and Fig. 6.4(k) with Fig. 6.5(e), we note that the larger beam power gets

distributed into several more filaments along the same underlying caustic pattern.
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Figure 6.6: The evolution of the scintillation index σ2
I with propagation distance z

as predicted by our numerical model under (a) linear, and under (b), (c) nonlinear
propagation with Pin of 90 mW and 180 mW, respectively. The legend shows the
values of Lcoh/D0 of the random phase mask added to the beam. The dashed
black line indicates the threshold above which long-tailed intensity statistics start
to emerge.

To quantify the propagation dynamics, we use the scintillation index σ2
I as a

metric for the intensity contrast within the beam (or in other words, the sharpness

of the caustics) and monitor its variation with propagation distance z. We also

extend the length of the nonlinear medium to 15 cm in order to include the stage

where diffraction starts to dominate the propagation dynamics for all values of

Lcoh/D0 of the phase noise. The quantity σ2
I is the normalized variance of intensity

defined as [252, 253]

σ
2
I =
〈I2〉−〈I〉2

〈I〉2
. (6.4)

Here, 〈· · · 〉 denotes the transverse spatial average over the entire field. Fully

developed speckle patterns have a σ2
I of unity, while caustics with large intensity

fluctuations in the transverse plane have σ2
I larger than unity. Also referred in

the literature as the intensity “contrast" [229, 246], the scintillation index has

been used as a metric to identify the onset of branched flow – another instance
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of caustic formation due to the focusing of waves propagating through media

with correlated disorder [253, 254], and to characterize irradiance fluctuations in

waves propagating through turbulence [229, 252, 255]. Figure 6.6(a) shows the

evolution of σ2
I for a noisy Gaussian beam with Lcoh/D0 of 0.135 (blue, solid),

0.075 (red, dot-dashed), 0.045 (green, dashed), and 0.015 (purple, dotted) during

linear propagation. The black horizontal dashed line indicates the threshold value

of σ2
I above which sharp caustics characterized by larger fluctuations in intensity

than a Gaussian speckle are observed. For a specific set of input parameters (Pin

and Lcoh), we average σ2
I at each z over 100 different phase masks. This averaged

σ2
I is represented by the lines, and the shaded regions around the lines represent

its standard deviation. Figures 6.6(b) and (c) show the evolution of σ2
I with z for

nonlinear propagation with Pin of 90 mW and 180 mW, respectively, and the same

set of values of Lcoh/D0 as in Fig. 6.6(a).

For purely linear propagation, we note that in all of the scenarios shown in

Figs. 6.6(a)-(c), σ2
I at first increases with z, and then peaks as the phase noise on

the beam morphs into intensity distortion. This rate of increase in σ2
I depends

strongly on the grain size of the phase noise, as well as the nonlinearity. As also

discussed previously in Refs. [229, 246], we observe in Fig. 6.6(a) that σ2
I initially

increases with z until it reaches a maximum when the various “facets" or grains of

the added phase noise on the beam initially come to a focus along the minima of

their gradients to form hotspots. When the grain size of the noise is much smaller

than the beam diameter (such as when Lcoh/D0 = 0.015), the phase variations

occur over a smaller area within the beam and so the phase gradients are larger
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and more densely packed [see Fig. 6.4(b)]. In the absence of nonlinearity, these

hotspots then diverge, thereby causing σ2
I to decrease with z. As the grain size of

phase noise becomes larger, the phase gradients decrease in magnitude and become

less densely packed [see Fig. 6.4(c)], which leads to fewer grains within the beam

that focus into hotspots at larger z.

In the presence of nonlinearity, σ2
I increases beyond unity as the hotspots

continue to self-focus and maximizes. When the hotspots focus down to the size of

a self-trapped filament of width ∆r, σ2
I is maximized as the beam has the highest

intensity contrast at this stage of propagation. Filaments of the same width but

smaller power than Pcr diverge more quickly, while those with power larger than

Pcr undergo multiple self-focusing and defocusing cycles depending on their power

[251]. For Pin of 90 mW and Lcoh/D0 of 0.015, more than two filaments of size ∆r

are formed when σ2
I is maximized such that the power in each filament is smaller

than 0.9 mW [see Fig. 6.4(f)]. In contrast, for Pin of 90 mW, and Lcoh/D0 ≥ 0.045,

a single filament of size ∆r with average power larger than 1 mW is formed when

σ2
I is maximized [see Fig. 6.4(k)]. As shown in Fig. 6.6(b), this sharper intensity

contrast between the “rogue" filaments and the background intensity in the beam

for Lcoh/D0 ≥ 0.045 results in a higher peak of σ2
I for these cases than when

Lcoh/D0 ≤ 0.045. When Pin is increased to 180 mW, the caustics become even

sharper, and more filaments of size ∆r are formed when σ2
I is maximized, which,

as shown in Fig. 6.6(c), occurs at even smaller z for all cases. For Lcoh/D0 of 0.015

(≥ 0.045), the average power in each filament is smaller (larger) than 1.4 mW [see

Fig. 6.5]. Hence, for noisy beams with Lcoh/D0 ≥ 0.045, the propagation after the
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initial peak of σ2
I is followed by another cycle of self-focusing of filaments and

subsequently, by diffraction. Nevertheless, even at such large beam powers, the

small-grained phase noise seeds the formation of several filaments each containing

less than Pcr power. This phenomenon limits the maximum intensity in a rogue

feature and the tailiness of the intensity statistics. Finally, we note that σ2
I for

Lcoh/D0 < 0.045 (Lcoh/D0 ≥ 0.045) has little (large) variation between Pin of 90

mW and 180 mW at z = 7.5 cm, or the length of the cell (dotted vertical line in Figs.

6.6(b) and (c)). This result is a consequence of the initial beam reorganization

followed by self-focusing cycle(s) occurring at shorter z as the phase noise becomes

more granular, and is consistent with the diminished sensitivity of the likelihood of

rogue wave formation to nonlinearity observed experimentally.

6.5 Conclusion

In summary, we have shown that the grain size of phase noise on a laser beam can

be used to control rogue wave formation in media with a self-focusing nonlinearity.

The likelihood of rogue wave formation is minimally affected by nonlinearity when

the coherence length of phase noise is much smaller than the beam diameter. Our

numerical simulations show that small-grained phase noise causes the beam power

to be redistributed into multiple filaments rather than a single filament, which is

formed when the phase noise has a longer correlation length. This redistribution

of beam power into several filaments of smaller intensity limits the maximum

intensity in rogue features relative to the background. Understanding the role of
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nonlinearity in amplifying the phase noise-induced intensity fluctuations on a field

could be helpful in devising efficient mechanisms to mitigate these fluctuations for

intense structured light propagating through a turbulent medium [256, 257], and

developing efficient radiance limiters using saturable nonlinear media [39].
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7. Summary and Outlook

The interaction of light with matter is fundamental to a wide variety of known

phenomena. In this thesis, we have studied light-matter interaction in three different

systems. In chapter 2, we have described a bifilm of sub-wavelength-thick gold and

ITO films that support hybrid polariton modes that are formed by strong coupling

between the LR-SPP mode in the gold film and the ENZ mode in the ITO film. We

have performed linear characterization of these modes through experiment, TMM

simulations, and an analytical model, and shown that they are not only strongly

confined within the ITO film, but can also propagate for several wavelengths.

These modes, with their relatively long propagation lengths and reasonably large

mode confinements, have properties that make them favorable for nonlinear optical

applications in the ENZ regime. The experimental effort for performing nonlinear

characterization of these modes is currently underway within our research group.

The first set of experiments in this effort involves performing intensity-dependent

attenuated total reflection spectroscopy measurements with a single incident pump

beam at frequencies along the dispersion curves of the two hybrid polaritons. The

second set of experiments involves degenerate as well as non-degenerate pump-
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probe measurements of the temporal dynamics of the nonlinear response of these

polaritons. The latter experiment is relevant as ITO has a sub-ps nonlinear response

at ENZ frequencies [6], and understanding the temporal response of these hybrid

SPP-ENZ modes is relevant for applications such as ultrafast switching.

In chapter 3, we showed through experiment, FDTD simulations and an analyt-

ical model that the extinction linewidth of a planar array of dipolar nanoantennas is

proportional to the number density of the nanoantennas in the array. In chapter 4,

we extended our analytical model to a bilayer of two such arrays separated by a

sub-wavelength distance and showed the existence of a bright mode with twice

the extinction linewidth of a single array, and a dark mode with a significantly

smaller linewidth. We also showed that these modes can be selectively excited by

adjusting the relative phase of two equal intensity counter-propagating incident

fields on the bilayer. In chapter 5, we further extended our analytical model to

a meta-crystal formed by stacking several such arrays, and found that we could

have a maximum effective refractive index of 4 with an octave wide photonic stop

band at near-infrared frequencies. Our analytical model is another useful tool

in the electrodynamic simulations of metamaterials as it can be used to perform

broadband sweeps over several material and geometric design parameters much

more quickly than full wave analysis such as FDTD and FEM. It can also be

further generalized to account for multipolar contributions and lattice rotations and

misalignments for more design flexibility. With regards to the experimental charac-

terization of these meta-films, we currently have ongoing efforts with collaborators

in the Boyd group at the University of Ottawa to fabricate these meta-films. The



CHAPTER 7. SUMMARY AND OUTLOOK 156

lithographic fabrication of these multilayered structures is unsurprisingly proving

to be challenging. The measurement of transmittance and reflectance spectra at

normal incidence of these meta-films once fabricated can be done through the use

of the experimental setup shown in Fig. 3.1.

Finally, in chapter 6, we experimentally showed that the likelihood of rogue

wave formation in a laser beam in the presence of a saturable self-focusing non-

linearity depends on the coherence length of phase noise added to the beam. The

likelihood of rogue wave formation is much less sensitive to change in laser power

when the coherence length is significantly smaller than the beam diameter, or the

phase noise is more granular. As a followup, we currently have experimental efforts

underway in the group to test whether a smaller coherence length also reduces the

focussability of the beam at high powers, and hence its tendency to cause optical

damage. In these measurements, the intensity statistics will be measured in both

the image plane and the focal plane of the rubidium cell. Preliminary numerical

simulations already show that the maximum intensity at the focal plane saturates

as the laser power is increased due to a degradation of the beam quality when the

added phase noise is very granular. A worsening beam quality at the focal spot

at higher powers implies a reduced likelihood of optical damage at these powers.

Hence, performing these followup measurements would directly inform future

efforts towards the development of radiance limiters [39].
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A. Supplementary Materials for Chap-
ter 2

A.1 Permittivity of indium tin oxide used in the
bifilm samples
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Figure A.1: Spectra of the real (purple) and the imaginary (green) parts of the
permittivity of ITO in bifilm samples (a) A, (b) B and (c) C, respectively. The gray
region denotes the ENZ spectral region.

Figure A.1 shows the spectra of the real (purple) and the imaginary (green)
parts of the permittivies of the ITO samples used in bifilms A (a), B (b) and C (c),
respectively. The Re[ε] approaches zero at a frequency (wavelength) of 227.79
THz (1.317 µm) for sample A, 220.08 THz (1.363 µm) for sample B, and 220.94
THz (1.357 µm) for sample C.
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A.2 The Analytical Dispersion Model for Polari-
tons

We follow the method described in the appendix B of Ref. [74] to analytically
model the dispersion relations of the hybrid polaritons from which we also calculate
the field profiles, the mode confinement, field enhancement and the damping and
propagation lengths in the absence of radiative losses. In our coordinate system,
shown in the inset of Figure 1(c) of the main text, the polaritons propagate parallel
to the interfaces of the layered films, which we assume to be aligned along the
x-axis. The films themselves are arranged along the z-axis with the substrate-ITO
interface located at z = 0, the ITO-gold interface at z = dITO, and the gold-prism
interface at z = dITO +50 nm.The TM-polarized guided solutions in each layer of
this multi-layered plasmonic structure are evanescent wave-like, and can be written
as

Exl = eikxx(alekzlz +ble−kzlz), (A.1)

Ezl =
( ikx

kzl

)
eikxx(−alekzlz +ble−kzlz), (A.2)

Ey = 0, (A.3)

where l = {s, i,a, p} is the index for the substrate, ITO, gold and prism layers,
respectively, in this multi-layered structure; kx is the transverse wavevector; al and
bl are the coefficients of the forward and backward propagating solutions within the
layer that are determined by the field continuity relations, and kzl is the longitudinal
wavevector given by

k2
zl = k2

x −
(

ω

c

)2
εl, (A.4)

with εl being the permittivity of the layer l. The continuity of Exl and Dzl(= εlEzl)
at each interface leads to a set of 8 linear homogeneous equations for the 8 field
coefficients CT = {as,bs,ai,bi,aa,ba,ap,bp} at each kx. In matrix form, the set of
equations can be written as

LC = 0, (A.5)
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where L is given by

L =



0 1 0 0 0 0 0 0
1 1 −1 −1 0 0 0 0

−εpkza εpkza εakzp −εakzp 0 0 0 0
0 0 ekzadAu e−kzadAu −ekzidAu −e−kzidAu 0 0
0 0 −εakziekzadAu εakzie−kzadAu εikzaekzidAu −εikzae−kzidAu 0 0
0 0 0 0 ekzidAu,ITO e−kziTAu,ITO −ekzsdAu,ITO −e−kzsdAu,ITO

0 0 0 0 −εikzsekzidAu,ITO εikzse−kzidAu,ITO εskziekzsdAu,ITO −εskzie−kzsdAu,ITO

0 0 0 0 0 0 1 0


,

(A.6)
with dAu,ITO = dAu +dITO, and dAu is the thickness of the gold layer (fixed at 50
nm throughout). A non-trivial solution of the equation (A.6) exists only when
|det(L)|= 0, which gives the characteristic equation of the bifilm. One can also
obtain the characteristic equation, and the dispersion lines by searching for the
poles of the reflection coefficient of the bifilm [3]. To obtain the dispersion lines
of the structure, we work in either the complex frequency ω̃ and real transverse
wavevector Re[kx] space, or in the real frequency ω and complex wavevector kx
space, and search for the minima of |det(L)|. We use the former solution space for
the calculation of mode profiles, field enhancement and mode confinement, and
the latter for the calculation of the propagation lengths of the hybrid polaritons.
In both scenarios, we first find the minima of |det(L)| for real frequency ω and
Re[kx] for the situation where we ignore the losses in both the gold and the ITO
layer by using only the real part of their permittivities in the |det(L)| function. We
then use these {ω,Re[kx]} solutions as the initial conditions while searching for
the minima of |det(L)| in the {ω̃,Re[kx]} space or the {ω,kx} space, for which we
use the Nelder-Mead method [74]. We use MATLAB for all these calculations,
and its built-in function fminsearch for the minima search.

