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Abstract

Parametric down-conversion (PDC) is a nonlinear optical process widely used to generate
pairs of photons. It occurs when an intense laser traverses an optical parametric ampli-
fier (OPA). When the gain of the amplifier is increased, the number of downconverted
photons increases exponentially: this is the high-gain regime of PDC. High-gain PDC is
potentially a versatile tool for metrology. It is a source of highly-entangled states and
bright squeezed states for applications in quantum information and interferometry. In ad-
dition, the high number of photons in high-gain PDC makes it possible to use diodes and
cameras directly, instead of single-photon detectors and coincidence-counting apparatus.
However, all the quantum-optical experimental methods need to be generalized or adapted
for a high-photon flux. Most of the theoretical and experimental techniques used or devel-
oped in this thesis aim to address this transition from low to high-photon flux of PDC.

I theoretically and experimentally provide strategies to harness the mode structure of
PDC, bringing us steps closer to a usable source of bright squeezed vacuum for interfer-
ometry and quantum imaging. I present experimental progress in reducing the number of
frequency modes of high-gain PDC, which is naturally broadband, and consequently highly
multimode. Our theory for high-gain PDC generated in a nonlinear crystal provides a set
of modes containing physically meaningful information, i.e. the pairwise quantum corre-
lations between independant modes. In addition, I provide a thorough discussion on the
limit of SU(1,1) interferometry in regards to internal loss and gain unbalancing. Finally,
I tie the frequency spectrum of high-gain PDC to the properties of vacuum fluctuations,
allowing to predict the number of photons from first principles, making it a powerful too
for spectroradiometry. Those developments are a springboard towards usable high-gain
PDC for metrology.
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the Canada Excellence Research Chairs program. I’m proud to say I am one of the first
student to benefit from the Max Planck- University of Ottawa Center for Extreme and
Quantum Photonics. This collaboration allowed me work at the Max-Planck institute for
the Science of Light, in Erlangen, Germany, in the laboratory of Maria Chekhova, from
whom I’ve learnt so much. From this collaboration, I want to give another special thanks
to Gerd Leuchs and Timur Iskhakov.

I’m grateful to Robert W. Boyd, who has provided me with an outstanding learning
environment, growing opportunities, and his invaluable experience throughout all my grad-
uate studies. I acknowledge Robert Fickler and Enno Giese, who were instrumental in the
work presented here, and in my progress as a scientist. Finally, I thank Jeremy Upham,
whose support and friendship made this thesis possible.

iii



Dedication

To my children.

iv



Table of Contents

1 Introduction 1

1.1 Squeezed vacuum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1.1 Quantum-mechanical description of squeezed vacuum . . . . . . . . 6

1.1.2 Correlations in the second order . . . . . . . . . . . . . . . . . . . . 10

1.1.3 Parametric down-conversion . . . . . . . . . . . . . . . . . . . . . . 12

1.1.4 Multimode radiation and mode decomposition . . . . . . . . . . . . 14

1.2 Phase sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.3 High-gain parametric down-conversion . . . . . . . . . . . . . . . . . . . . 17

1.3.1 Quantization of the electromagnetic field in a medium . . . . . . . . 18

1.3.2 Solving the equation of motion . . . . . . . . . . . . . . . . . . . . 21

2 Engineering the Frequency Spectrum of Bright Squeezed Vacuum via
Group Velocity Dispersion in an SU(1,1) Interferometer 26

3 Bright squeezed vacuum in a nonlinear interferometer: Frequency and
temporal Schmidt-mode description 36

4 Properties of bright squeezed vacuum at increasing brightness 46

5 Phase sensitivity of gain-unbalanced nonlinear interferometers 56

6 A primary radiation standard based on quantum nonlinear optics 67

v



7 Conclusion 79

References 81

vi



Chapter 1

Introduction

Lasers are a tremendous technology that has changed communications, fabrication, medecine
and many other fields besides. A key element of the laser is that as a photon travels through
a medium primed for this purpose, it can stimulate the creation of another photon from the
medium that is exactly in phase with the first photon. This amplification leads to intense
coherent beams and in addition to the above technological advantages, has profoundly
deepened our understanding of light-matter interactions, including the research domain of
nonlinear optics [1].

Nonlinear optics has since shown that, under the right conditions, another kind of op-
tical process can occur: a photon traveling through a nonlinear medium has a statistical
possibility to spontaneously be annihilated and to have a pair of photons be created in its
place. Because this process obeys conservation of energy and momentum, observing the
properties of one of these photons gives us clear information about the other [2]. Con-
sequently, particular properties about the behaviour of these photons arise. One such
nonlinear optical process is photon-pair generation by spontaneous parametric down con-
version (PDC) and is fundamentally different from just low-intensity light from any other
source.

In the last decades, photon-pair generation via PDC has been ubiquitous in quantum
optics laboratories and is at the heart of many groundbreaking experiments in quantum
physics [3–5]. It is a cheap and reliable source of: entangled particles because the conser-
vation laws dictating their creation cause correlations in the different degrees of freedom
of the photons (e.g. polarization, position-momentum), allowing quantum entanglement;
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Figure 1.1: Cartoon representation of the PDC process occurring when an intense laser beam
(pump) traverses a nonlinear medium. a) Spontaneous regime of PDC: when the right conditions
are met, there is a low probability that one photon of the pump (blue in the figure) gets converted
into photons of lower frequency (red and green in the figure). The color, spectral width, direction,
and angular spread are determined by the properties of the medium and the pump laser. b) High-
gain regime of PDC: when the nonlinear coupling is strong enough, spontaneous emission acts as
a trigger for new down-converstion processes, leading to an exponential increase in the number of
photons with respect to the gain.

squeezed states of light because their ensuing statistics can reduce the uncertainty or noise
inherent in a particular observable parameter; or heralded single photons, because in being
created together one photon reliably indicates the presence of the other.

This thesis builds upon the research of PDC by exploring the following question: what
happens when the laser intensity is increased, such that the PDC process ceases to be
spontaneous and the twin-photons turn into twin-beams, as depicted in Fig. (1.1)? It had
been demonstrated that twin-beams, containing up to millions of photons per mode, retain
many advantages of photon pairs, such as photon-number correlation, and even polariza-
tion entanglement [6,7]. Those experiments were a strong indication that other properties
of photon pairs could be generalized to large number of photons, and could lead to inter-
esting applications in metrology.

One such application of PDC is squeezing, which is a feature of most photon-pair gen-
eration processes [8, 9]. Squeezing is characterized by reduced noise in one quadrature of
the electromagnetic field at the expense of the other quadrature, like in Fig. (1.2), where
different states of light are represented in the phase space with quadratures X and P .
The squeezed quadrature is utilized in interferometry to mitigate the deleterious effects of
vacuum noise [10,11]. PDC theory predicts that a higher gain of parametric amplification
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leads to a stronger level of squeezing [12]. In other words, twin beams with a large number
of photons should exhibit tremendous squeezing.

Figure 1.2: Cartoon representation of different states of light in the phase space, with the axes
the quadratures X and P . The vacuum state (blue, dotted) resides at the origin, with a non-zero
and equal uncertainty in both quadratures. The coherent state (green, no edge) has a non-zero
amplitude (radius from the origin to the center of the circle). The squeezed vacuum (red, dashed) is
centered at the origin, with unequal uncertainties in orthogonal quadratures. All states represented
are minimum-uncertainty states.

Another quantum-metrological application of PDC is SU(1,1) interferometry. SU(1,1)
interferometers are like conventional interferometers where the beam splitters have been re-
placed by optical parametric amplifiers (OPA), see Fig. (1.3). In an SU(1,1) interferometer,
the sensitivity scales favorably with intensity compared to a conventional interferometer
with classical light [13,14]. This favorable scaling is promising for applications where one
wants to limit the intensity of the light traversing the sample, to avoid damage or unwanted
nonlinear effects.

Spontaneous PDC is widely used in radiometry to calibrate the quantum efficiency of
single photon detectors. The standard resides in the fact that photons are produced in
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Figure 1.3: Schematic representation of: a) a Mach-Zehnder interferometer, composed of two
beamsplitters BS1 and BS2; b) an SU(1,1) interferometer.

pairs (but in different modes) [15–17]. The detection of a photon at an ancilla detector
necessarily indicates the presence of a photon at the detector under test. The brightness
of PDC itself can serve as a primary standard as well. In PDC, photon pairs are emitted
as a result of the coupling between the pump laser and the down-converted modes. At the
input of the nonlinear medium, the latter modes are in their vacuum states, whose prop-
erties are well known from the framework of quantum mechanics, and obtained from first
principles [12]. Therefore, since it can be tied to the properties of the vacuum fluctuations,
the brightness of PDC can serve as a primary standard for radiometry.

All the applications of PDC to metrology presented so far offer their range of chal-
lenges, both theoretical and experimental. The work presented in this thesis aims to solve
those challenges. The higher the squeezing of a mode, the larger the metrological advan-
tage. Hence, one prefers one strongly squeezed mode over many modes that are weakly
squeezed. In chapter 2, we produce high-gain PDC in a single frequency-mode, constituting
an important step towards applying it in interferometry. In chapter 3 and 4, we provide
further theoretical and experimental insights into understanding the modal structure of
PDC in the high-gain regime. The high-gain PDC setup in chapters 2 and 3 is based on an
SU(1,1) interferometer. In chapter 5, we theoretically explore a strategy to mitigate the
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effects of losses in an SU(1,1) interferometer and provide a discussion about the figures of
merit used to quantify interferometers. Finally, from the insight that PDC spectral bright-
ness can be tied to the properties of electromagnetic vacuum, we demonstrate in chapter 6
that high-gain PDC can be used as a primary standard for radiometry, whose brightness
can be derived from first principles, akin to blackbody radiation.

This introduction aims to provide the necessary concepts to fully understand the work
presented in this thesis. In section 1.1, we introduce a quantum-mechanical description of
squeezing, which constitutes a toy-model for PDC generated in a single mode. In partic-
ular, we take a look at the photon-number statistics of squeezed states. We briefly cover
parametric down-converstion from the angle of nonlinear optics, and show how the spec-
trum of PDC relates to the properties of the pump laser and the nonlinear medium. We
also apply a Schmidt-mode decomposition to multimode PDC, and present its relevance
to quantum-optical applications. In section 1.2, we discuss the phase sensitivity of con-
ventional and SU(1,1) interferometers. In section 1.3, we derive the number of photons for
high-gain PDC produced from a planewave monochromatic pump.

1.1 Squeezed vacuum

Squeezed states of light are known to exhibit reduced noise in one of their field quadratures,
in contrast to classical sources of light. This feature makes them attractive for metrolog-
ical applications in optics, but also in other quantum systems [18, 19]. In this section, we
examine some features of quantum states of light in order to determine the photon-number
statistics of squeezed vacuum states. In the following chapters, we will use the formalism
of squeezing to contextualize, analyze and discuss the results presented. The connection
between squeezing, quadratures, entanglement and photon-number statistics is of particu-
lar relevance.

A simple squeezing Hamiltonian constitutes a toy-model for PDC in order to better
understand its photon-number statistics. However, such a model usually does not describe
PDC produced simultaneously in multiple modes. I also present the Schmidt-mode decom-
position, a tool to meaningfully describe spontaneous PDC in the multimode configuration.
This decomposition provides a set of modes that can be squeezed independently according
to our toy model.
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1.1.1 Quantum-mechanical description of squeezed vacuum

One function that maps a quantum state into phase space, comprising the two quadratures
of the electromagnetic field, is the Wigner quasiprobability distribution [2]. When repre-
sented in phase space, the state apprears squeezed—thus the name—adopting an elongated
shape. The squeezed state is a minimum-uncertainty state, bounded by the Heisenberg
uncertainty principle for the product of the noise for the two orthogonal quadratures. Im-
portantly, squeezed states exhibit reduced noise in one of the quadratures at the expense of
excess noise in the orthogonal quadrature [20]. This form of squeezing is called quadrature
squeezing. Different types of squeezing are pictured Fig. (1.4). Number-phase squeezed
states, for example, are squeezed along the polar coordinates of the phase space, which
correspond to the amplitude of the field (the radius) and its phase (polar angle). Alterna-
tively, squeezing can occur between two quadratures belonging to two different modes of
the electromagnetic field. This is called two-mode squeezing. We customarily call those
two modes the signal and the idler. We will derive the basic properties of squeezed states
in relevance to the work presented in this thesis.

Figure 1.4: Cartoon representation of different types of squeezing in terms of the X̂ and P̂
quadratures. a) The quadrature squeezed state (red, dashed) and the number-phase squeezed state
(green, no edge) are minimum uncertainty states like the vacuum state (blue, dotted). b) Two-
mode squeezed states exhibit squeezing in the {X̂1, X̂2} space, and as well in the {P̂1, P̂2} space
but at a π/2 dephasing.
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We set up an idealized interaction Hamiltonian in the form of

Ĥ =
i~ζ

2
â† 2 + h.c., (1.1)

where the creation and annihilation operators â† and â satisfy the commutation relation
[â, â†] = 1. The coupling parameter ζ = reiθ is complex. In the context of PDC, the
parameter r is connected to the gain of the OPA, which depends on the intensity of the
pump, and θ includes the laser phase. The abbreviation “h.c.” denotes the Hermitian
conjugate. This Hamiltonian generates single-mode squeezing due to the nonlinearity of
the interaction, in contrast to the two-mode squeezing Hamiltonian, which is linear in each
mode.

One can thus use the Heisenberg equation of motion and the commutation relation to
find how â and â† evolve in time t under this Hamiltonian:

dâ

dt
=
i

~
[Ĥ, â] = ζâ†, (1.2a)

dâ†

dt
=
i

~
[Ĥ, â†] = ζ∗â, (1.2b)

and by taking the second derivative, we find a differential equation whose solution reads

â(t) = â(0) cosh(rt) + eiθâ†(0) sinh(rt), (1.3a)

â†(t) = â†(0) cosh(rt) + e−iθâ(0) sinh(rt), (1.3b)

a relation that is often called a Bogolyubov transformation [21]. It can be readily verified
that the solutions of eq. (1.3) satisfy [â, â†] = 1 at all times, by making use of the hyperbolic
relation cosh2(x)− sinh2(x) = 1.

A squeezed vacuum state is created when the squeezing Hamiltonian of eq. (1.1) is
applied to the vacuum |0〉, represented here in the number basis. The average number of
photons of squeezed vacuum is not zero, despite its name:

〈n〉 = 〈0| â†(t)â(t) |0〉 = sinh2(rt), (1.4)

where we used the usual rules of â and â† in the number basis. It is apparent that the
number of photons grows exponentionally with the amplitude of the coupling parameter r
and the interaction time t, as plotted in Fig. (1.5).

Squeezing is best understood in the language of quadratures. The quadratures are
described by quadrature operators that can adopt the form X̂ = (â + â†)/

√
2 and P̂ =

7



Figure 1.5: Average number of photons 〈n〉 with respect to the gain product rt

i(â − â†)/
√
2 [10]. The field quadratures behave like the real and imaginary parts of the

electric field, which correspond to 0 and π/2 angle in the phase space, respectively. We
will consider the vacuum state |0〉 as an example. The expectation value for the each
quadrature reads 〈X〉 = 〈P 〉 = 0. The variance, however, does not vanish, as 〈(∆X)2〉 =
〈(∆P )2〉 = 1/2. Therefore, the electromagnetic vacuum state exhibits a fluctuating electric
field that averages to zero. In addition, those fluctuations do not depend on the phase.
Using the actual definition for the electric field operators, it can be found the vacuum is a
minimum uncertainty state, as prescribed by Heisenberg’s uncertainty principle. Here, we
find that the product of variances 〈(∆X)2〉〈(∆P )2〉 = 1/4, which is the Heisenberg limit.

Using our definitions for the quadratures, along with eq, (1.3), we obtain a time-evolved
quadrature operator as

X̂(t) = X̂(0)ert, (1.5a)

P̂ (t) = P̂ (0)e−rt, (1.5b)

where we used θ = 0 for simplicity. In turn, for a vacuum input, the standard deviation
(square root of the variance) evolves as

√
〈(∆X)2〉(t) =

√
〈(∆X)2〉(0)ert, (1.6a)

√
〈(∆P )2〉(t) =

√
〈(∆P )2〉(0)e−rt. (1.6b)

The noise in the X quadrature is found to increase exponentially under the squeezing
Hamiltonian, while the noise in the P quadrature decreases. Notably, the product of
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the variance does not change over time. Therefore, the state produced by the squeezing
operator is also a mininum-uncertainty state, where the increased noise in one quadrature
serves to compensate the noise reduction in the other. This is the most widely recognized
feature of squeezed states. Squeezed states can also be produced with a coherent state
input, in which case the ouput state will be a squeezed coherent state, with a non-zero
average electric field, as pictured in Fig. (1.4a).

The Hamiltonian of eq. (1.1) describes a process where two photons are being created
in the same mode. A Hamiltonian where the two photons are produced in different modes,
having the form

Ĥ = i~ζâ†b̂† + h.c., (1.7)

and applied to the vacuum state, will produce a two-mode squeezed state. Using a treat-
ment similar to the single-mode case, we find that the annihilation operators adopts the
form

â(t) = â(0) cosh(rt) + b̂†(0) sinh(rt), (1.8a)

b̂(t) = b̂(0) cosh(rt) + â†(0) sinh(rt), (1.8b)

where we assumed that ζ is real, for simplicity. In that case, the squeezing is manifest in
the correlation and anti-correlation between the quadratures. For example, if we consider
a vacuum state, the X quadratures for the a and b modes exhibit no correlation. A two-
mode squeezing operation in the form of eq. (1.8) will correlate the X quadratures at the
expense of the P quadratures correlation, following the relation

X̂a(t)− X̂b(t) =
(
X̂a(0)− X̂b(0)

)
e−rt (1.9a)

P̂a(t)− P̂b(t) =
(
P̂a(0)− P̂b(0)

)
ert. (1.9b)

The two-mode squeezed vacuum state for modes a and b is entangled in the X and P
degrees of freedom. As the coupling parameter r gets larger, X̂a(t) − X̂b(t) approaches a
Dirac delta function centered at t = 0. In that case, the state is maximally entangled.
This state is an example of an EPR state, as proposed by Einstein, Podolsky and Rosen
in their landmark paper to address the oddities of quantum mechanics [22].

Photon pairs being created in a single mode a produce squeezing, whereas photon pairs
being generated in two modes a and b produce entanglement. Let’s consider a new set
of modes c = (a + b)/

√
2 and d = (a − b)/

√
2. Such a mode transformation from {a, b}

to {c, d} can be accomplished by a beam splitter. Using the operators a and b as defined
in eq. (1.8), we see that c and d actually undergo a single-mode squeezing transformation
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under the action of the two-mode squeezed state acting on a and b. In that case, entan-
glement and squeezing are the two sides of the same coin. Using a similar reasoning, in
this thesis, I will use the language of “squeezing” and “entanglement” interchangeably to
describe similar phenomena. For example, it is customary to call sub-shot-noise photon-
number correlation “twin-beam squeezing”.

1.1.2 Correlations in the second order

There are various ways to quantify the level of correlation in the second-order of the electric
field operators, depending on the situation. In the context of this work, we consider the
degree of second-order coherence g(2) and the noise-reduction factor (NRF).

The degree of second-order coherence, or normalized intensity correlation between the
fields i and j, is a measure of the pairwise photon correlation between two modes, or within
a single mode. It is defined, following the work of pioneer Roy Glauber [23, 24] as:

g
(2)
ij (ti, tj) =

〈â†i (ti)â†j(tj)âj(tj)âi(ti)〉
〈â†i (ti)âi(ti)〉〈â†j(tj)âj(tj)〉

. (1.10)

It can be interpreted as a measure of the likelyhood that two photons bring an absorber
to an excited state, at two different times ti and tj. It is often derived starting from
this principle. To keeps things general, the location and time of measurement are left as
variables of the field. The two photons can belong to the same field, in which case g(2)

is a form of autocorrelation. The introduction of g(2) was significant in understanding
the photon-bunching effect as observed by Hanbury-Brown and Twiss in their landmark
intensity-correlation measurement [25]. In this experiment, it was discovered that a ther-
mal source of light exhibits super-Poissonian fluctuations. With a proper mathematical
treatment of the field, it was shown that for thermal fields, g(2) is straightforwardly con-
nected to the degree of first-order coherence. This means that that g(2) can be used to
measure the coherence length of a field (or between two fields) by varying the time of
detection between the two absorbers. It was also shown that all classical light must obey
g
(2)
i,j ≥ 1. Any deviation from this inequality is a sign of nonclassicality [26]. For example, a

single photon, which can’t be described from classical optics, will exhibit g(2) = 0. This is a
consequence of the fact that a single photon will never trigger two detectors simultaneously.
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The intensity autocorrelation is often expressed as g(2)(τ = tj − ti), where the field
overlaps itself with a temporal delay τ . g(2)(τ) strongly depends on the state of light under
scrutiny, and gives precious information about the field’s photon number fluctuations [20].
For single-mode radiation, and when τ = 0, the definition of g(2)(τ) simplifies to:

g(2)(τ = 0) =
〈â†â†ââ〉
〈â†â〉2 , (1.11)

where we dropped the time dependence of the creation and annihilation operators. For
single-mode squeezed vacuum, using equation (1.3) we find

g(2)(τ = 0) = 3 + 1/〈n〉. (1.12)

In the case of two-mode squeezed vacuum, the same procedure can be applied to derive
the photon-number statistics in each channel:

g(2)aa (τ = 0) = g
(2)
bb (τ = 0) = 2, (1.13a)

g
(2)
ab (τ = 0) =

〈â†b̂†b̂â〉
〈â†â〉〈b̂†b̂〉

= 2 + 1/〈n〉, (1.13b)

for the autocorrelation and the crosscorrelation, respectively. The fluctuations in each
channel of two-mode squeezed vacuum, taken individually, are thermal, with g(2) = 2 [27],
while the correlations between them are quantum in nature.

The Hanbury-Brown and Twiss apparatus, in its conventional form, necessitates two
detectors, whose signals are multiplied. In the case of a single source, the field is sent to a
beamsplitter, whose output ports point to the detectors. One detector’s position is varied
to measure g(2) as a function of the time difference. To measure the degree of second-order
correlation of a single field at zero delay, it is sufficient to use a single bucket detector
that measures a quantity proportional to 〈n〉, the average number of photons. We can
straightforwardly move from the Hanbury-Brown and Twiss interferometer to the single
bucket detector configuration since the beamsplitter has no impact on the statistics of 〈n〉
of the input source field [27].

The noise-reduction factor (NRF) is a measure of the photon-number correlation be-
tween two fields 1 and 2. It is defined as

NRF =
〈(∆(n2 − n1))

2〉
〈n2 + n1〉

. (1.14)
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The NRF is a measure of the fluctuations of the photon-number difference between the
two fields, normalized to the fluctuations of a Poissonian field with the same average total
photon number. For example, if a coherent state (which by definition exhibits Poissonian
statistics in the photon number), was split with a 50:50 beamsplitter, the NRF measured
by two detectors in the output ports would be equal to unity. For the same reason, the
NRF measured for two coherent states with equal average photon number would also be
unity. The NRF can be expressed in terms of cross-and-autocorrelations g(2), simply by
using the commutation relations for creation and annihilation operators. Indeed, using a
Cauchy-Schwarz type of inequality, and the inequality 2ab < (a+b)2 for real a and b, it can

be shown that, for classical fields, g
(2)
11 + g

(2)
22 ≥ 2g

(2)
12 [26]. We thus find that sub-shot-noise

photon-number correlation (NRF < 1) is a proof of nonclassicality. Two-mode squeezed
vacuum exhibits perfect photon-number correlation, such that NRF = 0.

1.1.3 Parametric down-conversion

Parametric down-conversion (PDC) is a three-wave nonlinear optical process where pho-
tons of frequency ωp, labeled p for pump, get converted into a pair of daughter photons
called the signal and the idler, of frequency ωs and ωi, respectively, following the rule for
energy conservation ωp = ωs + ωi. This process occurs in a material with second-order
susceptibility χ(2) [1]. The type of PDC depends on the non-vanishing elements of the χ(2)

tensor relating the three fields, as well as on the birefringence of the material, described
completely by the χ(1) tensor. For uniaxial birefringent material, type-I PDC is the interac-
tion where the pump, signal and idler fields have polarizations extraordinary, ordinary and
ordinary, respectively. There exists other type of phase-matching for three-wave nonlinear
processes, involving other combinations of polarizations for the three fields.

The angular and frequency spectrum of PDC is determined, in first approximation, by
the properties of the pump laser, and by the phase-matching function of the crystal. The
photography in Fig. (1.6) shows the angular and frequency coupling of type-I PDC. We say
the phase-matching condition is fulfilled when κp−κs−κi = 0, where κ is the longitudinal
part (along the z-axis) of the wavevector k of magnitude k = 2πn(λ)/λ, where n is the
refractive index and λx the wavelength in vacuum.
This condition leads to optimal conversion efficiency. Phase matching implies that the
oscillatory contributions to the amplitudes from different parts of the medium add up
constructively. When the phase-matching condition is not fulfilled, the fields interfere
destructively; for a large phase mismatch, no light is produced at all. Phase matching is
adjusted by tilting the angle of the birefringent medium, thereby varying the extraordinary
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Figure 1.6: Photography of a Type-I PDC interaction. The phase-matched interaction, as ex-
emplified by the vectors, typically leads to the highest PDC efficiency. and an illustration of a
phase-matched interaction. In practice, a thin nonlinear-medium will relax the phase-matching
condition, leading to a wide frequency-angular spectrum, like in the photography. (Illustration
credit: Alan Migdall and NIST).

index of refraction (which is a factor of the wavevector k). For an infinite transverse
nonlinear medium, the transverse momentum q of the wavevector is conserved.

In the spontaneous regime of PDC, the photon pairs are generated according to a
joint probability amplitude function for the signal and for the idler called the biphoton
amplitude [28]. The biphoton amplitude is the product of the pump spectral function
(rewritten in terms of signal and idler frequency and wavevectors by virtue of energy
conservation) and the phase-matching function, which depends only on the properties of
the χ(2) material. In the work presented in this thesis, we are interested in the properties of
PDC generated in the high-gain regime. In the spontaneous regime of PDC, each photon-
pair generation is an independent event. The spontaneous regime of PDC is characterized
by a linear dependence of the PDC photons output with respect to the pump laser intensity
at the input. This is the first term in the series expansion of the photon number given
by eq. (1.4) in terms of the gain rt. When the coupling between the pump, signal and
idler is strong enough, for example by increasing the intensity of pump laser, the photon
pairs generated in the nonlinear material can trigger the generation of other new photon
pairs. In this high-gain regime, the number of PDC photons increases exponentially with
the intensity of the pump, like in Fig. (1.5). The derivation of the number of photons for
PDC at arbitrary gain and for a planewave monochromatic undepleted pump is found in
section 1.3.
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PDC is a photon-pair generator for which the squeezing Hamiltonian of eq. (1.1) can be
used as a toy-model. In particular, many of the properties of single- and two-mode squeezed
states, such as the number of photons of eq. (1.4) and the photon-number statistics, apply
straightforwardly to PDC produced in a single mode. However, the spectral and statistical
properties of high-gain PDC produced in the laboratory are not entirely understood.

In the experiments presented throughout this thesis, we mostly use β-baryum borate
(BBO) as a χ(2) nonlinear material to produce PDC. The BBO crystal allows to reach
the high-gain regime of PDC using a high-energy pulsed laser, due to its high damage
threshold.

1.1.4 Multimode radiation and mode decomposition

In this thesis, we call radiation “multimode” when it is produced in multiple modes for
the signal and for the idler. Free-space OPAs naturally produce multimode radiation.
“Multimode” may refer to various degrees of freedom, typically the spatial and temporal
ones. Some applications, especially in phase estimation, require—or are facilitated by—
PDC being produced mainly in a single mode. We address this challenge in Chapter 2.
At the same time, multimode light is attractive for several applications, mostly in the
field of imaging [29–31]. For example, the photon-number correlation between the signal
and idler allows for sub-shot-noise imaging of a faintly absorbing object, by making use of
the NRF defined earlier in this chapter. In addition, theory predicts that the multimode
spontaneous PDC can be decomposed into an ensemble of independent two-mode squeezed
states, which could in turn be used as a resource in quantum information applications [32].

An average over many modes does not exhibit the same photon-number statistics as each
mode taken separately. This is because the number of photons is an independent random
variable for each mode, leading to a Poisson distribution for the number of photons when
many modes are present. Therefore, for highly multimode squeezed states, the degree of
second-order coherence g(2) will tend to unity. This feature can be used to measure the
number of modes in multimode squeezed states [33, 34] We use this method in chapter 2.

A measurement of NRF below unity is an indication, but not a proof, of two-mode
quadrature squeezing. For light generated in an OPA into free space, the photon-number
correlation between the signal and idler fields is in principle perfect. In practice, ideally,
the measured NRF should only be limited by the noise of the detectors. However, while the
NRF< 1 indicates non-classicality, it is not straightforward to isolate the pairs of modes
that exhibit two-mode squeezing. In other words, it is challenging to measure squeezing
directly from the collection of signal and idler modes. Filters, such as pinholes in the

14



spatial domain, or narrowband filter in the frequency domain, can be used as a brute-force
method to recover a pair of squeezed modes. However, there is no guarantee that the filter
will only suppress photons from undesired modes. In addition, the filter may suppress
photons from the targeted modes, in a way that will deteriorate the degree of squeezing.

