

Robert W. BoydZhimin ShiAlan E. WillnerYiyu ZhouAlexander FyffeRunzhou ZhangJiapeng ZhaoKai PangBoris BravermanKai Pang

Vectorial Phase Conjugation for High-Fidelity Spatial Mode Transmission

<u>Jeremy Upham¹</u>, Zhimin Shi³, Robert W. Boyd^{1,2}, and Alan E. Willner⁴ Presented by Jeremy Upham

¹Department of Physics, University of Ottawa, Ottawa, Canada
²The Institute of Optics, University of Rochester, Rochester, USA
³Department of Physics, University of South Florida, Tampa, FL, USA
⁴Department of Electrical Engineering, University of Southern California, Los Angeles, California, USA

Canada Excellence Research Chairs Chaires d'excellence en recherche du Canada

The Value of Quantum information

Conventional Information

Can be observed without changing it

Can be shared at will

Can be copied

Quantum Information

Can be tasted, but this leaves a mark.

Can be shared, but there is a total of 1 item to be shared.

Cannot be copied.

Anne Broadbent https://youtu.be/ZKGSgWSRLSk

Spontaneous Parametric Down Conversion

Resulting photon pairs can be entangled in different degrees of freedom

Example: Type 1 Polarization entanglement $|\psi\rangle = \frac{1}{\sqrt{2}} \left(|H_1H_2\rangle + e^{i\phi(\omega_p,\omega_s,\omega_i,\mathbf{k}_p,\mathbf{k}_s,\mathbf{k}_i)}|V_1V_2\rangle \right)$

The entangled photon pairs are nonseperable, a single quantum state of light

Quantum Key Distribution (BB84)

Quantum Key Distribution

An eavesdropper intercepting a the message introduces a minimum rate of errors dictated by the quantum nature of the system

As long as Bob gets Alice's message with fewer errors than that threshold, we are certain the channel is secure

Drawbacks of QKD

Slow: The secure key rate of QKD is many orders of magnitude slower than the data rate of classical communication.

We can't distinguish between lost information (lossy channel) and stolen information (eavesdropper). If the channel loss exceeds the Quantum Bit Error Rate, we assume not secure

Polarization: 2-dimension = 1 bit/photon

 $\{\leftrightarrow, \uparrow\}$ or $\{\swarrow, \searrow\}$

BB84 protocol with polarization

QBER > 0.11 Unsecure

More information per photon?

High dimensional QKD wants channels supporting many (>100) spatial modes. over long distances with low losses.

How do we mitigate loss in our channel?

Learned a lot from telecom

Lower fidelity of the structured light -> Cross-talk loss to other modes

Forget perfect media: real-world factors (temperature, strain, turbulence) induce crosstalk

Solution must be tailored to the medium, adaptable to changes during transmission

Y. Miyamoto et al. NTT Technical Review 15.6 1 (2017)

SDM in Fibers – Existing Approaches

MIMO algorithms

Koebele et al. Opt. Exp., **19**, 16593 (2011)

Long fibres

Needs high SNR for digital signal processing.

SDM in Fibers – Existing Approaches

Mode-group excitation

Ryf et al., Opt. Exp., **23**, 235 (2015)

Zhu et al., Opt. Exp., 25, 25637 (2017) Group modes to limit coupling

Typically restricts *n* modes to \sqrt{n}

SDM in Fibers – Existing Approaches

Transfer matrix inversion

Carpenter et al., Opt. Exp., 22, 96 (2014)

Plöschner et al., Nat. Photon. 9, 529 (2015) Probe all modes then invert the transfer matrix

100s spatial modes (10³-10⁵ elements)

Phase Conjugation (AKA Time-Reversal)

Bob sends Alice the modes they want, Alice learns what to actually send

No extra modes, if medium evolves, just repeat characterization

Vectorial phase conjugation in a 1 km multi-mode fibre

Scrambled probe beam LG(3,2) received by Alice

Vectorial phase conjugation in a 1 km multi-mode fibre

Y. Zhou et al., Nat. Commun., **12**, 1866, (2021).

 $\langle V \rangle$

Mode Fidelity

Measured for 210 modes in LG and HG Average fidelity: 84.1%

Alice $LG_{0,0}$ $LG_{0,2}$ $LG_{1,2}$ $LG_{2.2}$ $LG_{3,2}$

Bob

Stabilization for Fiber Drift

210x210 crosstalk matrix

Without time reversal

Free space transmission

High-dimensional intracity quantum cryptography with structured photons

Alicia Sit,¹ Frédéric Bouchard,¹ Robert Fickler,¹ Jérémie Gagnon-Bischoff,¹ Hugo Larocque,¹ Khabat Heshami,² Dominique Elser,^{3,4} Christian Peuntinger,^{3,4} Kevin Günthner,^{3,4} Bettina Heim,^{3,4} Christoph Marquardt,^{3,4} Gerd Leuchs,^{1,3,4} Robert W. Boyd,^{1,5} and Ebrahim Karimi^{1,6,*} ⁽²⁾

Turbulence was the principal source of cross talk

No turbulence mitigation,

still achieved QBER of 0.11 in 4D

Could digital phase conjugation assist here as well?

Digital phase conjugation in free-space

Conceptually the same set-up as in MMF

Turbulence requires in re-characterization by Bob on 10s of ms timescale

Phys. Rev. Applied 15, 034011, (2021)

Digital phase conjugation in free-space

Digital phase conjugation in free-space

Crosstalk matrix without time reversal Average fidelity=63.0%

Without time reversal

Received OAM index

With time reversal

Crosstalk matrix with time reversal Average fidelity=86.8%

Phys. Rev. Applied 15, 034011, (2021)

Conclusions

Digitial vectorial phase conjugation with real-time link stabilization achieves high-fidelity mode transmission:

1 km of multimode fibre

>80% average fidelity for 210 LG modes

340 m of free space>80% average fidelity for 7 LG modes

Response time constrained by SLMs

Poster Today!

Fidelity (%)

Fast Generation and Detection of Spatial Modes of Light by Acousto-Optic Modulation -Mahdieh Jabbari PS-40

20

5

10

Time (min)

15