Figure A.2 compares the dispersion lines (real frequency and wavevector)
of bifilm A calculated by curve-fitting asymmetric Lorentzians to the spectral
minima at each Re[kx] in its TMM reflactance map (blue, solid line), and the
analytically calculated dispersion line (red dots). We find a very close agreement in
the dispersion lines calculated from the two methods, which verifies our analytical
dispersion model, and our subsequent calculations from the model.

A.3 The calculation of mode profiles
To calculate the mode profiles of the hybrid polaritons, we need the coefficient
vector C, which lies in the null space of the ill-conditioned matrix L. Hence, we
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Figure A.2: Dispersion line of bifilm A obtained from the TMM reflectance map
(blue, solid), and from the analytical dispersion model (red crosses).

first perform a singular value decomposition (SVD) of L at a point {ω̃,Re[kx]} of
the dispersion line, which yields a unitary matrix U whose columns are the left
singular vectors, a diagonal matrix S whose elements are the singular values of
the L, and a unitary matrix V whose columns are the right singular vectors. The
column of V that corresponds to the diagonal element in S that has the smallest
singular value is the coefficient vector C. We susbtitute these coefficients in the
equations (A.1)-(A.3) to get the electric field distributions of the hybrid polaritons
at each point {ω̃,Re[kx]} on the dispersion line. To calculate the electric field
profiles of the standalone samples (gold film on float glass substrate, and the ITO
film on the float glass substrate), we follow the same procedure used for the hybrid
modes detailed above, but with the required changes in the characteristic equation,
and the coefficient vector C, which now has only 6 elements.

A.3.1 Mode profiles of Bifilms with dITO ≥ 65 nm
Figures A.3(a) and A.3(b) show the electric field profiles of the LR-SPP mode
in 50-nm-thick gold film on float glass, and the “ENZ" mode in a 65-nm-thick
ITO film on float glass with the same permittivity as in Fig. 2.7(b), respectively
at their point of degeneracy. We see that for this thicker ITO film, the “ENZ"
mode starts to resemble the SPP mode so that the fields are now confined along the
ITO-substrate interface, and Ez is no longer strongly enhanced within the ITO film.
For the bifilm comprising the 50-nm-thick gold on 65-nm-thick ITO, the electric
field of the hybrid polaritons within the ITO film starts to decouple between the
two ITO interfaces, as seen in the electric field profiles of the upper and the lower
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Figure A.3: Electric field profiles of the longitudinal “z" (red) and the transverse “x"
(blue) components of the (a) standalone LR-SPP mode in a 50 nm gold film, and
the (b) standalone ENZ mode in a 65 nm ITO film at their point of degeneracy
(where their respective dispersion lines cross). The electric field profiles of the (c)
lower and the (d) upper polaritons of the bifilm with 50 nm thick gold on 65 nm
thick ITO close to the avoided crossing region.

polariton close to the avoided crossing region shown in Figures A.3(c) and A.3(d),
respectively. Both Ex and Ez for the upper (lower) polariton are enhanced along
the gold-ITO (ITO-substrate) interface.

For even thicker ITO films, the “ENZ" mode becomes even more SPP-like in
nature. As shown in Figure A.4(b), both Ez and Ex components of the “ENZ" mode
for a 100-nm-thick ITO film are confined along the ITO-substrate interface. For the
bifilm comprising this 100-nm-thick ITO film, the hybrid polaritons clearly evolve
into two interface polaritons, with the upper polariton confined along the gold-ITO
interface, and the lower polariton confined along the ITO-substrate interface. We
can also understand this effect from the behavior of ITO in the spectral range
under consideration. ITO behaves like a dielectric for frequencies larger than
ωENZ,ITO with a refractive index approaching the float glass substrate for the range
of frequencies where the upper polariton exists. Hence, this 100-nm-thick ITO
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Figure A.4: Electric field profiles of the longitudinal “z" (red) and the transverse “x"
(blue) components of the (a) standalone LR-SPP mode in a 50 nm gold film, and
the (b) standalone ENZ mode in a 100 nm ITO film at their point of degeneracy
(where their respective dispersion lines cross). The electric field profiles of the (c)
lower and the (d) upper polaritons of the bifilm with 50 nm thick gold on 100 nm
thick ITO close to the avoided crossing region.

layer behaves like a dielectric boundary for the gold film, and leads to a plasmon
polariton confined along the gold-ITO interface. For the range of frequencies
corresponding to the lower polariton, the ITO response is metal-like. Hence, for
these frequencies, the entire bifilm behaves as a thick metal film that supports a
long range polariton along the ITO-substrate interface. For such bifilms, the field
enhancement within the ITO layer is significantly lower than for the bifilms with
a thinner ITO layer. Hence, even though the coupling strength of the SPP and
the ENZ modes for such bifilms is strong enough to be classified as being in the
ultra-strong coupling region, increasing the thickness of the ITO layer in the bifilm
beyond 65 nm does not offer much practical advantage in terms of applications
pertaining to accessing the giant nonlinear response of ITO in a guided wave
geometry.
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A.4 The properties of the upper polariton in
bifilms B and C
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Figure A.5: Dispersion lines of the upper polariton of bifilms (a) B and (e) C
obtained from TMM simulations (blue, solid), experimental measurements (red,
solid), and the analytical model (green crosses). Mode confinement (blue) and the
longitudinal field enhancement (red) of the upper polariton in bifilms (b) B and (f)
C. The damping γ (normalized to the damping in the Drude permittivity model of
the corresponding ITO layer) of the upper polariton in bifilms (c) B and (g) C
obtained from the experimental measurements (solid), TMM simulations (dashed),
and the analytical model (dot-dashed). The propagation length of the upper
polariton in bifilms (d) B and (h) C obtained from the experimental measurements
(solid), TMM simulations (dashed), and the analytical model (dot-dashed). The
lines representing the simulated, and the measured results in panels (c), (d), (g)
and (h) are the smoothened parameters extracted through curve-fitting to the
respective datasets to account for fitting errors – and measurement errors in the
case of experiment – represented by the red shaded regions around the lines.

Figures A.5(a) and (e) show the dispersion lines of the upper polariton in
bifilms B and C, respectively. The blue (red) solid lines represent the results from
TMM simulations (experimental measurements) in both panels, and are obtained
as before by fitting asymmetric Lorentzians to the corresponding reflectance maps.
The green crosses in both panels represent the results from the analytical dispersion
model, and are the real part of the complex ω̃ that minimize the |det(L)| given
in Eq. (A.6) at each real wavevector Re[kx]. The dispersion lines obtained form



APPENDIX A. SUPPLEMENTARY MATERIALS FOR CHAPTER 2 190

TMM simulations are in almost perfect agreement with those obtained from the
analytical model. The slight differences observed in the experimentally measured
dispersion lines with the simulations and the analytical model could be attributed to
several factors. First, there could be possible differences in the permittivity values
of gold and ITO in the fabricated bifilms and the permittivity values assumed in the
simulations, and in the analytical model. Second, the measurement errors, as well
as the errors in curve fitting to the measured reflectance maps for the parameter
extraction could also contribute to the slight differences.

Figures A.5(b) and (f) show the mode confinement (blue, left axis), and the
longitudinal field enhancement (red, right axis) within the ITO layer for the upper
polariton of bifims B and C, respectively. These quantities are calculated from
the mode profiles of the upper polariton (calculated using the method described in
section S6) for both bifilms using the definitions of the quantities given in the main
text. The upper polariton of bifilm B has slightly larger mode confinement than
the upper polariton in bifilm A [Fig. 2.8(c)] at frequencies close to the band edge
of bifilm B (around 0.093 and 0.13 for bifilms A and B, respectively). However,
the slope of the confinement curve is steeper for bifilm B than for bifilm A, and
becomes as large as 0.4 for bifilm B away from the polariton band edge, which is
more than thrice the confinement at that particular frequency (350 THz) for the
upper polariton in bifilm A. The mode confinement of the upper polariton in bifilm
C is even larger than the upper polariton in bifilm B throughout spectral range with
a maximum value close to 0.5. This trend is in agreement with the transition of
the hybrid polaritons to interface polaritons for larger thicknesses of the ITO layer
discussed previously in section A.3. At the “bluer" frequencies, where ITO behaves
as a dielectric, the (upper polariton) becomes more confined along the gold-ITO
interface for both bifilms B and C. This confinement is even larger for bifilm C
where the ENZ mode in the 100 nm-thick-ITO layer is even more LR-SPP-like
than the ENZ mode in the 65 nm-thick-ITO layer in bifilm B.

On the other hand, the longitudinal field enhancement of the upper polariton in
bifilm A is larger than both bifilms B and C throughout the spectral range under
consideration. The maximum field enhancement for the upper polariton in bifilm
A ≈ 32× at the band edge of bifilm A, whereas it is ≈ 20× and ≈ 17× at the band
edges of bifilms B and C, respectively. A larger field enhancement would be more
desirable for enhancing the nonlinear optical response for certain applications. The
larger mode confinements of the upper polaritons in bifilms B and C in comparison
to the polariton in bifilm A also reflects in their smaller propagation lengths and
larger damping. The simulated as well as the measured propagation lengths for
the upper polaritons in both bifilms B and C is between 2-4 µm, whereas the
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corresponding lengths for bifilm A is between 4-8 µm. On the other hand, the
simulated and the measured damping rates of the upper polaritons in both bifilms
B and C is larger than 0.1γITO, while the damping rate for the upper polariton in
bifilm A is lower than 0.1γITO throughout.
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B. Fabrication Details for the Bi-
film and the Nanoantenna Ar-
rays

B.1 The Gold-ITO Bifilms
The 50-nm-thick gold layer over the commercial ITO samples was deposited using
the thermal evaporation technique. The samples were cleaned using acetone and
extreme sonication followed by isopropyl alcohol (IPA) and extreme sonication to
remove most of the contamination over the surface that could lead to the undesired
scattering of the surface waves. A thermal source was then used to evaporate the
gold at a constant rate until a 50-nm-thick layer of gold accumulated over the
samples under a high vacuum. No adhesion layer was used between the gold layer
and the substrate.

B.2 The Nanoantenna Arrays

Figure B.1: Flow diagram depicting the fabrication process of the nanoantenna
arrays.

Fig. B.1 shows a flow diagram of the fabrication process of our nanoantenna
arrays. As a first step, a 2 cm × 2 cm chip was diced from a fused silica wafer.
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This chip was then cleaned through the use of acetone and IPA, followed by blow-
drying with nitrogen. A 2% wt. polymethyl methacrylate (PMMA) in anisole
solution (molecular weight of 450,000) was used as the bottom resist layer. The
chip was then spin-coated with the bottom resist at 5000 rpm for 60 seconds
with an acceleration of 300 rps, and then baked at 180°C for 30 minutes, thereby
producing a 50-nm-thick bottom resist layer. Similarly, a 2% wt. PMMA in anisole
solution (molecular weight of 950,000) was used as the top resist layer. This top
layer was spin-coated at 7000 rpm for 60 seconds, with an acceleration of 300
rps, thereby producing a 25-nm-thick top resist layer. A non-conductive substrate,
such as silica, can result in charge buildup during E-beam exposure (commonly
termed as charging). To avoid this charging effect during E-beam lithography
of our plasmonic nanostructures, espacer, a water-soluble conductive polymer
solution, was spin-coated at 2500 rpm for 25 seconds with an acceleration of 300
rps. The plasmonic nanostructures were then patterned using 30-kV Raith E-beam
lithography system (CRPuO, uOttawa) with a dose of 550 mC/cm2. After the
patterning, the samples were rinsed in de-ionized water to remove the espacer
layer, and post-baked on a hot plate at 80°C for 1 hour. The resist was then
developed for 2 minutes in 3:1 MIBK-IPA (Methyl Isobutyl Ketone-Isopropyl
Alcohol) mixture at 20°C, followed by an IPA rinse. With the PMMA bi-layer
pattern prepared, metallization was carried out by thermal evaporation of 20-nm-
thick gold layer through the use of an Angstrom Nexdep evaporator. As a final step
in the fabrication, acetone was used to lift-off of the PMMA.
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C. Analytical Model of a Single Nanorod
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Figure C.1: (a) Scattering, (b) absorption, and (c) extinction cross-section spectra
of a single nanorod obtained from FDTD simulations (blue, dot-dashed), and of
the equivalent ellipsoid calculated analytically (red, solid). (d) Diagram showing
the dimensions of the equivalent ellipsoid and the excitation geometry.