Any bipartite pure state can be decomposed into Schmidt modes [35,36] The Schmidt
modes (or Schmidt functions) {ψn(x1)} for a particle with variable x1, and {χn(x2)} for a
particle with variable x2, uniquely describe any two-variable function such that

Ψ(x1, x2) =
∑

n

λ1/2n ψn(x1)χn(x2), (1.15)

where the Schmidt functions form a complete orthonormal set, and
∑

n λn = 1 if∫ ∫
x1x2 |Ψ(x1, x2)|2 = 1. Those properties can be straightforwarldly translated to the

discrete variables.

The Schmidt-mode decomposition of a bipartite wavefunction provides valuable in-
formation about the state. In particular, there is a close connection between the Schmidt
number (defined as the spread of λn) and the degree of entanglement in the state [37,38]. In
addition, the Schmidt modes obtained by applying eq. (1.15) on the Hamiltonian for spon-
taneous multimode PDC are squeezed pair-wise, and therefore offer a potentially large set
of two-mode squeezed states. In that regard, the Schmidt-mode decomposition of sponta-
neous PDC is the diagonalization of the Hamiltonian corresponding to the down-conversion
process. In practice, for discrete variables, or numerical simulations, the Schmidt modes
are obtained by simply applying a singular value decomposition on the Hamiltonian.

Parts of this thesis deal with understanding the behaviour of high-gain PDC using
the Schmidt-mode formalism. In particular, in chapters 2 and 3, we derive spectral and
statistical of high-gain PDC by neglecting time-ordering effects in the PDC Hamiltonian.
This approximation allows us to calculate the Schmidt modes efficiently and compare
experimental results with simulated ones. In chapter 4, we provide a more complete model
for high-gain PDC that comprises time-ordering, and accurately predicts typical PDC
behaviour, such as the broadening of the angular (momentum) and frequency spectrum of
PDC as the gain increases.

1.2 Phase sensitivity

The phase-sensitivity of an interferometer is the smallest phase-change that will lead to a
signal change above the noise level [39]. SU(1,1) interferometers, which typically comprise
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two OPAs, exhibit a phase sensitivity that scales favorably with the number of photons
inside the interferometer, when compared to conventional interferometers [13]. In this
section, we will define the phase-sensitivity of interferometers and briefly introduce SU(1,1)
interferometers. Those concepts will be used in chapter 5.

Let us consider a lossless Mach-Zehnder interferometer with a single laser input. The
intensity at the output ports as a function of the interferometer phase φ reads

I1 = Iin(T1T2 +R1R2 − 2
√
T1T2R1R2cosφ), (1.16a)

I2 = Iin(T1R2 +R1T2 + 2
√
T1T2R1R2cosφ), (1.16b)

where Iin is the input intensity, and Tj and Rj are the transmittance and reflectance of the
j-th beamsplitter of the interferometer. The smallest measurable phase ∆φ by virtue of
variations of intensity at the output of the interferometer ∂IO

∂φ
is given by

∆φ =
∆IO∣∣∣∂IO
∂φ

∣∣∣
, (1.17)

where ∆IO is the noise of the measured intensity signal and IO denotes the measured out-
put intensity, for either output port, or the difference of their intensities, for example. This
equation is obtained from Gaussian error propagation. More sophisticated methods like
the Fisher information can give a better estimate of the phase sensitivity. Using the fact
that an ideal laser exhibits Poissonian statistics in the number of photon, and that the
intensity of light is proportional to the number of photons, we can infer that ∆IO ∝ √

n,
with n the average number of photon in the detection port. Likewise, the scaling of |∂IO

∂φ
|,

at the optimal interferometer phase of φ = π/2, follows a scaling with n. We therefore
find that the ∆φ follows, at best, a 1/

√
n scaling. The sensitivity can be improved by

using various strategies, but the shot-noise-limited 1/
√
n scaling cannot be exceeded with-

out resorting to strategies based on nonclassical light or measurements [40]. Parts of the
work presented in this thesis is motivated by potential enhancement in phase-sensitivity
provided by quantum light.

It was discovered, from the framework of quantum Fisher information, that the NOON
state of light is a prime example for below-shot-noise interferometry, with a phase-sensitivity
following a 1/n scaling [40–42] This 1/n scaling is conventionally called the Heisenberg
limit. Other states of light and measurement strategies can reach the Heisenberg limit.
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The SU(1,1) interferometer is an interferometer where the beamsplitting operation is
performed by OPAs, see Fig. 1.3. The name stems from the group-theoretical relation
between the input and output for the field operators, which differs from the more conven-
tional SU(2) interferometers, that are solely based on beamsplitters and mirrors, like the
Mach-Zehnder interferometer. OPAs are devices that amplify a signal, by taking optical
energy from a pump channel, typically a well-characterized and stable laser beam. The
pump and signal beams are coupled to an idler mode, following energy and momentum
conservation, as discussed in the previous section. This coupling is responsible for added
noise in the amplifier. OPAs operated without any light at the signal or idler inputs spon-
taneously produce photon pairs in the output modes. However, a coherently fed OPA
can lead to perfect destructive interference, with vacuum states in the output ports. For
optimal results, the SU(1,1) is operated for destructive interference. The second OPA
of the interferometer annihilates the photons created by the first OPA. We have seen in
eq. (1.4) that the number of photons generated in a parametric down-conversion process
grows exponentially with the parametric gain of the OPA. This means that any dephasing
between the signal and the idler arm within the interferometer will lead to a large number
of photons at the output of the interferometer. This is a result of the phase and ampli-
tude correlation between the signal and idler modes in the two-mode squeezing operation
occuring within the OPAs. Without that quantum correlation, the phase sensitivity could
not reach the Heisenberg level.

In this thesis, we examine theoretically and experimentally explore SU(1,1) interfer-
ometers. Namely, we devise a strategy to reduce the number of modes in an SU(1,1)
interferometer operated in the high-gain regime, thereby facilitating its usage. We also
theoretically explore the effects of gain unbalancing between the two OPAs can improve
the performance of the spectrometer, as well as raise issues about the conventional figures
of merit in interferometry.

1.3 High-gain parametric down-conversion

In this section, we derive the number of photons for high-gain PDC with a planewave
pump. The objective is two-fold. Firstly, the metrological applications of PDC require
that we rigorously keep track of approximations and the limits of the theoretical model. In
particular, in chapter 6, we directly use the results obtained from this derivation, and dis-
cuss the approximations in the supplementary material. Secondly, the derivation method
presented in this section is the starting point for the derivation in chapter 4, where we
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explore high-gain PDC with a non-planewave pump laser.

As a first step, we quantize the electromagnetic field in dispersive media. With this
definition of the quantum operators, we solve the Heisenberg’s equation of motion in the
nonlinear crystal for PDC at arbitrary gain. The main assumption here is that it sufficient
to consider a planewave monochromatic pump if the pump’s angular and frequency spectra
are much narrower than that of the downconverted light’s [43]. Such an assumption would
not be valid for, say, a pump pulse below the picosecond range, or a pump strongly focused
into the nonlinear material. Quantifying the effect of going from planewave monochromatic
pump to a non-planewave non-monochromatic pump on the spectrum and photon-number
distribution of PDC is a work in progress, partially addressed in chapters 3 and 4.

1.3.1 Quantization of the electromagnetic field in a medium

This derivation is inspired from Landau and Lifshitz’s book on Electrodynamics of contin-
uous media [44], as well as on Klyshko’s book on Photons and nonlinear optics [12].

The quantization of the electromagnetic field can be accomplished if we know the total
energy in the system, and associate canonical variables for it. For a dispersive medium,
deriving the energy carried in the field is not straightforward. The Poynting theorem for
an ideal dielectric reads

− ∂u

∂t
= ∇ · S, (1.18)

and states that the rate of change of the energy density u is equal to the divergence of the
Poynting vector, defined as usual by S = E ×H, with E and H the time-varying electric
and magnetic field, respectively. From Maxwell’s equations,

−∇ · S = H · ∂B
∂t

+ E · ∂D
∂t

. (1.19)

In the specific case of a non-dispersive material, we find

−∇ · S =
∂

∂t

[
1

2

(
ǫE2 + µH2

)]
, (1.20)

where we can recognize, from eq. (1.18), that the energy density is u = (ǫE2+µH2)/2, where
ǫ is the permittivity and µ is the permeability. However, for a dispersive dielectric, we must
use the right-hand side of eq. (1.19) to compute the rate of change of the energy density. In
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what follows, we will find an approximate expression for the total electromagnetic energy
in a dispersive material in terms of the dispersion relation. So far, all the fields that we
have considered were the real fields. Let us express the real fields (from now on denoted like
Ẽ) in terms of complex exponentials with positive and negative frequency ω0, for example

Ẽ =
1

2

(
E+ E∗

)
=

1

2

(
E0(t)e

−iω0t + E⋆
0(t)e

+iω0t
)
, (1.21)

where E0(t) is an envelope that varies slowly with respect to e−iω0t. The second term in
the right-hand side of eq. (1.19) now reads

Ẽ · ∂D̃
∂t

=
1

2

(
E+ E∗

)
· 1
2

(
Ḋ+ Ḋ∗

)

=
1

4

(
EḊ∗ + E∗Ḋ

)
,

(1.22)

where in the last equality we have used the rotating-wave approximation, thereby removing
the terms that oscillate at twice the optical frequency. The following step, which amounts
to an expansion of ǫ into orders of the electric field, can be accomplished concisely if we
introduce an operator f̂ according to

∂D

∂t
= f̂E =

∂̂

∂t
ǫE, (1.23)

and if E0(t) is a constant of time (meaning that E is monochromatic), then the operator
yields the eigenvalue f̂E = f(ω0)E, with f(ω0) = −iω0ǫ(ω0). Note that we are interested
in the unperturbed Hamiltonian, so we are not considering the nonlinear susceptibility yet.
Using the operator f̂ and keeping only the first two terms in the Taylor expansion:

∂D

∂t
= f̂E

= f(ω0)E0(t)e
−iω0t + i

df

dω

∣∣∣∣
ω0

dE0(t)

dt
e−iω0t.

(1.24)

Replacing ω0 with ω, and f(ω) with −iωǫ(ω), we find

∂D

∂t
= −iωǫ(ω)E+

d(ωǫ)

dω

dE0(t)

dt
e−iωt. (1.25)

Repeating this procedure for D∗, we can now reexpress eq. (1.22) as

E · ∂D
∂t

=
1

4

d(ωǫ)

dω

d

dt
(E∗ · E), (1.26)
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where we assumed that ǫ is real. This form, with the time derivative, will allow us to
extract the electromagnetic energy, just like from the Poynting’s theorem. Repeating this
procedure again for the magnetic field, we obtain that the total time-averaged electromag-
netic energy Uk, corresponding to the wave k of frequency ωk belonging in a slowly-varying
wavepacket, in a dispersive medium of real ǫ and of volume V , reads

Uk = V

[
d(ωǫ)

dω

∣∣∣∣
ωk

|Ek
(+)|2 + d(ωµ)

dω

∣∣∣∣
ωk

|Hk
(+)|2

]
, (1.27)

where we gained a factor 4 by going from the complex electric fields to the analytic signals
E(+,−), as per the relation Ẽ = E(+) + E(−). For a non-magnetic material, we can use
H2µ0 = E2ǫ = E2ǫ0ǫr, to find

Uk = V ǫ0|Ek
(+)|2 d(ω

2ǫr)

ωdω

∣∣∣∣
ωk

, (1.28)

whereas for free-space the energy would read Uk = 2V ǫ0|Ek
(+)|2. µ0 is the permeability

of the vacuum, ǫ0 is the permittivity of the vacuum and ǫr the relative permittivity. In
quantizing the field, we just consider this energy to be our Hamiltonian, with the electric
field becoming quantum-mechanical operators according to

E
(+)
k = ickak

E
(−)
k = −icka†k[

E
(+)
k ,E

(−)
k

]
= c2k.

(1.29)

Finally, ck is obtained from the normalization condition Uk = ~ωka
†
kak, yielding

c2k =
~ωk

V ǫ0
d(ω2ǫr)
ωdω

∣∣
ωk

=
~ωk

2ǫ0V

uk
c nk

,

(1.30)

where we used the bosonic commutation relation. uk is the group velocity, nk is the
refractive index and c is the speed of light in vacuum. In the last step we ignored the
anisotropy in the (linear) crystal. The electric-field operator for a dispersive medium
acquires an additional

√
u/cn factor with respect to the free-field operator.
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1.3.2 Solving the equation of motion

We start by rewriting the Hamiltonian that describes a three-wave interaction where the
central frequencies that are involved, denoted with the ‘bar’, follow ω̄3 > ω̄2 > ω̄3/2 > ω̄1.
This Hamiltonian writes

Ĥ = ǫ0

∫
d3rχ(2)Ê

(−)
1 (r, t)Ê

(−)
2 (r, t)Ê

(+)
3 (r, t) + h.c., (1.31)

where χ(2) is the second order susceptibility of the nonlinear medium. We already used a
form of the rotating-wave approximation in choosing the positive and negative frequency
parts of the analytic signals. We also set the polarization of the fields corresponding to the
non-vanishing elements of the χ(2) tensor. The pump field is classical (we thus drop the
hat), undepleted, monochromatic, and a planewave, described by a transverse amplitude
Ap, such that

E
(+)
3 (r, t) = Ap exp[i(kpz − ωpt)], (1.32)

where kp = ωpnp/c, with np the refractive index of a pump field propagating in the longi-
tudinal (z) direction. The other fields are a collection of k-modes, following

Ê
(+)
j =

∑

kj

Ê(+)(kj, t) exp[i(kj · r)],

Ê(+)(kj, t) = ic(kj)â(kj, t) exp[−iω(kj)t],

j = {1, 2},

(1.33)

where â(kj, t) is the envelope of the annihilation operator in the mode kj. We turn to an
integral by accounting for the quantization volume,

∑

k

−→ 1

vk

∫
d3k,

vk =
(2π)3

V
,

(1.34)

where vk is understood as the volume that each mode occupies in the k-space. We split up
the longitudinal and transverse components of the wave vector k as κ and q, respectively.
We can rewrite the Hamiltonian as

Ĥ =
−ǫ0Ap

v2k

∫
d3rχ(2)(r)

∫
d3k′1d

3k′2c(k
′
1)c(k

′
2) exp[i(kp − κ′1 − κ′2)z]

× exp[−i(q′
1 + q′

2) · ρ] exp[−i(ωp − ω(k′
1)− ω(k′

2))t]â
†(k′

1, t)â
†(k′

2, t) + h.c.,

(1.35)
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that we can then integrate over the transverse spatial coordinates ρ, using
∫

d2ρe−i(q1+q2)·ρ = 4π2δ(q1 + q2), (1.36)

and we integrate over q′
2 to obtain

Ĥ =
−ǫ0Ap4π

2

v
4/3
k

∫ L

0

dzχ(2)(z)

∫
d3k′1dκ

′
2c(k

′
1)c(k

′
2) exp[i(kp − κ′1 − κ′2)z]

× exp[−i(ωp − ω(k′
1)− ω(k′

2))t]â
†(k′

1, t)â
†(k′

2, t) + h.c.,

(1.37)

where the k′
2 = {−q′

1, κ
′
2}. We impose a nonlinear medium of length L. The polarization

for the different fields is already set, assuming PDC with type-I phase matching. We added
a factor of v

2/3
k , following the prescription of eq. (1.34).

The Heisenberg’s equation of motion is

d

dt
â(k1, t) =

i

~

[
Ĥ, â(k1, t)

]

=
iǫ0Ap4π

2c(k1)c̄(k2)χ
(2)

v
1/3
k ~

∫ L

0

dz

∫
dκ′2 exp[i(kp − κ1 − κ′2)z]

× exp[−i(ωp − ω(k1)− ω(k′
2))t]â

†(k′
2, t)

(1.38)

where c̄(k2) is c(k2) evaluated at the central wavevector of the whole k2 range, determined
mostly by the phase-matching function. We also assumed that χ(2) is constant from z =
0 to L. Bringing c̄(k2) out of the integral is a form of the slowly-varying amplitude
approximation, where the bandwidth of the k2 field has to be much smaller than the central
value of k2. We also used the commutation relation

[
â(k1, t), â

†(k′
1, t)

]
= δ(k1−k′

1). Upon
integrating over k′

1, we got an additional factor vk as a consequence of eq (1.34).

We integrate each side over a long interaction time, giving

â(k1, t)−â(k1, t0) =
iǫ0Ap4π

2c(k1)c̄(k2)χ
(2)

v
1/3
k ~

∫
dt

∫ L

0

dz

∫
dκ′2

× exp[i(kp − κ1 − κ′2)z] exp[−i(ωp − ω(k1)− ω(k′
2))t]â

†(k′
2, t),

(1.39)

where t0 denotes time at which the interaction starts. We now turn to the (qzω) reference,
by using the Fourier transformed operators in the fixed reference frame, adopting the form

â†(k, t) = â†(q, κ, t) =
1

2π

∫
dωdz exp[−i(ω(q, κ)− ω)t] exp[i(κ− κ(q, ω))z]â†(q, z, ω),

(1.40)
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where κ is the quantity found in â†(q, κ, t) and κ(q, ω) depends on the dispersion, with ω
as a variable. We plug the operator in the form of eq. (1.40) back into eq. (1.39), yielding

â(k1, t)− â(k1, t0) =

iǫ0Ap2πc(k1)c̄(k2)χ
(2)

v
1/3
k ~

∫
dt

∫ L

0

dz

∫
dκ′2

∫
dω

∫
dz′

× exp[i(κp − κ1 − κ′2)z] exp[−i(ωp − ω1 − ω(q′
2, κ

′
2))t]

× exp[−i(ω(q′
2, κ

′
2)− ω)t] exp[i(κ′2 − κ(q′

2, ω))z
′]â†(q′

2, z
′, ω),

(1.41)

where ω1 = ω(k1). We may now proceed with the following integrations
∫

dt exp[−i(ωp − ω1 − ω)t] = 2πδ(ωp − ω1 − ω)
∫

dκ′2 exp[−i(z − z′)κ′2] = 2πv
1/3
k δ(z − z′),

(1.42)

where we added v
1/3
k to account for the mode density. Replacing q′

2 with −q1, as found
after eq. (1.37), and integrating over the delta functions, we obtain

â(k1, t)− â(k1, t0) =
(2π)3iǫ0Apc(k1)c̄(k2)χ

(2)

~

×
∫ L

0

dz exp[i(κp − κ1 − κ(−q1, ωp − ω1))z]â
†(−q1, ωp − ω1, z).

(1.43)

Now we will examine the operators on the left-hand side of eq. (1.39). Outside the
crystals, those operators do not depend on z, so may write them in terms of their Fourier
counterparts, reading

â†(q, κ, t) =
1

2π

∫
dωâ†(q, ω, z)

∫
dz exp[−i(ω(q, κ)− ω)t] exp[i(κ− κ(q, ω))z]

=

∫
dωâ†(q, ω, z) exp[−i(ω(q, κ)− ω)t]δ(κ− κ(q, ω))

=

∫
dκuκâ

†(q, ω, z) exp[−i(ω(q, κ)− ω)t]δ(κ− κ(q, ω))

= uκâ
†(q, ω, z),

(1.44)

where we used dω = uκdκ, with uκ the projection of the group velocity on the z-axis. This
last relation can be used to relate the operator at t0 to z = 0, and the operator at t to
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z = L. We can finally write an equation of motion in the form

â(q1, ω1, z = L)−â(q1, ω1, z = 0) =
(2π)3iǫ0Apc(k1)c̄(k2)χ

(2)

~uκ

×
∫ L

0

dz exp[i(κp − κ1 − κ(−q1, ωp − ω1))z]â
†(−q1, ωp − ω1, z),

(1.45)

or, in the differential form,

d

dz
â(q1, ω1, z) =

(2π)3iǫ0Apc(k1)c̄(k2)χ
(2)

~uκ
× exp[i(κp − κ1 − κ(−q1, ωp − ω1))z]â

†(−q1, ωp − ω1, z).

(1.46)

Note that for each value of ω there are two possible values of κ. We thus implicitly
assumed that waves propagate in the forward direction. We can rewrite the equation of
motion in terms of z

da(q, z, ω)

dz
∼ a†(q̃, z, ω̃)exp[i(κp − κ(q, ω)− κ(q̃, ω̃))z]

cc̃

uzũz
(1.47)

where we removed the s labels. We also introduced q̃ = −q, ω̃ = ωp − ω, c̃ = c(q̃, ω̃) and
ũz = uz(q̃, ω̃). Introducing the short-hand notation aω(z) = a(q, z, ω), aω̃(z) = a(q̃, z, ω̃)
and ∆κ = κp − κ(q, ω)− κ(q̃, ω̃), we get the two coupled differential equation

daω
dz

∼ a†ω̃ exp[i∆κ z]
cc̃

uz
,

da†ω̃
dz

∼ aω exp[−i∆κ z]
cc̃

ũz
,

(1.48)

from which it is evident that the modes are coupled pairwise, even in the high-gain regime.

To solve this differential equation, we first move to the rotating frame, resulting in a
coupling matrix that is independent of z. We find the following solution:

aω(L) =Uaω(0) + V a†ω̃(0)

U =

(
cosh

[
Lβ

]
− i∆κ

2β
sinh

[
Lβ

])
exp[i∆κL/2]

V =
Γ
√
ũz/uz
β

sinh
[
Lβ

]
exp[i∆κL/2]

Γ2 ∝ (cc̃)2

uzũz

β2 =Γ2 − ∆κ2

4
.

(1.49)
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This equation is a generalization of the Bogolyubov transformation for phase-matched
squeezed state, see eq. (1.8). The photon operator in the planewave representation after
the interaction ak = a(qs, κs, t → ∞), obtained from the input operators, like ak,0 =
a(qs, κs, t→ −∞), takes the form

ak = uzaω(L) =uzUaω(0) + uzV a
†
ω̃(0)

=Uak,0 +
uz
ũz
V a†

k̃,0
,

(1.50)

from which we can compute the number of photons in the k-reprensentation, from modes
k and k′, with the vacuum at the input, reading

Nkk′ = 〈a†kak′〉 = |V | 2
(uz
ũz

)2
δ(k̃ − k̃′) =

Γ2

β2
sinh2

[
Lβ

]
, (1.51)

where we used

δ(k̃ − k̃′) =
δ(k − k′)

|dk̃/dk|
= δ(k − k′)

dk/dω

dk̃/dω
= δ(k − k′)

ũz
uz
. (1.52)

Importantly, when the phase-matching condition is fulfilled, the number of photons in
mode k is given by

Nk = sinh2
[
LΓ

]
, (1.53)

where the phase-matched gain reads

Γ ∼ cc̃√
ũzuz

≈ ωω̃

nñ
, (1.54)

where the approximation is that we cancelled the group velocities with each other. This is
the result that we used to perform the calibration experiment, see chapter 6.
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Chapter 2

Engineering the Frequency Spectrum
of Bright Squeezed Vacuum via
Group Velocity Dispersion in an
SU(1,1) Interferometer

This work is an extension of a similar experiment performed in the spatial domain [38]. A
first step had been achieved when we observed the effect of dispersion on the interference
pattern in a nonlinear interferometer in the Mach-Zehnder configuration, in an experiment
performed and analyzed by Dr. Timur Iskhakov and me [45]. I then moved to a Michelson-
type interferometer–which allowed us to use only one nonlinear crystal–and increased the
amount of dispersion in order to reduce the number of frequency modes as close as possible
to unity.

The theory used to perform the simulations shown in Fig. (4) and Fig. (5) is better de-
veloped in chapter 3. The main source of error in this experiment was the phase instability
of the interferometer. During the course of one acquisition, the shape of the spectrum could
change drastically, going from constructive to destructive interference. This is manifest in
Fig. (4), where in the 8th data point, the larger error in the FWHM leads to a reduction
in the value of g(2). In other words, for this data point, many spectra were acquired while
the interferometer was not stabilized on constructive interference. When the interference
is not perfectly constructive, more modes are being excited, leading to a deterioration of
the g(2) value.

This experiment was proposed by Prof. Maria Chekhova and fleshed out with the help
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of Profs. Robert Boyd and Gerd Leuchs. During my visit in Erlangen, I built the setup
and acquired most of the data. Dr. Mathieu Manceau wrote the LabVIEW code for data
acquisition and acquired the last few data points. I analyzed the data and wrote the code
to compute the joint spectral amplitude and the Schmidt-mode decomposition, based on
the theory provided by Polina Sharapova and Olga Tikhonova. I wrote most of the letter.
I wrote the supplementary materials, using the data provided by Dr. Mathieu Manceau.
All coauthors offered invaluable help throughout writing the article.
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Bright squeezed vacuum, a promising tool for quantum information, can be generated by high-gain

parametric down-conversion. However, its frequency and angular spectra are typically quite broad, which is

undesirable for applications requiring single-mode radiation. We tailor the frequency spectrum of high-gain

parametric down-conversion using an SU(1,1) interferometer consisting of two nonlinear crystals with a

dispersive medium separating them. The dispersive medium allows us to select a narrow band of the

frequency spectrum to be exponentially amplified by high-gain parametric amplification. The frequency

spectrum is thereby narrowed from ð56.5� 0.1Þ to ð1.22� 0.02Þ THz and, in doing so, the number of

frequency modes is reduced from approximately 50 to 1.82� 0.02. Moreover, this method provides control

and flexibility over the spectrum of the generated light through the timing of the pump.

DOI: 10.1103/PhysRevLett.117.183601

Photon pairs have become a ubiquitous tool for many

quantum optics applications. They have been used exten-

sively to herald single photons, to increase the phase

sensitivity of interferometers, and to test the foundations

of quantum mechanics through Bell’s inequalities [1,2].

A versatile source of biphotons is parametric down-

conversion (PDC), a process in which a pump photon is

split in a nonlinear crystal into a pair of entangled photons

labeled the signal and the idler. Recent work has featured

PDC in the high-gain regime, leading to the generation of

bright squeezed vacuum (BSV), that is, squeezed vacuum

with a large mean photon number per mode [3]. This type

of radiation manifests macroscopic quantum features, such

as polarization entanglement within a macroscopic pulse

[4], Hong-Ou-Mandel bunching [5], as well as subshot-

noise photon-number correlations [6–12]. With the detec-

tion losses sufficiently small, this state of light will even

violate Bell’s inequalities [13].

The angular and frequency spectra of PDC are, in the

general case, multimode, with the width inversely propor-

tional to the length of the crystal due to phase matching. At

the same time, there are various potential applications that

require single-mode BSV, such as phase supersensitivity in

SU(1,1) interferometers [2,14–16] or heralded preparation

of nonclassical states [17]. In this Letter, we propose and

demonstrate a method to dramatically narrow the frequency

spectrum and reduce the number of temporal modes of

BSV states. It constitutes a possible extension of the

quasisingle transverse mode source of BSV [18], paving

the way for truly single-mode BSV. Unlike most PDC

frequency engineering methods proposed to date [17,19],

our source makes use of the high gain (because the desired

modes are amplified exponentially), does not require

phase-matching engineering, and could be extended to

all the transparency range of the nonlinear crystal [20].

Importantly, the method does not involve losses and thus

does not destroy photon-number correlations [18].

The source is based on the interference between the

PDC generated by two separated crystals. This scheme,

aimed at increasing the parametric gain while at the same

time reducing the transverse walk-off [3,21], relies on the

properties of the SU(1,1) interferometer [2]. The latter, in

contrast to a usual SU(2) interferometer, has beam splitters

replaced by nonlinear media where parametric amplifica-

tion takes place. In our setup, this leads to the strong

selective amplification of some modes and to the deam-

plification of others.

By introducing a medium with group velocity dispersion

(GVD) between the two crystals forming the SU(1,1)

interferometer, we are able to tailor the frequency spectral

width of PDC generated in the high-gain regime (Fig. 1).

A pump pulse sent into the first crystal with quadratic

nonlinearity (χð2Þ) generates a broadband PDC pulse. The

latter is injected into the GVD medium and undergoes
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temporal spreading and chirping, meaning that time and

frequency contents become correlated. In the second

crystal, only the part of the stretched PDC pulse that

overlaps in time with the unaltered pump pulse is amplified.

This procedure is equivalent to selecting a narrow fre-

quency width without introducing noticeable losses.

The parametric gainG is a key quantity in describing this

approach. The average number of output photons per mode

hNi is given by sinh2ðGÞ, and G ∝ χð2ÞEpL, where Ep is

the pump’s electric field amplitude and L is the length of

the interaction with the pump pulse, which is given by the

crystal length if walk-off effects are negligible. In the high-

gain regime—large χð2ÞEpL product—doubling the inter-

action length between the pump pulse and the PDC pulse

increases the number of PDC photons by several orders of

magnitude. In our case, the interaction length is doubled

only for the part of the stretched PDC pulse that overlaps

with the unaltered pump pulse in the second crystal, leading

to a narrow band output pulse.

Since the PDC pulse is chirped and stretched in time,

varying the time of arrival of the pump pulse tunes the

central frequency of the amplified PDC. This tuning is

performed simply by changing the length of the pump path.