From the electrostatic model for dipole polarizability of an ellipsoid of semi-
axes lengths ae, be and ce, we have the following expression [15]

α0,ii =V
(

Li +
ε

ε1− ε

)−1

, (C.1)

where i = x,y,z, V = 4πaebece/3 is the volume of the ellipsoid, ε1 and ε are the
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material permittivity of the ellipsoid (gold) and of the surrounding medium (BK7
glass) respectively. Li is the shape-parameter (or the depolarization factor) given
by

Li =
aebece

2

∫
∞

0

dq
f (q)(q+d2

i )
, (C.2)

with di = {ae,be,ce} for i = {x,y,z}, and f (q) =
√
(q+a2

e)(q+b2
e)(q+ c2

e). The
optical constants of gold (for ε1) were taken from Johnson and Christy [70], and the
permittivity of the BK7 glass (εm) from [131]. The only damping mechanism in this
limit arises from the material response, which is independent of the dimensions of
the ellipsoid. For ellipsoids of volumes as large as the nanorod (185 nm long, 105
nm wide and 20 nm thick), radiative damping becomes a significant contribution to
the linewidth, along with the non-radiative damping due to the material response.
In addition, retardation effects come into play, which lead to a shift in the resonance
frequency. These effects are not accounted for in the electrostatic polarizability
model. Kuwata et al. [258] provide an empirical model for an arbitrary shaped
nanoparticle that takes into account retardation as well as the radiation reaction by
approximating the total polarizability as

α
−1
ii ≈ α

−1
0,ii− i

(nω̃)3

6π
−β0,ii, (C.3)

β0,ii =−
A(Li)

V
(nω̃di)

2− B(Li)

V
(nω̃di)

4, (C.4)

where ω̃ = ω/c, and n is the refractive index of the surrounding medium. The
second term on the right in Eq. (C.3) accounts for the radiation-reaction, while
the β0,ii term is an empirical term that accounts for retardation. A(Li) and B(Li)
are polynomials of the shape-parameter Li. The specific form of the polynomials
depends on the geometry of the nanoparticles under consideration and does not
depend on the material being considered. The resonance condition is met when the
real part of the right hand side of Eq. (C.3) vanishes. In addition, from Eqs. (C.1)
and (C.3), we see that a larger volume of the ellipsoid leads to larger radiative
damping (and hence larger spectral linewidth), as well as a red-shift in the resonance
[12, 259].

The cross-sections of the ellipsoid are given by (assuming i = x and dropping
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the suffixes)

Cext = nω̃ Im[α], (C.5)

Cscat =
(nω̃)4

6π
|α|2, (C.6)

Cabs =Cext−Cscat, (C.7)

Kuwata et al. [258] provide the polynomials A(L) and B(L) for spheroids of aspect
ratios larger than 3.8. However, for the aspect ratios of the nanorods that we have
considered, the polynomials given in [258] do not yield correct results. In order
to obtain the correct form of the polynomials specific to our case, we compare
the cross-section spectra of ellipsoids of different dimensions simulated in FDTD
with the cross-section spectra corresponding to ellipsoid polarizability given by
Eqs. (C.5)-(C.7) while assuming different forms of the polynomials A(L) and B(L).
The closest agreement between the FDTD simulations and the analytical model
were found for A(L) = −0.4915L− 1.046L2 + 0.8481L3 and dropping the term
associated with the polynomial B(L).

The dimensions of the ellipsoid with scattering and extinction spectra in closest
agreement with the corresponding spectra of an isolated nanorod are: ae = 112
nm, be = 63.85 nm, ce = 12.25 nm. Figure C.1 (a), (b) and (c) compare the
spectra of the scattering, absorption, and extinction cross-sections, respectively,
of the nanorod obtained from FDTD (blue, dot-dashed), and of the equivalent
ellipsoid calculated analytically. We see that the extinction and the scattering
cross-section spectra of the nanorod and the equivalent ellipsoid agree reasonably
well. However, there are additional features are present at the frequencies higher
than the absorption resonance for the nanorod, but not for the ellipsoid. These
additional features are due to contributions from multipolar resonances of the
nanorod, with the prominent bump around 350 THz due to the electric quadrupolar
component. Since the analytical results calculated everywhere in this work only
include the electric dipole contributions from the equivalent ellipsoid, we see some
disagreements between the analytically calculated spectra and the spectra obtained
from FDTD simulations in the frequency range 280-380 THz for the single, bi-,
and multi-layered nanoantenna arrays.
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D. Electric field from a 2D Lattice
of Identical Electric Dipoles

Here we present the derivation of Eq. (4.8), which is the electric field at a given
point in space from a square lattice of identical electric dipoles of dipole moment
p located in the xy-plane. We consider fields at a fixed frequency ω , or

E(r, t) = E(r)e−iωt + c.c., (D.1)

and assuming a source polarization P(r) in a background medium of refractive
index n, we have [260]

P(R;z) =
∫ dκ

(2π)2 P(κ;z)eiκ·R, (D.2)

E(R;z) =
∫ dκ

(2π)2 E(κ;z)eiκ·R, (D.3)

where P(r) = P(R;z), κ = (κx,κy), and

E(κ;z) =
∫

G(κ;z− z′) ·P(κ;z′)dz′, (D.4)

with G(κ;z) being the Green’s function given by

G(κ;z) =
iω̃2

2ε0w
(ŝŝ+ p̂+ p̂+)θ(z− z′)eiw(z−z′)

+
iω̃2

2ε0w
(ŝŝ+ p̂− p̂−)θ(z

′− z)e−iw(z−z′)− ẑẑ
2ε0n2 δ (z− z′).

(D.5)
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Here θ(z) is the Heaviside step function,

w =
√

ω̃2n2−κ2,

and

ŝ = κ̂× ẑ

p̂± =
κ ẑ∓wκ̂

ω̃n
,

with κ = |κ|. We assume the lattice positions of the nanoantenna array to be

Rl = lxax̂+ lyaŷ,

with a being the lattice constant; l denotes (lx, ly), where lx and ly are integers. The
reciprocal lattice vectors are then given by

Km =
2π

a
mxx̂+

2π

a
myŷ, (D.6)

where m denotes (mx,my), with mx and my integers. The relation eiKm·Rl = 1 holds
for any Rl and any Km

In the point dipole approximation, the polarization P(R;z) and P(κ;z) of the
plane of dipoles can be written as

P(R;z) = δ (z)∑
l

pδ (R−Rl), (D.7)

P(κ;z) = δ (z)p∑
l

e−iκ·Rl . (D.8)

Substituting Eq. (D.8) in (D.4), we get after some simplification

E(κ;z) =
iω̃2

2ε0w
(ŝŝ+ p̂± p̂±) · p∑

l
e−iκ·Rl eiw|z|. (D.9)

Then using Eqs. (D.9) and (D.3), we get

E(R;z) =
iω̃2

2ε0

∫ dκ

(2π)2w
(ŝŝ+ p̂± p̂±) · p

(
∑

l
eiκ·(R−Rl)

)
eiw|z|. (D.10)
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We now set R = R j +∆, where R j is some lattice site, and ∆ is the displacement
from the lattice site; using the lattice property that eiκ·(R j−Rl) = 1, we get

E(R;z) =
iω̃2

2ε0

∫ eiκ·∆dκ

(2π)2w
(ŝŝ+ p̂± p̂±) · p

(
∑

l
eiκ·Rl

)
eiw|z|. (D.11)

We then use the standard lattice result

a2

(2π)2 ∑
l

eiκ·Rl = ∑
m

δ (κ−Km),

in (B11) to get

E(R j +∆;z) =
iω̃2

2ε0a2 ∑
m

eiKm·∆

w
(ŝŝ+ p̂± p̂±) · peiw|z|, (D.12)

where w, ŝ, and p̂± are now functions of Km given by

ŝ = K̂m× ẑ,

p̂± =
Kmẑ∓w(Km)K̂m

ω̃n
,

w =
√

ω̃2n2−K2
m.

For m = (0,0), w→ ω̃n, and K0,0 = 0, and K̂0,0 is poorly defined in this limit.
However, regardless of the choice of unit vector for K̂0,0, we have the condition

ŝŝ+ p̂± p̂±→ x̂x̂+ ŷŷ,

which gives us the m = (0,0) field component as

[E(R j +∆;z)]m=(0,0) =
iω̃

2ε0a2n
(x̂x̂+ ŷŷ) · peiω̃n|z|. (D.13)

This is independent of displacement ∆, and has the form of a plane wave with no
fast-decaying components. Hence this m = (0,0) component is the radiative field
contribution. For a small enough lattice constant a, the remaining terms in the sum
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in Eq. (D.12) form the non-radiative contribution,

Enrad(R j +∆;z) = ∑
m6=(0,0)

eiKm·∆
[ iω̃2

2ε0a2w
(ŝŝ+ p̂± p̂±)

]
· peiw|z|. (D.14)

The non-radiative field
Assuming that the lattice constant a is small enough that for (mx,my) 6= (0,0) we
have w purely imaginary, we put

w = iq, (D.15)

where q =
√

K2
m− ω̃2n2, which can be written in terms of the indices (mx,my) as

q =
2π

a

√
(m2

x +m2
y)−

ω̃2n2a2

(2π)2 . (D.16)

We now define
ω̃na
2π

= η , (D.17)

and we can write
Km

ω̃n
=

2π

ω̃na

√
m2

x +m2
y =

Dm

η
, (D.18)

where Dm =
√

m2
x +m2

y . For the sub-wavelength lattice constants assumed here,
where for (mx,my) 6= (0,0) we have q real, η < 1, and we can write

w
iω̃n

=
q

ω̃n
=

1
η

√
(m2

x +m2
y)−η2,

which simplifies to
q

ω̃n
=

1
η

√
D2

m−η2 =
Dmγm

η
, (D.19)

where

γm =

√
1− η2

D2
m
,
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and is always real and slightly less than unity for η < 1. We now simplify the
prefactor of the unit dyadics in Eq. (D.14) as

iω̃2

2ε0a2w
=

ω̃

2ε0a2n
ω̃n
q

=
π

ε0a3n2
η2

Dmγm
. (D.20)

The propagator eiw|z|, which we define as fm(|z|) can also be simplified to

fm(|z|) = e−q|z| = e−
ω̃n
η

Dmγm|z| = e−2πDmγm| za |. (D.21)

We also define
Φ(∆) = Km ·∆ = 2π

(
mx

∆x

a
+my

∆y

a

)
. (D.22)

Substituting Eqs. (D.20)-(D.20) in Eq. (D.14), we get

Enrad(R j +∆;z) =
π

ε0a3n2 ∑
m6=(0,0)

eiΦm(∆) fm(|z|)
[

η2

Dmγm
(ŝŝ+ p̂± p̂±)

]
· p. (D.23)

We now simplify the unit dyadics in Eq. (D.23) in terms of the cartesian vectors.
So we have

K̂m =
mxx̂+myŷ

Dm

ŝ = K̂m× ẑ =
−mxx̂+myŷ

Dm
.

Hence we write

ŝŝ =
m2

y x̂x̂+m2
x ŷŷ−mxmy(x̂ŷ+ ŷx̂)

D2
m

, (D.24)

and

p̂± p̂± =
Kmẑ∓wK̂m

ω̃n
Kmẑ∓wK̂m

ω̃n

=
K2

m
ω̃2n2 ẑẑ− q2

ω̃2n2 K̂mK̂m∓ i
Kmq
ω̃2n2

(
ẑK̂m + K̂mẑ

)
,

(D.25)

where we have used Eq. (D.15) for simplification. We use Eqs. (D.18) and (D.19)
to further simplify Eq. (D.25) above as

p̂± p̂± =
D2

m
η2 ẑẑ− D2

mγ2
m

η2 K̂mK̂m∓ i
D2

mγm

η2

(
ẑK̂m + K̂mẑ

)
. (D.26)
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We now simplify the second and the third unit dyadics on the right of Eq. (D.26).
For the second unit dyadic, we have

K̂mK̂m =
mxx̂+myŷ

Dm

mxx̂+myŷ
Dm

=
m2

x x̂x̂+m2
y ŷŷ+mxmy(x̂ŷ+ ŷx̂)

D2
m

.

(D.27)

The third unit dyadic in Eq. (D.26) can be written as

ẑK̂m + K̂mẑ = ẑ
mxx̂+myŷ

Dm
+

mxx̂+myŷ
Dm

ẑ

=
mx

Dm
(ẑx̂+ x̂ẑ)+

my

Dm
(ẑŷ+ ŷẑ).

(D.28)

Substituting Eqs. (D.27) and (D.28) in (D.26), we get

p̂± p̂± =−m2
xγ2

m
η2 x̂x̂−

m2
yγ2

m

η2 ŷŷ+
D2

m
η2 ẑẑ−

mxmyγ2
m

η2 (x̂ŷ+ ŷx̂)

∓ i
myDmγm

η2 (ẑŷ+ ŷẑ)∓ i
mxDmγm

η2 (ẑx̂+ x̂ẑ).
(D.29)

From Eqs. (D.24) and (D.29), we write

η
2(ŝŝ+ p̂± p̂±) = x̂x̂

(η2m2
y

D2
m
−m2

xγ
2
m

)
+ ŷŷ

(
η2m2

x
D2

m
−m2

yγ
2
m

)
+ ẑẑD2

m+

+(x̂ŷ+ ŷx̂)
(
−

η2mxmy

D2
m
−mxmyγ

2
m

)
+(ẑŷ+ ŷẑ)(∓imyDmγm)+

+(ẑx̂+ x̂ẑ)(∓imxDmγm).
(D.30)

The coefficients of the unit dyadics in Eq. (D.30) can be further simplified. So we
have

η2m2
y

D2
m
−m2

xγ
2
m =

η2m2
y−m2

x(D
2
m−η2)

D2
m

= η
2 m2

x +m2
y

D2
m
−m2

x = η
2−m2

x .

Similarly
η2m2

x
D2

m
−m2

yγ
2
m = η

2−m2
y ,
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and

−
η2mxmy

D2
m
−mxmyγ

2
m =mxmy

(−η2− γ2
mD2

m
D2

m

)
=mxmy

(−η2− (D2
m−η2)

D2
m

)
=−mxmy.

On making the above substitutions, Eq. (D.30) becomes

η
2(ŝŝ+ p̂± p̂±) = x̂x̂

(
η

2−m2
x

)
+ ŷŷ

(
η

2−m2
y

)
+ ẑẑD2

m +(x̂ŷ+ ŷx̂)(−mxmy)

+(ẑŷ+ ŷẑ)(∓imyDmγm)+(ẑx̂+ x̂ẑ)(∓imxDmγm).
(D.31)

Substituting Eq. (D.31) in (D.23), we can write

Enrad(R j +∆;z) =
π

ε0a3n2 T (∆,z) · p, (D.32)

where T (∆,z) is a dimensionless dyadic of the form

T (∆,z) = Txx(∆,z)x̂x̂+Tyy(∆,z)ŷŷ+Tzz(∆,z)ẑẑ+Txy(∆,z)(x̂ŷ+ ŷx̂)
+Tyz(∆,z)(ẑŷ+ ŷẑ)+Tzx(∆,z)(x̂ẑ+ ẑx̂),

with

Txx(∆,z) = ∑
m6=(0,0)

eiΦm(∆) fm(|z|)
(

η2−m2
x

Dmγm

)
,

Tyy(∆,z) = ∑
m6=(0,0)

eiΦm(∆) fm(|z|)
(η2−m2

y

Dmγm

)
,

Tzz(∆,z) = ∑
m6=(0,0)

eiΦm(∆) fm(|z|)
(Dm

γm

)
,

Txy(∆,z) = ∑
m6=(0,0)

eiΦm(∆) fm(|z|)
(
−

mxmy

Dmγm

)
,

Tyz(∆,z) = ∑
m6=(0,0)

eiΦm(∆) fm(|z|)(∓imy),

Tzx(∆,z) = ∑
m6=(0,0)

eiΦm(∆) fm(|z|)(∓imx). (D.33)
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The tensor components given in Eq. (D.33) can be further simplified by noting that

eiΦm(∆) = cos(Φm(∆))+ isincos(Φm(∆)),

and we get

Txx(∆,z) = ∑
m6=(0,0)

fm(|z|)
(

η2−m2
x

Dmγm

)
cos(Φm(∆)),

Tyy(∆,z) = ∑
m6=(0,0)

fm(|z|)
(η2−m2

y

Dmγm

)
cos(Φm(∆)),

Tzz(∆,z) = ∑
m6=(0,0)

fm(|z|)
(Dm

γm

)
cos(Φm(∆)),

Txy(∆,z) = ∑
m6=(0,0)

fm(|z|)
(
−

mxmy

Dmγm

)
cos(Φm(∆)),

Tyz(∆,z) = sign(z) ∑
m6=(0,0)

fm(|z|)my sin(Φm(∆)),

Tzx(∆,z) = sign(z) ∑
m6=(0,0)

fm(|z|)mx sin(Φm(∆)). (D.34)

We note that all the tensor components given above are purely real, which is
expected for Enrad(R j +∆;z) being a purely non-radiative field.

For all the dipoles aligned along x̂, which is the case for the nanoantenna array
excited by a normally incident plane wave polarized along the dipole moments
oriented along the x-axis, only the Txx(∆,z) tensor component is non-zero. Hence,
the x-polarized electric field from the sheet of dipoles given by the Eqs. (D.13) and
(D.32) is as follows

Ex(R j +∆;z) =
iω̃

2ε0n
px

a2 eiω̃|z|+
π

ε0an2 Txx(∆,z)
px

a2 . (D.35)
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E. Supplementary Materials for Chap-
ter 5

E.1 Basic Equations

E.1.1 Single Nanoantenna Array
We reintroduce the basic formalism introduced previously in Refs. [163, 194]
describing the dipole moments of nanoantennas in a single array. We make the
point dipole approximation and model the nanoantennas as electric dipoles of
dipole moment p and electrostatic polarizability

↔
α0, which are related by the

following equation:
p = ε0n2 ↔

α0 ·E tot. (E.1.1.1)

with ε0 being the vacuum pemittivity, and E tot being the total electric field at the
location of the nanoantenna given by

E tot = E inc +
1

4πε0

2
3

inω̃
3 p+(

↔
β 0 +

↔
β ) · 1

ε0n2 p. (E.1.1.2)

Here, E inc is the normally incident plane wave at the center of the nanoantenna,

the dyadic
↔
β 0 is purely real and denotes the dynamic depolarization term that

describes the modification of the dipole moment p due to field retardation over the

volume of the nanoantenna. The complex dyadic
↔
β is also called the dynamic

interaction constant of the array and accounts for the modification of p due to field
contributions from all the other nanoantennas in the array. After some rearranging
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of the terms in Eq. (E.1.1.2), we write

↔
α
−1
eff =
↔
α
−1
0 −

i
6π

(nω̃
3)
↔
U −(

↔
β 0 +

↔
β ), (E.1.1.3)

where
p = ε0n2 ↔

αeff ·E inc. (E.1.1.4)

The expression for the electric field from this plane of dipoles at an arbitrary point
(x,y,z) = (ma+∆x,na+∆y,z) has been derived in Appendix B of Ref. [194], and
is given below:

E(ma+∆x,na+∆y,z) =
iω̃

2ε0a2n
(x̂x̂+ ŷŷ) · peiω̃n|z|+

π

ε0a3n2 T(∆x,∆y,z)p.

(E.1.1.5)
Here, (m,n) are the lattice indices in the xy-plane, and (∆x,∆y) denote the trans-
verse displacements of the point (x,y,z) from these lattice points. The first term on
the right of the above equation is the radiative or far-field contribution to the total
field, and the second term on the right is the non-radiative or near-field contribution.
The expressions for all the tensor components of the tensor T(∆x,∆y,z) are also
given in Appendix B of Ref. [194]. The incident field E inc is assumed to be linearly
polarized along the length of the nanoantenna, which is aligned with the x-axis.
Hence, we only list the relevant tensor component Txx(∆x,∆y,z) or Txx(∆,z) below:

Txx(∆,z) = ∑
m6=(0,0)

fm(|z|)

(
η2−m2

x
Dmγm

)
cos[Φm(∆)], (E.1.1.6)

where m≡ (mx,my), and

Φm(∆) = 2π

(
mx

∆x

a
+my

∆y

a

)
,

Dm ≡
√

m2
x +m2

y ,

η ≡ ω̃na
2π

,

γm ≡

√
1− η2

D2
m
,

fm(|z|)≡ e−2πDmγm|z/a|.
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E.1.2 Semi-Infinite Meta-Crystal
We now consider the system depicted in Fig. 5.1 with an infinite number of identical
dipole planes located at zJ = Jb, with J varying from 1 to ∞. The incident field
on the stack is assumed to have the form E inc = E0ei(ω̃nz−ωt)x̂. Each dipole pJ in
plane J is excited by the retarded incident field E0ei(ω̃nJb−ωt)x̂, the field from all
the dipoles within plane J, and the radiative and near-field contributions from all
the other dipole planes. Using Eqs. (E.1.1.2) and (E.1.1.5), we then write

pJ = ε0n2↔
α 0 ·Efull(zJ), (E.1.2.1)

where

Efull(zJ) = E inc(zJ)+
1

4πε0

2
3

inω̃
3 pJ +

↔
β 0 ·pJ

ε0n2 +

↔
β ·pJ

ε0n2 +

+
iω̃

2ε0a2n
(x̂x̂+ ŷŷ) ·

∞

∑
K=1

′eiω̃n|zJ−zK |pK +
π

ε0a3n2

∞

∑
K=1

′T(∆JK, |zJ− zK|) · pK.

(E.1.2.2)

Here, the primed sum denotes the sum of field contributions from all the layers
except the J-th layer. For the x-polarized incident field, as stated previously, we
only need to consider the px component of the dipole moment and the dyadic terms
βxx, β0,xx, and Txx. For now, we also consider the lattice points in each plane to be
perfectly aligned, or ∆JK = 0 for all J and K. So we rewrite Eq. (E.1.2.2) below
and drop the suffixes:

Efull(zJ) = E0eiω̃nzJ +
inω̃3

6πε0
pJ +

β0 pJ

ε0n2 +
β pJ

ε0n2 +
iω̃

2ε0a2n

∞

∑
K=1

′eiω̃n|zJ−zK |pK+

+
π

ε0a3n2

∞

∑
K=1

′T(|zJ− zK|)pK.

(E.1.2.3)
The term Im[β ], which includes the radiation reaction terms from all the other
nanoantennas in a single array, has the following form [136]

Im[β ] =− 1
6π

(nω̃)3 +
nω̃

2a2 . (E.1.2.4)
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Substituting Eq. (E.1.2.4) in (E.1.2.3) and simplifying, we get

Efull(zJ) = E0eiω̃nzJ +
β0 pJ

ε0n2 +
Re[β ]pJ

ε0n2 +
iω̃

2ε0a2n
pJ+

+
iω̃

2ε0a2n

∞

∑
K=1

′eiω̃n|zJ−zK |pK +
π

ε0a3n2

∞

∑
K=1

′T(|zJ− zK|)pK.
(E.1.2.5)

We now combine the in-plane (third last) and inter-plane (second last) radiative
coupling terms on the right to give a full sum over K. We can further simplify
Eq. (E.1.2.5) by combining the in-plane and inter-plane non-radiative coupling by
defining

Re[β ]pJ

ε0n2 =
π

ε0a3n2 T(0), (E.1.2.6)

so as to write the last term on the right as an unrestricted sum over K as well. So
we get

Efull(zJ) = E0eiω̃nzJ +
β0 pJ

ε0n2 +
iω̃

2ε0a2n

∞

∑
K=1

eiω̃n|zJ−zK |pK+

+
π

ε0a3n2

∞

∑
K=1

T(|zJ− zK|)pK.

(E.1.2.7)

We now define
α
−1
atom = α

−1
0 −β0. (E.1.2.8)

Here, αatom is the electrostatic polarizability of the nanoantenna including the
effect of field retardation over its volume, and similar to α0, will be purely real in
the absence of absorption in the nanoantenna. From Eqs. (E.1.2.1) and (E.1.2.8),
we have

pJ = ε0n2
αatom

[
Efull(zJ)−

β0 pJ

ε0n2

]
. (E.1.2.9)

Substituting Eqs. (E.1.2.7) and (E.1.2.9) in (E.1.2.1), we finally get

pJ = ε0n2
αatom

[
E0eiω̃nzJ +

iω̃
2ε0a2n

∞

∑
K=1

eiω̃n|zJ−zK |pK+
π

ε0a3n2

∞

∑
K=1

T(|zJ−zK|)pK

]
.