In addition, one would expect a twin beam to be created at a

frequency determined by the conservation of the pump

photon energy. In the spectrum, two peaks would thus

appear on either side of the degenerate frequency, and at

equal distance therefrom.

To theoretically describe the interferometer, we assume

an undepleted classical pump pulse of fixed duration

consisting of plane waves with a Gaussian frequency

spectrum of width Δωp and central frequency ω̄p.

Moving to the frequency domain and assuming that each

photon from the pump pulse spectrum (p) gives rise to one

signal (s) and one idler (i) photon, fulfilling ωp ¼ ωs þ ωi,

we obtain a time-independent Hamiltonian. The calcula-

tions based on neglecting frequency mismatches are in

good agreement with the measurements obtained for the

two-crystal interferometer with dispersion [22], whereas for

a single crystal the frequency mismatches have to be taken

into account [23,24].

Under these assumptions the Hamiltonian becomes

H ¼ iℏΓ

Z

dωsdωiFðωs;ωiÞa†ωs
a†ωi

þ H:c:; ð1Þ

where Γ is a measure of the strength of the parametric

interaction and Fðωs;ωiÞ is called the joint spectral

amplitude (JSA). Following Ref. [25], we find the JSA as

Fðωs;ωiÞ ¼
sinðδ=2Þ
δ=2

exp

�

−ðωs þ ωi − ω̄pÞ2
4Δω2

p

�

×exp½−iðδþ δ0=2Þ� cos½ðδþ δ0Þ=2�; ð2Þ

for the case of two crystals separated by a linear optical

material, where δ ¼ ½kp − ksðωsÞ − kiðωiÞ�L is the phase

mismatch accumulated in one of the crystals of length L
and, likewise, δ0 is the phase mismatch accumulated in the

linear gap between the two crystals. The first two factors

correspond to the JSA of a single crystal pumped with a

pulse of finite duration, assuming conservation of the pump

photon’s energy. The last two factors convey the total phase

acquired by the pump and the PDC in the interferometer,

and are responsible for the interference effects appearing in

the frequency spectrum. δ0 embodies all the effects of the

linear gap between the two crystals, including propagation

in different paths, pulse spreading, and chirping.

To solve the Heisenberg equation of motion for a†ωs
and

a†ωi
, we numerically diagonalize the Hamiltonian by per-

forming a Schmidt decomposition of the JSA [Eq. (2)] so

that it adopts the form

Fðωs;ωiÞ ¼
X

k

ffiffiffiffiffi

λk
p

ukðωsÞvkðωiÞ; ð3Þ

in analogy to Refs. [26–28]. In the high-gain solution, the

weights λk of the Schmidt (broadband) modes ukðωsÞ and
vkðωiÞ become [26]

~λk ¼
sinh2ðG ffiffiffiffiffi

λk
p Þ

P

∞

k¼1
sinh2ðG ffiffiffiffiffi

λk
p Þ ; ð4Þ

where the parametric gain G is proportional to the coupling

strength Γ. The frequency spectrum of the signal (idler)

beam is then found by summing the Schmidt-mode

intensity distributions jukðωsÞj2 (jvkðωiÞj2) with their

weights ~λk. This method provides a complete description

of the high-gain PDC spectrum, including the effective

number of modes, estimated from the new weights given

by Eq. (4).

In the experiment, the effective number of Schmidt

modes K is assessed from the degree of second-order

coherence with zero delay τ,

FIG. 1. Principle of the method. A broadband PDC pulse is

generated in a strongly pumped nonlinear crystal; the PDC pulse

spreads and chirps after propagation in a medium with group

velocity dispersion (GVD); the spread and chirped PDC pulse is

amplified in another crystal, using the same pump pulse. The

frequency spectrum after the second crystal is narrower than that

after the first one.
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gð2Þðτ ¼ 0Þ ¼ 1þ g
ð2Þ
1

− 1

K
; ð5Þ

where g
ð2Þ
1

is the degree of second-order coherence of

single-mode PDC [29]. For degenerate collinear PDC,

g
ð2Þ
1

¼ 3 [30]. gð2Þ is obtained experimentally from the

definition gð2Þðτ ¼ 0Þ ¼ hN2i=hNi2, where N is the num-

ber of photons in the PDC field [31].

The experimental setup (Fig. 2) consists of an SU(1,1)

interferometer of Michelson type [32]. The pump

(λp ¼ 400 nm) is the second harmonic of a Spectra

Physics Spitfire Ace system with a 5 kHz repetition rate

and 0.9 ps pulses, its power is measured right after an

attenuator [half-wave plate (HWP) and a Glan polarizer

(PBS)], and its diameter is set to 0.6 mm FWHM with a

telescope (f ¼ 300 mm and f ¼ −75 mm). A dichroic

mirror (DM1, Newlight Photonics HS10-R400/T800)

sends the pump towards a nonlinear crystal (BBO,

type-I degenerate collinear phase matching, 3 mm long).

Another dichroic mirror (DM2, same as DM1) reflects the

pump and transmits the PDC. The pump is reflected by a

mirror (M1) set on a translation stage to tune its time of

arrival, while the PDC is sent into a dispersive medium

(GVD) and reflected back again by a mirror (M2). The

PDC and the pump are recombined at DM2. The PDC is

amplified in the crystal in accordance with the time of

arrival of the pump. After its transmission by DM1, the

PDC can either be sent into a low-noise charge integrating

detector based on a p-i-n diode (PD) or reflected into the

spectrometer by means of a flip mirror (flip). In the detector

arm, there is a variable attenuator (att) to prevent saturation,

a 500 μm pinhole to select a single angular mode, a long-

pass filter (LP1) for suppressing the residual pump radi-

ation, and a focusing lens (f ¼ 40 mm). The p-i-n diode is

used to measure the PDC intensity and gð2Þ. The spec-

trometer arm consists of a long-pass filter (LP2) and a

focusing lens (f ¼ 100 mm) to couple light into the

spectrometer (Ocean Optics HR4000).

The dispersive material contains various combinations of

SF6, SF57, LLF1, and BK7 glass rods [33]. The amount of

pulse spreading is given by the GVD parameter k00d
(dimensionality ps2), where d is the thickness of the

material, and k00 ¼ d2k=dω2jω0
is the GVD evaluated at

the central frequency ω0. For each new rod or combination

of rods, one has to set the new position of mirror M1 to

provide the proper path length for the pump pulse. The

phase shift in the interferometer is not locked and, there-

fore, drifts randomly, with a typical time of 1 min. For each

set of rods, the pump power is adjusted so that the amplified

PDC has the same intensity. This ensures that the para-

metric gain is kept roughly equal for each measurement.

The spectra are recorded only when the interferometer is

producing stable output fringes, and the FWHM of the

spectra is measured for each value of k00d. The theoretical
and experimental spectral widths reported herein corre-

spond to the FWHM of spectra in the photon numbers [34].

The number of acquired pulses in gð2Þ measurements is

limited by the drifting time of the interferometer.

The introduction of a dispersive material between two

nonlinear crystals has the effect of dramatically narrowing

the frequency spectrum of PDC, as compared with the

FIG. 2. Experimental setup. (a) An attenuator [half-wave plate

(HWP) and Glan polarizer (PBS)] and a telescope are used to

prepare the pump in power, polarization, and beam diameter.

(b) PDC generated in the first pass of the pump in the BBO crystal

is stretched temporally in a dispersive medium (GVD) and sent

back into the crystal to be amplified. The time of arrival of the

pump is carefully tuned with the position of mirror M1, set on a

translation stage. (c) The PDC is sent either into a spectrometer or

into a photodiode (PD).

FIG. 3. Comparison of the spectral densities obtained exper-

imentally for a single pass through the nonlinear crystal (dashed

red line), and for the interferometer with a 18.3 cm rod of SF6

(solid black line).
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spectrum produced by a single crystal (Fig. 3). Moreover,

the frequency spectrum of amplified PDC gets narrower as

the value of k00d between the two crystals is increased

(Fig. 4). The observed asymptotic trend culminates with an

experimental spectral width of ð1.22� 0.02Þ THz, corre-
sponding to the sample with the greatest GVD parameter.

The experimental results fit well between the boundaries

obtained from theory for different phase scenarios. The

effective number of modes K, assessed through gð2Þ, is
reduced as well when k00d is increased, shrinking down to a

minimum of 1.82� 0.02. One would have expected that

the points in the right-hand part of Fig. 4, near the

asymptote, exhibit single-mode statistics, but the contri-

bution of the phase fluctuations in the interferometer is

significant and results in an increase of the number of

modes. In fact, phase drifts can transform the single peak of

Fig. 3 into two or three peaks, effectively changing the

frequencies where amplification or deamplification occurs.

For smaller GVD values, the spectrum exhibits a rich

interference pattern [34,35]. The theoretical prediction for a

best-case scenario—phase locked on constructive interfer-

ence, the dashed curve in Fig. 4—yields a maximum gð2Þ of

2.29 (K ¼ 1.55 modes) with a parametric gain of 7. Under

this theory, increasing the gain has the effect of improving

the efficiency of the mode selection: the minimum number

of modes shrinks to 1.06 when the parametric gain is 10.

Background multimode PDC, which is not amplified in

the second crystal, also has a considerable effect on gð2Þ. As
a simple test, we put an interference filter (Δλ ¼ 10 nm) in

front of the detector to cut out part of the background PDC,

and gð2Þ went from 2.05� 0.01 to 2.29� 0.02, correspond-

ing to K ¼ 1.5.

Displacing mirror M1, thereby varying the time of arrival

of the pump pulse with respect to the PDC pulse, has the

effect of generating two peaks on either side of the

degenerate frequency (Fig. 5). A greater mismatch in

arrival time induces stronger detuning from degeneracy

and weaker PDC intensity, until the two peaks completely

fade out. The theory curve of Fig. 5 was convolved with a

Gaussian whose width corresponds to the nominal reso-

lution of the spectrometer. Without the convolution, one of

the two peaks exhibits densely packed fringes (see the inset

in Fig. 5): this interference effect can be understood as

induced coherence arising from the indistinguishability of

the photon sources [22,36].

In conclusion, by inserting a dispersive medium between

two strongly pumped PDC emitters, we have demonstrated

BSV with narrowed spectral width, from ð56.5� 0.1Þ THz
down to ð1.22� 0.02Þ THz. Meanwhile, the number of

modes decreased from approximately 50 down to

1.82� 0.02, and even 1.5 when the background radiation

from a single PDC emitter was eliminated. The method can

be used to generate and tune bright narrow band two-color

PDC by changing the time of arrival of the pump pulse with

respect to the PDC pulse.

FIG. 4. Linewidth of the spectrum (a) and gð2Þ (b) as functions
of the GVD parameter. Experimental points (black) are compared

to theoretically calculated values (pink zones and red dashed

curves). The red dashed curves correspond to constructive

interference between the pump and the PDC at degeneracy.

The pink zones denote the region within 1 standard deviation

from the mean, which is determined by averaging over 8 different

phases for the central frequency from 0 to 2π by varying the air

gaps, considering amplification and deamplification cases. The

influence of GVD manifests itself through the narrowing of the

spectrum and the increase in gð2Þ.

FIG. 5. Experimental spectra when the pump path length is

increased by ð1.40� 0.01Þ mm (black solid line) and by ð2.40�
0.01Þ mm (blue dashed line) with respect to the configuration for

degeneracy. The red dash-dotted line shows the spectrum

calculated for the first case, with a parametric gain of 7. The

inset shows the second peak of the calculated spectrum without

the convolution to show the interference fringes.
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It was earlier demonstrated that by using two spatially

separated crystals, one can filter out a single angular mode

of PDC [18]. A combination of this method with our

approach can be used to generate single-mode BSV in both

the frequencies and the angles [37], but has yet to be

demonstrated experimentally. In our case, the pump beam

waist was too small to provide the selection of a single

spatial mode.

Our method of selective amplification in an SU(1,1)

interferometer can be further developed by replacing the

GVDmaterial by a pulse shaper imprinting different phases

on the modes to be amplified or deamplified. In this

manner, one can arbitrarily change the shape of the

frequency spectrum amplified in the second crystal. Our

source is a significant improvement in the generation of

single-mode bright squeezed vacuum states of light.

The research leading to these results has received

funding from the EU FP7 under Grant Agreement

No. 308803 (Project BRISQ2). We also acknowledge

partial financial support of the Russian Foundation for

Basic Research, Grant No. 14-02-00389-a and the joint

DFG-RFBR project CH 1591/2-1–16-52-12031 NNIO_a.

This work was also supported by the Canada Excellence

Research Chairs program and the National Science and

Engineering Research Council of Canada. G. L. acknowl-

edges financial support from the European Research

Council via the Advanced Grant “PACART”. We thank

Xin Jiang and Patricia Schrehardt for providing the glass

samples of SF6, SF57, and LLF1.

*
samzlemieux@gmail.com

[1] C. M. Caves, Phys. Rev. D 23, 1693 (1981).

[2] B. Yurke, S. L. McCall, and J. R. Klauder, Phys. Rev. A 33,

4033 (1986).

[3] M. V. Chekhova, G. Leuchs, and M. Żukowski, Opt.

Commun. 337, 27 (2015).

[4] T. Sh. Iskhakov, I. N. Agafonov, M. V. Chekhova, and G.

Leuchs, Phys. Rev. Lett. 109, 150502 (2012).

[5] T. Sh. Iskhakov, K. Yu. Spasibko, M. V. Chekhova, and G.

Leuchs, New J. Phys. 15, 093036 (2013).

[6] O. Jedrkiewicz, Y.-K. Jiang, E. Brambilla, A. Gatti, M.

Bache, L. A. Lugiato, and P. Di Trapani, Phys. Rev. Lett. 93,

243601 (2004).

[7] M. Bondani, A. Allevi, G. Zambra, M. G. A. Paris, and A.

Andreoni, Phys. Rev. A 76, 013833 (2007).

[8] G. Brida, L. Caspani, A. Gatti, M. Genovese, A. Meda, and

I. R. Berchera, Phys. Rev. Lett. 102, 213602 (2009).

[9] I. N. Agafonov, M. V. Chekhova, and G. Leuchs, Phys. Rev.

A 82, 011801 (2010).

[10] V. Boyer, A. M. Marino, R. C. Pooser, and P. D. Lett,

Science 321, 544 (2008).

[11] A. M. Marino, V. Boyer, R. C. Pooser, P. D. Lett, K.

Lemons, and K. M. Jones, Phys. Rev. Lett. 101, 093602

(2008).

[12] V. Boyer, A. M. Marino, and P. D. Lett, Phys. Rev. Lett. 100,

143601 (2008).

[13] K. Rosołek, M. Stobińska, M. Wieśniak, and M. Żukowski,

Phys. Rev. Lett. 114, 100402 (2015).

[14] F. Hudelist, J. Kong, C. Liu, J. Jing, Z. Y. Ou, and W. Zhang,

Nat. Commun. 5, 3049 (2014).

[15] Z. Y. Ou, Phys. Rev. A 85, 023815 (2012).

[16] W. N. Plick, J. P. Dowling, and G. S. Agarwal, New J. Phys.

12, 083014 (2010).

[17] G. Harder, T. J. Bartley, A. E. Lita, S. W. Nam, T. Gerrits,

and C. Silberhorn, Phys. Rev. Lett. 116, 143601 (2016).

[18] A. M. Pérez, T. Sh. Iskhakov, P. Sharapova, S. Lemieux,

O. V. Tikhonova, M. V. Chekhova, and G. Leuchs, Opt. Lett.

39, 2403 (2014).

[19] P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B.

U’Ren, C. Silberhorn, and I. A. Walmsley, Phys. Rev. Lett.

100, 133601 (2008).

[20] F. O. Koller, K. Haiser, M. Huber, T. E. Schrader, N. Regner,

W. J. Schreier, and W. Zinth, Opt. Lett. 32, 3339

(2007).

[21] D. J. Armstrong, W. J. Alford, T. D. Raymond, A. V. Smith,

and M. S. Bowers, J. Opt. Soc. Am. B 14, 460 (1997).

[22] A detailed theoretical comparison of the single- and two-

crystal configurations in the high-gain regime will be

presented in P. Sharapova, O. V. Tikhonova, S. Lemieux,

R. W. Boyd, G. Leuchs, and M. V. Chekhova (to be

published).

[23] N. Quesada and J. E. Sipe, Phys. Rev. A 90, 063840 (2014).

[24] A. Christ, B. Brecht, W. Mauerer, and C. Silberhorn, New J.

Phys. 15, 053038 (2013).

[25] D. N. Klyshko, Zh. Eksp. Teor. Fiz. 104, 2676 (1993) [Sov.

Phys. JETP 77, 222 (1993)].

[26] P. Sharapova, A. M. Pérez, O. V. Tikhonova, and M. V.

Chekhova, Phys. Rev. A 91, 043816 (2015).

[27] W. Wasilewski, A. I. Lvovsky, K. Banaszek, and C.

Radzewicz, Phys. Rev. A 73, 063819 (2006).

[28] A. Christ, K. Laiho, A. Eckstein, K. N. Cassemiro, and C.

Silberhorn, New J. Phys. 13, 033027 (2011).

[29] M. A. Finger, T. Sh. Iskhakov, N. Y. Joly, M. V. Chekhova,

and P. St. J. Russell, Phys. Rev. Lett. 115, 143602

(2015).

[30] R. Loudon and P. L. Knight, J. Mod. Opt. 34, 709

(1987).

[31] By definition, the photon creation and annihilation operators

in gð2Þ should follow normal ordering. When the number of

photons is high, it is possible to drop normal ordering.

[32] I. Abram, R. K. Raj, J. L. Oudar, and G. Dolique, Phys. Rev.

Lett. 57, 2516 (1986).

[33] SCHOTT optical glass data sheets, 2012, http://

refractiveindex.info/download/data/2012/schott_optical_

glass_collection_datasheets_dec_2012_us.pdf.

[34] See Supplemental Material at http://link.aps.org/

supplemental/10.1103/PhysRevLett.117.183601 for details

on the calibration of the spectrometer and on the effect of

phase fluctuations on the shape of the frequency spectrum.

[35] T. Sh. Iskhakov, S. Lemieux, A. M. Pérez, R. W. Boyd,

M. V. Chekhova, and G. Leuchs, J. Mod. Opt. 63, 64

(2016).

[36] X. Y. Zou, L. J. Wang, and L. Mandel, Phys. Rev. Lett. 67,

318 (1991).

[37] Note that by selecting a single spatial mode, one does not

yet select a single frequency mode, and vice versa.

PRL 117, 183601 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending

28 OCTOBER 2016

183601-5



Engineering the frequency spectrum of bright squeezed vacuum via group velocity
dispersion in an SU(1,1) interferometer - Supplementary Material

Samuel Lemieux,1, ∗ Mathieu Manceau,2 Polina R. Sharapova,3, 4 Olga V. Tikhonova,4, 5

Robert W. Boyd,1, 6 Gerd Leuchs,2, 7 and Maria V. Chekhova2, 4, 7

1Department of Physics and Max Planck Centre for Extreme and Quantum Photonics,
University of Ottawa, 25 Templeton Street, Ottawa, Ontario K1N 6N5, Canada

2Max Planck Institute for the Science of Light, G.-Scharowsky Str.1/Bau 24, 91058 Erlangen, Germany
3Department of Physics, University of Paderborn,

Warburger Strasse 100, D-33098, Paderborn, Germany
4Physics Department, Lomonosov Moscow State University, Moscow 119991, Russia

5Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow 119234, Russia
6Institute of Optics, University of Rochester, Rochester, New York 14627, USA

7University of Erlangen-Nuremberg, Staudtstrasse 7/B2, 91058 Erlangen, Germany
(Dated: September 15, 2016)

In section 1, the sensitivity of a small solid-angle spectrometer is calibrated using the properties
of twin-beams generated via parametric down-conversion. In section 2, we examine the interference
fringes in the frequency spectrum obtained at the output of an SU(1,1) interferometer.

I. CALIBRATION OF A SPECTROMETER WITH TWIN BEAM

Parametric down-conversion (PDC) can be used to calibrate the sensitivity of a spectrometer. The maxima of the
twin-peaks in two-color PDC are almost constant over a broad frequency range around degeneracy. This knowledge
about the photon-number frequency spectrum allows one to estimate the response function of the spectrometer. In the
following, we mathematically describe the photon-number frequency spectrum of PDC, and report an experimental
demonstration of the calibration method based on its properties.

In the low-gain regime, the number of photons of frequency ωs in the planewave mode ks is given by

N(ωs, ωi) =

(
2πχ(2)|Ep|L

c
α(ks, ki)

)2

ωsωi, (S1a)

α(ks, ki) =
sin([kp − ks − ki]L/2)

[kp − ks − ki]L/2
(S1b)

where p, s and i are the pump, the signal and the idler, χ(2) is the effective quadratic susceptibility of a nonlinear
crystal of length L, |Ep| is the pump electric field amplitude, c is the speed of light in the vacuum, and α(ks, ki) is
the phase-matching function [1]. Here, the pump is assumed to be a monochromatic plane wave. Assuming collinear
propagation, we can rewrite the wavevectors in terms of frequencies, using k = ω/c. Also, restricting the analysis to
three photon events yields a photon energy relation of the form ωp = ωs + ωi. The number of photons now reads

N(ωs) =

(
2πχ(2)|Ep|

c
α(ωs, ωp − ωs)

)2

ωs(ωp − ωs). (S2)

The case when α(ωs, ωp−ωs) = 1 is achieved provided that the phase-matching condition is fulfilled, kp−ks−ki = 0.
In this case, the dependence of the number of photons per mode on the frequency becomes

N(Ω) ∝
(
ωp

2

)2

− Ω2, Ω = ωs − ωp/2, (S3)

where we defined Ω as the frequency detuning of ωs with respect to the frequency of degeneracy ωp/2. Around de-
generacy, the number of photons almost does not depend on Ω. This property can be used to calibrate the sensitivity

∗ samzlemieux@gmail.com
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of a small solid-angle spectrometer in the photon number spectral density, and is valid as long as Ω ≪ ωp/2. As
an example, for λp = 400 nm and λs = 700 nm, we have Ω2/[ωp/2]

2 ≈ 0.02. The phase-matching condition is ful-
filled by tuning the angle of the optic axis of the nonlinear crystal with respect to the pump’s direction of propagation.

A series of PDC spectra for different optic axis angles was acquired with a spectrometer whose sensitivity is
not calibrated (Fig. S1). A polynomial curve fit connecting the peaks of the different twin-beams was generated.
We then divided an uncalibrated spectrum corresponding to degenerate phase-matching for a single crystal by this
fit-function (Fig. S2). The result is a calibrated spectrum that appears symmetric around the degenerate frequency,
and that exhibits a flat top. The flat top is a typical spectral shape due to the phase-matching function α(ωs, ωi).
As a reference, a curve fit with a sinc2 shape, as in eqs. (S1), was added to Fig. S2.

FIG. S1: A set of uncalibrated two-color spectra of PDC. The inset shows the height of each peak, with polynomial
fit.

FIG. S2: Photon-number spectral density of degenerate collinear PDC calibrated using the properties of two-color
PDC (solid red curve), its sinc2 curve fit with eqs. (S1) (blue dashed curve), and the uncalibrated spectrum (solid

black curve). The frequency detuning is defined as Ω/2π.
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FIG. S3: Measured spectra for different relative phases between the pump and PDC, where the dispersive medium is
an 3mm thick slab of BK7.

II. INTERFERENCE FRINGES IN THE FREQUENCY SPECTRUM

The phases that the pump, signal and idler acquire between the first and the second pass through the crystal
determine the shape of the frequency spectrum. Depending on this phase, the spectrum at a certain frequency can
exhibit constructive interference (amplification) or destructive interference (deamplification). For instance, in the
Fig. 3 of the main text, at the wavelength 800 nm, there is constructive interference, whereas destructive interference
at that wavelength would translate to two peaks with a dip at 800 nm.

The influence of this phase arises from the cosine factor in the equation (2) of the main text, and its effect on the
frequency spectrum depends on whether we consider the degenerate or the two-color case. When the phase mismatch
δ′ is Taylor expanded around ωp/2, and assuming monochromatic pump, it can be found that δ′ is quadratic with ω
in the degenerate case. This translates to one larger fringe around ωp/2 and progressively thinner fringes for larger
detuning. In the two-color case, δ′ is linear with ω, with fringes being more densely packed than in the degenerate
case.

Increasing the amount of GVD inside the interferometer has two effects. First, it narrows the frequency width to
be amplified in the second crystal, as illustrated in the Fig. 1 of the main text. Second, it makes the interference
fringes inside the frequency spectrum more narrow. With enough GVD, and assuming no phase mismatch at ωp/2,
the frequency width to be amplified is roughly as wide as the fringe around ωp/2, resulting in a strong single peak
and no apparent destructive interference in the spectrum.

Phase drifts in the interferometer can have a dramatic effect on the shape of the frequency spectrum, even more
so in our setup where the pump and the PDC propagate in two different arms. The experimental spectra for a very
low amount of GVD (0.14 ps2, caused by a 3mm thick slab of BK7) show an evolution of the interference fringes in
the frequency spectrum (Fig. S3) and, in doing so, a transition between a strong central peak to weaker side peaks.
For obtaining these spectra, we made use of the natural phase drift in the interferometer due to the temperature
instability and air flow.

[1] D. N. Klyshko, Photons and Nonlinear Optics (CRC Press, 1988).



Chapter 3

Bright squeezed vacuum in a
nonlinear interferometer: Frequency
and temporal Schmidt-mode
description

This paper provides a theoretical description of multi-mode parametric down-conversion
based on the Schmidt-mode decomposition of the joint-spectral amplitude.

The Hamiltonian of eq. (4) was obtained by making an assumption about energy con-
servation between the photon pairs and the pump. This approximation is very useful in
order to find squeezing eigenmodes, as in [32]. In fact, the Hamiltonian of eq. (4) corre-
sponds to a time-averaged Hamiltonian, or the first term in a Magnus expansion [46]. A
proper treatment of the wave-function would require to take into account time ordering
between the Hamiltonians at different times. Another solution is to work in the Heisenberg
picture and compute the creation and annihilation operators at different times, which is
what we do in chapter 4.

This project is the culmination of long-lasting efforts and many exchange between the
experimentalists and theorists. In the early experiments for this project, Timur Iskhakov
and I fleshed out the crucial effect of the air gap between the crystals, leading to construc-
tive or destructive interference. I provided insights to the article, from the perspective of an
experimentalist. I helped polish the theory, namely the limitations of the model regarding
the assumption that the signal and idler photons should conserve energy. I helped write
the part about the similary between the SU(1,1) interferometer and induced coherence.

36



A big chunk of efforts were made towards computing the higher-order terms of the
Magnus expansion for high-gain PDC following the prescription of [46]. The goal was
to better understand the effect of time-ordering, and the transition between low-gain to
high-gain PDC. I worked on this project with Louis Vallée, Enno Giese and Robert Boyd.
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Control over the spectral properties of the bright squeezed vacuum (BSV), a highly multimode nonclassical

macroscopic state of light that can be generated through high-gain parametric down conversion, is crucial for

many applications. In particular, in several recent experiments BSV is generated in a strongly pumped SU(1,1)

interferometer to achieve phase supersensitivity, perform broadband homodyne detection, or tailor the frequency

spectrum of squeezed light. In this work, we present an analytical approach to the theoretical description of BSV

in the frequency domain based on the Bloch-Messiah reduction and the Schmidt-mode formalism. As a special

case we consider a strongly pumped SU(1,1) interferometer. We show that different moments of the radiation at its

output depend on the phase, dispersion, and the parametric gain in a nontrivial way, thereby providing additional

insights on the capabilities of nonlinear interferometers. In particular, a dramatic change in the spectrum occurs

as the parametric gain increases.

DOI: 10.1103/PhysRevA.97.053827

I. INTRODUCTION

Bright squeezed vacuum (BSV) is a macroscopic nonclas-

sical state of light that exhibits strong correlations between

the signal and idler beams (twin-beam squeezing) [1–4],

quadrature squeezing [5,6], polarization entanglement [7], and

so on, making it attractive for applications in quantum imaging

[8–10] and quantum metrology [11,12]. The BSV produced

in a traveling-wave parametric amplifier is characterized by

a highly multimode structure [9,13,14]. Depending on the

choice of modes, one can observe quadrature squeezing or

twin-beam squeezing; two different nonclassical effects [15].

Due to the strong multiphoton correlations and complicated

mode structure, the theoretical description of BSV is difficult.

Earlier works on the theoretical description of BSV [16–20]

used a numerical approach based on solving a set of coupled

integrodifferential equations. In Refs. [16–18], the Heisenberg

picture was used in the Fourier space, and the analytical

solution was only found for a very narrow band pump. In

Refs. [19,20], broadband (Schmidt) modes were introduced

and the effect of time ordering was considered, followed by

a numerical treatment. However, recent experiments where

the spectral properties of BSV are modified, in particular, by

using it in a nonlinear interferometer [21–24], are still lacking

a detailed theoretical description.