(E.1.2.10)
For notational convenience, we define

φ = ω̃nb. (E.1.2.11)
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We then have
pJ = ε0n2

αatomE(J), (E.1.2.12)

where

E(J) = E0eiφJ +
iφ

2ε0a2bn2

∞

∑
K=1

eiφ |J−K|pK +L(J), (E.1.2.13)

with

L(J) =
π

ε0a3n2

∞

∑
K=1

T(|zJ− zK|)pK. (E.1.2.14)

E.2 The Effective Refractive Index
If ρ(r, t) and J(r, t) are the charge and current densities “in vacuum", then Maxwell’s
equations are

∂B(r, t)
∂ t

=−∇×E(r, t), (E.2.0.1a)

∂E(r, t)
∂ t

=
1

µ0ε0
∇×B(r, t)− 1

ε0
J(r, t), (E.2.0.1b)

∇ ·B(r, t) = 0, (E.2.0.1c)

∇ ·E(r, t) = ρ(r, t)
ε0

. (E.2.0.1d)

And with the “full" polarization P(r, t), which consists of a background component
Pback(r, t) and the component of interest P(r, t) such that

P(r, t) = Pback(r, t)+P(r, t), (E.2.0.2)

the Gauss’s and Amperes’ laws are modified to be

ρ(r, t) =−∇ ·P(r, t), (E.2.0.3a)

J(r, t) =
∂P(r, t)

∂ t
. (E.2.0.3b)

Now, we characterize the background polarization by a susceptibility χback such
that

Pback(r, t) = ε0χbackE(r, t), (E.2.0.4)
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and introduce the background refractive index as

χback = n2−1. (E.2.0.5)

So we have
Pback(r, t) = ε0(n2−1)E(r, t)+P(r, t). (E.2.0.6)

So the Maxwell’s equations stated above now become

∂B(r, t)
∂ t

=−∇×E(r, t), (E.2.0.7a)

∂

∂ t
(ε0n2E(r, t)+P(r, t)) = ∇×H(r, t), (E.2.0.7b)

∇ ·B(r, t) = 0, (E.2.0.7c)

∇ · (ε0n2E(r, t)+P(r, t)) = 0, (E.2.0.7d)

where H(r, t),= B(r, t)/µ0. Now we write

P(r, t)) = ε0n2
χαE(r, t), (E.2.0.8)

where χα is the susceptibility due to the dipole planes. We then have

∂B(r, t)
∂ t

=−∇×E(r, t), (E.2.0.9a)

∂

∂ t
(ε0n2(1+χα)E(r, t)) = ∇×H(r, t), (E.2.0.9b)

∇ ·B(r, t) = 0, (E.2.0.9c)

∇ · (ε0n2(1+χα)E(r, t)) = 0. (E.2.0.9d)

Now defining
χα = n2

α −1, (E.2.0.10)
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we get

∂B(r, t)
∂ t

=−∇×E(r, t), (E.2.0.11a)

∂

∂ t
(ε0n2

eff,αE(r, t)) = ∇×H(r, t), (E.2.0.11b)

∇ ·B(r, t) = 0, (E.2.0.11c)

∇ · (ε0n2
eff,αE(r, t)) = 0. (E.2.0.11d)

where
neff,α = nnα . (E.2.0.12)

Comparing the equations in (E.2.0.11) with those in (E.2.0.9) for P(r, t)) = 0, we
see that in the presence of polarization P(r, t)) the background index is modified
to neff,α .

E.3 The Radiative Field at plane J in the Meta-
crystal

In Eq. (5.2), the radiative field contributions at plane z = Jb in the semi-infinite
meta-crystal are given by the second term of the right, which is a summation over
all the planes. We need to calculate this summation for the assumed solutions given
by Eqs. (5.11) and (5.25) for the scenarios one and two, respectively. We work
out this summation for the more general case given by scenario two, and the result
for scenario one follows as a special case. To restate the problem, we need the
expression for

iφ
∞

∑
K=1

eiφ |J−K|pK, (E.3.0.1)

where

pK =
2

∑
α=1

Peinα φK. (E.3.0.2)

So we have

iφ
∞

∑
K=1

eiφ |J−K|pK = iφ
2

∑
α=1

PαSJα , (E.3.0.3)
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where

SJα =
∞

∑
K=1

eiφ |J−K|einα φK. (E.3.0.4)

For J ≥ 1, we can break the summation as

SJα =
J

∑
K=1

eiφ(J−K)einα φK +
∞

∑
K=J+1

eiφ(K−J)einα φK

= eiφJ
J

∑
K=1

ei(nα−1)φK + e−iφJ
∞

∑
K=J+1

ei(nα+1)φK

= eiφJ
J

∑
K=1

ei(nα−1)φK + e−iφJ[
∞

∑
K=0

ei(nα+1)φK−
J

∑
K=0

ei(nα+1)φK].

(E.3.0.5)

Now using the geometric series expression

N

∑
m=M

rm =
rM(1− rN−M+1)

1− r
, (E.3.0.6)

we can write

SJα = eiφJ

(
ei(nα−1)φ − ei(nα−1)φ(J+1)

1− ei(nα−1)φ

)
+ e−iφJ

(
1

1− ei(nα+1)φ
− 1− ei(nα+1)φ(J+1)

1− ei(nα+1)φ

)

=
eiφJ− einα φJ

e−i(nα−1)φ −1
+

einα φJ

e−i(nα+1)φ −1

= eiφJ

(
1

e−i(nα−1)φ −1

)
+ e−inα φJ

(
1

e−i(nα+1)φ −1
− 1

e−i(nα−1)φ −1

)
.

(E.3.0.7)
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Now simplifying the last term on the right, we have

1
e−i(nα+1)φ −1

− 1
e−i(nα−1)φ −1

=
1

e−inα φ e−iφ −1
− 1

e−inα φ eiφ −1

=
e−inα φ eiφ − e−inα φ e−iφ

(e−inα φ e−iφ −1)(e−inα φ eiφ −1)
=

e−inα φ (eiφ − e−iφ )

e−2inα φ − e−inα φ (eiφ + e−iφ )+1

=
2e−inα φ isinφ

e−2inα φ −2e−inα φ cosφ +1
=

isinφ

cosnαφ − cosφ

=− isinφ

2(sin2 nα φ

2 − sin2 φ

2 )
,

(E.3.0.8)

where in the last step we have used the trigonometric identity

cosθ = 1−2sin2 θ

2
. (E.3.0.9)

So, finally we have

SJα = eiφJ

(
1

e−i(nα−1)φ −1

)
− ie−inα φJ

2
sinφ

(sin2 nα φ

2 − sin2 φ

2 )
. (E.3.0.10)

So finally substituting Eq. (E.3.0.10) back in (E.3.0.3), we get

iφ
∞

∑
K=1

eiφ |J−K|pK = eiφJ
2

∑
α=1

Pα

(
iφ

e−i(nα−1)φ −1

)
+

1
2

2

∑
α=1

Pαe−inα φJ

(
φ sinφ

(sin2 nα φ

2 − sin2 φ

2 )

)
.

(E.3.0.11)

E.4 Solving the Dispersion Equations
The characteristic equation for the single polariton solution in scenario one is the
same for both the meta-crystal and the meta-film, which is as follows

sin2 Φ0

2
− sin2 φ

2
=−φ sinφ

4ξ
, (E.4.0.1)
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where

ξ =−

[(
αatom

a2b

)−1
− s0

]
, (E.4.0.2)

Φ0 = n0φ with n0 being the effective index enhancement and nn0 being the total
effective index. We now use the well-known trigonometric identity to rewrite the
characteristic equation as

1
2
(1− cosΦ0)−

1
2
(1− cosφ) =−φ sinφ

4ξ
, (E.4.0.3)

or
cosΦ0 = cosφ +

φ sinφ

2ξ
≡ Z0. (E.4.0.4)

The principal value of arccosZ0 is given by

ArccosZ0 =
1
i
Ln
(

Z0 + i|1−Z2
0 |1/2e

i
2 Arg(1−Z2

0)
)

(E.4.0.5)

for the complex-valued Z0, where Ln() stands for the natural logarithm. To satisfy
the boundary condition at z→ ∞ for the fields, we must have the imaginary part of
n0 to be positive to ensure that the fields decay into the medium rather than being
amplified. So we choose the solution to be

Φ0 = sgn[Im(ArccosZ0)]ArccosZ0, (E.4.0.6)

and
n0 =

Φ0

φ
=

1
φ

sgn[Im(ArccosZ0)]ArccosZ0. (E.4.0.7)

The characteristic equation for scenario two is also the same for both the meta-
crystal and the meta-film, and yields two solutions for refractive indices of two
polaritons. Assuming

M ≡ sin2 Φα

2
=

1
2
(1− cosΦα), (E.4.0.8)

the characteristic equation is written as

M− sin2 φ

2
1
4φ sinφ

=
αatom
a2b

1− αatom
a2b (s0 +2s1−4s1M)

. (E.4.0.9)
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Now we define
ξ =−

[(
αatom

a2b

)−1
− s0−2s1

]
. (E.4.0.10)

So the characteristic equation now becomes

M− sin2 φ

2
φ sinφ/4

=
1

4s1M−ξ
. (E.4.0.11)

On rearranging, we get the following quadratic equation

4s1M2−M(ξ +4s1 sin2 φ

2
)+(ξ sin2 φ

2
− 1

4
φ sinφ) = 0, (E.4.0.12)

whose solutions are the two indices given by

M =
(ξ +4s1 sin2 φ

2 )±
√

(ξ +4s1 sin2 φ

2 )
2−16s1(ξ sin2 φ

2 −
1
4φ sinφ)

8s1

=
(ξ +4s1 sin2 φ

2 )±
√

(ξ −4s1 sin2 φ

2 )
2 +4s1φ sinφ

8s1
.

(E.4.0.13)

So from Eqs. (E.4.0.8) and (E.4.0.13) above, we have

cosΦα = 1−2M ≡ Zα , (E.4.0.14)

such that

Zα =
(4s1 cos2 φ

2 −ξ )±
√
(ξ −4s1 sin2 φ

2 )
2 +4s1φ sinφ

4s1
. (E.4.0.15)

Following similar arguments as those regarding the solution for Φ0 above, the two
solutions for the indices are given by

Φα = sgn[Im(ArccosZα)]ArccosZα , (E.4.0.16)

and
nα =

Φα

φ
= sgn[Im(ArccosZα)]ArccosZα . (E.4.0.17)



APPENDIX E. SUPPLEMENTARY MATERIALS FOR CHAPTER 5 216

E.5 The Polariton Amplitudes and Reflectance
from the Meta-crystal in Scenario Two

To get the amplitudes of the two polariton modes present in scenario two, we need
to solve the following two coupled linear equations for P1 and P2

E0 +
1

2ε0a2bn2

2

∑
α=1

Pα

(
iφ

e−i(nα−1)φ −1

)
= 0, (E.5.0.1a)

2

∑
α=1

Pα = 0. (E.5.0.1b)

From Eq. (E.5.0.1a), we have

2ε0a2bn2E0 + iφ(P1F1 +P2F2) = 0, (E.5.0.2)

where
Fα =

1
e−i(nα−1)φ −1

. (E.5.0.3)

And from Eq. (E.5.0.1b) we have

P2 =−P1. (E.5.0.4)

Solving Eqs. (E.5.0.3) and (E.5.0.4) together, we get

P1 =
2iε0a2n

ω̃(F1−F2)
E0, (E.5.0.5a)

P2 =−
2iε0a2n

ω̃(F1−F2)
E0, (E.5.0.5b)

and we have used the expression for φ(= ω̃nb) defined earlier. Also,

F1−F2 =
1

e−i(n1−1)φ −1
− 1

e−i(n2−1)φ −1
,

=
e−i(n2−1)φ − e−i(n1−1)φ

(e−i(n1−1)φ −1)(e−i(n2−1)φ −1)
= eiφ e−in2φ − e−in1φ

(e−i(n1−1)φ −1)(e−i(n2−1)φ −1)
(E.5.0.6)
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So we finally have

P1 =
2iε0a2n

ω̃

(
(e−i(n1−1)φ −1)(e−i(n2−1)φ −1)

e−i(n2−1)φ − e−i(n1−1)φ

)
E0, (E.5.0.7a)

P2 =−
2iε0a2n

ω̃

(
(e−i(n1−1)φ −1)(e−i(n2−1)φ −1)

e−i(n2−1)φ − e−i(n1−1)φ

)
E0. (E.5.0.7b)

The reflected field ER(z) is given by the sum of radiative fields from all the
planes at the plane z < 0. So we have

ER(z) =
iω̃

2ε0a2n

∞

∑
K=1

e−iω̃n(z−zK)pK

=
iω̃

2ε0a2n

2

∑
α=1

∞

∑
K=1

e−iω̃n(z−bK)Pαeinα φK ≡ ERe−iω̃nz,

(E.5.0.8)

where

ER =
iω̃

2ε0a2n

2

∑
α=1

Pα

∞

∑
K=1

ei(nα+1)φK

=
iω̃

2ε0a2n

2

∑
α=1

Pα

1
e−i(nα+1)φ −1

=
iω̃

2ε0a2n
(P1H1 +P2H2),

(E.5.0.9)

where
Hα =

1
e−i(nα+1)φ −1

. (E.5.0.10)

Now, using Eqs. (E.5.0.7a) and (E.5.0.7b) in (E.5.0.9), we write

ER =−H1−H2

F1−F2
E0. (E.5.0.11)

Simplifying the numerator above, we have

H1−H2 =
1

e−i(n1+1)φ −1
− 1

e−i(n2+1)φ −1

= e−iφ e−in2φ − e−in1φ

(e−i(n1+1)φ −1)(e−i(n2+1)φ −1)
.

(E.5.0.12)
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Substituting Eqs. (E.5.0.12) and (E.5.0.6) in (E.5.0.11), we finally get

ER =−e−2iφ (e
−i(n1−1)φ −1)(e−i(n2−1)φ −1)

(e−i(n1+1)φ −1)(e−i(n2+1)φ −1)
. (E.5.0.13)

E.6 The Radiative Field at Plane J in the Meta-
film

The total radiative field contributions at plane z = Jb in the meta-film is given by
the term iC ∑

N
K=1 eiφ |J−K|pK in Eqs. (5.40) and (5.58) for scenarios one and two,

respectively. The assumed solutions for the dipole moments pK are of the form

pK = A′0eiΦ0(K− 1
2 )+B′0e−iΦ0(K− 1

2 ), (E.6.0.1)

for scenario one, and

pK =
2

∑
α=1

pK,α =
2

∑
α=1

(A′αeiΦα (K− 1
2 )+B′αe−iΦα (K− 1

2 )), (E.6.0.2)

for scenario two. For both scenarios, we need to simplify the sum

SJ =
N

∑
K=1

eiφ |J−K|pK,α =
N

∑
K=1

eiφ |J−K|(AeiΦα K +Be−iΦα K), (E.6.0.3)

where α = {0,1,2}, pK = pK,0 for scenario one, and we have assumed

A = A′αe−
i
2 Φα , (E.6.0.4a)

B = B′αe
i
2 Φα . (E.6.0.4b)

We can rewrite Eq. (E.6.0.3) as

SJ = T lower
J + pJ,α +T upper

J , (E.6.0.5)
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where

T lower
J =

J−1

∑
K=1

eiφ |J−K|pK,α , (E.6.0.6a)

T upper
J =

N

∑
K=J+1

eiφ |J−K|pK,α . (E.6.0.6b)

The special cases for the summation are

T lower
1 = 0, (E.6.0.7a)

T upper
N = 0, (E.6.0.7b)

S1 = p1. (E.6.0.7c)

Now, expanding Eq. (E.6.0.6a), we have

T lower
J = AeiφJ

J−1

∑
K=1

ei(Φα−φ)K +BeiφJ
J−1

∑
K=1

e−i(φ+Φα )K (E.6.0.8)

From the geometric series formula

N

∑
m=M

rm =
rM(1− rN−M+1)

1− r
, (E.6.0.9)

we simplify Eq. (E.6.0.8) as

T lower
J =AeiφJ

(
ei(Φα−φ)(1− ei(Φα−φ)(J−1))

1− ei(Φα−φ)

)
+BeiφJ

(
e−i(Φα+φ)(1− e−i(Φα+φ)(J−1))

1− e−i(Φα+φ)

)
.

(E.6.0.10)
Similarly, we expand and simplify Eq. (E.6.0.6b) as

T upper
J = Ae−iφJ

N

∑
K=J+1

ei(Φα+φ)K +Be−iφJ
N

∑
K=J+1

ei(φ−Φα )K, (E.6.0.11)
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and then

T upper
J =Ae−iφJ

(
ei(Φα+φ)(J+1)(1− ei(Φα+φ)(N−J))

1− ei(Φα+φ)

)
+Be−iφJ

(
e−i(φ−Φα )(J+1)(1− e−i(φ−Φα )(N−J))

1− e−i(φ−Φα )

)
.

(E.6.0.12)
Substituting Eqs. (E.6.0.11) and (E.6.0.12) in (E.6.0.5), we get

SJ = AeiφJ

(
ei(Φα−φ)− ei(Φα−φ)J

1− ei(Φα−φ)

)
+BeiφJ

(
e−i(Φα+φ)− e−i(Φα+φ)J

1− e−i(Φα+φ)

)
+

+Ae−iφJ

(
ei(Φα+φ)(J+1)− ei(Φα+φ)(N+1)

1− ei(Φα+φ)

)
+Be−iφJ

(
ei(Φα−φ)(J+1)− ei(φ−Φα )(N+1)

1− ei(φ−Φα )

)
+

+AeiΦα J +Be−iΦα J,

(E.6.0.13)

or

SJ = A

(
ei(Φα−φ)eiφJ− eiΦα J

1− ei(Φα−φ)

)
+B

(
e−i(Φα+φ)eiφJ− e−iΦα J

1− ei(Φα+φ)

)
+

+A

(
eiΦα (J+1)eiφ − e−iφJei(Φα+φ)(N+1)

1− ei(Φα+φ)

)
+B

(
e−iΦα (J+1)eiφ − e−iφJei(φ−Φα )(N+1)

1− ei(φ−Φα )

)
+

+AeiΦα J +Be−iΦα J.

(E.6.0.14)
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Collecting the terms with the same J dependence together, we get after some
manipulation

SJ = eiφJ

(
A

e−i(φ−Φα )

1− e−i(φ−Φα )
+B

e−i(φ+Φα )

1− e−i(φ+Φα )

)
+

+ e−iφJ

(
A

ei(φ+Φα )N

1− e−i(φ+Φα )
+B

ei(φ−Φα )

1− e−i(φ−Φα )

)
+

+ eiΦα J

(
−A

1
1− e−i(φ−Φα )

−A
1

1− e−i(φ+Φα )
+A

)
+

+ e−iΦα J

(
−B

1
1− e−i(φ+Φα )

−B
1

1− e−i(φ−Φα )
+B

)
.

(E.6.0.15)

We then substitute Eqs. (E.6.0.4a) and (E.6.0.4b) in (E.6.0.15) to switch to the nota-
tion used in the main text. Then the radiative field contribution iC ∑

N
K=1 eiφ |J−K|pK

can be written as

iC
N

∑
K=1

eiφ |J−K|pK = eiφ(J− 1
2 )

(
iA′0C

e−i 1
2 (φ−Φ0)

1− e−i(φ−Φ0)
+ iB′0C

e−i 1
2 (φ+Φ0)

1− e−i(φ+Φ0)

)
+

+ e−iφJ

(
iA′0Ce−

1
2 iΦ0

ei(φ+Φ0)N

1− e−i(φ+Φ0)
+ iB′0C

1
2 iΦ0

ei(φ−Φ0)

1− e−i(φ−Φ0)

)
+

+ eiΦ0(J− 1
2 )

(
− iA′0C

1
1− e−i(φ−Φ0)

− iA′0C
1

1− e−i(φ+Φ0)
+ iA′0C

)
+

+ e−iΦ0(J− 1
2 )

(
− iB′0C

1
1− e−i(φ+Φ0)

− iB′0C
1

1− e−i(φ−Φ0)
+ iB′0C

)
.

(E.6.0.16)
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for scenario one, and as

iC
N

∑
K=1

eiφ |J−K|pK =
2

∑
α=1

[
eiφ(J− 1

2 )

(
iA′αC

e−i 1
2 (φ−Φα )

1− e−i(φ−Φα )
+ iB′αC

e−i 1
2 (φ+Φα )

1− e−i(φ+Φα )

)
+

+ e−iφJ

(
iA′αCe−

1
2 iΦα

ei(φ+Φα )N

1− e−i(φ+Φα )
+ iB′αC

1
2 iΦα

ei(φ−Φα )

1− e−i(φ−Φα )

)
+

+ eiΦα (J− 1
2 )

(
− iA′αC

1
1− e−i(φ−Φα )

− iA′αC
1

1− e−i(φ+Φα )
+ iA′αC

)
+

+ e−iΦα (J− 1
2 )

(
− iB′αC

1
1− e−i(φ+Φα )

− iB′αC
1

1− e−i(φ−Φα )
+ iB′αC

)]
.

(E.6.0.17)

for scenario two.
With the radiative field contributions to the plane J known, we can now write

the total electric field at the plane. For scenario one, we have defined the fields
such that pJ = ε0n2αatomE(J) = ε0n2αs0EJ , where E(J) is defined by Eq. (5.47)
and EJ by Eq. (5.45). So using Eq. (E.6.0.16) and (5.44), we get

EJ = eiφ(J− 1
2 )

(
iA′0C

e−i 1
2 (φ−Φ0)

1− e−i(φ−Φ0)
+ iB′0C

e−i 1
2 (φ+Φ0)

1− e−i(φ+Φ0)
+EI

)
+

+ e−iφJ

(
iA′0Ce−

1
2 iΦ0

ei(φ+Φ0)N

1− e−i(φ+Φ0)
+ iB′0C

1
2 iΦ0

ei(φ−Φ0)

1− e−i(φ−Φ0)

)
+

+ eiΦ0(J− 1
2 )

(
− iA′0C

1
1− e−i(φ−Φ0)

− iA′0C
1

1− e−i(φ+Φ0)
+ iA′0C

)
+

+ e−iΦ0(J− 1
2 )

(
− iB′0C

1
1− e−i(φ+Φ0)

− iB′0C
1

1− e−i(φ−Φ0)
+ iB′0C

)
.

(E.6.0.18)



APPENDIX E. SUPPLEMENTARY MATERIALS FOR CHAPTER 5 223

For scenario two, we have from Eqs. (5.40), Eqs. (E.6.0.17) and (5.7)

E(J) = eiφ(J− 1
2 )

[
EI +

2

∑
α=1

(
iA′αC

e−i 1
2 (φ−Φα )

1− e−i(φ−Φα )
+ iB′αC

e−i 1
2 (φ+Φα )

1− e−i(φ+Φα )

)]
+

+ e−iφJ
2

∑
α=1

(
iA′αCe−

1
2 iΦα

ei(φ+Φα )N

1− e−i(φ+Φα )
+ iB′αC

1
2 iΦα

ei(φ−Φα )N

1− e−i(φ−Φα )

)
+

+
2

∑
α=1

[
eiΦα (J− 1

2 )

(
− iA′αC

1
1− e−i(φ−Φα )

− iA′αC
1

1− e−i(φ+Φα )
+ iA′αC

)
+

+ e−iΦα (J− 1
2 )

(
− iB′αC

1
1− e−i(φ+Φα )

− iB′αC
1

1− e−i(φ−Φα )
+ iB′αC

)]
+L(J),

(E.6.0.19)

where L(J) is given by Eq. (5.7). We now simplify L(J) for 1 < J < N, which we
rewrite below

L(J) =
1

ε0n2a2b
[s0 pJ + s1(pJ+1 + pJ−1)], (E.6.0.20)

Now we simplify the expression for L(J) above for scenario two. Using Eq. (E.6.0.2)
in (E.6.0.20) above, we have

L(J) =
1

ε0n2a2b

[
s0

2

∑
α=1

(A′αeiΦα (J− 1
2 )+B′αe−iΦα (J− 1

2 ))+

+ s1

2

∑
α=1
{A′αeiΦα (J− 1

2 )(eiΦα + e−iΦα )+B′αe−iΦα (J− 1
2 )(eiΦα + e−iΦα )}

]
=

1
ε0n2a2b

2

∑
α=1

[{A′αeiΦα (J− 1
2 )+B′αe−iΦα (J− 1

2 )}{s0 + s1(eiΦα + e−iΦα )}]

(E.6.0.21)

Since there is only one nearest-neighbor plane for the planes at the two surfaces, or
J = 1 and J = N, L(J) for these two planes will be different from that derived in



APPENDIX E. SUPPLEMENTARY MATERIALS FOR CHAPTER 5 224

Eq. (E.6.0.21). For J = 1, we have

L(1) =
1

ε0n2a2b
[s0 p1 + s1 p2]

=
1

ε0n2a2b

2

∑
α=1

[s0(A′αei Φα
2 +B′αe−i Φα

2 )+ s1(A′αei 3Φα
2 +B′αe−i 3Φα

2 )]

=
1

ε0n2a2b

2

∑
α=1

[A′αei Φα
2 (s0 + s1eiΦα )+B′αe−i Φα

2 (s0 + s1e−iΦα )]

(E.6.0.22)

and for J = N, we have

L(N) =
1

ε0n2a2b
[s0 pN + s1 pN−1]

=
1

ε0n2a2b

2

∑
α=1

[s0(A′αeiΦα (N− 1
2 )+B′αe−iΦα (N− 1

2 ))+ s1(A′αeiΦα (N− 3
2 )+B′αe−iΦα (N− 3

2 ))]

=
1

ε0n2a2b

2

∑
α=1

[A′αeiΦα (N− 1
2 )(s0 + s1e−iΦα )+B′αe−iΦα (N− 1

2 )(s0 + s1eiΦα )].

(E.6.0.23)

E.7 The Characteristic Equation for Polaritons
in the Meta-film

The characteristic equation for the single (forward and backward propagating) po-
lariton mode in meta-film is given by comparing the coefficients of the exponential
term eiΦ0(J− 1

2 ) or e−iΦ0(J− 1
2 ) in the expressions for pJ . The equation is restated

below

iCε0n2
αs0

(
1− 1

1− e−i(φ+Φ0)
− 1

1− e−i(φ−Φ0)

)
= 1, (E.7.0.1)

where
αs0 =

αatom

1− αatom
a2b s0

. (E.7.0.2)
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Rearranging Eq. (E.7.0.1), we write

1− 1
1− e−i(φ+Φ0)

− 1
1− e−i(φ−Φ0)

=
1− αatom

a2b s0

iCε0n2αatom
=

1
iCε0n2αs0

. (E.7.0.3)

Similarly for scenario two, we compare the coefficients of the exponential term
eiΦα (J− 1

2 ) or e−iΦα(J− 1
2) in the expressions for pJ in the bulk planes (1 < J < N)

to get the characteristic equations for the effective index of the polariton α = {1,2}.
So we have

iCε0n2
αatom

(
1− 1

1− e−i(φ+Φα )
− 1

1− e−i(φ−Φα )

)
+

αatom

a2b
(s0+2s1 cosΦα) = 1,

(E.7.0.4)
which after some rearranging can be written as

1− 1
1− e−i(φ+Φα )

− 1
1− e−i(φ−Φα )

=
1

iCε0n2αatom

(
1− αatom

a2b
(s0+2s1 cosΦα)

)
.