Here we present a consistent analytical approach to the

description of BSV in the frequency domain. Our approach is

based on the collective Schmidt operators and allows us to take

into account multiphoton correlations and nonclassical fea-

tures of BSV radiation and to analyze different characteristics

of BSV for various experimental configurations. In particular,

we analyze a nonlinear SU(1,1) interferometer [21,22,25–28]

containing a dispersive medium [23,24], which allows one to

engineer the spectral properties of BSV. High-gain effects,

such as the dramatic narrowing of the BSV spectrum and the

generation of tunable two-color BSV, as well as the transition

from low to high parametric gain, are described in terms of the

Schmidt modes. The basic idea of the developed theoretical

approach appears to be rather general and can be used to

describe the spatial properties of BSV as well [29].

II. FORMALISM OF THE FREQUENCY SCHMIDT MODES

Parametric down-conversion (PDC) in a crystal with a

quadratic susceptibility χ (2)(r) is described by the following

Hamiltonian [28] in terms of electromagnetic field operators:

H ∼
∫

d3rχ (2)(r)E(+)
p (r,t)E(−)

s (r,t)E
(−)
i (r,t) + H.c., (1)

where s,i,p indices correspond to the signal, idler, and pump

radiation, respectively. In this work, in contrast to Ref. [29], we

consider a pulsed pump, for which the envelope of E(+)
p (r,t)

depends on time.

We assume a classical pump with a Gaussian envelope,

E(+)
p (r,t) = E0e

− t2

2τ2 ei(kpr−ωp t), with the full width at half

maximum (FWHM) of the intensity pulse being 2
√

ln 2τ .

First, we will consider the case of a single crystal where

PDC is produced. Further, this model will be generalized to

other experimental configurations. By using the expansion

2469-9926/2018/97(5)/053827(8) 053827-1 ©2018 American Physical Society
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of the quantum fields over plane-wave modes, E
(−)
s,i (r,t) =

∫

dks,iCks,i
e−i(ks,ir−ωs,i t)a

†
ks,i

, with the summation replaced for

convenience by integration, the Hamiltonian becomes

H ∼ i

∫∫

dksdkid
3rχ (2)(r)E0Cks

Cki
e
− t2

2τ2

×ei(kp−ks−ki )rei(ωs+ωi−ωp)ta
†
ks

a
†
ki

+ H.c. (2)

In the Hamiltonian (2) the integration runs over all wave

vectors of the signal and idler photons and over the three

spatial variables. However, in what follows, we will restrict

our consideration to the collinear propagation of the photons

only, and neglect the transverse wave-vector components.

Then, the integration over the three-dimensional wave-vector

domain is equivalent to the integration over frequencies. From

the experimental viewpoint it means, in particular, that we

consider a sufficiently broad spatial pump beam. In this case,

the Hamiltonian can be written as

H ∼ i

∫∫

dωsdωi

∫ 0

−L

dze
− t2

2τ2 ei(kp−ks−ki )z

× ei(ωs+ωi−ωp)ta†
ωs

a†
ωi

+ H.c., (3)

where we assume that coefficients Cks,i
are frequency inde-

pendent, and that χ (2) is constant over the length of the crystal

L (χ
(2)
0 ) and zero elsewhere.

Let us represent the Gaussian temporal envelope of the

pump as a Fourier transform: exp {− t2

2τ 2 } exp {−iωpt} =
∫

dω exp {− (ω−ωp)2

2�2 } exp{−iωt}, where � = 1/τ . Then, we

assume that each photon of the pump spectrum gives rise

to the signal and idler photons with the energy mismatch

being exactly zero, ω = ωs + ωi . This approximation is well

satisfied for an SU(1,1) interferometer because of the effective

narrowing of the spectrum due to the nonlinear interference

[28]. This leads to a δ-function δ(ω − ωs − ωi) removing the

integration over ω, and the Hamiltonian takes the form

H = ih̄Ŵ

∫∫

dωsdωi exp

{

−
(ωs + ωi − ωp)2

2�2

}

×
∫ 0

−L

dzei(kp−ks−ki )za†
ωs

a†
ωi

, (4)

where a†
ωs,i

are the photon creation operators for the monochro-

matic signal (idler) frequency modes, and Ŵ ∼ χ
(2)
0 E0 is the

effective coupling strength.

The approximation of zero energy mismatch restricts the

generality of our model, which, for instance, fails to describe

the broadening of the spectrum with increasing parametric gain

[30]. On the other hand, we take into account the whole spectral

width of the pump, signal or idler pulses, and the wave-vector

mismatch, which allows us to obtain the analytical solution

to the problem and to describe many features of BSV. After

integrating in z, the PDC Hamiltonian can be represented in

the simple form

H = ih̄Ŵ

∫

dωsdωiF (ωs,ωi)a
†
ωs

a†
ωi

+ H.c., (5)

with the two-photon amplitude (TPA) F (ωs,ωi) depending

only on the signal and idler frequencies

F (ωs,ωi) = C exp

{

−
(ωs + ωi − ωp)2

2�2

}

sinc

(

�kL

2

)

× exp

{

−i
�kL

2

}

, (6)

where C is the normalization constant and �k = kp(ωs +
ωi) − ks(ωs) − ki(ωi) is the wave-vector mismatch inside

the crystal. The signal and idler wave vectors ks,i =
ns,i(ωs,i)ωs,i/c depend on the refractive indices ns,i(ωs,i)

which can be calculated by using dispersion (Sellmeier) formu-

las [31]. The interaction Hamiltonian (5) indicates correlations

between the signal and idler monochromatic-wave photons. It

is more convenient to introduce new spectral modes that will be

independent of each other. Such a procedure is similar to using

normal coordinates for the description of interacting harmonic

oscillators. In our case we can use the Schmidt decomposition

[32] and present a bipartite TPA as

F (ωs,ωi) =
∑

n

√

λnun(ωs)vn(ωi), (7)

whereλn are the eigenvalues andun(ωs),vn(ωi) are the Schmidt

modes [33,34].

After the Schmidt decomposition, new photon operators

can be introduced that are responsible for the creation or

annihilation of a photon not with a certain frequency but with

the spectral distribution determined by a certain Schmidt mode

function

A†
n =

∫

dωsun(ωs)a
†
ωs

,

B†
n =

∫

dωivn(ωi)a
†
ωi

. (8)

The Schmidt-mode operators (8) are similar to the broadband

operators used in Ref. [19]. In terms of these operators, the

PDC Hamiltonian is diagonalized [15]

H = ih̄Ŵ
∑

n

√

λn(A†
nB

†
n − AnBn). (9)

The new modes are independent and the operators (8) satisfy

the usual commutation relations

[An,A
†
m] = δmn, [An,B

†
m] = 0. (10)

Using the commutation relations one can obtain the Heisenberg

equations for the Schmidt modes

dAn

dt
= Ŵ

√

λnB
†
n,

dB
†
n

dt
= Ŵ

√

λnAn. (11)

The solutions to these equations are given by the Bogolyubov

transformations and provide the output operators, after an

interaction time T with the crystal, in terms of the initial

(vacuum) operators

Aout
n = Ain

n cosh[G
√

λn] +
[

B in
n

]†
sinh[G

√

λn],

Bout
n = B in

n cosh[G
√

λn] +
[

Ain
n

]†
sinh[G

√

λn],

053827-2
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FIG. 1. For BSV generated under degenerate collinear phase matching in a single 3-mm BBO crystal pumped by 1-ps pulses at the

wavelength λp = 400 nm: (a) the Schmidt modes u0 (black), u1 (red), and u2 (blue); (b) the normalized intensity distribution for parametric

gain G=1.

where Ain
n ,B in

n are the initial (vacuum) photon annihilation

operators in the corresponding Schmidt mode (8) and G =
Ŵ×T corresponds to the parametric gain. Also, using the com-

mutation relations one can obtain the Heisenberg equations for

the monochromatic-wave operators

daωs

dt
= Ŵ

∑

n

√

λnun(ωs)
[

Bout
n

]†
. (12)

The solutions to these equations yield the output

monochromatic-wave operators in terms of the initial vacuum

operators for each frequency from the spectrum. For example,

for the signal radiation

aout
ωs

= ain
ωs

+
∑

n

un(ωs)
{[

B in
n

]†
sinh(

√

λnG)

+Ain
n [cosh(

√

λnG) − 1]
}

. (13)

In the degenerate case, the signal and idler photons have the

same Schmidt modes, An = Bn.

This simple analytical expression allows one to calculate

various characteristics of BSV, such as the mean photon

number, the variance of the photon number difference in the

signal and idler beams, the correlation functions and so on, for

different experimental configurations.

According to our approach the spectral distribution of the

signal beam is given by the incoherent sum of independent

Schmidt modes with the weights 
n,

〈Ns(ωs)〉 =
∑

n

|un(ωs)|2
n. (14)

In the simplest case of a single crystal the Schmidt modes are

very close to the Hermite functions [33]. Typical spectral dis-

tributions for three lowest-order Schmidt modes are presented

in Fig. 1(a). The modes contribute independently to the total

signal and in the case of a large number of modes give rise to

a rather broad spectral distribution [Fig. 1(b)].

The weight of each Schmidt mode depends on the paramet-

ric gain so that the new Schmidt coefficients 
n determining

the contributions of different modes into the spectral distribu-

tion are redistributed. In the high-gain regime they sufficiently

differ from the initial ones λn:


n =
(sinh[G

√
λn])2

∑

n(sinh[G
√

λn])2
. (15)

It means that with increasing the parametric gain the distribu-

tion of the Schmidt coefficients becomes sharper [Fig. 2(a)];

in other words, the effective number of modes contributing to

the total signal decreases [Fig. 2(b)] [35].

The effective number of modes is defined by the Schmidt

number K = 1
∑

n 
2
n

[35–37] and is reduced with the increase

of the parametric gain [Fig. 2(b)]. It means that in the high-gain

limit only the first Schmidt mode will contribute to the total

FIG. 2. Weights of the Schmidt modes for BSV generated under degenerate collinear phase matching in a single BBO crystal of length

3-mm pumped by 1-ps pulses at 400 nm: (a) the Schmidt eigenvalues for different values of the parametric gain G = 1 (black) and G = 9 (red);

(b) the Schmidt number vs parametric gain.
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FIG. 3. An SU(1,1) interferometer with GVD. BSV is generated

in the first nonlinear crystal. The dichroic mirror DM1 separates the

pump from the BSV. The BSV propagates through the GVD material

while the pump propagates through the air and its time delay can

be adjusted. After the dichroic mirror DM2 the pump and the BSV

radiation overlap in the second nonlinear crystal. Finally, the BSV is

filtered from the pump.

signal and all features of the PDC radiation will be defined by

the properties of this Schmidt mode.

Because the profiles of the Schmidt modes are assumed to

not depend on the parametric gain, the model predicts the nar-

rowing of the total spectral width of BSV with the gain increase.

While this is not the case for a single crystal, where small

spectral broadening can be observed with the gain increase

[30], the narrowing of the spectrum is indeed observed for a

nonlinear interferometer [24], considered in the next section.

III. NONLINEAR INTERFEROMETER

WITH GROUP-VELOCITY DISPERSION

The above-described theoretical approach can be applied to

different experimental configurations as long as we can obtain

the TPA. An interesting experimental configuration that allows

one to engineer the BSV spectrum and mode content includes

two nonlinear crystals separated by a medium with large group

velocity dispersion (GVD), a nonlinear SU (1,1) interferometer

[21–24,38] (Fig. 3). In such a configuration, the radiation is

down-converted in one nonlinear crystal and can be amplified

or deamplified in the other one, depending on the coherent

phase conditions. In the presence of the dispersive medium,

BSV generated in the first crystal is spread in time and in

addition, acquires a chirp. Its different spectral components

propagate inside the GVD medium with their own group

velocities. If, in addition, the pump pulse is delayed, only a

certain spectral band of the down-converted radiation spectrum

will overlap with it in time in the second crystal (Fig. 3) and

get amplified there. This way, by changing the time delay of

the pump with respect to the PDC radiation one can vary the

mode structure of the BSV.

For the two-crystal configuration with the GVD medium

(Fig. 3), the TPA (6) is modified; in addition to the envelope,

the modulation term appears [14,39]:

F (ωs,ωi) = C exp

{

−
(ωs + ωi − ωp)2

2�2

}

sinc

(

�kL

2

)

exp

{

−i
�kL

2

}

× cos

{

�kL + �kada +
(

ka
pd0 − k

g
s d − k

g

i d
)

2

}

exp

{

−i
�kL + �kada +

(

ka
pd0 − k

g
s d − k

g

i d
)

2

}

, (16)

where k
g
s ,k

g

i are the wave vectors of signal and idler photons

in the GVD medium, d is the length of the GVD medium,

d0 is the additional pump path length, which can be varied

in the experiment, �ka = ka
p − ka

s − ka
i is the wave-vector

mismatch in the air, with ka
p,s,i being the corresponding wave

vectors for the pump, signal, and idler radiation, and da is the

length of the air gap where all three beams propagate together.

All wave-vector mismatches can be calculated directly from

the dispersive (Sellmeier) formulas. Let us denote the part

of the argument of the cosine function that is due to the

dispersive medium and the air gap as φ(ωs,ωi) = [�kada +
(ka

pd0 − k
g
s d − k

g

i d)]/2.

Depending on this phase and its derivative, the BSV struc-

ture can be substantially changed. The derivative of the phase

depends on the relation between the group velocities of the

pump and the BSV radiation. Due to varying the additional

pump path d0 one can change the phase derivative and satisfy

the extremum condition

dφ

dωi

= 0,
dφ

dωs

= 0 (17)

for different frequencies. Such a condition can be considered

as a requirement of the group velocity matching between the

pump and the chosen BSV frequency. In other words, this

condition will be fulfilled for the frequency band in the signal

radiation that overlaps in time with the pump pulse in the

second crystal.

Figure 4(a) shows the phase shape φ versus the signal and

idler frequencies in the case where condition (17) is fulfilled

for the degenerate frequency ωs = ωi = ωp/2. It means that

the pump and the PDC radiation at the degenerate frequency

(shown by the orange arrow) perfectly overlap in time in the

second nonlinear crystal.

If the pump pulse overlaps in time in the second crystal with

the PDC radiation for a certain nondegenerate frequency, the

FIG. 4. The profile of the phase φ in the cases where the pump

pulse overlaps in the second crystal with the PDC radiation at (a) the

degenerate frequancy and (b) a nondegenerate frequency. The orange

arrow shows the overlapping frequency. The calculation was done for

the case of SF6 Schott glass of length d = 36 cm used as the GVD

medium. The other parameters are as mentioned above.
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FIG. 5. Normalized intensity distribution for an SU (1,1) inter-

ferometer with 36 cm of SF6 glass. The pump pulse overlaps in

the second crystal with the frequency-degenerate part of the PDC

radiation. Black dotted line: parametric gain G = 1, red solid line:

parametric gain G = 13.

extremum condition (17) will be fulfilled for this frequency.

Figure 4(b) shows the phase profile in such a case, the orange

arrow shows the chosen frequency.

Another factor affecting the BSV features is the total

value of the phase φ. Depending on φ, the radiation from

the first crystal is amplified or deamplified in the second

one. For a fixed frequency, this can be changed by slightly

varying the pump path between the GVD medium and the

second crystal. Indeed, this almost does not affect the group

delay but changes sufficiently the total phase. Thereby by

changing the experimental parameters we can obtain different

shapes of the TPA. And as long as we know the TPA for the

chosen experimental configuration, we can provide its Schmidt

decomposition and apply the theoretical approach described

above.

To investigate the effect of the GVD medium on the BSV

structure we consider d = 36 cm of highly dispersive glass

(SF6, k′′ = 199.01 fs2/mm). First, we chose the additional

pump path and the air gap between the GVD medium and the

second crystal so that both conditions, for overlapping between

the pump and signal pulse in the second crystal (17) and

for the amplification (φ = 0), are satisfied for the degenerate

frequency. The intensity distribution calculated for the case of

low parametric gain is shown in Fig. 5 by a black curve. It has a

rather broad envelope with fast interference oscillations at the

center. The interference fringes as well as the broad spectrum

profile indicate the multimode structure of the down-converted

radiation. As the parametric gain increases, the number of

modes is reduced, and the spectrum gets narrower. At high gain

(Fig. 5, red curve), the intensity distribution shrinks drastically

compared to the low-gain regime and, as we will show further,

the radiation becomes nearly single-mode in this case. One

can see a similarity between the spectra shown in Fig. 5 for

lower and higher gain values and the results of Refs. [23,24],

respectively.

The effective number K of the Schmidt modes is given by

the second-order normalized intensity correlation function for

the integral spectrum, g(2) = 1 + 2/K for the degenerate case.

The calculated dependence of g(2) on the length of the SF6

glass is shown in Fig. 6(a). One can observe a fast modulation,

on the micrometer scale, caused by the variation of φ and the

resulting oscillations from amplification to deamplification.

Even a very small change in the GVD medium length makes the

total phase significantly different, which results in the strong

nonmonotonic dependence of g(2) on the medium length.

The oscillation period at the degenerate wavelength can be

calculated from the equation (k
g
s | ωp

2
+ k

g

i | ωp

2
) d = π and is

0.224 μm. The sharp peaks in the correlation function are much

narrower than oscillations in a conventional interferometer

and indicate its phase supersensitive features [12]. The same

behavior had been observed in the case of an interferometer

with the air gap [14].

These fast oscillations can be eliminated by providing

constructive interference for a given wavelength through phase

locking the interferometer. Under such a condition, the corre-

lation function grows monotonically with the increase in the

GVD medium length [Fig. 6(b)], achieves its maximal value

and then decreases due to the contribution of higher-order

Schmidt modes.

From Fig. 6(b), it is also clear that with increasing

the parametric gain, the maximal value of g(2) goes up.

For the gain G = 13, it achieves g(2) = 3, which corresponds

to the case of a single temporal mode. Thus, by choosing

appropriate experimental parameters, namely, a sufficiently

long GVD medium and a sufficiently high pump power at the

FIG. 6. Normalized second-order intensity correlation function at the output of the SU(1,1) interferometer calculated versus the length of

the SF6 glass for the same configuration as in Fig. 5: (a) for the length of the GVD medium d = d̃ + �d , d̃ = 5 cm, �d is varied, the parametric

gain G = 13 and (b) under conditions (17) and φ = 0 for different parametric gain values: G=8.5 (black dashed line), G = 13 (red solid line).
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FIG. 7. Normalized intensity distribution for an SU (1,1) inter-

ferometer with 36 cm of SF6 glass. The pump pulse overlaps in the

second crystal with the PDC radiation at nondegenerate wavelength

827 nm. Black dotted line: parametric gain G = 1, red solid line:

parametric gain G = 13.

same time, one can achieve BSV with a single frequency mode

populated with a huge number of photons.

It is worth noting that in the case of a single crystal, the

number of modes is also reduced with increasing the parametric

gain but due to the initial huge number of modes, the single-

mode regime is not achievable for reasonable pump intensities.

Using the GVD medium is a much more efficient instrument

for reducing the number of modes.

If, by changing the pump path, one makes the pump pulse

overlap in the second crystal with the PDC radiation at a certain

nondegenerate frequency, the extremum condition will be

fulfilled for the conjugated frequency [Fig. 4(b)]. In this case,

the spectral intensity distribution at low gain is also broad, but

the interference fringes will be only observed in the conjugated

frequency range (Fig. 7). This is a manifestation of the induced

coherence effect [40]: to observe interference fringes in the

signal radiation from the first and the second crystals, the idler

radiation from both crystals should be indistinguishable (in our

case, overlap in time).

However, as the parametric gain increases, the situation

changes dramatically: instead of a single broad peak, two sep-

arated peaks appear, as for nondegenerate (“two-color”) BSV

generation [4]. One of these peaks is observed at the frequency

satisfying condition (17), the other one at the conjugated

frequency. The second peak has interference structure while

the first one is smooth. Thus with increasing the parametric

gain the frequency spectrum gets narrower. If in this case the

pump delay is changed this process becomes tunable.

The oscillations in the spectrum of the left-hand peak in

Fig. 7 are typical for two-pulse interference, observed, for

instance, in pump-probe experiments [41,42]. Indeed, they

originate from the two possibilities: PDC is generated in the

first crystal or in the second one. However, there are important

features distinguishing the “induced coherence” effect from

other types of interference. First, in our case the interference

structure appears in the left-hand peak only provided that

the pulse at the conjugated (right-hand) frequencies overlaps

with the pump in the second crystal. Second, in the high-gain

regime the contributions from the first crystal and the second

crystal will be unequal, in contrast to more common types of

interference.

IV. SCHMIDT MODES OF TWO-COLOR BSV

The first and second Schmidt modes in the case of two-color

PDC (Fig. 7) are shown in Figs. 8(a) and 8(b). One can see that

they have a double-peak structure. These modes u0,u1 have the

same eigenvalues in the Schmidt decomposition and the same

intensity profiles, but different symmetry: for the first Schmidt

mode, the envelope is symmetric with respect to the degenerate

frequency, for the second one it is antisymmetric. It means that

FIG. 8. The Schmidt modes u0,u1 for the case shown in Fig. 7, where, due to the high gain and a delay introduced in the interferometer, BSV

has only two modes and its spectrum has a double-peak structure: (a) mode u0 has a symmetric envelope, (b) mode u1 has an antisymmetric

envelope. The insets show the left peak of each mode with a better resolution.
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even at a sufficiently high gain, BSV will be characterized

by two-mode structure, each mode having a double peak

profile.

Because the exact phase matching is achieved for the

degenerate wavelength, the idler Schmidt modes have the same

shape as the signal ones, i.e., An = Bn and the diagonalized

Hamiltonian (9) can be rewritten in the form

H = ih̄Ŵ
∑

n

√

λn

(

A†2
n − A2

n

)

. (18)

For each mode un, as the ones shown in Fig. 8, one could

observe quadrature squeezing; however, such an experiment is

rather difficult because the local oscillator should be prepared

with the same complicated profile as shown in Figs. 8(a)

or 8(b).

On the other hand, instead of these “odd” and “even”

Schmidt modes un,un+1, with the photon creation operators

A
†
n,A

†
n+1, one can pass to their superpositions, correspond-

ing to the operators C
†
n,n+1 = 1

2
(A

†
n + A

†
n+1) and D

†
n,n+1 =

1
2
(A

†
n − A

†
n+1). While the first one will have the shape of

a single modulated peak [the left-hand peak in Fig. 8(a)],

the second mode will have the shape of a smooth peak [the

right-hand peak in Fig. 8(a)]. For these modes it is possible

to observe the twin-beam squeezing which can be measured

using a spectral filter for selecting Cn,n+1 and Dn,n+1 modes.

The quantitative characteristic of the twin-beam squeezing is

the noise reduction factor (NRF),

NRF =
〈(Ns − Ni)

2〉 − 〈Ns − Ni〉2

〈Ns〉 + 〈Ni〉
, (19)

where 〈Ns〉 and 〈Ni〉 are the integrated numbers of photons in

the signal and idler beams.

The condition NRF < 1 is a signature of twin-beam squeez-

ing. For the double-peak structure of Fig. 7, the left peak

corresponding to the signal beam and the right peak to the

idler one, calculation yields NRF = 10−8 due to accuracy.

This demonstrates an almost perfect twin-beam squeezing, the

difference from zero caused by the oscillating structure of the

left peak.

V. CONCLUSION

We present a fully analytical approach to the description of

the frequency properties of BSV, based on the model of in-

dependent Schmidt modes. Within this approach, we describe

the operation of an SU(1,1) interferometer with a dispersive

material and its effect on the Schmidt-mode structure of the

generated BSV. We show that with the transition from low to

high parametric gain, the interference structure in the spectrum

is replaced by a single- or a double-peak structure, depending

on the path length difference in the interferometer. In the

second case, the Schmidt modes also have a double-peak

structure. By appropriately shaping the local oscillator, one can

observe quadrature squeezing for each of the “double-peak”

mode. This, however, is difficult due to the modulation of

one of the peaks caused by the “induced coherence” effect.

Alternatively, and in a simpler way, one can observe twin-beam

squeezing by selecting the two peaks in the spectrum separately

and registering their variance of the intensity difference.
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Chapter 4

Properties of bright squeezed
vacuum at increasing brightness

This work is part of an ongoing effort to understand and harness PDC in the high-gain
regime. In particular, we solve the set integro-differential equations for the creation and
annihilation operators for an arbitrary parametric gain and spatial profile of the pump
laser. Then, we perform a Schmidt-mode decomposition on the output operators, provid-
ing valuable information about high-gain PDC as a resource in quantum metrology. This
work builds upon the treatment presented by Klyshko, which considers only a planewave
monochromatic pump [12].

I provided experimental results for the two-crystal configuration, and wrote parts of
section IV. I have worked out a very similar derivation to compute the variance in the
photon-number difference between the signal and the idler for applications in imaging [31].
Consequently, I helped revise and write the theory in section II of the article.
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A bright squeezed vacuum (BSV) is a nonclassical macroscopic state of light, which is generated through

high-gain parametric down-conversion or four-wave mixing. Although the BSV is an important tool in quantum

optics and has a lot of applications, its theoretical description is still not complete. In particular, the existing

description in terms of Schmidt modes with gain-independent shapes fails to explain the spectral broadening

observed in the experiment as the mean number of photons increases. Meanwhile, the semiclassical description

accounting for the broadening does not allow us to decouple the intermodal photon-number correlations. In this

work, we present a new generalized theoretical approach to describe the spatial properties of a multimode BSV.

In the multimode case, one has to take into account the complicated interplay between all involved modes: each

plane-wave mode interacts with all other modes, which complicates the problem significantly. The developed

approach is based on exchanging the (k, t ) and (ω, z) representations and solving a system of integrodifferential

equations. Our approach predicts correctly the dynamics of the Schmidt modes and the broadening of the angular

distribution with the increase in the BSV mean photon number due to a stronger pumping. Moreover, the model

correctly describes various properties of a widely used experimental configuration with two crystals and an air

gap between them, namely, an SU(1,1) interferometer. In particular, it predicts the narrowing of the intensity

distribution, the reduction and shift of the side lobes, and the decline in the interference visibility as the mean

photon number increases due to stronger pumping. The presented experimental results confirm the validity of

the new approach. The model can be easily extended to the case of the frequency spectrum, frequency Schmidt

modes, and other experimental configurations.

DOI: 10.1103/PhysRevResearch.2.013371

I. INTRODUCTION

At a high parametric gain, parametric down-conversion

(PDC) and four-wave mixing (FWM) generate a bright

squeezed vacuum (BSV). The BSV is a nonclassical state of

light without a coherent component (displacement) but with a

large (macroscopic) number of photons per mode. This state

has strong photon-number correlations (twin-beam squeez-

ing) [1–4], quadrature squeezing [5], multimode structure

[6–8], and polarization entanglement if the generated photons

have orthogonal polarizations [9]. The BSV is a promising

tool for a lot of applications in quantum optics and metrol-

ogy: imaging [10–14], quantum state engineering [15,16],

nonlinear interferometry [17–19], super-resolution, and phase

sensitivity beyond the shot-noise limit [20,21]. Due to the high

Published by the American Physical Society under the terms of the

Creative Commons Attribution 4.0 International license. Further

distribution of this work must maintain attribution to the author(s)

and the published article’s title, journal citation, and DOI.

mean photon number and the large number of modes involved,

a theoretical description of a BSV is complicated.

Several works on a description of a multimode BSV are

based on the coupled differential equations for the signal

and idler plane-wave operators under the plane-wave pump

approximation [22–25]. This approximation implies that each

plane-wave signal mode interacts with only one plane-wave

idler mode. This simplifies the problem significantly and

provides analytical expressions for the output operators. In

other works, equations similar to the classical propagation

equations were derived and their solutions based on the

Green function method were suggested [26]. Integrodiffer-

ential equations for PDC with a fixed spectral profile of

the pump were written in Refs. [27–30]. Multimode PDC

in the frequency domain was studied in Refs. [31,32] using

the Magnus expansion.

The broadband-mode approach for the temporal domain

based on the independent Schmidt modes was introduced

in Ref. [27] and developed in Ref. [28]; the Schmidt mode

approach for the spatial domain was developed and applied

to experiment in Ref. [33]. This approach describes several

effects observed for a BSV and is very convenient for the

2643-1564/2020/2(1)/013371(9) 013371-1 Published by the American Physical Society
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analytical treatment of the problem. However, the existing

Schmidt mode theory neglects the energy mismatch between

the pump, signal, and idler photons and therefore leads to

gain-independent shapes of the Schmidt modes. For this rea-

son, it cannot describe the broadening of the spectrum, which

is observed in experiment [34] as the BSV gets brighter due

to the increase in the parametric gain (stronger pumping).

Moreover, the behavior of BSV properties with the increase

of the parametric gain can be completely different depending

on the geometry of experiment. For PDC in a single crystal,

the spatial intensity distribution has a typical “sinc-squared”

shape at low parametric gain, and it broadens as the parametric

gain increases (see the results below). Similar behavior was

observed for the frequency spectrum in Ref. [34]. In contrast,

a two-crystal configuration with an air gap in between leads

to a complicated interference pattern of intensity with side

lobes, which gets narrower with increasing parametric gain

[17,33,35]. This configuration is known as the SU(1,1) inter-

ferometer [18], and it has recently attracted a lot of attention

due to its metrological applications [21,36–39].