(E.7.0.5)
Recalling from the main text that we have defined

χα =
αatom
a2b

1− αatom
a2b (s0 +2s1 cosΦα)

, (E.7.0.6)

Eq. (E.7.0.5) can then be written as

1− 1
1− e−i(φ+Φα )

− 1
1− e−i(φ−Φα )

=
1

iCε0n2αatom

αatom

a2bχα

. (E.7.0.7)



APPENDIX E. SUPPLEMENTARY MATERIALS FOR CHAPTER 5 226

The left hand side of the characteristic equations for both scenarios (Eqs. (E.7.0.3)
and (E.7.0.7)) are the same, which we now simplify as

1− 1
1− e−i(φ+Φα )

− 1
1− e−i(φ−Φα )

=

=
(1− e−i(φ+Φα ))(1− e−i(φ−Φα ))− (1− e−i(φ−Φα ))− (1− e−i(φ+Φα ))

(1− e−i(φ+Φα ))(1− e−i(φ−Φα ))

=
1+ e−2iφ − e−i(φ+Φα )− e−i(φ−Φα )−1+ e−i(φ−Φα )−1+ e−i(φ+Φα )

1+ e−2iφ − e−i(φ+Φα )− e−i(φ−Φα )

=
e−2iφ −1

1+ e−2iφ − e−i(φ+Φα )− e−i(φ−Φα )
=

e−iφ − eiφ

eiφ + e−iφ − e−iΦα − e−iΦα

=
−2isinφ

2cosφ −2cosΦα

=
−isinφ

cosφ − cosΦα

,

(E.7.0.8)

and the final expression holds true for α = {0,1,2}. Substituting the final expres-
sion for the left hand side of the characteristic equation in Eq. (E.7.0.3), and using
C = φ

2ε0a2bn2 that we defined earlier, we get

cosφ − cosΦ0

sinφ
=Cε0n2

αs0 = αs0

φ

2a2b
(E.7.0.9)

or
2sin2 Φ0

2 −2sin2 φ

2
sinφ

=
αs0

a2b
φ

2
, (E.7.0.10)

and finally
sin2 Φ0

2 − sin2 φ

2
φ sinφ/4

=
αs0

a2b
. (E.7.0.11)

Additionally, using an earlier form of the left hand side in Eq. (E.7.0.3), we have

e−2iφ −1
(1− e−i(φ+Φα ))(1− e−i(φ−Φα ))

=
1

iCε0n2αs0

, (E.7.0.12)

or

iCε0n2
αs0 =

(1− e−i(φ+Φα ))(1− e−i(φ−Φα ))

e−2iφ −1
. (E.7.0.13)



APPENDIX E. SUPPLEMENTARY MATERIALS FOR CHAPTER 5 227

Similarly, using Eqs. (E.7.0.5) and (E.7.0.8) we have for scenario two

2sin2 Φα

2 −2sin2 φ

2
sinφ

=Cε0n2 αatom

1− αatom
a2b (s0 +2s1 cosΦα)

(E.7.0.14)

or
sin2 Φα

2 − sin2 φ

2
φ sinφ/4

=
αatom
a2b

1− αatom
a2b (s0 +2s1 cosΦα)

. (E.7.0.15)

Also, using an earlier form of the left hand side of the characteristic equation
in (E.7.0.8) in (E.7.0.7), we have

e−2iφ −1
(1− e−i(φ+Φα ))(1− e−i(φ−Φα ))

=
1

iCε0n2αatom

αatom

a2bχα

. (E.7.0.16)

Or

iCε0n2
αatom =

αatom

a2bχα

(1− e−i(φ+Φα ))(1− e−i(φ−Φα ))

e−2iφ −1
. (E.7.0.17)

E.8 Transmitted Field through the Meta-film

E.8.1 Scenario One
We have defined the transmitted field ET as the field at the plane z = (N + 1

2)b,
which we restate below

ET = EIeiφN + iC
N

∑
J=1

eiφ(N+ 1
2−J)pJ, (E.8.1.1)

with
pJ = A′0eiΦ0(J− 1

2 )+B′0e−iΦ0(J− 1
2 ). (E.8.1.2)

So we have

ET =EIeiφN+iA′0Ceiφ(N+ 1
2 )e−iΦ0

1
2

N

∑
J=1

ei(Φ0−φ)J++iB′0Ceiφ(N+ 1
2 )eiΦ0

1
2

N

∑
J=1

e−i(Φ0+φ)J,

(E.8.1.3)
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or

ET e−iφN = EI + iA′0Cei 1
2 (φ−Φ0)

N

∑
J=1

e−i(φ−Φ0)J + iB′0Ci 1
2 (φ+Φ0)

N

∑
J=1

e−i(φ+Φ0)J.

(E.8.1.4)
Doing the sums we have

ET e−iφN =

= EI + iA′0Cei 1
2 (φ−Φ0)e−i(φ−Φ0)

1− e−i(φ−Φ0)N

1− e−i(φ−Φ0)
+ iB′0Cei 1

2 (φ+Φ0)e−i(φ+Φ0)
1− e−i(φ+Φ0)N

1− e−i(φ+Φ0)

= EI +
iA′0Ce−i 1

2 (φ−Φ0)

1− e−i(φ−Φ0)
(1− e−i(φ−Φ0)N)+

iB′0Ce−i 1
2 (φ+Φ0)

1− e−i(φ+Φ0)
(1− e−i(φ+Φ0)N).

(E.8.1.5)

Now we have from Eq. (5.43) of the main text

iA′0Ce−i 1
2 (φ−Φ0)

1− e−i(φ−Φ0)
=− EI

1− r2
10,0e2iNΦ0

, (E.8.1.6)

and using the definition of the effective Fresnel reflection coefficient r10,0 in
Eqs. (5.53) and (5.52), we have

iB′0Ce−i 1
2 (φ+Φ0)

1− e−i(φ+Φ0)
= r10,0e2iNΦ0

iA′0Ce−i 1
2 (φ+Φ0)

1− e−i(φ+Φ0)
. (E.8.1.7)

Now substituting the expression for iA′0C from Eq. (E.8.1.6) in (E.8.1.7), we have

iB′0Ce−i 1
2 (φ+Φ0)

1− e−i(φ+Φ0)
=−r10,0e2iNΦ0

e−iΦ0(1− e−i(φ−Φ0))

1− e−i(φ+Φ0)

EI

1− r2
10,0e2iNΦ0

=
r2

10,0e2iNΦ0EI

1− r2
10,0e2iNΦ0

.

(E.8.1.8)
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Substituting Eqs. (E.8.1.6) and (E.8.1.8) in (E.8.1.4), we now have

ET e−iφN =

= EI−
EI

1− r2
10,0e2iNΦ0

(1− e−i(φ−Φ0)N)+
r2

10,0e2iNΦ0EI

1− r2
10,0e2iNΦ0

(1− e−i(φ+Φ0)N)

= EI

(
1− 1

1− r2
10,0e2iNΦ0

+
r2

10,0e2iNΦ0

1− r2
10,0e2iNΦ0

)
+

EIe−i(φ−Φ0)N

1− r2
10,0e2iNΦ0

−
EIr2

10,0e2iNΦ0e−i(φ+Φ0)N

1− r2
10,0e2iNΦ0

=
EIe−iφNeiNΦ0

1− r2
10,0e2iNΦ0

−
r2

10,0EIe−iφNeiNΦ0

1− r2
10,0e2iNΦ0

.

(E.8.1.9)

Or

ET =
EI(1− r2

10,0)e
iNΦ0

1− r2
10,0e2iNΦ0

. (E.8.1.10)

Now weuse the continuum electrodynamics relation

1− r2
10,0 = t10,0t01,0, (E.8.1.11)

to get the final expression for ET as

ET =
t10,0t01,0eiNΦ0

1− r2
10,0e2iNΦ0

EI. (E.8.1.12)

We have previously defined t01,0 as

t01,0 =
(1− e−2iφ )e

i
2 (φ−Φ0)

1− e−i(φ+Φ0)
, (E.8.1.13)

and r10,0 as

r10,0 =
e−i(φ−Φ0)−1
1− e−i(φ+Φ0)

e−iΦ0. (E.8.1.14)

So we can now get the expression for t10,0 by simplifying

t10,0 =
1− r2

10,0

t01,0
. (E.8.1.15)
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We first simplify the numerator as

1− r2
10,0 =

(1− e−i(φ+Φ0))2− (1− e−i(φ−Φ0))2e−2iΦ0

(1− e−i(φ+Φ0))2

=
1−2e−i(φ+Φ0)+ e−2i(φ+Φ0)− (1−2e−i(φ−Φ0)+ e−2i(φ−Φ0))e−2iΦ0

(1− e−i(φ+Φ0))2

=
1+ e−2i(φ+Φ0)− e−2iφ − e−2iΦ0

(1− e−i(φ+Φ0))2
=

(1− e−2iφ )(1− e−2iΦ0)

(1− e−i(φ+Φ0))2
,

(E.8.1.16)

and then substitute in Eq. (E.8.1.15) to get

t10,0 =
(1− e−2iφ )(1− e−2iΦ0)

(1− e−i(φ+Φ0))2

1− e−i(φ+Φ0)

(1− e−2iφ )e
i
2 (φ−Φ0)

=
((1− e−2iΦ0)e

i
2 (Φ0−φ)

(1− e−i(φ+Φ0))
.

(E.8.1.17)

E.8.2 Scenario Two
We have defined the transmitted field in scenario two as the total field at the plane
z > Nb, which is given by

ET (z) = EIe−i φ

2 eiω̃nz + iC
N

∑
J=1

eiω̃n(z−bJ)pJ, (E.8.2.1)

where

pJ =
2

∑
α=1

(A′αeiΦα (J− 1
2 )+B′αe−iΦα (J− 1

2 )). (E.8.2.2)

So we have

ET (z)ei φ

2 e−iω̃nz =

= EI + iCei φ

2

2

∑
α=1

A′α
N

∑
J=1

[e−i(φ−Φα )Je−i Φα
2 + r10,αei2NΦα e−i(φ+Φα )Jei Φα

2 ],

(E.8.2.3)
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where we have used the definition of Fresnel reflection coefficient r10,α from the
main text

B′α
A′α

= r10,αei2NΦα =
e−iφ − e−iΦα

1− e−i(φ+Φα )
ei2NΦα (E.8.2.4)

Doing the sums in Eq. (E.8.2.3), we have

ET (z)ei φ

2 e−iω̃nz =

= EI + iCei φ

2

2

∑
α=1

A′αe−i Φα
2

[
e−i(φ−Φα )

(
1− e−iN(φ−Φα )

1− e−i(φ−Φα )

)
+

+ r10,αei2NΦα ei Φα
2 e−i(φ+Φα )

(
1− e−iN(φ+Φα )

1− e−i(φ+Φα )

)]

= EI + iC
2

∑
α=1

A′α

[
e−

i
2 (φ−Φα )

1− e−i(φ−Φα )
(1− e−iN(φ−Φα ))+ r10,αei2NΦα

e−
i
2 (φ+Φα )

1− e−i(φ+Φα )
(1− e−iN(φ+Φα ))

]

= EI + iC
2

∑
α=1

A′α
e−

i
2 (φ−Φα )

1− e−i(φ−Φα )

[
1− e−iN(φ−Φα )+ r10,αei2NΦα

e−iΦα − e−iφ

1− e−i(φ+Φα )
(1− e−iN(φ+Φα ))

]

= EI + iC
2

∑
α=1

A′α
e−

i
2 (φ−Φα )

1− e−i(φ−Φα )
[1− e−iN(φ−Φα )− r2

10,αei2NΦα (1− e−iN(φ+Φα ))]

= EI + iC
2

∑
α=1

A′α
e−

i
2 (φ−Φα )

1− e−i(φ−Φα )
(1− r2

10,αei2NΦα )− iC
2

∑
α=1

A′α
e−

i
2 (φ−Φα )

1− e−i(φ−Φα )
(e−iN(φ−Φα )−

− r2
10,αei2NΦα e−iN(φ+Φα ))

(E.8.2.5)

Recalling from main text that

EI =−iC
2

∑
α=1

A′α
e−

i
2 (φ−Φα )

1− e−i(φ−Φα )
(1− r2

10,αei2NΦα ), (E.8.2.6)
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the first two terms on the right cancel in the final version of Eq. (E.8.2.5). So we
now have

ET (z)ei φ

2 e−iω̃nz =−iC
2

∑
α=1

A′α
e−

i
2 (φ−Φα )

1− e−i(φ−Φα )
(e−iN(φ−Φα )− r2

10,αei2NΦα e−iN(φ+Φα ))

=−iC
2

∑
α=1

A′α
e−i(φ−Φα )(N+ 1

2 )

1− e−i(φ−Φα )
(1− r2

10,αei2NΦα )

(E.8.2.7)

or

ET (z) =−iCe−i φ

2 eiω̃nz
2

∑
α=1

A′α
e−

i
2 (φ−Φα )

1− e−i(φ−Φα )
e−i(φ−Φα )N(1− r2

10,α). (E.8.2.8)

E.9 Reflected Field from the Meta-film

E.9.1 Scenario One
The reflected field ER is given by the total backward propagating field at the plane
z =−b/2, or

ER = iC
N

∑
J=1

eiφ(J− 1
2 )pJ, (E.9.1.1)

where
pJ = A′0eiΦ0(J− 1

2 )+B′0e−iΦ0(J− 1
2 ). (E.9.1.2)

So we have

ER = iA′0Ce−
i
2 (φ+Φ0)

N

∑
J=1

ei(φ+Φ0)J + iB′0Ce−
i
2 (φ−Φ0)

N

∑
J=1

ei(φ−Φ0)J

= iA′0Ce−
i
2 (φ+Φ0)ei(φ+Φ0)

1− ei(φ+Φ0)N

1− ei(φ+Φ0)
+ iB′0Ce−

i
2 (φ−Φ0)ei(φ−Φ0)

1− ei(φ−Φ0)N

1− ei(φ−Φ0)

=
iA′0Ce−

i
2 (φ+Φ0)

e−i(φ+Φ0)−1
(1− ei(φ+Φ0)N)+

iB′0Ce−
i
2 (φ−Φ0)

e−i(φ−Φ0)−1
(1− ei(φ−Φ0)N)

=
iA′0Ce−

i
2 (φ−Φ0)

1− e−i(φ+Φ0)
e−iΦ0(ei(φ+Φ0)N−1)+

iB′0Ce−
i
2 (φ+Φ0)

1− e−i(φ−Φ0)
eiΦ0(ei(φ−Φ0)N−1).

(E.9.1.3)
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Now we do some further processing

ER =
iA′0Ce−

i
2 (φ−Φ0)

1− e−i(φ−Φ0)

1− e−i(φ−Φ0)

1− e−i(φ+Φ0)
e−iΦ0(ei(φ+Φ0)N−1)+

+
iB′0Ce−

i
2 (φ+Φ0)

1− e−i(φ+Φ0)

1− e−i(φ+Φ0)

1− e−i(φ−Φ0)
eiΦ0(ei(φ−Φ0)N−1)

=
iA′0Ce−

i
2 (φ−Φ0)

1− e−i(φ−Φ0)
r10,0(1− ei(φ+Φ0)N)+

iB′0Ce−
i
2 (φ+Φ0)

1− e−i(φ+Φ0)

1
r10,0

(ei(φ−Φ0)N−1).

(E.9.1.4)

Now using the following expression for EI derived earlier in the main text

EI =−
iA′0Ce−

i
2 (φ−Φ0)

1− e−i(φ−Φ0)
(1− r2

10,0ei2NΦ0), (E.9.1.5)

and Eq. (E.8.1.8) in the expression for ER, we get

ER =− EI

1− r2
10,0ei2NΦ0

r10,0(1− ei(φ+Φ0)N)+
r2

10,0EIe2iNΦ0

1− r2
10,0ei2NΦ0

1
r10,0

(1− ei(φ−Φ0)N)

=−
r10,0EI

1− r2
10,0ei2NΦ0

+
r10,0EIei2NΦ0

1− r2
10,0ei2NΦ0

+
r10,0EIeiN(φ+Φ0)

1− r2
10,0ei2NΦ0

−
r10,0EIei2NΦ0eiN(φ−Φ0)

1− r2
10,0ei2NΦ0

=
−r10,0 + r10,0ei2NΦ0

1− r2
10,0ei2NΦ0

EI.

(E.9.1.6)
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Following the definition from continuum electrodynamics r01,0 =−r10,0, we get

ER =
r01,0 + r10,0ei2NΦ0

1− r2
10,0ei2NΦ0

EI

=
r01,0(1− r2

10,0ei2NΦ0)+ r01,0r2
10,0ei2NΦ0 + r10,0ei2NΦ0

1− r2
10,0ei2NΦ0

EI

=

(
r01,0 +

r10,0ei2NΦ0(1− r2
10,0)

1− r2
10,0ei2NΦ0

)
EI

=

(
r01,0 +

t01,0r10,0t10,0ei2NΦ0

1− r2
10,0ei2NΦ0

)
EI,

(E.9.1.7)

and we have used the relation from continuum electrodynamics 1−r2
10,0 = t01,0t10,0.

E.9.2 Scenario Two
The reflected field ER(z) is given by the total backward propagating radiative field
from the meta-film at the plane z < 0, or

ER(z) = iC
N

∑
J=1

e−iω̃n(z−bJ)pJ, (E.9.2.1)

where the expression for pJ has been derived earlier in the main text as

pJ = ε0n2
αatomEI

∑
2
α=1 aα [eiΦα (J− 1

2 )+ r10,αei2NΦα e−iΦα (J− 1
2 )]

∑
2
α=1

1
t01,α

(1− r2
10,αei2NΦα )

. (E.9.2.2)

So we have

ER(z)=
iCε0n2αatomEIe−iω̃nz

∑
2
α=1

1
t01,α

(1− r2
10,αei2NΦα )

N

∑
J=1

2

∑
α=1

aαeiφJ[eiΦα (J− 1
2 )+r10,αei2NΦα e−iΦα (J− 1

2 )].

(E.9.2.3)
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Now we first do the sums

Tα =
2

∑
α=1

aα

N

∑
J=1

eiφJ[eiΦα (J− 1
2 )+ r10,αei2NΦα e−iΦα (J− 1

2 )] =

=
2

∑
α=1

aα

[
e−

i
2 Φα

N

∑
J=1

ei(φ+Φα )J + r10,αei2NΦα e
i
2 Φα

N

∑
J=1

ei(φ−Φα )J
]

=
2

∑
α=1

aα

[
e−

i
2 Φα ei(φ+Φα )

(
1− ei(φ+Φα )N

1− ei(φ+Φα )

)
+ r10,αei2NΦα e

i
2 Φα ei(φ−Φα )

(
1− ei(φ−Φα )N

1− ei(φ−Φα )

)]

=
2

∑
α=1

aα

[
e−

i
2 Φα

(
ei(φ+Φα )N−1
1− e−i(φ+Φα )

)
+ r10,αei2NΦα e

i
2 Φα

(
ei(φ−Φα )N−1
1− e−i(φ−Φα )

)]
.

(E.9.2.4)

Now using the expression for r10,α defined earlier, we have

Tα =
2

∑
α=1

aα

[
e−

i
2 Φα

ei(φ+Φα )N−1
e−iφ − e−iΦα

e−iφ − e−iΦα

1− e−i(φ+Φα )
+ r10,αei2NΦα e

i
2 Φα

1− e−i(φ+Φα )

1− e−i(φ−Φα )

ei(φ−Φα )N−1
1− e−i(φ+Φα )

]

=
2

∑
α=1

aα

[
e−

i
2 Φα

ei(φ+Φα )N−1
e−iφ − e−iΦα

r10,α + r10,αei2NΦα e−
i
2 Φα

1
r10,α

1− ei(φ−Φα )N

1− e−i(φ+Φα )

]

=
2

∑
α=1

aα

[
e

i
2 Φα

1− ei(φ+Φα )N

1− e−i(φ−Φα )
r10,α + ei2NΦα e−

i
2 Φα

1− ei(φ−Φα )N

1− e−i(φ+Φα )

]

=
2

∑
α=1

aαe
i
2 Φα

1− e−i(φ−Φα )

[
(1− ei(φ+Φα )N)r10,α + ei2NΦα e−iΦα

1− e−i(φ−Φα )

1− e−i(φ+Φα )
(1− ei(φ−Φα )N)

]

=
2

∑
α=1

aαe
i
2 Φα

1− e−i(φ−Φα )

[
r10,α − ei(φ+Φα )Nr10,α − r10,αei2NΦα (1− ei(φ−Φα )N)

]

=−
2

∑
α=1

aαe
i
2 Φα

1− e−i(φ−Φα )
[r01,α + r10,αei2NΦα ].

(E.9.2.5)
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So finally we have

ER(z) =
−iCε0n2αatomEIe−iω̃nz

∑
2
α=1

1
t01,α

(1− r2
10,αei2NΦα )

2

∑
α=1

aαe
i
2 Φα

1− e−i(φ−Φα )
[r01,α + r10,αei2NΦα ],

(E.9.2.6)

and using C = φ

2ε0n2a2b , we get

ER(z) =−i
φ

2
αatom

a2b
EIe−iω̃nz ∑

2
α=1

aα e
i
2 Φα

1−e−i(φ−Φα ) [r01,α + r10,αei2NΦα ]

∑
2
α=1

1
t01,α

(1− r2
10,αei2NΦα )

. (E.9.2.7)

E.10 The Bragg Mode
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Figure E.1: Reflectance spectra of a meta-film of two (left) and ten (right) dipole
planes with the lattice parameters taken to be b = 250 nm (top) and b = 350 nm
(bottom), and a = 250 nm throughout.

Figure E.1 shows the reflectance spectra of meta-films with two (left panels)
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and ten (right panels) dipole planes. The lattice parameters of the films are taken
to be b = 250 nm (top panels) and b = 350 nm (bottom panels), and a = 250 nm
throughout. The results from the analytical model in scenario two are shown as
dot-dashed lines, and the results from the FDTD simulations are shown as solid
lines. For the smaller plane separation (top), the reflectance peak around 250 THz
is due to the resonance of the polaritons, while the peak at higher frequencies is
due to the Bragg resonance. The Bragg peak unsurprisingly increases with the
addition of more planes in the meta-film. At larger plane separations (bottom), the
Bragg resonance redshifts until it overlaps with the polariton resonance, which
broadens the stop band even further. We also note the appearance of another sharp
peak at 300 THz that becomes more pronounced with a larger number of planes.
This anomalous feature has been reported previously in Refs. [186, 189], and has
been explained in Ref. [189] to occur due to the coherent enhancement of resonant
scattering from the nanoparticles at the Bragg condition, which suppresses the
absorption.
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Figure E.2: Transmittance spectra of a meta-film of two (left) and ten (right)
dipole planes with the lattice parameters taken to be b = 250 nm (top) and b = 350
nm (bottom), and a = 250 nm throughout.

Figure E.2 shows the transmittance spectra of the respective meta-films in
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Fig. E.1. We note that in contrast to the polariton resonance, the Bragg resonance
is an interference effect due to coherent scattering of light from all the planes in
the meta-film. For b = 250 nm, where the Bragg resonance is in the wings of
the polariton resonance, the reflectance and transmittance sum to near unity, and
there is minimal absorption at the Bragg resonance. We also note that once again,
the results from the analytical model in scenario two and the FDTD simulations
agree reasonably well throughout. The effect of the quadrupole mode of the
nanoantenna has little effect on the Bragg resonance at the higher frequencies the
Bragg condition is fulfilled for the scattered light from the electric dipole modes of
the nanoantennas, and the quadrupolar coupling is significantly more short-ranged
than the dipolar mode.
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F. Supplementary Materials for Chap-
ter 6

F.1 Susceptibility of rubidium vapor
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Figure F.1: Real (blue, left axis) and imaginary (red, right axis) parts of the total
susceptibility of rubidium vapor versus the optical field intensity.

We use the method described in [261] to calculate the total susceptibility of
rubidium vapor heated to 115 °C, and optically pumped at a detuning of 600 MHz
above the 87Rb D2 F = 1→ F ′ = 2 transition frequency. We first calculate the sus-
ceptibility contribution of each D2 transition of rubidium to the total susceptibility
using the equation (6.3.28) in ref. [4], and the parameters in ref. [262]. We include
Doppler broadening of the spectrum of each resonant transition by convolving the
respective spectrum with the Maxwell distribution of atom velocities [263]. We
then sum these susceptibility contributions weighted by their oscillator strengths
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[264]. Figure F.1 shows the real (blue, solid) and imaginary (red, dashed) parts of
the total susceptibility χ of rubidium versus the optical pump intensity.

F.2 Power spectral density of the phase noise
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Figure F.2: The angular PSD of phase noise eiφrand(x,y) of various spatial
coherence lengths Lcoh. The legend states the values of the corresponding Lcoh
normalized to the beam diameter D0.

To calculate our phase masks eiφrand(x,y), we first generate a matrix of uniformly
distributed random numbers between 0 and 1. We then convolve the matrix with
a Gaussian filter, whose response G(kx,ky) in the angular frequency space (kx,ky)
is given by Eq. (6.1) in the main text. We then multiply the entire matrix by π to
rescale the phase variation to be between 0 and π rad. The spectral bandwidth of
the phase noise can be estimated from its angular power spectral density (PSD),
which we define as the squared magnitude of the 2D Fourier transform of eiφrand(x,y).
We take an ensemble average of the PSDs for 250 realizations of phase noise of a
particular coherence length Lcoh. In Fig. F.2, we show the PSD, of phase noise of
normalized spatial coherence lengths Lcoh/D0 of 0.135 (blue, solid), 0.075 (red,
dot-dashed), 0.045 (green, dashed) and 0.015 (purple, dotted), with D0 being the
Gaussian beam diameter. We note that the PSD, of noise becomes more broadband
as Lcoh/D0 is reduced, while the total noise power remains constant.
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