In this work, we present a new theoretical approach to the

description of the spatial properties of the spatially multimode

BSV taking into account the mode correlations. Our approach

is based on exchanging the (k, t ) and (ω, z) representations

and solving the high-dimensional system of integrodifferential

equations for plane-wave operators. This approach describes

various features of the BSV, such as the intensity distribution

and the shapes of the Schmidt modes, as well as their evo-

lution with increasing parametric gain, both in the case of a

single crystal and in the case of a two-crystal configurations.

In full agreement with the experiment, the theory predicts the

broadening of both the intensity distribution and the Schmidt

mode shapes with increasing gain in the case of a single

crystal and the reduction of the side lobes in the two-crystal

configuration. The suggested approach does not include any

limitations on the pump waist width and the number of modes,

as it was the case in the previous considerations, and it does

not assume that the Hamiltonian commutes with itself at

different moments of time.

The paper is organized as follows. Section II describes

the theoretical approach and applies it to the case of high-

gain PDC in a single crystal. The Schmidt modes at variable

parametric gain are considered in Sec. III. Section IV deals

with the two-crystal configuration. In all sections, experimen-

tal results are also presented and compared with the theory.

Finally, Sec. V is the conclusion.

II. HIGH-GAIN PDC IN A SINGLE CRYSTAL

The Hamiltonian of PDC in a crystal with a quadratic

susceptibility χ (2)(r) is given by [23]

H ∼
∫

d3rχ (2)(r)E (+)
p (r, t )Ê (−)

s (r, t )Ê
(−)
i (r, t ) + H.c., (1)

where Ês,i are electromagnetic field operators for signal/idler

photons, the pump is assumed to be a classical beam with a

Gaussian envelope, propagating along the z axis, E (+)
p (r, t ) =

E0e
− x2+y2

2σ2 ei(kpz−ωpt ), with the full width at half maximum

(FWHM) of the intensity distribution being 2
√

ln 2σ . By

using the quantization of the electromagnetic field,

Ê
(−)
s,i (r, t ) =

∫

dks,iCks,i
e−i(ks,ir−ωs,it )a

†
ks,i

,where a
†
ks,i

are the

creation plane-wave operators, Cks,i
are the coefficients of the

decomposition, the Hamiltonian becomes

H =
ih̄Ŵ̃

2π

∫∫

dksdkid
3re

− x2+y2

2σ2 eikpze−i(ks+ki )r

× ei(ωs+ωi−ωp)t a
†
ks

a
†
ki

+ H.c. (2)

Here we neglect the dependence of the coefficients Cks,i
on

ks,i and suppose that the interaction strength Ŵ̃, involving

χ (2)(r), the pump field amplitude, and other parameters is a

constant. In the existing Schmidt mode approach, unlike the

current approach, the frequency mismatch ωs + ωi − ωp is

neglected, which makes the Hamiltonian independent of time

and ultimately leads to gain-independent Schmidt modes.

For simplicity we consider a 2D model, using only one

transverse coordinate x. In systems with the radial symmetry,

without loss of generality, the 2D case can be easily extended

to a 3D case by taking into account the additional integral

over the y coordinate. After integration over x and substituting

dks,i = dqs,idksz,iz, where qs,i are the transverse wave vectors

and ksz,iz are the longitudinal wave vectors of signal (idler)

radiation, the Hamiltonian can be represented in the form

H =
ih̄Ŵ̃

2π

∫∫

dqsdkszdqidkizdze− (qs+qi )2σ2

2 ei(kp−ksz−kiz )z

× ei(ωs+ωi−ωp)t a†
s (qs, ksz, t )a†

i (qi, kiz, t ) + H.c.. (3)

This Hamiltonian is written in the momentum-time (k, t )

representation. In this picture, the Heisenberg equation of

motion for the signal plane-wave operators takes the form

das(qs, ksz, t )

dt
=

Ŵ̃

2π

∫

dqidkizdze− (qs+qi )2σ2

2

× ei(kp−ksz−kiz )zei(ωs+ωi−ωp)t a
†
i (qi, kiz, t ), (4)

and similarly for the idler operators. The operators

a
†
s,i(qs,i, ksz,iz, t ) and as,i(qs,i, ksz,iz, t ) defined before are the

slowly varying parts of creation and annihilation operators.

In other words, these operators are solutions to the Heisen-

berg equation in the rotating frame of reference. Taking into

account the free-propagation Hamiltonian for the signal and

idler fields, one can obtain solutions in the fixed frame of

reference. We called these solutions fast varying components.

The fast varying components are connected with the slowly

varying parts as

a
†
s,i(qs,i, ksz,iz, t ) = eiωs,it a

†
s,i(qs,i, ksz,iz, t ),

a
†
s,i(qs,i, ξ , ω̃s,i ) = a

†
s,i(qs,i, ξ , ω̃s,i )e

−iksz,iz (ω̃s,i,q)ξ . (5)

Here we assume long pump pulses and short crystals, so

that the pulse covers the entire crystal at the same time. The

Fourier transformation allows one to pass from (q, kz, t ) to

(q, z, ω) representation. For example, for the fast varying part

of the idler creation operator, the Fourier transformation is

a
†
i (qi, kiz, t ) =

1

2π

∫

a
†
i (qi, ξ , ω̃i )e

iω̃it eikizξ dω̃idξ . (6)

After substituting (6) and (5) into (4) and integrating its

left and right parts from τ0 = −∞ to τ = +∞ over the
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interaction time, Eq. (4) takes the form

as(qs, ksz, τ ) − as(qs, ksz, τ0)

=
Ŵ̃

(2π )2

∫

dqidkizdzdtdω̃idξe− (qs+qi )2σ2

2 ei(kp−ksz−kiz )z

× e−i(ωs+ω̃i−ωp)t eikizξ a
†
i (qi, ξ , ω̃i )e

−ikiz (ω̃i,qi )ξ . (7)

In real experiments, the final time τ corresponds to the end of

a long interaction. Please note that kiz(ω̃i, qi ) is a function of

ω̃i and qi, while kiz is the integration variable.

The operators at the final as(qs, ksz, τ ) and initial

as(qs, ksz, τ0) moments of time describe the boundary condi-

tions. Due to these conditions, we have an equality between

the operators in the end (beginning) of the interaction and

operators corresponding to further (previous) free propagation

in the linear medium. Outside the nonlinear medium, k and

ω are connected by the dispersion law ω = ω(k) such that

as,i(qs,i, ksz,iz, t ) does not depend on t and as,i(qs,i, z, ωs,i )

does not depend on z. In this case, Eq. (6) with the substitu-

tion ksz = ωs

uksz
leads to the link between boundary conditions

in different representations: as(qs, ksz, τ ) = ukszas(qs, L, ωs),

as(qs, ksz, τ0) = ukszas(qs, 0, ωs) [23], where uksz is the pro-

jection of the group velocity vector of the signal photon on

the z axis and L is the length of the nonlinear medium.

In the right-hand side of Eq. (7), integration over time and

longitudinal momentum leads to the δ functions,

1

2π

∫

dt e−i(ωs+ω̃i−ωp)t = δ(ω̃i − ωp + ωs),

1

2π

∫

dkize
ikiz (z−ξ ) = δ(z − ξ ), (8)

the first of them defines the idler frequency through the signal

and pump frequencies.

The δ functions allow one to take integrals over dω̃ and dz̃

and simplify Eq. (7):

as(qs, L, ωs) − as(qs, 0, ωs)

= Ŵ

∫

dqi

∫ L

0

dze− (qs+qi )2σ2

2 ei(kp−ksz−kiz (ωp−ωs ))z

× a
†
i (qi, z, ωp − ωs), (9)

where Ŵ = Ŵ̃/ukz and we assume uksz = ukiz = ukz. In Eq (9),

the idler frequency is defined through the signal and pump

frequencies due to Eq. (8); to emphasize it, we wrote the

frequency dependence explicitly for kiz in the brackets. Dif-

ferentiation of the left- and right-sides of Eq. (9) with respect

to the L leads to the coupled integrodifferential equations for

the signal/idler annihilation/creation operators,

das(qs, L, ωs)

dL
= Ŵ

∫

dqie
− (qs+qi )2σ2

2

× ei
kLa
†
i (qi, L, ωp − ωs), (10)

where 
k = kp − ksz(ωs) − kiz(ωp − ωs). A similar equation

can be written for the idler frequency,

da
†
i (qi, L, ωp − ωs)

dL
= Ŵ

∫

dqse
− (qs+qi )2σ2

2

× e−i
kLas(qs, L, ωs). (11)

The solution to the system of coupled integrodifferential

equations (10) and (11) can be found in the form

as(qs, L, ωs) = as(qs) +
∫

dq′
sη(qs, q′

s, L, Ŵ)as(q
′
s)

+
∫

dq′
iβ(qs, q′

i, L, Ŵ)a†
i (q′

i ),

a
†
i (qi, L, ωi ) = a

†
i (qi ) +

∫

dq′
iη

∗(qi, q′
i, L, Ŵ)a†

i (q′
i )

+
∫

dq′
sβ

∗(qi, q′
s, L, Ŵ)as(q

′
s), (12)

where η(qs, q′
s, L, Ŵ), β(qs, q′

i, L, Ŵ) are functions of the

transverse wave vectors, crystal length and the interaction

strength, and as(qs) = as(qs, L = 0, ωs), a
†
i (qi ) = a

†
i (qi, L =

0, ωi ) are the initial plane-wave operators. In the case of an ar-

bitrary pump and a high gain, the functions η(qs, q′
s, L, Ŵ) and

β(qs, q′
i, L, Ŵ) can be found only numerically. However, in the

low-gain regime, Eqs. (12) coincide with the solutions given

by the Schmidt mode approach [33]. In addition, with the

spatially broad pump, Eqs. (12) coincide with the well-known

analytical solution for the plane-wave pump approximation

[23].

Finally, by solving the system of integrodifferential equa-

tions (10) and (11) in the form of Eqs. (12), various char-

acteristics of the BSV can be found. For example, the mean

photon-number distribution over transverse wave vectors is

Ns(qs) = 〈a†
s (qs, L, ωs)as(qs, L, ωs)〉

=
∫

dq′
i|β(qs, q′

i, L, Ŵ)|2. (13)

In what follows, we assume small angles of emission θs,i, so

that qs ≈ ksθs, and consider angular intensity distributions.

Please note that, to generalize our approach, we have

considered signal and idler photons distinguishable in at least

one degree of freedom (for example, noncollinear emission)

and marked their operators with different indices s and i.

Nevertheless, this approach can be simplified to the case of

degenerate type-I PDC under the substitution as = ai and with

taking into account the corresponding commutation relation.

To find the connection between the theoretical parameter

Ŵ and the measured experimental gain, we have modelled

the single plane-wave mode by calculating the total pho-

ton number in the collinear direction (qs = qi = 0) from

Eq. (13) as a function of Ŵ and fitted this dependence by

the well-known dependence for the single-mode regime, y =
B sinh2(AŴ), where A and B are the fitting parameters. Then

the parametric gain is defined as G = AŴ. A similar procedure

was performed in the experiment. Using a pinhole, the depen-

dence of the total intensity in the collinear direction on the

parametric gain was measured and fitted by the function y =
Be sinh2(Ae

√
P), where Ae and Be are the fitting parameters,

P is the pump power. In this case, the experimental gain is

defined as Ge = Ae

√
P, and the theoretical and experimental

gains have to coincide.

To compare the predictions of the described theory with

the experiment, we considered a 2-mm-thick BBO crystal

and a pump laser with the wavelength 354.7 nm and with

a beam waist of FWHM 170 μm. The angular intensity
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FIG. 1. The calculated normalized BSV intensity distributions

for different values of the parametric gain and phase mismatch δk =
4530 (a) and −3200 m−1 (b).

distributions of type-I PDC were calculated using Eq. (13)

for different values of the parametric gain G, as shown in

Fig. 1. For ideal experimental conditions the phase mismatch

δk = kp(θaxis, ωp) − 2ks,i(ωs,i ) = 0, with θaxis being the angle

between the pump wave vector and the optic axis of the crys-

tal. Due to imperfect crystal alignment, the phase mismatch

can be slightly nonzero. Such a deviation is hard to fix in the

experiment but has a considerable effect on the shape of the

intensity distribution, which is shown in panels (a) and (b) of

Fig. 1.

It is clearly seen that with increasing parametric gain the

angular intensity distribution broadens. The broadening is

directly connected with the fact that the angular variables

and the parametric gain both enter the functions β and η.

In contrast, in the Schmidt mode approach, the angular vari-

ables and the parametric gain are separate: the eigenmodes

depend only on the angular variables, the eigenvalues depend

only on the parametric gain, the broadening is not expected.

The origin of the broadening can be clearly seen under

the plane-wave pump approximation, where strong correla-

tions between the signal and the idler photons take place:

qs = −qi.

FIG. 2. The theoretical FWHM of the BSV intensity distribution

vs parametric gain for a 170 μm FWHM pump (cyan solid line)

and plane-wave pump (blue dashed line) calculated according to the

approach of Refs. [23,24], and the experimental data (red dots).

In experiment, a BSV was obtained through PDC pumped

by the third harmonic radiation (wavelength 354.7 nm) of

a pulsed Nd:YAG laser. The pulsed radiation (pulse width

18 ps, repetition rate 1 kHz) is essential to reach the high-

gain regime. The intensity distributions were recorded with a

charge-coupled device (CCD) camera in the Fourier plane of

a lens with the focal length of 100 mm. The spectral filtering

was performed using a band-pass filter with the transmission

centered around the wavelength 710 nm and with a bandwidth

of 10 nm.

The dependence of the FWHM of the spatial intensity

distribution of the BSV on the parametric gain for δk =
4530 m−1 (obtained by fitting the experimental distributions

and fixed for further calculations) was calculated and com-

pared with the experimental data, see Fig. 2. In the low-gain

regime, the FWHM of the BSV intensity distribution coin-

cides with the value calculated using the first-order perturba-

tion theory [40]. As the parametric gain increases, the FWHM

monotonically grows. The same tendency is observed in the

experiment (red points) and is in good agreement with the

theoretical dependence (cyan line). The blue dashed line, cal-

culated for the case of a plane-wave pump, predicts a slower

broadening of the angular distribution than the one with a

focused pump. Note that in the gain-independent Schmidt

mode approach, the FWHM decreases with increasing gain,

contrary to experiment.

III. SCHMIDT MODES

The BSV radiation is strongly multimode. This multimode

structure is important for a lot of applications [11] but, at

the same time, is difficult to analyze. The most useful way

to describe the multimode BSV radiation is by introducing

a system of normalized orthogonal Schmidt modes. Within

the Schmidt mode basis, each signal mode is only correlated

with a single matching idler mode, which greatly facilitates

the analysis.

In a simplified Schmidt mode approach [33], the shapes

of the BSV Schmidt modes do not depend on the parametric

gain. In addition, the natural mode competition mechanism,
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i.e., low-order modes acquiring larger weights at larger gain,

leads to the reduction in the number of Schmidt modes with

increasing gain. These two statements lead to the angular (and

frequency) narrowing of the intensity distribution, which is in

contradiction with the observed broadening. The broadening

can be only understood in the framework of the new approach

considered here, and, as shown below, is connected with the

mode widths changing with the gain.

The complex function β in Eq. (12) can be written using

the Schmidt decomposition with respect to the transverse

wave vectors,

β(qs, q′
i, L, Ŵ) =

∑

n

√

�neiφn un(qs, Ŵ)ψn(q′
i, Ŵ), (14)

where gain-dependent eigenfunctions un(qs, Ŵ) and ψn(q′
i, Ŵ)

for the signal and idler beams, respectively, are labeled with

the index n, while �n represent gain-dependent weights of

the decomposition, and φn are constant phases. Similarly, the

function η can be decomposed with eigenvalues �̃n, constant

phases ϕn, and eigenfunctions vn(qs, Ŵ) and ξn(q′
s, Ŵ):

η(qs, q′
s, L, Ŵ) =

∑

n

√

�̃neiϕn
vn(qs, Ŵ)ξn(q′

s, Ŵ). (15)

From direct numerical decomposition of β(qs, q′
i, L, Ŵ) and

η(qs, q′
s, L, Ŵ) the following relations between eigenfunc-

tions are ensued: vn(q, Ŵ) = un(q, Ŵ), ξ ∗
n (q, Ŵ) = ψn(q, Ŵ),

and the absolute values of all functions are equal: |ψn| =
|un| = |ξn| = |vn|. The gain-dependent weights �n and �̃n

are different in the low-gain regime (�n = sinh2(
√

λnŴ) and

�̃n = 4 sinh4(
√

λnŴ

2
), where λn are eigenvalues of the Schmidt

decomposition of the two-photon amplitude [33]) but are get-

ting closer with increasing the gain and become equal in the

high-gain regime (�n ≈ �̃n ∼ exp[2
√

λnŴ]). This behavior

of the renormalized weights is in full agreement with the gain-

independent Schmidt mode approach [33]. Using the Schmidt

decompositions in Eqs. (14) and (15), we can introduce

new photon creation/annihilation operators for the collective

spatial Schmidt modes (the Schmidt mode operators) of the

radiation as a result of the nonlinear interaction,

A†
n =

∫

dqsξ
∗
n (qs, Ŵ)a†

s (qs),

B†
n =

∫

dqiψn(qi, Ŵ)a†
i (qi ). (16)

The operators A†
n and B†

n have the same form but they are

related with the signal and idler plane-wave creation opera-

tors, respectively. Equations (12) can be written in terms of

the Schmidt operators,

as(qs, L, ωs) = as(qs) +
∑

n

un(qs, Ŵ)(

√

�̃neiϕn An

+
√

�neiφn B†
n),

a
†
i (qi, L, ωi ) = a

†
i (qi ) +

∑

n

v
∗
n (qi, Ŵ)(

√

�̃ne−iϕn B†
n

+
√

�ne−iφn An). (17)

Equations (17) clearly show that the output signal and idler

plane-wave operators are connected with the same functions

un(q, Ŵ) = vn(q, Ŵ), which is because we assumed frequency

degeneracy.

The input/output relations (17) are similar to the ones of

Ref. [33]. However, in Eqs. (17) not only the weights �n,

�̃n but also the functions un(qs, Ŵ), vn(qi, Ŵ) depend on the

parametric gain Ŵ. Thereby, the output operators are now de-

fined by the Schmidt modes whose shapes are gain-dependent.

Using Eqs. (17), the intensity distribution Eq. (13) can be

written in a simple form as a sum of the squared absolute

values of the Schmidt modes with the corresponding weights:

Ns(qs) =
∑

n

�n|un(qs, Ŵ)|2. (18)

The Schmidt eigenmodes and eigenvalues of the BSV can

be reconstructed from the covariance of its intensity distribu-

tion [41]. Indeed, consider the sum of the contributions of the

signal and idler radiation for a fixed gain, i.e., I� (q) = Is(q) +
Ii(q), the covariance of intensities measured at positions q and

q′ is defined as

Cov(q, q′) = 〈I� (q)I� (q′)〉 − 〈I� (q)〉〈I� (q′)〉. (19)

Calculation of the covariance distribution in terms of the

Schmidt modes, using the input/output relations of Eqs. (17),

leads to

Cov(q, q′) ∝

[

∑

n

�nun(q)u∗
n(q′)

]2

+

[

∑

n

�nvn(q)v∗
n (q′)

]2

+ 2

∣

∣

∣

∣

∣

∑

n

�nun(q)vn(q′)

∣

∣

∣

∣

∣

2

, (20)

where we suppose that �n = �̃n for high gain. The first two

terms of Eq. (20) are related to the autocorrelation of intensity

fluctuations, respectively, of the signal and idler beams, while

the third one represents the cross-correlation between the

signal and idler radiation.

For simplifying the reconstruction of the Schmidt modes,

in experiment we eliminated the cross-correlations between

the signal and idler radiation by filtering a wavelength slightly

shifted from the degeneracy point, so that the detected signal

photons did not have idler matches. In this case, in the

covariance (20) only the first term should remain, containing

the signal Schmidt modes un(q). Simultaneously, if the filtered

wavelengths are still rather close to degeneracy, one can

assume un(q) = vn(q). The Schmidt modes and weights were

found by performing the singular value decomposition (SVD)

of the square root of the covariance distribution [42].

In experiment, we filtered the signal radiation using a

band-pass filter with the central wavelength 700 nm and a

bandwidth of 10 nm. Since the length of the nonlinear crystal

was small enough (2 mm), we could neglect the effect of

spatial walk-off. Accordingly, the BSV radiation was axially

symmetric and one could assume the factorability of the x and

y degrees of freedom. Therefore the analysis was restricted
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FIG. 3. Experimental distribution of the covariance in normal-

ized units for the parametric gain Ge = 6. Cross-correlations are

removed by using a filter selecting only the signal radiation. For

comparison, the white dashed line denotes the 0.5 level of the fitted

distribution, shown in the inset.

to the intensity profiles along the x direction. For a better

signal-to-noise ratio, we integrated the intensity distributions

in the y direction within the range from −2 to 2 mrad of

the angle qy/|q|, where q = (qx, qy). Around 2000 single-shot

intensity profiles I (θ ) with θ = qx/|q| were measured, and the

2D covariance distribution Cov(θ, θ ′) was calculated.

Figure 3 shows the experimental distribution of

the covariance for Ge = 6 in normalized units. The

autocorrelation part is distributed along the main diagonal,

where θ = θ ′. Conversely, the cross-correlation, which would

lead to nonzero covariance values along the complementary

diagonal θ = −θ ′, is absent due to spectral filtering. In order

to get rid of the background noise, a 2D fit was performed

on the covariance distribution. Given the high-gain version

of the intensity profile of the PDC radiation [24] and the fact

that the covariance distribution along the main diagonal

behaves as the squared intensity profile, the function used for

the fit was

Cov(θ, θ ′) = A + B e−C(θ−θ ′ )2

×

[

sinh2
√

G2
e − (D(θ + θ ′)2 + E )2

G2
e − (D(θ + θ ′)2 + E )2

]2

, (21)

with A, B,C, D being fitting parameters and E being an

experimentally determined quantity dependent on the

phase mismatch. The inset of Fig. 3 demonstrates the

fitted distribution for Ge = 6, which is indeed equivalent

to the experimental one. The white dashed line in the

main figure represents the half-maximum level of the fitted

covariance distribution and shows a good agreement with the

half-maximum level (in cyan) for the experiment.

The broadening of the covariance distribution with the

increase of the parametric gain is shown in Fig. 4. The exper-

imental FWHM follows the predicted trend from the theory

for both the main and the complementary diagonals. For low

gain, the theoretical dependence coincides with the covariance

obtained through the first-order perturbation theory. The de-

pendence of the main diagonal on the gain (blue solid curve

FIG. 4. Dependence of the FWHM of the covariance main (blue)

and complementary (orange) diagonals on the parametric gain.

(Please note the different axis scales.) The solid lines represent

theoretical calculations, while the points stand for the experimental

data. The dashed blue line corresponds to the main diagonal of

covariance calculated under the plane-wave pump approximation

[23,24].

in Fig. 4) has a minimum. This minimum is also observed in

the case of a plane-wave pump (blue dashed line in Fig. 4) and

qualitatively separates the low- and high-gain regimes.

The shapes and the weights of the Schmidt modes can

be obtained through the SVD of the function
√

Cov(θ, θ ′).
This procedure has been performed for both the theoretical,

Eq. (20), and the fitted experimental covariance distributions.

The results of the reconstruction for different gain values are

shown in Fig. 5 for the first and the second Schmidt modes.

The shapes of the modes are close to the Hermite functions

and their widths depend on the gain. The general tendency is

the broadening of the Schmidt modes with increasing gain,

this broadening being more pronounced for the higher-order

modes. The theoretical results show a good agreement with

the experimental data.

IV. TWO-CRYSTAL CONFIGURATION

The method described above can be extended to the two-

crystal configuration, with the two crystals separated by an

air gap of length d , known in the literature as the SU(1,1)

interferometer [7,18,36–38]. The earlier models, for exam-

ple, the gain-independent Schmidt mode approach, describe

sufficiently well the BSV at the output of an SU(1,1) inter-

ferometer, including the redistribution of the mode weights

and the narrowing of the spatial distribution. Qualitatively

an agreement between theory and experiment is observed.

Quantitatively, there is a small disagreement in the width of

the spatial distribution, especially as the gain increases [33].

This disagreement is eliminated in the new model.

In the two-crystal case, one should take into account that

during the free propagation in the air gap the signal, idler

and pump photons acquire an additional phase. This phase

creates a factor of ei
k′d standing in front of the integral over

the second crystal, where 
k′ = kair
p − kair

s − kair
i is the wave-

vector mismatch in the air [43]. Considering the problem
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FIG. 5. (a) The first and (b) the second Schmidt modes for

different parametric gain values: G = 5.0 (red), 5.7 (blue), and 6.6

(black). Solid lines represent theoretical calculations. Dashed lines

stand for modes retrieved from the experiment.

step by step, we modify Eq. (7) by taking into account the

δ function conditions in Eq. (8):

as(qs, ksz, t = τ ) − as(qs, ksz, t = 0)

= Ŵ

∫

dqie
− (qs+qi )2σ2

2

[ ∫ L

0

dzei
kza
†
i (qi, z, ωp − ωs)

+ ei
k′d

∫ 2L

L

dzei
kza
†
i (qi, z, ωp − ωs)

]

. (22)

The boundary conditions connect the beginning and the end

of the interaction in different representations: as(qs, ksz, t =
0) ∼ as(qs, L = 0, ωs), as(qs, ksz, t = τ ) ∼ as(qs, 2L, ωs).

Differentiation of Eq. (22) in L gives

das(qs, 2L, ωs)

dL
= Ŵ

∫

dqie
− (qs+qi )2σ2

2

× (ei
kL (1 − ei
k′d ) a
†
i (qi, L, ωp − ωs)

+ 2ei
k′d e2i
kLa
†
i (qi, 2L, ωp − ωs)), (23)

and for the idler creation operator,

da
†
i (qi, 2L, ωp − ωs)

dL
= Ŵ

∫

dqse
− (qs+qi )2σ2

2

×(e−i
kL (1 − e−i
k′d ) as(qs, L, ωs)

+ 2e−i
k′d e−2i
kL

× as(qs, 2L, ωs)), (24)

where a
†
i (qi, L, ωp − ωs) and as(qs, L, ωs) can be found by

solving Eqs. (10) and (11) for the single crystal.

The intensity distribution in the presence of the air gap is

completely different from the single-crystal case and depends

on the length of the air gap. Due to the different refractive

indices of the pump and BSV photons in the air, an additional

phase is acquired in the gap and the intensity of light emitted

in the collinear direction oscillates from minimum to maxi-

mum as d increases. Also, an increase in d leads to more and

more frequent interference fringes in the intensity distribution

[Fig. 6(a)].

In the experiment, we pumped two nonlinear crystals with

the third harmonic of a pulsed Nd:YAG laser (repetition rate

50 Hz, wavelength 354.7 nm, and pulse duration 29.4 ps)

with a FWHM diameter of approximately 0.3 mm. The two

BBO crystals (3-mm thick, cut for degenerate type-I PDC)

were aligned, in turn, for degenerate phase matching. A

dichroic mirror and a color-glass filter suppressed the pump

after the nonlinear interaction. A band-pass filter selected a

10-nm bandwidth (FWHM) of the PDC around the wave-

length 710 nm. A lens brought the PDC to the momentum

space, where a CMOS camera was introduced. On the camera,

the background was subtracted and the data was acquired for

200 ms. The pump energy per pulse was measured before the

crystals with a calibrated energy meter. The distance between

the crystals was varied by changing the position of the first

crystal using a translation stage. Neutral density filters were

used to avoid the saturation of the camera. The ring patterns

measured with the camera were then transformed into polar

coordinates. To increase the accuracy, the radial profiles were

obtained by averaging out the polar plots over the azimuthal

angle. Due to the radial symmetry, this procedure is equiva-

lent to fixing one of the Cartesian coordinates in theoretical

calculations and calculating the intensity distribution over the

other coordinate.
As the pump power increases, the parametric gain in each

crystal grows (the gain after two crystals with a gap grows
nonmonotonically). Figures 6(a)–6(c) shows the resulting
spectra both calculated (blue) and measured (red), with the
parametric gain and the pump pulse energy shown in each
panel. (In the low-gain case, the measurement was not pos-
sible because of the small intensity.) Apart of a small shift in
the fringes, increasing the pump power leads to the reduction
of the side peaks. Therefore the envelope of the angular distri-
bution gets narrower as the parametric gain grows, in contrast
to the single-crystal case. Moreover, from Figs. 6(a)–6(c), it is
clearly seen that the visibility of the interference fringes drops
down with increasing pump power. Note that with stronger
pumping the Kerr effect, which leads to an additional phase
(mostly manifested in the collinear direction [41], becomes
more pronounced and was taken into account here.

In Figs. 6(d)–6(f), one can observe that with increasing the

distance between the crystals, the total width of the angular

distribution for the same pump power (or for the same gain in

each crystal) is reduced, as reported in Ref. [33]. This happens

due to diffraction, which leads to the reduction of the angular

width of the BSV that overlaps with the pump and is amplified

in the second crystal; diffraction is more pronounced for larger

distances. As it was mentioned above, the second mechanism

leading to the narrowing of the spatial intensity distribution

013371-7
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FIG. 6. The normalized intensity distributions of the BSV in the two-crystal configuration with an air gap. [(a)–(c)] The distance between

the crystals is 10.66 mm, the gain in each crystal is (a) G = 0.01, (b) 1.1, and (c) 2.45. [(d)–(f)] The gain is fixed, G = 3.15, the distance

between the crystals is (d) 5.58, (e) 10.66, and (f) 23.36 mm. Blue curves are theoretical calculations, red curves present the experimental data.

The legends also show the values of the pump energy per pulse.

in the two-crystal configuration is the increase of the pump

power (the parametric gain in each crystal). Simultaneously,

these two mechanisms diminish the number of the Schmidt

modes in the system, allowing one to create different shapes

of intensity distributions and to control the number of modes

in the BSV.

V. CONCLUSION

We have presented a new theoretical approach to de-
scribe the spatial properties of a BSV generated through
high-gain PDC. In this approach, we derived and solved the
integrodifferential equations for plane-wave operators with-
out limitations on the pump waist width, number of modes
and commutation of the Hamiltonian at different moments
of time. The developed approach correctly captures a lot

of features of the BSV. On the one hand, it is compat-
ible with the Schmidt mode representation. On the other
hand, it properly describes the broadening of the angular
distribution with increasing parametric gain. As a result,
the new treatment correctly predicts the dependence of the
Schmidt mode widths on the parametric gain. The model
describes different experimental configurations: the single-
crystal case and the configuration of two crystals with an
air gap between them. For the verification of our theoretical
model, we have performed several experiments, both with a
single-crystal and with a two-crystal PDC sources [SU(1,1)
interferometer]. The presented experimental results are in
good agreement with performed theoretical calculations. Our
model gives a deep insight into the properties of high-
gain PDC, its mode structure and the origin of nonclassical
correlations.
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Chapter 5

Phase sensitivity of gain-unbalanced
nonlinear interferometers

It is customary to compare interferometric schemes on the basis on their scaling of the
phase-sensitivity with respect to n, the number of photons inside the interferometer. With
the growing interest in SU(1,1) interferometry, several new strategies to mitigate undesired
effects, such as loss, were developped. One such strategy is to unbalance the parametric
gain between the two OPAs [47]. This sparked a debate about the meaning of n, which led
us to explore the effects of gain unbalancing on the performance of SU(1,1) interferometers.
Importantly, we discovered that comparing the phase sensitivity of SU(1,1) interferome-
ters and conventional interferometers is not straightforward. This article aims to provide a
discussion about phase sensitivity in nonlinear interferometers, in different scenarios where
gain unbalancing and losses are considered.

I helped lay out the general idea and develop the theory. I provided insight from an
experimental perspective.
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The phase uncertainty of an unseeded nonlinear interferometer, where the output of one nonlinear crystal is

transmitted to the input of a second crystal that analyzes it, is commonly said to be below the shot-noise level but

highly dependent on detection and internal loss. Unbalancing the gains of the first (source) and second (analyzer)

crystals leads to a configuration that is tolerant against detection loss. However, in terms of sensitivity, there is

no advantage in choosing a stronger analyzer over a stronger source, and hence the comparison to a shot-noise

level is not straightforward. Internal loss breaks this symmetry and shows that it is crucial whether the source or

analyzer is dominating. Based on these results, claiming a Heisenberg scaling of the sensitivity is more subtle

than in a balanced setup.

DOI: 10.1103/PhysRevA.96.053863

I. INTRODUCTION

A nonlinear interferometer (NLI), characterized by the Lie
group SU(1,1) and consisting of two consecutive nonlinear
crystals [1], is a potential alternative to a linear interferometer
seeded by a squeezed state [2] for high-precision measure-
ments because of its supreme phase sensitivity [3]. Indeed,
it is said to feature a “Heisenberg scaling” when the gains in
both crystals are equal [1,4]. It has been suggested that one can
suppress the influence of detection loss by using unbalanced
gains in the two crystals [5,6], and in fact sub-shot-noise phase
sensitivity in an unseeded NLI with this method was recently
demonstrated [7].

In this article, we show that (i) the photon statistics of
an unseeded and gain-unbalanced NLI lead to a suppression
of the deleterious influence of detection loss, (ii) the phase
sensitivity is in this case ultimately limited by the lower gain
and is therefore symmetric with respect to the two crystals,
(iii) a comparison to the shot-noise level is not straightforward,
and (iv) internal loss breaks the symmetry so that a higher gain
in the source crystal might be beneficial. Since NLIs may be
intrinsically gain-unbalanced, claiming a Heisenberg scaling
has to be carefully justified in each individual case.

An NLI characterized by the SU(1,1) group typically
consists of two nonlinear crystals A and B, as shown in Figs. 1
and 4. In the original proposal [1], crystal A is the source of
the radiation, which is transmitted into crystal B acting as an
analyzer. The NLI can be operated at constructive interference
where both crystals generate radiation, a method that has, for
example, been explored to create and tailor bright squeezed
vacuum states of light [8–11]. In addition, it was shown that
by seeding the NLI with a light field, the phase sensitivity is
boosted even further, for both a coherent- and a squeezed-state
input field [5,12,13], and the influence of internal loss may be
decreased [14,15]. To focus on the physical mechanisms of an
NLI, we restrict ourselves in this article to the unseeded case
with vacuum input modes, which has no correspondence in a
conventional interferometer.

As it is the case in other quantum physical processes with
multiple nonlinear crystals, such as induced coherence [16,17],
it is essential that the two crystals are pumped coherently. Nev-
ertheless, the gains in both crystals can be controlled separately

and the relative phase of the pump field can be varied. In fact, it
would be experimentally difficult to ensure that the gain of the
source and the gain of the analyzer are exactly equal, especially
since the number of photons produced scales exponentially
with the electric field amplitude of the pump. Unbalanced gains
give an additional degree of freedom to optimize the properties
of the NLI. In this spirit, it was shown theoretically that the
deleterious effects of detection loss [14] can be overcome by
intentionally unbalancing the gains [5,6,18]. This effect was
recently demonstrated experimentally [7] for the case in which
the analyzer is pumped more strongly than the source. On
the other hand, the significance of the analyzing crystal is
questioned by proposals to operate the device in a truncated
mode of operation, with only the source as a squeezer [19]. At
first sight, these considerations imply an opposite role of the
analyzing crystal and make it necessary to investigate the effect
of gain unbalancing in more detail to understand the ultimate
limit of the sensitivity of the device. A seeded and gain-
unbalanced setup has been investigated in [20], but without
explicit consideration of the limitations on the sensitivity.

In Sec. II we use simple transformations to derive exact
analytical expressions for the detected photon number, its
variance, and the phase sensitivity that can be applied to
a situation with unbalanced gains, and we show the con-
ditions under which detection loss is significant or can be
overcome. In Sec. III we calculate the phase sensitivity of a
gain-unbalanced NLI. The effect of internal loss breaks the
symmetry between source and analyzer so that, depending
on the parameters of the setup, it makes a difference which
crystal is pumped more strongly, as we show in Sec. IV.
Because all of these calculations focus on a degenerate NLI,
we generalize in Sec. V our approach to compare the results to
a nondegenerate setup, before we conclude in Sec. VI. To keep
this paper self-contained, we include the detailed calculations
for the degenerate NLI in Appendix A, the quantum Fisher
information in a lossless and balanced setup in Appendix B,
and the nondegenerate NLI in Appendix C.

II. THEORETICAL DESCRIPTION

There are two intrinsically different approaches to realize

an NLI. The degenerate scheme employs two parametric

2469-9926/2017/96(5)/053863(10) 053863-1 ©2017 American Physical Society
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â â′ â′′ b̂ b̂′
ℓ̂

ℓ̂′

d̂

d̂′

Sd Sηd

pump

A B

Dd

FIG. 1. Schematic of a degenerate nonlinear interferometer that

consists of two coherently pumped nonlinear crystals A and B.

Internal loss is modeled by a beam splitter Sd, detector inefficiencies

by a beam splitter Sηd
. The bosonic annihilation operator â denotes

the input mode of the interferometer, the operator b̂′ the field detected

by detector Dd.

amplifiers (the source and the analyzer) that act as single-mode

squeezers. Alternatively, two-mode squeezers are used in the

the nondegenerate scheme. Each type of NLI has its own

theoretical description, which in turn has an impact on the

overall phase sensitivity, as already pointed out by [1], even

though the scaling behavior is very similar. In this article, we

mostly focus on the degenerate NLI shown in Fig. 1 and use

the subscript d for all quantities derived for the degenerate

case. For a treatment of the nondegenerate setup, we refer to

Appendix C. For completeness, we discuss in Sec. V the results

of the nondegenerate NLI and compare them to the degenerate

case.

An NLI as shown in Fig. 1 consists of a source, which

we call crystal A, that generates squeezed vacuum through

parametric down-conversion. Its output is transmitted to an

analyzing crystal, called crystal B, where it is either further

squeezed or unsqueezed, depending on the phase accumulated

between the crystals and by the pump. The output of the

analyzer is then detected by detector Dd. For more details

on the derivations of this section, we refer to Appendix A.

We assume that the pair generation in each crystal A

and B is described by a Bogoliubov transformation â′ =
uA â + vA â† and b̂ = uB â′′ + vB â′′†. Here, uA,B and vA,B are

complex parameters that describe the amplification process.

They are connected to the usual hyperbolic functions and

fulfill the relation 1 = |uA,B |2 − |vA,B |2 ≡ UA,B − VA,B . The

operators â and b̂ are photon annihilation operators and â† and

b̂† are photon creation operators that follow the usual bosonic

commutation relations, and the different primes describe the

field at various instances of the interferometer. Note that

Vj corresponds to the number of photons produced by an

unseeded crystal. However, in our setup crystal B will always

be seeded by the output of crystal A.

The loss inside the NLI is modeled by a beam splitter Sd,

which transforms the input modes â′ and ℓ̂ via â′′ = td â′ + rd ℓ̂

and ℓ̂′ = t∗d â′ − r∗
d ℓ̂ to the output modes, where Td ≡ |td|2 and

Rd ≡ |rd|2 are the intensity transmittance and reflectivity with

Rd + Td = 1. We allow for complex td and rd so that we can

include phases that are accumulated inside the NLI.

With these transformations, the operator describing the

output field of crystal B (and therefore neglecting detection

loss for the moment) takes the form

b̂ = (tduAuB + t∗d v∗
AvB)â + (tdvAuB + t∗d u∗

AvB)â†

+ rduB ℓ̂ + r∗
d vBℓ̂†. (1)

For a vacuum input in modes â and ℓ̂ it is relatively easy to see

that the photon number Nd(φ) ≡ 〈b̂†b̂〉 after crystal B displays

interference, that is,

Nd = TdVA + VB + 2TdVAVB − 2Td

√

UAVAUBVB cos φ.

(2)

Here, we define the phase as φ ≡ arg (uAvAuBv∗
B t2

d ) + π . It

includes the phase of the coefficients uj and vj and therefore

the phase difference of the laser field that pumps crystals A

and B. The argument of td accounts for the phase accumulated

by the photons inside the NLI. We see that internal loss

leads to a decreasing visibility and by that sensitivity, whose

scaling might change for a decohering quantum state inside

the interferometer [21].

The variance of the photon number b̂†b̂ after crystal B may

be written as (see Appendix A)

�N2
d = 2Nd(1 + Nd) − RdTdVA. (3)

Therefore, the photon statistics in the output of the NLI is,

at least for no loss, superthermal and, due to the fact that

Nd = Nd(φ), phase dependent. Note that Nd depends on VA

and VB as well as on internal loss.

The phase uncertainty of the NLI without taking detection

loss into account is defined as

�φ2
d = �N2

d

/∣

∣

∣

∣

∂Nd

∂φ

∣

∣

∣

∣

2

(4)

and depends on the phase φ, internal loss Td, as well as the gains

through VA and VB . Equation (4) is the measure for the phase

uncertainty that is usually employed [1,14,22,23]. It implies

that the average value of the detected photon number is used to

estimate the phase1 and a more detailed motivation based on

error propagation can be found in [24]. Since only the average

photon number is determined, Eq. (4) can be asymptotically

linked to the Fisher information if the central limit theorem

holds [25]. We see from Eq. (3) that in a balanced setup without

losses, the variance is not finite and discuss this case separately

in the example given below.

We emphasize that other estimators are possible and might

even be a better choice than the average value of the photon

number, but they might also require further information to be

meaningful. In fact, detecting the statistical properties of the

signal might lead to a better estimation of the phase [24].

To model detection loss we introduce, according to Fig. 1,

a second beam splitter Sηd
with transmittance ηd before the

detector Dd. With Eq. (4) we demonstrate in Appendix A that

the phase uncertainty including detection loss takes the form

�φ2
ηd = �φ2

d

(

1 +
1 − ηd

ηd

Nd

�N2
d

)

. (5)

1A phase estimator based on photon the number Nd = A − K cos φ,

where A and K are defined in accordance with Eq. (2), can be

defined with the average value np after p measurements of Nd as

� ≡ arccos[(A − np)/K]. Equation (4) then scales additionally with

p−1. The estimator is, assuming the validity of the central limit

theorem, asymptotically unbiased [25].
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Hence, the phase sensitivity is modified in the presence of

detection loss. In particular, it depends on the inverse Fano

factor Nd/�N2
d , the ratio of photon number and its variance.

Therefore, the photon statistics are crucial in determining

the influence of detection loss. It is obvious from Eq. (5)

that detection loss is suppressed if the inverse Fano factor

is small. Note that a similar expression for the nondegenerate

case was derived in [5,14] for the sum of the signal of the

two output ports in the nondegenerate NLI. We discuss the

limitations for this specific case in Sec. V. An expression for

the phase sensitivity in the degenerate case for equal internal

and detection loss was analzed in [22].

Example: Balanced gain. In the original work [1] the gains

in the two crystals were balanced, i.e., VA = VB ≡ V as well

as UA = UB ≡ U , and no internal loss was considered, thus

setting Rd = 0. Hence, we find from Eq. (2) the form Nd =
2UV (1 − cos φ). From Eq. (4) we obtain

�φ2
d

∣

∣

φ=0
=

1 + 2UV (1 − cos φ)

UV (1 + cos φ)

∣

∣

∣

∣

φ=0

=
1

2UV
. (6)

Note that U = 1 + V , and that V corresponds to the number

of photons that are produced by crystal A and are annihilated

by crystal B. Because V photons are inside the NLI and

interact with a possible object, it is said that the NLI has

a Heisenberg scaling of the phase sensitivity. The choice of

φ = 0 corresponds to the phase where the phase uncertainty

�φ2
d is minimal [1]. Therefore, the NLI would be ideally

operated at this point. We show in Appendix B that the quantum

Fisher information is 2UV and, therefore, Eq. (6) saturates the

quantum Cramér-Rao bound.

However, with equal gains and for this phase all photons

created by the source are annihilated by the analyzer and we

have Nd|φ=0 = 0, i. e., we expect to measure no photons in

the output of the NLI. This fact is particularly unfavorable

because it means that vacuum fluctuations are of the same

order of magnitude. Since in a realistic experiment these

fluctuations are introduced by nonperfect detectors, in our

treatment modeled by Sηd
, they significantly reduce the phase

sensitivity.

The effect becomes obvious when we note that the inverse

Fano factor Nd/�N2
d = 1/(2 + 2Nd) and, following Eq. (5),

we arrive at

�φ2
ηd

�φ2
d

− 1 =
1 − ηd

2ηd

1

1 + 2UV (1 − cos φ)
. (7)

To provide a quantitative analysis of the relative deviation of

the phase uncertainty from the uncertainty without detection

loss, we plot Eq. (7) in Fig. 2 as a function of detection loss ηd.

The deviation depends on the phase, the loss, and the gain. For

constructive interference (φ = π ), we see that the deviation is

the smallest and even further reduced with increasing gain. At

destructive interference (φ = 0), we have a deviation that has

a similar functional behavior, but is orders of magnitude larger

than for constructive interference. Moreover, increasing the

gain does not decrease the deviation (the black solid and dashed

lines overlap). In fact, it can be easily seen that Eq. (7) reduces

to �φ2
ηd = �φ2

d(1 + ηd)/(2ηd) for φ = 0, in total agreement
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10−6

10−3

100

103

φ = 0

φ = π/10

φ = π

ηd

∆
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2 η
d
/
∆
φ
2 d
−

1

V = 5

V = 25

FIG. 2. Relative deviation of the phase uncertainty under the

influence of detection loss ηd from the lossless case for equal gain.

We show Eq. (7) for three different phases 0, π/10, and π (black,

red, and blue) for two different gain parameters V = 5 and 25

(solid and dashed lines). At destructive interference, the influence of

detection loss is the highest and is always the same, independent of the

gain.

with the expression for the phase uncertainty of the sum of the

two output ports in the nondegenerate NLI discussed in [5,14].

If we were not to operate this NLI at or close to destructive

interference, we could get a significant number of photons

exiting the device and therefore suppress the influence of the

detection loss. However, the minimal phase uncertainty occurs

exactly at vanishing φ and with it at vanishing Nd, and only

in this case do we obtain the unique Heisenberg scaling of the

uncertainty.

As this example demonstrates, the effect of detection loss

in an unseeded NLI is governed by the intensity Nd(φ) in the

output of the interferometer. Since we are mainly interested in

the phase where its uncertainty is minimal, we do not have the

flexibility to operate the interferometer at a different phase,

e.g., at constructive interference where Nd(φ) is maximal.

However, there is a different option for increasing Nd(φ),

namely, using different gain values for the two crystals, that is,

unbalancing the gains. If, for example, the source is stronger

than the analyzer, all the photons created in crystal A can never

be annihilated in crystal B, even if the interferometer is set to

destructive interference. In the opposite case in which the ana-

lyzer is weaker than the source, crystal B not only annihilates

all photons emerging from crystal A, but overcompensates

and creates additional photons. Therefore, the larger the gain

difference, the higher the intensity in the output of the interfer-

ometer and the smaller the impact of detection loss. Hence, we

expect a suppression of detection loss for a gain-unbalanced

setup [5–7].

III. PHASE SENSITIVITY FOR UNBALANCED GAIN

In the section above, we established that unbalancing the

gain can be beneficial if there is significant detection loss in

the NLI. However, even though the impact of detection loss is

reduced, the effect of unbalanced gain on the phase uncertainty

itself has not been studied yet. In this section, we derive the

minimal phase uncertainty for vanishing internal loss Rd = 0.
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For that, we minimize Eq. (4) for arbitrary gains and find that

the minimum uncertainty occurs at the phase

φmin = ± arctan

√

VmaxUmax − VminUmin

(Umax + Vmax)2VminUmin

, (8)

which leads with Eq. (2) to the number of photons

Nd(φmin) =
Vmax − Vmin

Umin + Vmin

. (9)

Here, we defined Vmin= min[VA,VB] and Vmax= max[VA,VB]

as the smaller and the larger parameter, respectively. The

parameters Umin and Umax are defined in an analogous way.

Moreover, we see that Nd(φmin) ≫ 1 if Vmin ≪ Vmax. In this

case, detection loss has practically no impact on the phase

uncertainty, which one can directly see from Eq. (5). Note

further that for VA 	= VB , the optimal sensitivity is achieved if

the NLI is not operated at destructive interference φmin 	= 0.

With the phase from Eq. (8) we find that the minimal phase

uncertainty takes the form

�φ2
d (φmin) =

1

2UminVmin

. (10)

Hence, the phase sensitivity is limited by the crystal with

smaller gain, independent on whether it is crystal A or B.

In the numerical analysis of [5] it was implicitly seen that

the smaller gain limits the sensitivity, but this fact was not

commented upon further.

Quantum limitations. The attention that NLIs have attracted

is due to the scaling behavior of their phase uncertainty, which

is often referred to as the “Heisenberg scaling.” Indeed, we

saw from Eq. (6) in a gain-balanced NLI with VA = VB =
V ≫ 1 that �φd(0) ∼= 1/(

√
2V ). Since V corresponds to the

number of photons produced by the source, the connection to

the Heisenberg scaling is evident. However, a disadvantage of

a gain-balanced NLI is that it is very susceptible to detection

loss.

In an unbalanced setup at high gain, we find from Eq. (10)

that �φd(φmin) ∼= 1/(
√

2Vmin), where Vmin is the smaller

gain parameter. If the source is weaker than the analyzer

(VA < VB), the sensitivity is limited by VA and therefore

by the number of photons that interact with the object. A

comparison to the shot-noise level of this photon number seems

obvious and the phase sensitivity indeed displays a Heisenberg

scaling. Such phase measurements below the shot-noise level

determined by VA have recently been performed using direct

detection [7].

If the analzyer is weaker than the source (VB < VA), the

sensitivity is limited by VB , which is completely independent

of how many photons interacted with the object or were

inside the NLI, described by VA. However, it is VA that

is conventionally used [5] to determine a shot noise or

Heisenberg scaling behavior. In this case, the comparison

would be somewhat artificial because the sensitivity is not

limited by this number.

Of course, if the sample in the interferometer is very

sensitive and gets easily destroyed by high intensities or if

radiation pressure on mirrors degrades the sensitivity, one

would always operate the NLI with the smaller number of

photons inside and naturally choose VA < VB so that the

analyzer is stronger. But, if there is no limitation on how many

photons might interact with an object inside the NLI, there is no

preference as to which of the the two gains should be the lower

one because the resulting sensitivity is exactly the same. The

interferometer is completely symmetric and the only limiting

factor is the crystal with smaller gain, independent of which

crystal it is. Hence, a comparison to a Heisenberg limit is not

straightforward and has to be justified in each case, let alone

the fact that the pump is assumed to be undepleted. In fact,

other variations of an NLI give a phase sensitivity that scales

with the shot-noise level of pump photons [23].

In conclusion, the second crystal has to be considered an

essential part of the interferometer. Of course, it is valid to

employ truncated schemes [19] if the output of an NLI is

detected by homodyne detection [26], but the original proposal

[1] only involves a much simpler direct detection scheme [4,7],

in which the analyzing crystal is vital. On the same note, the

quantum Fisher information and the quantum Cramér-Rao

bound do not specify a particular detection scheme and

are usually calculated for the state inside the interferometer

[5,18,19,27]. Because the analyzer is seen as a part of the

detection, the bound is independent of the gain of crystal B

and since one optimizes over all possible detection schemes, it

is implicitly assumed that this gain can be arbitrarily high.

On the other hand, if one sees crystal B as an integral

component of the interferometer, one cannot just optimize over

all possible parameters but is restricted by the experimental

limitations.

IV. BREAKING THE SYMMETRY THROUGH

INTERNAL LOSS

In the previous section, we pointed out that the phase

sensitivity is limited by the lower gain, and therefore is

completely symmetric with respect to the source and analyzer.

If we introduce internal loss, this symmetry is broken.

It is straightforward to see that including internal loss, i.e.,

a beam splitter Sd with Td < 1 in-between the two crystals as

shown in Fig. 1, affects solely the photons created in crystal

A and only indirectly through a modified input the action of

crystal B. This fact stands out most clearly by observing that in

both Eqs. (2) and (3) the quantity VA always appears together

with the transmittance Td. For simplicity, we introduce the

notation Vt ≡ TdVA, which describes the number of photons

that are transmitted from crystal A to crystal B. In agreement

with the previous notation, we also use Ut ≡ 1 + Vt . In the

following, we first give an intuitive explanation of the influence

of internal loss on the sensitivity, before turning to the exact

results.

If internal loss is small, we can neglect the term −RdTdVA

in Eq. (3) for the variance. Moreover, if operated at high gain,

Vt ≫ 1, the photon number as described in Eq. (2) takes the

form

Nd(φ) ∼= Vt + VB + 2VtVB − 2
√

UtUBVtVB cos φ (11)

and therefore we arrive at the same result as in Eq. (10)

for the minimal phase uncertainty, with only VA replaced

by Vt . In fact, an expansion of the exact treatment given

below in orders of Rd gives rise, up to lowest order, to the
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phase uncertainty �φ2 ∼= 1/(2UminVmin), where now Vmin =
min[Vt ,VB] and Vmax = max[Vt ,VB ]. Because Vt depends on

Td, the phase uncertainty is independent of the transmittance

only if VB < Vt . Thus, if internal loss dominates, it is better

to have a stronger source than analyzer, the opposite case of

what was used in [5–7].

However, for a more accurate description of the NLI we derive

from (4) an expression for the phase where its uncertainty

is minimized. We can perform this calculation analytically,

but the expressions are rather cumbersome and we therefore

refrain from presenting them. When we use this phase in Eq. (2)

to calculate the photon number, we find

Nd,min =
2(VB − Vt )

2 + L +
√

4(VB − Vt )2(UB + Vt )2 + 4UBVBL + RdVt [2UBVB − UtVt ] + L2

2(UB + VB)(Ut + Vt )
, (12)

where we defined a loss-dependent term L ≡ RdVt (1 +
8UBVB). With this analytic expression we are able to de-

termine the variance �N2
d,min = 2Nd,min(1 + Nd,min) − RdVt

from Eq. (3). The inverse Fano factor Nd,min/�N2
d,min that

suppresses the effect of detection loss according to Eq. (5) can

be calculated for different parameters. We plot this factor in

Fig. 3(a) on a logarithmic scale. For Rd = 0 unbalancing the

gains decreases the influence of detection loss significantly:

the dotted line describing the balanced configuration is much

higher than the red and blue solid lines with a stronger

analyzer and source, respectively. However, the number of

photons transmitted to crystal B, Vt = (1 − Rd)VA, decreases

for Rd > 0 and for an initially balanced situation we arrive

effectively at a gain-unbalanced setup with Vt < VB . Hence,

the dotted line decreases rapidly until it is very close to the

case of a stronger analyzer (blue line).

For the same reason, a stronger source at first slightly

increases the inverse Fano factor because the unbalancing is

effectively lowered, making detection loss more significant

again. On the other hand, for a stronger analyzer we see a

decrease of the inverse Fano factor, because due to internal

loss the gain unbalancing effectively increases and we have

Vt < VA < VB . Hence, detection loss is further suppressed and

in this sense the setup improves. The plot also demonstrates

that it is better to have a stronger analyzer to suppress the effect

of detection loss in the presence of internal loss, which is the

configuration that was investigated in [5–7]. Note further that

only for Rd
∼= 0 we see that there is a significant advantage

of gain unbalancing and in this case it does not matter much

which one of the crystals has higher gain.

After considering the inverse Fano factor Nd/�N2
d that

suppresses detection loss, we now turn to the minimal phase

uncertainty itself. We find the analytical expression

�φ2
d,min = [Nd,min(UB + VB)(Ut + Vt ) + UBVt

+ UtVB − RdVt ][4UBVB(Ut − Rd)Vt ]
−1 (13)

for the phase uncertainty without detection loss and plot it in

Fig. 3(b). Here, the effect of internal loss is exactly opposite

to the one on detection loss: for an unbalanced situation, the

phase sensitivity is always better if the source is stronger (red

solid line), compared to the case where the analyzer is stronger

(blue solid line). This can be intuitively understood considering

that internal loss can affect the output of crystal A directly and

the action of crystal B only indirectly by modifying its input.

Hence, it is beneficial to have a stronger source so that the

reduced number of photons in the interferometer is still large

enough to not limit the sensitivity.

Not surprisingly, for equal gain (using the higher of the two

gains for both crystals) always outperforms the unbalanced
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FIG. 3. Effect of internal loss Rd on Nd,min/�N 2
d,min in (a) and

on �φ2
d,min in (b). In (a) we demonstrate that the inverse Fano factor

Nd/�N 2
d decreases rapidly for the gain-balanced situation (dotted

line) because internal loss deteriorates the number of transmitted

photons Vt . Therefore, the gain of crystal A is effectively lower and

detection loss is suppressed. The same is true if the analyzer is stronger

than the source (blue solid line) and the advantage of unbalancing the

gain decreases. If the source is stronger (red solid line), the inverse

Fano factor increases slightly at first. Moreover, it is always larger

than for the opposite case. In (b) we show that the phase uncertainty

(without detection loss) is the smallest for a gain-balanced setup

(dotted line). For large loss Rd, the case of a stronger source (red line)

is very close to the gain-balanced result. Moreover, for an unbalanced

setup it is always beneficial to work with a stronger source than with

a stronger analyzer (blue line).
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FIG. 4. Schematic of a nondegenerate nonlinear interferometer

consisting of two coherently pumped nonlinear crystals A and B.

Internal loss is modeled by a beam splitter S1,2 in each arm, detection

loss by a beam splitter Sη1,2
in front of each detector D1,2.

setup. However, for sufficiently large loss, the balanced

situation is very close to the case of a stronger source.

Since in a gain-unbalanced setup with internal loss a

stronger analyzer suppresses the effect of detection loss,

whereas a stronger source in addition reduces the influence of

internal loss, the latter one seems at first sight advantageous.

However, a stronger source suppresses detection loss not as

well as a stronger analyzer and is only beneficial for small

internal loss when compared to the balanced setup. Therefore,

the decision which crystal to pump stronger has to be made

based on the order of magnitude of the internal and detection

losses. In each individual case, it might be beneficial to have

stronger source or a stronger analyzer.

V. COMPARISON OF DEGENERATE

AND NONDEGENERATE CONFIGURATION

So far we have only considered a degenerate setup. How-

ever, we generalize our results to the case of a nondegenerate

NLI (see Appendix C) and compare them in this section to the

degenerate ones obtained above. The setup is shown in Fig. 4,

where we now have different input and output modes 1 and

2. Even though the expressions for the photon number and

variance are different from the degenerate configuration, they

are similar enough so that our previous discussion can also be

applied, with some limitations, to the nondegenerate case.

The photon number detected by detector Dj in a nondegen-

erate as well as a degenerate configuration takes the form

Nηj = ηjNj = ηj (Aj − Kj cos φ), (14)

whereAj is the amplitude andKj the contrast of the signal and

the index j = d,1,2. Here, ηj is the efficiency of the detector

j modeled by a beam splitter Sηj and Tj the transmittance

of the beam splitter Sj between the two crystals. Rj is the

corresponding reflectivity. The explicit form of Aj and Kj is

summarized in Table I for all cases. The internal loss in each

arm of the NLI may be different and has an effect on the signal

and variance [28]. Note that φ is defined slightly different from

the degenerate case to account for the different phases in the

two branches of the NLI.

In the nondegenerate setup one can, in addition to con-

sidering both exit ports separately, analyze the sum of the two

signals [1]. Without detection loss, we therefore define the sum

of the two signals N+ ≡ N1 + N2. Ultimately, we are inter-

ested in the phase uncertainty �φ2
j which can be analogously

defined to Eq. (4) where we replace the index d by j = 1,2,+.

To obtain the phase uncertainty, we first need the variance of

the photon number.

We display in the table the variances �N2
ηj and �N2

j with

and without detection loss, respectively, and note that only for

j = d,1,2 the relation

�N2
ηj = η2

j�N2
j + ηj (1 − ηj )Nj (15)

holds, but not for the sum of the two signals. Therefore, the

suppression of the detection loss for phase sensitivity of the

signal sum is not as straightforward. However, if η1 = η2 ≡
η+, we also find Eq. (15) for j = + as predicted by [14]. In

analogy to Appendix A we arrive at

�φ2
ηj = �φ2

j

(

1 +
1 − ηj

ηj

Nj

�N2
j

)

(16)

TABLE I. Comparison of degenerate and nondegenerate NLI. The index d denotes the degenerate case, 1 and 2 the two output ports of the

nondegenerate case, and + their sum. The signal without detection loss has an amplitude Aj and a contrast Kj . The variance of the detected

signal is �N 2
ηj . In the second part of the table, we show the variance �N2

j without detection loss and later the same quantity for vanishing

internal loss. The factor in the second column shows the influence of detection loss in a balanced situation. The optimal phase uncertainty

�φ2
j (φmin) was calculated for the lossless case.

j Aj Kj �N 2
ηj

d TdVA + VB + 2TdVAVB 2Td

√
UAUBVAVB ηdNd(1 + ηd + 2ηdNd) − η2

dRdTdVA

1 T1VA + VB + (T1 + T2)VAVB 2
√

T1T2UAUBVAVB η1N1(1 + η1N1)

2 T2VA + VB + (T1 + T2)VAVB 2
√

T1T2UAUBVAVB η2N1(1 + η2N2)

+ A1 + A2 4
√

T1T2UAUBVAVB (η1N1 + η2N2)(1 + η1N1 + η1N1)

+η1η2(N1 + N2) − η1η2(T1 + T2 − 2T1T2)VA

j �N 2
j 1 + 1−ηj

ηj

Nj

�Nj

∣

∣

∣

φ=0
�N 2

j with Tj = 1 �φ2
j (φmin)

d 2Nd(1 + Nd) − RdTdVA (1 + ηd)/(2ηd) 2Nd(1 + Nd) 1/(2UminVmin)

1 N1(1 + N1) 1/η1 Nd(1 + Nd) 1/(4UminVmin)

2 N2(1 + N2) 1/η2 Nd(1 + Nd) 1/(4UminVmin)

+ N+(2 + N+) + [2T1T2 − (T1 + T2)]VA (1 + η+)/(2η+) 4Nd(1 + Nd) 1/(4UminVmin)
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and thus that the inverse Fano factor Nj/�N2
j determines the

suppression of detection loss with j = d,1,2,+. In fact, for a

gain-unbalanced scheme and vanishing internal loss we find

for the expression in parentheses the factor shown in Table I

in agreement with [14]. Note that if only one single exit port

is detected in the nondegenerate setup, we find a significantly

different dependence on detection loss. We also see that gain

unbalancing suppresses detection loss in the nondegenerate

setup, even though for the sum of the two signals and η1 	= η2

the treatment is more subtle.

If the internal loss in each arm is equal, i.e., T1 = T2 = Td,

we find N1 = N2 = Nd and N+ = 2Nd. Moreover, if we

assume the lossless case with Tj = 1, we can express all

variances simply by the number of photons in one exit port

Nd (see the third column in the lower part of Table I). Since all

of these results differ only by a factor from the degenerate

result, we can use the phase from Eq. (8) to obtain the

minimal uncertainty. These results are shown in the table

as well. We note that the phase uncertainty is smaller by a

factor of 2 in the nondegenerate case, regardless of using only

one detector or both. In particular, we obtain again that the

sensitivity is limited by Vmin = min[VA,VB]. Hence, we see

that the discussion from above similarly applies to the different

cases of a nondegenerate setup. This is also true if we include

internal loss in analogy to Sec. IV, even though there are more

parameters since there might be different loss in each arm

of the NLI. We therefore refrain from presenting a lengthy

discussion of all different cases.

Finally, to compare the sensitivity to the shot-noise level

in a nondegenerate setup, one has to remember that VA is the

number of photons per mode produced by crystal A. Therefore,

the number of photons inside the NLI is n+ = 2VA, whereas

in the degenerate case it was nd = VA. Hence, the shot-noise

level could be defined as 1/
√

2VA in contrast to the degenerate

NLI, where it is 1/
√

VA. In case of a stronger analyzer, we have

�φd,min
∼= 1/(

√
2VA) = 1/(

√
2nd) and �φ+,min

∼= 1/(2VA) =
1/n+. In absolute values, �φ+,min < �φd,min. However, if we

assume the same number of photons inside the interferometer,

that is, nd = n+, we find �φd,min = �φ+,min/
√

2 in contrast to

our previous statement.

VI. CONCLUSIONS

We have demonstrated that the sensitivity of a degenerate

NLI is limited by the crystal with the smaller gain, whether

it is the source or analyzer crystal. Hence, the second crystal

has to be considered an essential part of the interferometer

and its gain is equally important as the one of the source in

a setup without internal loss. Moreover, the sensitivity might

not scale at all with the number of photons produced by the

source. We emphasize that a comparison to the shot-noise or

Heisenberg limit is only suggestive if the gain of the source

is the limiting factor. If the analyzer is limiting the sensitivity,

a comparison to the shot-noise level and a discussion of a

“Heisenberg scaling” seems rather artificial. Together with the

discussion of [23], we therefore hope to raise awareness for

the subtleties of claiming a Heisenberg scaling.

In order to suppress the effect of detection loss, it might

be beneficial to unbalance the gains of the two crystals on

purpose. Indeed, we showed that detection loss is suppressed

by the inverse Fano factor of the photon statistics. For a gain-

balanced NLI, the optimal phase occurs for a vacuum output

state and the sensitivity is susceptible to detection loss. In

contrast, unbalancing the gains leads to a significant photon

number in the output that suppresses it.

Whereas for this suppression it is irrelevant whether the

source or the analyzer is stronger (the NLI is symmetric

in this sense), it changes dramatically when internal loss is

considered. Internal loss effectively changes the gain of the

source and therefore may increase or decrease the suppression

of detection loss. In addition, this broken symmetry between

the two nonlinear crystals has the consequence that a higher

gain in the source reduces the effect of internal loss on the

phase sensitivity.

To suppress negative effects of internal loss, a stronger

source should be used; to additionally suppress detection loss,

a stronger analyzer seems beneficial. In fact, a stronger source

with internal loss suppresses detection loss, but not as well

as a stronger analyzer. Hence, the decision on whether to

use a higher gain for the source or for the analyzer has to

be based on the magnitude of internal and detection losses

for each individual case. We emphasize that these results

are valid for a degenerate NLI, but most of them carry over

to the nondegenerate case, for which we provide analytical

expressions as well.
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APPENDIX A: DEGENERATE CONFIGURATION

In this Appendix, we use the notation according to Fig. 1,

where the input mode of the degenerate NLI is denoted by

the operator â. It describes, as its subsequent counterparts,

a photonic annihilation operator and fulfills the bosonic

commutation relation [â,â†] = 1. The input enters at first

crystal A, and its output â′ is described by the Bogoliubov

transformation

â′ = uAâ + vAâ†. (A1)

Here, uA and vA are complex parameters. They describe

the amplification process and fulfill the relation 1 = |uA|2 −
|vA|2 = UA − VA. Due to this identity, we can identify UA

and VA with respective hyperbolic functions, that is UA =
cosh2 rA and VA = sinh2 rA, where we introduced the so-called

squeezing parameter or gain rA of crystal A.
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The internal loss of the NLI is modeled by a beam splitter

Sd, which is described by the transformation

â′′ = tdâ
′ + rdℓ̂ and ℓ̂′ = t∗d ℓ̂ − r∗

d â′, (A2)

where ℓ̂ is the operator associated with the noise input of

the beam splitter according to Fig. 1 and causes vacuum

noise. We displayed also the transformation for the output

ℓ̂′ to show that td and rd may be chosen complex and there

is in addition a phase shift. The asterisk (∗) denotes the

complex conjugate. Note that td and rd describe the field

transmittance and reflectivity, respectively. They fulfill 1 =
|rd|2 + |td|2 ≡ Rd + Td. Choosing complex td and rd makes it

possible to absorb phases of input modes into their definition.

We therefore do not have to treat phases accumulated inside

the NLI separately. With the relation (A1) for crystal A we

find

â′′ = tduAâ + tdvAâ† + rdℓ̂. (A3)

The action of crystal B is again described by a Bogoliubov

transformation

b̂ = uB â′′ + vB â′′† (A4)

with the same assumptions and notations for the coefficients

uB and vB as for crystal A. With the help of Eq. (A3) we find

b̂ = (tduAuB + t∗d v∗
AvB)â + (tdvAuB + t∗d u∗

AvB)â†

+ rduB ℓ̂ + r∗
d vB ℓ̂†. (A5)

Detection loss is modeled by the transformation

b̂′ =
√

ηdb̂ +
√

1 − ηdd̂, (A6)

which corresponds to a beam splitter Sηd
in front of the detector.

Here, ηd is the detection efficiency.

Let us assume that there is vacuum input in mode d̂ . We

then find

b̂′†b̂′|0d〉 = ηdb̂
†b̂|0d〉 +

√

ηd(1 − ηd)b̂|1d〉 (A7)

and obtain, projecting with 〈0d | onto Eq. (A7),

〈0d |b̂′†b̂′|0d〉 = ηdb̂
†b̂ (A8a)

and

〈0d |(b̂′†b̂′)2|0d〉 = η2
d(b̂†b̂)2 + ηd(1 − ηd)b̂†b̂ (A8b)

when we take the modulus square of Eq. (A7). The expectation

value of Eq. (A8) for an arbitrary input state in the other modes

directly leads to

Nηd = ηdNd (A9a)

and

�N2
ηd = η2

d�N2
d + ηd(1 − ηd)Nd, (A9b)

where Nηd and �N2
ηd are the photon number and variance

detected by Dd, and Nd and �N2
d the photon number and

variance without detection loss. With Eq. (A9) we find for the

phase sensitivity �φ2
ηd ≡ �N2

ηd/|
∂Nηd

∂φ
|
2

including detection

loss the expression

�φ2
ηd = �N2

d

/∣

∣

∣

∣

∂Nd

∂φ

∣

∣

∣

∣

2

×
(

1 +
1 − ηd

ηd

Nd

�N2
d

)

. (A10)

The above expressions are so far general for generic input

in modes â and ℓ̂. But, now we make the assumption that we

have a vacuum input in all modes. When we rewrite Eq. (A5)

as b̂ ≡ Adâ + αdâ
† + Bdℓ̂ + βdℓ̂

† and introduce the complex

coefficients

Ad = tduAuB + t∗d v∗
AvB , Bd = rduB ,

αd = tdvAuB + t∗d u∗
AvB and βd = r∗

d vB , (A11)

we see that b̂|0〉 = αd|1a〉 + βd|1ℓ〉 and find for the state

|ψd〉 ≡ b̂†b̂|0〉 the expression

|ψd〉 =
(

|αd|2 + |βd|2
)

|0〉 +
√

2A∗
dαd|2a〉

+ (B∗
d αd + A∗

dβd)|1a,1ℓ〉 +
√

2B∗
d βd|2ℓ〉. (A12)

Hence, the vacuum expectation value Nd ≡ 〈0|ψd〉 = |αd|2 +
|βd|2 takes with Eq. (A11) the form

Nd = TdVA + VB + 2TdVAVB − 2T
√

UAVAUBVB cos φ,

(A13)

where we used Rd + Td = 1, Uj = 1 + Vj , and introduced the

phase

φ ≡ arg
(

uAvAuBv∗
B t2

d

)

+ π. (A14)

Note that the definition of the phase includes a shift by π

so that φ = 0 describes the dark fringe. The variance can be

calculated through �N2
d = 〈ψd|ψd〉 − N2

d and we find after

some algebra

�N2
d = 2Nd(1 + Nd) − RdTdVA. (A15)

APPENDIX B: QUANTUM FISHER INFORMATION

In this Appendix, we calculate the quantum Fisher information

for a degenerate NLI with vacuum input and equal gain in

both crystals. For a more convenient description, we use the

Bogoliubov transformation from Eq. (A1) with uA = uB =
u and vA = vB = v to write the squeezed photon operator

â′ = Ŝ†âŜ, where we introduced the squeezing operator Ŝ. If

the gain is equal in both crystals and no loss is present, the

final state at the output of the NLI is a pure state which can

be written as a sequence of squeezing, phase evolution, and

antisqueezing. Hence, it takes the form

|ψf 〉 = Ŝ† exp

(

i
φ

2
â†â

)

Ŝ|0〉 = exp

(

i
φ

2
â′†â′

)

|0〉. (B1)

With the notation n̂′ ≡ â†′â′, the derivative of the final state

with respect to φ can be written as |ψ ′
f 〉 = n̂′|ψf 〉/2.

For a pure state, the quantum Fisher information [25] of the

NLI can be written as

Fφ = 4
(

〈ψ ′
f |ψ ′

f 〉 − |〈ψ ′
f |ψf 〉|2

)

= 〈n̂′2〉 − 〈n̂′〉2, (B2)

where the expectation values are taken with respect to the

initial state, i.e., |0〉 in our case. With the help of Eq. (A1) we
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find the relation

n̂′|0〉 = V |0〉 +
√

2u∗v|2〉, (B3)

and, by projecting this state on itself and on |0〉 we find the

variance of n̂′ and therefore show that the quantum Fisher

information can be written as

Fφ = 2UV. (B4)

APPENDIX C: NONDEGENERATE CONFIGURATION

In contrast to the degenerate case, we have for a nondegenerate

setup two input modes, namely, modes 1 and 2, which are

described by the bosonic annihilation operators â1 and â2,

according to Fig. 4. Crystal A is described by the Bogoliubov

transformation

â′
1 = uAâ1 + vAâ

†
2 and â′

2 = uAâ2 + vAâ
†
1. (C1)

We define the coefficients vA and uA in complete analogy to

the degenerate case in Eq. (A1).

To model the loss that occurs inside the interferometer, we

place two beam splitters in each branch, whose transmitted

outputs is the input of crystal B. We describe the beam splitter

Sj with j = 1,2 that accounts for internal loss through the

transformation

â′′
j = tj â

′
j + rj ℓ̂j and ℓ̂′

j = t∗1 ℓ̂j − r∗
j â′

j . (C2)

Here, rj and tj denote the amplitude reflectivity and transmit-

tance of the beam splitter. In addition, we use the conventional

definitions Rj = |rj |2 and Tj = |tj |2 as well as the relation

Rj + Tj = 1. The operators ℓ̂j describe the noise input of each

beam splitter, the operators ℓ̂′
j the output according to Fig. 4.

The output of crystal B is then found through the relation

b̂1 = uB â′′
1 + vB â

′′†
2 and b̂2 = uB â′′

2 + vB â
′′†
1 . (C3)

We define the coefficients vB and uB as in Eq. (A5). Detection

loss is modeled by the transformation

b̂′
j = √

ηj b̂j +
√

1 − ηj d̂j , (C4)

where ηj is the efficiency of the detector in output mode

j = 1,2 and d̂j the noise that is introduced. Since this

transformation is completely analogous to Eq. (A6), we find

exactly Eqs. (A9) and (A10), with the index d now replaced

by j = 1,2.

With all the transformations above, including the beam

splitters Sηj
for detection loss, we find

b̂′
1,2 = A1,2â1,2 + α1,2â

†
2,1 + B1,2ℓ̂1,2

+ β1,2ℓ̂
†
2,1 +

√

1 − η1,2d̂1,2 (C5)

for the field detected by detector D1,2. Here, we defined the

complex coefficients

A1,2 = √
η1,2(t1,2uAuB + t∗2,1v

∗
AvB), B1,2 = √

η1,2r1,2uB ,

α1,2 = √
η1,2(t1,2vAuB + t∗2,1u

∗
AvB), β1,2 = √

η1,2r
∗
2,1vB .

(C6)

It is straightforward to calculate b̂′
1,2|0〉 = α1,2|1a2,1

〉 +
β1,2|1ℓ2,1

〉. With that result we find, in analogy to the calculation

in the degenerate setup, for |ψj 〉 ≡ b̂
′†
1,2b̂

′
1,2|0〉 the expression

|ψ1,2〉 =
(

|α1,2|2 + |β1,2|2
)

|0〉 + α1,2A
∗
1,2

∣

∣1a1
,1a2

〉

+ α1,2B
∗
1,2

∣

∣1a2,1
,1ℓ1,2

〉

+ β1,2A
∗
1,2

∣

∣1a1,2
,1ℓ2,1

〉

+
√

1 − η1,2

(

α1,2

∣

∣1a2,1

〉

+ β1,2

∣

∣1ℓ2,1

〉)∣

∣1d1,2

〉

+ β1,2B
∗
1,2

∣

∣1ℓ1
,1ℓ2

〉

. (C7)

It is easy to see that the photon number Nηj = 〈0|ψj 〉 =
|αj |2 + |βj |2 detected by Dj takes the form

Nηj (φ) = ηj (Aj − Kj cos φ) (C8)

with the amplitude Aj ≡ TjVA + VB + 2(T1 + T2)VAVB and

the contrast Kj = 2
√

T1T2UAUBVAVB . Note that the term in

parentheses can be defined as the photon number Nj without

detection loss. Moreover, the phase

φ ≡ arg(uAuBvAv∗
B t1t2) + π (C9)

is slightly differently defined from Eq. (A14) to include a phase

that may be accumulated in the two arms in the interferometer

and is included in the complex values of tj .

When we calculate the variance �N2
ηj ≡ 〈ψj |ψj 〉 − N2

ηj ,

we find with the help of Eq. (C7)

�N2
ηj =

(

|αj |2 + |βj |2
)(

1 − ηj + |Aj |2 + |Bj |2
)

. (C10)

With the use of |Aj |2 + |Bj |2 = ηj + |αj |2 + |βj |2, as well as

Eq. (C8), this expression reduces to

�N2
ηj = Nηj (1 + Nηj ). (C11)

It also implies directly that �N2
j = Nj (1 + Nj ) in the case

without detection loss. Moreover, the variance of the sum of

both signals is

�N2
+ = �N2

η1 + �N2
η2 + 〈ψ1|ψ2〉 + 〈ψ2|ψ1〉 − 2Nη1Nη2.

(C12)

The overlap

〈ψ1|ψ2〉 = Nη1Nη2 + (α2A1 + β2B1)(α1A2 + β1B2)∗ (C13)

takes a simple form. Calculating the product is cumbersome,

but using trigonometric relations, the definition of the phase

φ, the relations Uj = 1 + Vj as well as Tj + Rj = 1, and

Eq. (C8) we arrive at

�N2
+ = (Nη1 + Nη2)(1 + Nη1 + Nη2) + η2Nη1 + η1Nη2

+ η1η2[2T1T2 − (T1 + T2)]VA. (C14)
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Chapter 6

A primary radiation standard based
on quantum nonlinear optics

The impetus to this work occurred in 2015 when I was working in Prof. Maria Chekhova’s
laboratory in Erlangen, analyzing the data for the letter in Chapter 2. Prof. Chekhova had
noticed that the frequency spectrum of phase-matched SPDC was described by a parabola,
and could therefore be used as a reference to retrieve the instrument response function of a
spectrometer. We utilized and briefly described that technique in [48], using data acquired
by Dr. Mathieu Manceau.

In the article, we describe a two-step method to use PDC as a primary standard for
the intensity of light. The first step allows one to obtain the instrument response function
of the spectrometer. The second step makes use of the instrument response function to
deduce the number of photons in high-gain PDC.

Prof. Maria Chekhova had the idea for the first step. I designed the experiment with
the help of Dr. Robert Fickler, and derived the theory with Dr. Enno Giese. While work-
ing on the theory for the first step, I had the idea for the second step, and fleshed it out
with Dr Robert Fickler and Dr. Enno Giese. I then performed both experiments, analyzed
the data, and wrote most of the paper. Dr. Enno Giese wrote the theory portion of the
supplementary material. All this work was supervised by Profs. Maria Chekhova, Robert
W. Boyd and Gerd Leuchs.

I, along with coinventors Prof. Maria Chekhova, Dr. Mathieu Manceau, Prof. Gerd
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Leuchs and Prof. Robert Boyd, have a patent for using SPDC to extract the instrument
response function of a measuring apparatus [49].
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The black body remains the most prominent source of light 
for absolute radiometry1. Its main alternative, synchrotron 
radiation, requires costly and large facilities2. Quantum optics 
offers a new radiometric source: parametric down-conversion 
(PDC), a nonlinear optical process, in which pairwise photon 
correlations enable absolute calibration of photodetectors3–6. 
Since the emission rate crucially depends on the brightness 
of the electromagnetic field, quantum-mechanical fluctua-
tions of the vacuum7 can be seen as a seed of spontaneous 
PDC, and their amplitude is a natural radiometric standard. 
Thus, they allow for the calibration of the spectral radiance of 
light sources8–11 by measuring the ratio between seeded and 
unseeded PDC. Here, we directly use the frequency spectrum 
of the electromagnetic vacuum to trigger spontaneous PDC 
and employ the generated light to infer the spectral response 
of a spectrometer over a broad spectral range. Then, we 
deduce the absolute quantum efficiency from the spectral 
shape of PDC in the high-gain regime, without relying on a 
seed or reference detector. Our results compare well with the 
ones obtained with a reference lamp, demonstrating a prom-
ising primary radiation standard.

In general, a source can serve as a primary radiation standard 
if, within a specified bandwidth centred on the wavelength λ, the 
exact number of emitted photons N(λ) is known. However, the 
number of counts M(λ) recorded by a detector does not usually 
coincide with N(λ) due to an imperfect quantum efficiency η(λ) 
of the detecting device. These quantities are simply connected 
through the relation

λ η λ λ=M N( ) ( ) ( ) (1)

Measuring M(λ) while having a precise knowledge of N(λ) allows 
the determination of η(λ), which is at the heart of the absolute 
calibration of spectrometers. The spectral efficiency η(λ) can be 
further separated into its relative spectral shape R(λ) (that is, the 
response function of the measurement device) and a wavelength-
independent proportionality constant α, through η(λ) = αR(λ). 
Whereas a relative calibration procedure gives R(λ), obtaining 
the full η(λ) requires an absolute calibration. In the following 
we demonstrate in a two-step procedure that both relative and 
absolute calibration can be performed using parametric down-
conversion (PDC).

The total number of photons reaching the detector depends on 
the photon-number distribution N  per plane-wave mode character-
izing the source, and on the modes that are detected. Using standard  

radiometric formalism (see details in the Methods), this fact trans-
lates to the expression

N

D N

∫ ∫λ

τ Ω λ λ

=
π

≈ Δ Δ

N r k

A c

( )
1

(2 )
d d

[ ] [ ] ( )

(2)
3

source

3

detector

3

s s

where the first integral can be approximated by the transverse area 
As of the source and the duration of the emission τs multiplied by the 
speed of light c. The second integral describes the modes that are 
detected and can be approximated by the bandwidth Δλ and solid 
angle ΔΩ of the detector, if N  does not vary significantly over these 
quantities. To connect the plane waves to the solid angle and the 
wavelength, which are the relevant quantities for a spectrometer, we 
also introduced the quantity D λ λ= π

−( ) (2 )3 4, which is a measure of 
the mode density7. If N  is known, we have all the necessary quanti-
ties for the absolute calibration of a spectrometer.

During the three-wave mixing process of PDC, pump photons 
(of frequency ωp) interact with the vacuum field within a crystal 
with a nonlinear susceptibility χ(2). This process leads to the genera-
tion of pairs of photons known as the signal and idler, of frequencies 
ω and ωi. In the spontaneous regime (low pump intensity), N , a 
function of frequency and emission angle, depends on the ampli-
tude of the vacuum fluctuations, the profile of the pump beam, the 
gain of the amplification process and a phase-matching function. 
For a monochromatic plane wave pump of amplitude Ep and a crys-
tal of thickness L, the photon-number spectral distribution of spon-
taneous PDC is given by

N χ ωω κ= ∕ Δ ∕−c L E nn L( ) ( ) sinc ( 2) (3)1 (2)
p

2

i i

2 2

where n and ni are the signal and idler refractive indices and 
Δκ = κp − κ − κi is the mismatch between the longitudinal wave-
vectors of the pump, the signal and the idler, respectively7,12. The 

frequency-dependent factors ω ∕ n  and ω ∕ ni i  arise from the 
quantization of the electric field for the signal and for the idler13. In 
the spontaneous regime of pair creation, those factors embody the 
amplitude of the vacuum fluctuations for the biphoton field given 
by the density of states. They explicitly appear in the expression for 
the electric field operators for the signal and for the idler, which 
are used in turn to write the Hamiltonian for the nonlinear interac-
tion. To denote the coupling strength, we use the gain parameter 
G χ= ∕−c L E nn1 (2)

p i , which we can assume to be constant over 

A primary radiation standard based on quantum 
nonlinear optics

Samuel Lemieux   1*, Enno Giese   1,6, Robert Fickler1,7, Maria V. Chekhova2,3,4 and Robert W. Boyd1,5

Corrected: Publisher Correction

NAtuRE PhySiCS | VOL 15 | JUNE 2019 | 529–532 | www.nature.com/naturephysics 529



LETTERS NATURE PHYSICS

the frequency range of interest. This assumption is discussed in  
the Methods.

The last factor of equation (3) is the well-known phase-match-
ing function of a bulk crystal. At exact phase-matching, Δκ van-
ishes and the phase-matching function takes on the value unity. 
Thus, the phase-matched distribution (3) takes its maximal value 
and reads

N G ω ω ω= −( ) (4)PM
2

p

where we assumed that photon energy is conserved in the para-
metric process, such that ωi = ωp − ω. For absolute calibration, we 
need a complete knowledge of NPM, but it is difficult to determine 
G experimentally in the spontaneous regime of PDC. However, the 
photon number for different NPM follows a parabola, as illustrated 
in Fig. 1a. Because ω(ωp − ω) does not depend on laboratory param-
eters, we use the shape of NPM and perform a relative calibration12.

By introducing a pinhole in the far-field of the crystal, we limit 
the emission solid angle and suppress the frequency content in the 
other angular modes (details in the Methods). A spectrometer then 
disperses the light and images it onto a charge-coupled device chip 
(see Fig. 1c). Since the position on the chip corresponds to a par-
ticular wavelength, we expect a specific functional behaviour that 
originates in the parabola but is modified by D λ( )14. Thus, any devi-
ation of the measured spectrum at the phase-matched wavelength 
from D λ ω ω ω−( ) ( )p  can be assigned to detector inefficiencies,  
and therefore to R(λ).

Since R(λ) is proportional to the ratio between the number of 
counts M(λ) and the number of photons N(λ), we can write

D
λ

λ

λ ω ω ω
∝

−

R
M

( )
( )

( ) ( )
(5)

p
PM,LG

where ω = 2πc/λ and we used the proportionality symbol because 
G is yet to be determined. The right-hand side is evaluated at the 
wavelength λPM that satisfies the phase-matching condition and 
the measured spectra M(λ) are acquired in the low-gain limit, 
denoted by LG.

In our experiment, we pump a barium borate (BBO) crystal 
with a pulsed laser (355 nm wavelength) and acquire a large num-
ber of spectra Mj, with j corresponding to different tilt angles of 
the nonlinear crystal, spanning phase-matched frequencies over a 
broad spectral range, as shown at the bottom of Fig. 1c. We over-
lap all the measured spectra in Fig. 2 and highlight three of them 
to show their twin-peak structure. Crucially, the maximum num-
ber of counts at any particular wavelength as the crystal tilt angle 
is varied gives the phase-matched measurement Mj(λPM), because 
sinc2(ΔκL/2) is equal to unity only when the phase-matching 
condition is satisfied. We show in the inset of Fig. 2 and in the 
Methods that the peak number of counts in a single spectrum does 
not always occur at λPM.

We perform the experiment in the spontaneous regime of PDC 
to ensure the validity of equation (3). We retrieve R(λ) directly from 
the spectra by virtue of equation (5), where M(λPM) is extracted by 
taking the maximum of many spectra. We assume the normalization 
condition that for degenerate down-conversion R(2λp) = 1, such that 
η(2λp) = α. The response function obtained from the spontaneous 
PDC agrees very well with the response function measured with a 
reference lamp (Fig. 3). The experiment was repeated with an addi-
tional dichroic filter to demonstrate that the method resolves rich 
and rapidly varying spectral features. For a proper comparison, it is 
crucial that the light from spontaneous PDC and from the reference 
lamp undergo exactly the same transfer function. The skewness of 
the PDC response with respect to that of the lamp stems from chro-
matic aberration and non-perfect polarization filtering, as well as 
inaccuracies in the reference spectrum of the lamp.

To improve the precision of our method, one could include the 
frequency dependence of G if the linear and nonlinear dispersion 
relations of the crystal are known. In this case, it is also straightfor-
ward to generalize equation (3) so that it incorporates the spatial 
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Fig. 1 | Physical principle and idealized set-up. a, Different tilt angles of 

the nonlinear crystal correspond to different phase-matching conditions, 

altering the spectrum N ω( ) accordingly, as exemplified by the orange, 

green and magenta curves. N ω( )PM  (grey curve) is obtained by taking the 

maximum of N  for different phase-matching conditions. Since the shape 

of N ω( )PM  is known, see equation (4), we can use it as a reference to 

retrieve the response function R(λ). b, The relative calibration with PDC  

is performed in the low-gain regime (LG) and the absolute calibration  

with PDC in the high-gain regime (HG). We transition from low gain to 

high gain by increasing the intensity of the pump laser. In the high-gain  

limit, there is a one-to-one correspondence between the shape of NPM  

and the number of generated photons, leading to an absolute standard.  

c, For each tilt angle of the nonlinear crystal, the photon-number spectrum 

N(λ) is measured with an angular filter (a pinhole in the far field selects a 

small solid angle) and a spectrometer. The shape of N(λ) follows from the 

conversion of N ω( ) from the plane-wave representation to the wavelength 

and solid-angle representation associated with the spectrometer. CCD, 

charge-coupled device.
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Fig. 2 | Measured spectra. We extract the response function R(λ) from 

the overlap of 411 measured spectra (grey). The twin-peak structure in 

the orange and teal spectra is a feature of phase matching and energy 

conservation. For the magenta curve, the second peak does not lie within 

our measurement range. The maximum possible signal at a certain 

wavelength λ is proportional to R(λ). To illustrate this method, the inset 

shows several spectra (Fourier-filtered to suppress the noise) from the box 

enclosing the right-hand peak of the teal curve.
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and temporal profiles of the pump beam15. To stress the simplicity 
of our procedure, we refrain from applying these corrections, but 
nonetheless obtain excellent results. With a knowledge of R(λ) we 
can accurately measure the shape of any spectrum. In the following, 
we perform the second step of our calibration procedure and estab-
lish an absolute calibration method. In particular, we extract the 
number of photons from the shape of high-gain PDC spectra, based 
on our previous measurement of R(λ), as exemplified in Fig. 1b, 
where we see a distortion of the parabola when the gain is increased.

For an arbitrary value of the gain, the photon-number spec-
tral distribution under phase matching and for a monochromatic, 
plane-wave undepleted pump, becomes

N G ω ω ω= −( )sinh ( ) (6)PM
2

p

which reduces to equation (4) in the spontaneous regime—that is, 
for G ω ω ω− ≪( ) 1p

7. In the high-gain regime, the phase-matched 
photon-number spectrum is therefore a distorted parabola, whose 
spectral shape (curvature) and photon number are uniquely deter-
mined by the gain parameter G. In complete analogy to equation (5) 
we obtain the relation

G
D

α ω ω ω
λ

λ λ Γ
− =( ) M

R
sinh ( )

( )

( ) ( )
(7)

2
p

PM

where we introduced, for a more convenient notation, the constant 
Γ = ΔΩΔλAscτs for the emission and detection parameters. Note 
that, in contrast to equation (5), we have an equality. Except for 
α, which we defined earlier through η(λ) = αR(λ), all the quanti-
ties are known: we obtained R(λ) from spontaneous PDC and the 
shape of the phase-matched spectrum uniquely determines G. We 
approximate As by the transverse area of the pump beam and τs 
by mτp, with τp being the pump pulse duration and m the num-
ber of pulses during an acquisition time. Further, we calculate the 
solid angle ΔΩ from the pinhole size in the far field of the crystal, 
and obtain Δλ from the bandwidth associated with a pixel of the 
spectrometer’s camera. The only remaining free parameter, α, is 
obtained via fitting.

For that, we acquire a large number of densely packed spectra 
Mj(λ) for different crystal tilt angles with a much higher pump 
energy per pulse to reach a large parametric gain. After taking the 
maxima of these dense spectra, we perform a bivariate curve fit 
using the free parameter α and the pump-normalized gain G ∕ Ep,  
a quantity that allows us to suppress the pulse energy drift of our 
pump laser over the acquisition time, and where a relative measure-
ment of Ep is sufficient. We then obtain the spectral quantum effi-
ciency by taking the product η(λ) = αR(λ), with R inferred from the 
spontaneous measurement and α from the high-gain regime.

In the absolute calibration measurement, we use a pump 
energy four times higher than in the spontaneous configuration. 
We show the maxima of the spectra and the fit (orange curve) in 
Fig. 4. The quantum efficiency at λ = 2λp, extracted from fitting, is 
α = 0.42 ± 0.04, where the uncertainty is dominated by the system-
atic error in the pulse duration and transverse profile of the pump. 
Note that α includes all the losses in the optical set-up, from the 
nonlinear crystal to the detector. The estimated quantum efficiency 
of the experimental set-up, based on the nominal efficiency of each 
optical component, is α = 0.38 ± 0.07. The largest source of loss is 
the diffraction grating of the spectrometer, with an efficiency of 
60% at 2λp, as reported by the manufacturer. In addition, we tested 
the consistency of the fit parameters by repeating the measurement 
with other pump energies. Using the previously obtained value of α, 
and estimating the gain from G ∕ Ep and a new measurement of Ep, 
we obtain the red curves (Fig. 4), which also show excellent agree-
ment with experimental data. Undesired effects due to additional 
nonlinear processes arising with the higher pump intensity, such as 
self-focusing or fluorescence, are found to be negligible.

Equation (6) is obtained by solving the Heisenberg equation of 
motion for the creation and annihilation operators in the form of 
a Bogolyubov transformation relating the modes associated with 
the signal and the idler photons7. The validity of models for high-
gain PDC in the context of a pulsed laser has been discussed16 and 
verified experimentally by looking at the exponential increase in 
the number of photons with the pump power14,17–20. The results pre-
sented in Fig. 4 are experimental demonstrations of the distortion 
of the phase-matched spectral shape of light generated by a pulsed 
laser for increasing gain, and as such provide additional support 
for this description of PDC. Moreover, equation (7) underlines that 
high-gain PDC offers the possibility to perform the absolute cali-
bration of a single-element detector by measuring the number of 
counts against the pump pulse energy.
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Fig. 3 | Spectral response function of the experimental set-up. Upper 

panel shows a comparison of R(λ) obtained from spontaneous PDC (red, 

normalized to unity at the degenerate wavelength 2λp) and the response 

function measured with a reference lamp (blue envelope enclosing the  

5% error reported by the manufacturer; scaled onto the PDC curves using  

a linear fit). To obtain the curves in the lower panel, we added a dichroic 

filter to the spectrometer to induce rich spectral features into the  

response function.
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Fig. 4 | Absolute calibration from high-gain PDC. The maxima of densely 

packed high-gain spectra (right-hand side of equation (7); shown in black) 

and their fit (left-hand side of equation (7); shown in red and orange) 

are obtained for five different pump intensities. The curves are shown 

in the frequency domain to highlight the distortion of the parabola. The 

fit parameters for the orange curve were obtained with the second-to-

top measurement. To demonstrate their accuracy, we used the same fit 

parameters to draw the red curves. The fitting curves are noisy because 

fluctuations in the pump energy are taken into account.
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In contrast to the relative calibration, the absolute calibration 
using high-gain PDC cannot be straightforwardly generalized to 
arbitrary pump beams. Corrections to the model could be imple-
mented, for instance by taking into account the spatial profile and 
frequency spectrum of the pump as well as the frequency depen-
dence of G. However, our results demonstrate that even without a 
more sophisticated treatment, which would require the determina-
tion of many more laboratory parameters and solving Heisenberg’s 
equations of motion numerically, we measure the quantum effi-
ciency accurately. State-of-the-art spectroradiometric sources based 
on black-body radiation, which have benefited from a century of 
technical improvements, typically exhibit a relative uncertainty of 
the order of 1% around the wavelength 700 nm (ref. 21), whereas we 
report a relative uncertainty of the order of 10%. It is reasonable 
to expect that a PDC standard could reach the level of precision of 
methods based on black-body radiation. As a first step, one could 
carefully monitor the pump laser spatial profile and pulse duration. 
Less prominent sources of error, which include geometric factors 
and the quality of the fitting, could also be addressed. Furthermore, 
it would be interesting to explore different strategies to engineer the 
density of states, by using for instance metallic surfaces or nanopar-
ticles, to increase the brightness of the source.

Online content
Any methods, additional references, Nature Research reporting 
summaries, source data, statements of data availability and asso-
ciated accession codes are available at https://doi.org/10.1038/
s41567-019-0447-2.
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Methods
Radiometry. Since the quantization of the electric field is usually performed in 
plane-wave modes denoted by a wavevector k, we express general radiometric 
quantities through the photon number per mode N k( ) of the field under 
consideration. A detector cannot detect all of these modes, and hence the detected 
photon number per source volume can be written as

N N∫ ∫ ∫λ Ω
λ

ϱ =
π

=
λ ΩΔ Δ

k k k
1

(2 )
d ( ) d d

1
( ) (8)3

detector

3

4

where we used d3k = k2dkdΩ = (2π)3λ−4dλdΩ in the last step. We neglect here 
the index of refraction of air and assume that the detector has a bandwidth of 
Δλ and collects light from a solid angle ΔΩ. In the following we introduce for a 
more convenient notation the Jacobian D λ π λ=

−( ) (2 )3 4, relating d3k and dλdΩ, 
which is proportional to the mode density. For a sufficiently small Δλ around the 
wavelength λ and a small ΔΩ around the direction set by k, we can perform the 
integration and find

D Nλ Ω λ Ω λϱ ≅
π

Δ Δ k( , )
1

(2 )
[ ] ( ) ( ) (9)3

This quantity is closely related to the spectral radiance D Nω π λℏ
− c(2 ) ( )3 , which 

is the energy per unit of time, area of the source, solid angle and bandwidth (in 
wavelength) of the detector22.

To calculate the total number of photons that fall onto the detector, equation 
(9) has to be integrated over the volume of the source, to obtain

D N∫λ Ω λ Ω τ λ Ω λ= ϱ ≅ π Δ Δ−N r A c( , ) d ( , ) (2 ) [ ] [ ] ( ) (10)
source

3 3
s s

where in the last step we assumed that the source has a surface area of As and emits 
light for a time duration τs.

We have not yet specified N k( ). We do that in the next section and show that 
the assumption of a small solid angle as well as a small bandwidth of the detector 
is justified.

Angular distribution of spontaneous PDC. The photon number per mode N  
for spontaneous PDC in a bulk crystal of length L with a nonlinearity χ(2) and 
illuminated by a plane wave pump with a field amplitude Ep is given by equation 
(3). The longitudinal wavevectors appearing in the expression for Δκ are given by 

κ ≡ −k q2 2 for the signal and κ ≡ −k qi i
2

i

2 for the idler. Here, the signal and idler 

photons have the wavevectors k and ki and the transverse wavevectors q and qi. 
Note that kj = ωjnj/c, with c the speed of light and ωj the frequency of the idler and 
pump fields with j = i,p, and no subscript for the signal.

With this notation, we find the expression

κ κΔ = − − −k k q (11)p i
2

i

2

for the longitudinal wavevector mismatch. Since we assume in equation (3) a plane 
wave and monochromatic pump, we have due to energy conservation ωi = ωp − ω 
and due to momentum conservation q = −qi. Hence, our expression depends only 
on ω and q. Moreover, introducing spherical coordinates, we can define the polar 
angle θ of the detected field and have cosθ = κ/k and sinθ = |q|/k. Therefore, the 
longitudinal wavevector mismatch

κ θ θΔ = − + ∕ −( )k k k kcos ( ) sin (12)p i
2 2

as well as equation (3), depends only on λ (using ω = 2πc/λ) and θ, which are the 
natural dimensions of the detector.

In equation (9) we approximated the integral of N  over dλ and dΩ = sin θdθdϕ 
by just multiplying the integration intervals. This is of course valid if N  depends 
only weakly on both λ and θ over the range of interest.

In the experiment we place a pinhole in the far field of the spontaneous PDC 
light to filter a small range of angles. We show in the density plot of Supplementary 
Fig. 1 the product D Nλ( )  as a function of θ and λ, and mark the size of our pinhole 
by a semi-transparent white strip. This numerical result is based on the Sellmeier 
equations of the three fields for BBO23. We further assume that G is constant in the 
wavelength range of interest, and we justify this assumption in the next section. We 
work close to collinear propagation, with θ ≈ 0, where the function D Nλ( )  does not 
vary significantly across the pinhole area so that we can perform the integration by 
just multiplying by the solid angle. Similarly, the size of a pixel corresponds roughly 
to a bandwidth of 0.063 nm. On this scale, N  does not change significantly. Hence, 
our approximation in equation (9) is valid for our set-up.

Of course, one can also integrate over the solid angle covered by the pinhole to 
obtain a more accurate result, but at some point the contribution of other crystal 
properties, such as its length, as well as the dispersion relations of all the light 
fields will dominate. In the spirit of an easy-to-implement calibration technique, 

we refrain from this more complex analysis but emphasize that it is possible. In a 
similar manner, one could include both the frequency as well as the angular profile 
of the pump in equation (3). However, on axis this treatment would not lead to 
a different result and our plane wave and monochromatic assumption is well-
justified for our laser system.

Wavelength dependence of gain. In the main text, we assumed that the 
wavelength dependence of the gain function

G χ= ∕−c L E nn (13)1 (2)
p i

can be neglected. In this section, we investigate different effects that could 
contribute to the wavelength dependence in our experiment and demonstrate 
that they do not vary much across the spectral region of interest. In addition to 
the linear dispersion (n(λ) and ni(λ)) as well as the nonlinear dispersion χ(2)(ωp, ω, 
ωi), obvious from equation (13), other contributions arise from tilting the angle of 
the crystal to scan different phase-matching conditions. By tilting the crystal, the 
Fresnel coefficients vary (for the pump or for the down-converted light) and the 
effective length L of the nonlinear crystal (defined as the length of propagation 
of the pump inside the crystal) changes. The different Fresnel coefficients change 
the intensity of the pump inside the crystal, as well as how much of the down-
converted light couples out of the crystal. Using the Sellmeier equations for BBO23 
and Miller’s rule24 (relating the first-order and second-order susceptibilities), we 
estimate the impact of those contributions, and show our results in Supplementary 
Fig. 2. The largest deviations are attributed to the dispersion in the nonlinear 
susceptibility χ(2) and to the change in the effective length of the nonlinear crystal 
upon tilting it. However, over a spectral range of 300 nm around degeneracy, the 
gain function G does not vary by more than 1%.

Experimental set-up. A detailed set-up is shown in Supplementary Fig. 3. The 
third harmonic (355 nm wavelength, 29 ps pulse duration, 50 Hz repetition rate, 
pump beam area As = 2πσ2 = (0.17 ± 0.01) mm2, with the standard deviation σ 
of the Gaussian profile, 100 μJ pulse energy in the spontaneous regime, up to 
500 μJ in the high-gain regime) of a pulsed Nd:YAG laser (EKSPLA, PL2231) is 
prepared as the pump for PDC from a nonlinear crystal (β-BBO, 3 mm thickness, 
type-I phase-matching, uncoated, cut for degenerate PDC) whose phase-
matching frequencies are tuned using a motorized rotation mount. We estimate 
the systematic error on the pulse duration to be ± 2 ps. The standard error on 
the pump beam area is obtained from repeated measurements of the attenuated 
pump on the Gentec Beamage-3.0 beam profiler. The wavelengths that satisfy 
the phase-matching condition are tuned by varying the angle between the optic 
axis of the crystal and the wavevector of the pump. We test the uniformity of the 
crystal by measuring the PDC spectra produced by pumping different portions 
of the crystal. A set of dichroic mirrors removes the pump after the crystal. 
The pump energy drift over time is monitored using a photodiode. A concave 
mirror of focal length 200 mm is used to bring the down-converted light to 
the far field, where a pinhole (0.5 mm diameter) selects a small solid angle. To 
ensure a fixed polarization, a broadband polarizing beam splitter is placed before 
the pinhole. A pair of lenses is used to image the pinhole onto the entrance 
slit (1 mm in width) of the spectrometer with a magnification of 4/3. The 
spectrometer is an imaging spectrograph (Acton SP-2558) with a charge-coupled 
device camera (PIXIS:100BR_eXcelon, pixels of size 20 μm × 20 μm). Transverse 
binning is enabled, so that the signal at a certain wavelength is the sum of the 
photoelectron counts over all the pixels that correspond to that wavelength. 
The integration time for each of the 411 spectra is 500 ms. Each spectrum 
spans the range from 450 nm to 900 nm. To cover this range, we need to repeat 
the acquisition for different angular positions of the grating (600 grooves per 
mm, 500 nm blaze). The experiment is automated: after each acquisition by the 
spectrometer, the motorized holder rotates the crystal through an angle of about 
0.01°, up to a total change of approximately 8°. To reduce errors, we filter out the 
noise (rapidly fluctuating signal) in each spectrum with an algorithm based on 
the fast Fourier transform. For the nonlinear curve fitting of PDC in the high-
gain regime, we used a weight function to reduce the influence of the data points 
associated with high residuals. The spectrometer is calibrated in wavelength 
using a neon–argon lamp along with a Princeton Instruments Intellical system. 
The reference lamp (an LED-stack with a diffuser, Princeton Instruments) 
is introduced at the crystal plane. Its spectrum is acquired using the same 
experimental settings.

Details of the data analysis. Our calibration method relies on the comparison of 
the measured phase-matched number of counts M(λPM) to the expected phase-
matched number of photons N(λPM). We therefore acquire a large number of 
spectra Mj corresponding to different phase-matching conditions over a broad 
spectral range. However, the peak number of counts in a measured spectrum 
does not correspond, in general, to M(λPM). Instead, we can extract the response 
function from the properties of N . From the main text, we know that

N ω ω ω κ ω ω ω∝ − Δ ∕ ≤ −L( )sinc ( 2) ( ) (14)p
2

p
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where the inequality becomes an equality only for phase matching Δκ = 0.  
We denote the wavelength of phase matching with λPM. With equation (5) we  
find the inequality

D
λ λ

κ λ

λ ω ω ω
≥

Δ
∝

−
R R

L M
( ) ( )sinc

2

( )

( ) ( )
(15)

j2

p

with an equality sign for λ = λPM. If we approximate the phase matching function by 
a Gaussian, that is,

κ λ λ σΔ ∕ ∝ − − ∕
λ

Lsinc ( 2) exp[ ( ) (2 )] (16)2
PM

2 2

it is easy to show that the peak of the product R(λ)sinc2(ΔκL/2) shifts to the 
wavelength

∼

∼

λ λ
λ

σ= +

λ

λ
R

R1 d

d
(17)PM

2

Hence, the steeper the slope of the response function, the greater the shift between 
the phase-matched wavelength and the peak. We show this effect in the inset of 
Fig. 2. Since the response function is not known but is the result of the calibration 
procedure, equation (17) cannot be used to determine the phase-matching 
wavelength. However, equation (15) directly gives a method to determine the 
response function despite the shift: when we acquire a large number of spectra 
Mj, each with a slightly varying λPM, the amplitude of Dω ω ω∕ −M [ ( )]j p  at one 
particular wavelength is the largest if the wavelength corresponds to λPM. Hence, we 
obtain the response function from

D D

































λ
λ

λ ω ω ω

λ

λ ω
=

−
∕R

M M
( ) max

( )
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max

4 (2 )

(2 )
(18)

j

j

j

j

p

p

p p
2

where we normalize the response function to unity at the degenerate wavelength 
λ = 2λp. To reduce errors in the analysis according to equation (18), we suppress 
for each spectrum Mj(λ) the high-frequency content, filtered out via a fast Fourier 
transform procedure.

A similar idea can be used for absolute calibration. For an arbitrary G, the 
photon distribution per plane-wave mode assuming a monochromatic plane wave 
pump can be written as7

N
G Q

G Q
G Q

κ

κ=
− Δ ∕

− Δ ∕
L

L
( 2)

sinh ( 2) (19)
(HG)

2 2

2 2 2

2 2 2 2

where Q ω ω ω≡ −( )2
p  and the superscript (HG) highlights that we are using this 

equation to describe the high-gain regime of PDC. Since the maximum of this 
function occurs for phase matching (Δκ = 0), we find

N GQ N≤ ≡sinh ( ) (20)(HG) 2
PM
(HG)

where we defined the phase-matched photon distribution N PM
(HG), which has the 

well-known hyperbolic form of parametric amplification and is used in the main 
body of our article. Note further that for GQ≪1 we recover the low-gain result.

The quantum efficiency at the degenerate wavelength α = η(2λp) is

α λ λ λ= ∕M R N( ) [ ( ) ( )] (21)j

with the definitions from the main text. With that, we find from equation (20) and 
with the help of equation (10) the inequality

GQ Dα λ λ λ Ω λ τ≥ ∕ Δ ΔM R A csinh ( ) [ ( ) ( ) ] (22)j
2

s s

where again the equal sign is valid for λ = λPM. Hence, we find, similarly to the low-
gain method

GQ
D


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
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


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α
λ

λ λ Ω λ τ
=

Δ Δ

M

R A c
sinh max

( )

( ) ( )
(23)

j

j2

s s

as an exact equality if the spectra are sufficiently dense. Taking the maximum of all 
recorded spectra, each one of them divided by Dλ λR( ) ( ) and a numerical factor that 
depends on laboratory parameters (spatial dimensions and bandwidths), we can fit 
the data to the function GQα sinh2  with two fitting parameters α and G. Note that 
we do not need to measure the exponential increase of the number of generated 
photons with increasing pump intensity, but determine both parameters from the 
distortion of the spectral shape of the maximum of all spectra. With this fitting 
procedure, one can determine not only the quantum efficiency η(λ) = αR(λ), but 
also the gain G.

Even though we do not use the exponential increase with the pump power 
for our calibration method, we still record the intensity while scanning different 
phase matching functions. We do this to correct for drifts and fluctuations 
during the course of one measurement. We are then able to perform the fitting 
procedure using G ∕ E j, where Ej is the pump field amplitude during measurement 
corresponding to the jth phase-matching condition.

The α obtained using our method for absolute calibration is compared to an 
estimated quantum efficiency based on the properties of each optical component 
in the experimental set-up, listed in Supplementary Table 1. The losses of uncoated 
components are estimated from the Fresnel coefficients, whereas the losses of 
coated components are taken from the manufacturers.

Spontaneous regime of PDC. As shown in equation (19), the photon- 
number distribution grows exponentially with the intensity of the pump.  
In the low-gain regime, where the photon pairs are generated spontaneously, the 
number of photons grows linearly with the intensity, which can be seen from  
the expansion

N GQ G Q G Nω ω ω= ≅ = − =sinh ( ) (24)PM
(HG) 2 2 2 2

p PM

where NPM is the low-gain photon distribution for phase matching. To obtain  
the response function R(λ), we do not need to know the exact value of G, but  
rely on the fact that the first-order expansion above is valid. Note that G2 
is proportional to the intensity of the pump7. To verify that we work in the 
spontaneous regime of PDC, we measure the number of counts for a single 
wavelength and increase the pump intensity. The results, given in Supplementary 
Fig. 4, show that we are well within the linear regime up to roughly 150 μJ pump 
energy. We performed the relative calibration experiment at a pump intensity of 
100 μJ, whereas the high-gain part of the experiment used a more intense pump, 
around 200 μJ and higher.

Data availability
The data that support the plots within this paper and other findings of this study 
are available from the corresponding author on reasonable request.
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TABLE S1. Contribution of each optical component

to the total quantum efficiency of the experimental

setup. The parentheses denote the number of compo-

nents. The total efficiency is obtained by multiplying

all the contributions and propagating the uncertain-

ties accordingly.

Optical component Efficiency

Crystal output facet (1) 0.94± 0.01

Dichroic mirror (2) 0.95± 0.01

Dielectric mirrors (6) 0.99± 0.01

Polarizing beam splitter (1) 0.98± 0.01

Uncoated lens (2) 0.92± 0.01

Diffraction grating (1) 0.60± 0.02

Spectrometer camera (1) 0.95± 0.02

Total 0.38± 0.07

∗ samzlemieux@gmail.com
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FIG. S1. Numerically generated spectrum of spon-

taneous PDC, plotting D(λ)N , for three different

crystal tilt angles Θ, with Θ1 corresponding to de-

generate phase-matching in the emission angle θ =

0. While N is the spectral density in the k-space,

D(λ)N corresponds to the spectral density in the

angular-wavelength representation, which is the mea-

surement basis of our spectrometer. The vertical axis

is represented in terms of the position in the far-field,

using a concave mirror of focal length f = 200mm.

The semi-transparent white strip is the angular fil-

tering of a pinhole of size 0.5mm positioned around

θ = 0.
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pump Ep is transmitted into the nonlinear medium;
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fore the iris is set to transmit the polarization of the
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Chapter 7

Conclusion

The goal of this thesis has been to investigate, both conceptually and experimentally, how
our understanding of PDC needs to be expanded upon or more rigourously described when
transitioning from the spontaneous to the high-gain regime. This included an experimen-
tal technique to reduce squeezed light to a single frequency mode for improved efficiency,
theoretical and experimental insights into the evolving structure of PDC in the high-gain
regime, a proposal for mitigating the effect of losses in SU(1,1) interferometers and an
experimental demonstration that high-gain PDC can serve as a primary standard for ra-
diometry.

I utilize the various properties of high-gain PDC in order to devise or facilitate the us-
age of new tools in optical metrology. All applications presented in this thesis rely on key
properties of high-gain PDC: quantum correlations between the signal and the idler, and
the exponential increase in the number of photons with the parametric gain. Those prop-
erties are different sides of the same coin, stemming from the same theoretical framework
of quantum and nonlinear optics. I separate these applications in three main branches:
modes of bright squeezed vacuum, nonlinear interferometry and radiometry.

Bright squeezed vacuum generated via high-gain PDC in free space is naturally mul-
timode. PDC radiation can be decomposed into modes that are squeezed pairwise, cor-
responding to an array of two-mode squeezed vacua. According to our theoretical model,
the mode structure depends on the spectrum of the pump, the properties of nonlinear
medium and on the parametric gain driving the OPA. In addition, we demonstrated that
the field amplitude of the angular Schmidt modes can be retrieved from a measurement
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of the covariance intensity. Those modes cannot be straightfowardly split or filtered. We
experimentally showed that the number of frequency modes is greatly reduced in a two-
crystal configuration, by amplifying in the second crystal a narrow frequency band of the
PDC from the first crystal. Those developments, both experimental and theoretical, con-
stitute important steps towards bright squeezed vacuum applied in quantum imaging and
interferometry.

The study of the effect of internal loss in SU(1,1) interferometers, which breaks the
symmetry between the crystals, led us to a few interesting observations. Increasing the
gain of the source crystal leads to a partial recovery of the phase sensitivity, despite internal
loss. In the absence of internal loss, the phase sensitivity is limited by the crystal with the
lower gain. This brings about a crucial discussion about the meaning of n, the number of
photons, in the definition of the scaling of the phase sensitivity. Customarily, n is defined
as the number of photons inside the interferometer. However, we concluded that it is not
the number of photons produced by the source crystal that matters, but rather the the
number of photons associated with the smaller gains between the source and the analyzer.

The frequency spectrum of high-gain PDC is tied to the properties of vacuum fluctua-
tions, allowing to predict the number of photons from first principles. This makes high-gain
PDC a source-based primary standard for radiometry, akin to blackbody radiation. In this
work, I succesfully retrieve the spectral quantum efficiency of a spectroradiometer, without
the need of a calibrated reference. This adds another tool for the field of primary standard
metrology, for which validation depends on the comparative study of other standards. The
results I present in this thesis are a proof of principle. I therefore identify the main sources
of error to be addressed in order to bring the error margin down and potentially make
high-gain PDC a usable standard in metrology laboratories.

We can consider bright squeezed light to be classical-scale optical fields that exhibit
clear, quantum-like properties and statistics. This behaviour invites conceptualization of
a multitude of practical applications where classical limits on metrology or even whole
new standards for radiometry become available. Provided we have sufficient, careful un-
derstanding into the quantum nature of how squeezed light is generated and the resulting
consequences, we will be able to shine this bright light into otherwise dark corners of yet
unknown physics.
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