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Abstract

Light passing through an optical system can undergo phase distortions due to linear and

nonlinear optical phenomena. These phase distortions can degrade imaging resolution

and cause a well-defined laser beam to break up into an unpredictable intensity structure.

The strong spatial correlation between entangled photons is used to nonlocally cancel the

effects of linear phase distortions (aberrations) introduced to one photon in a quantum

imaging experiment. The effects of these aberrations on a measurement of transverse

entanglement and the limits of this cancellation scheme are also demonstrated. A quantum-

enhanced quantitative phase imaging method that achieves twice the signal to noise ratio

and approximately 1.7 times the resolution of classical phase imaging is also presented.

By using only 40 photons/s/𝜇m2 and having data collection times that are three orders of

magnitude faster than coincidence imaging techniques, this technique can be used to image

light-sensitive biological samples. In a separate experiment, a polarization-structured beam

containing all polarization states on the surface of the Poincaré sphere is shown to have

a lower likelihood of developing optical caustics upon propagation through a nonlinear

self-focusing medium. Mitigating nonlinear phase distortions by applying polarization-

structuring to a beam can improve stability in high intensity laser systems, like those used in

directed energy defense systems. A method of generating polarization-structured beams
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that contain states of both full and partial polarization is also presented. This method is

used to generate a beam that contains all possible states of polarization, which may have

an increased stability under nonlinear propagation. By utilizing the properties of spatially

entangled photons and polarization-structured beams, this thesis presents new methods of

mitigating and characterizing linear and nonlinear phase distortions.
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1. Introduction

Phase irregularities can degrade an optical system’s imaging resolution and distort the

intended intensity profile of laser beams. Individual optical elements in imaging systems can

introduce phase distortions that are characterized in terms functions belonging to orthogonal

basis sets, generally referred to as aberrations. Similarly, light propagating through the

atmosphere can experience phase distortions due to turbulence induced by temperature

gradients and air currents. This effect is responsible for the twinkling of the stars at night. In

extreme cases, linear phase distortions can cause beams to collapse in such a way that their

energy is confined to small regions of space [1, 2]. This effect, known as optical caustic

generation, is mostly clearly visible in the network-like pattern formed on the bottom of a

swimming pool as light passes through waves on the water surface. The effects described

above are all linear optical effects. That is to say, the phase distortion experienced by the

light field does not depend on the amount of energy contained in the field.

Generally, nonlinear optical effects occur in materials whose polarization depends

nonlinearly on the field passing through them. This nonlinear polarization acts as a driving

term in the Helmholtz equation, generating new optical fields in the material. For example,

materials whose polarization depends on the square of the input field can generate new light

fields oscillating at twice the input field’s frequency (second harmonic generation) or create

a DC field inside the material (optical rectification) [3]. Several other nonlinear optical

effects are possible, such as difference frequency generation, sum frequency generation,
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self-focusing, two-beam coupling, and higher harmonic generation, just to name a few.

Self-focusing and two-beam coupling are of particular interest to this thesis. Self-focusing is

characterized by a third-order dependence on the optical field such that the phase of the field

propagating in the material depends upon its own intensity. Or, framed a bit differently, the

refractive index of the material depends upon the intensity of the light illuminating it,

𝑛 = 𝑛0 + 𝑛2𝐼 (𝒓), (1.1)

where 𝑛0 is the linear refractive index, 𝑛2 is the nonlinear refractive index, and 𝐼 (𝒓) is the

intensity of the beam. Thus, the transverse intensity structure of the beam forms an effective

lens in the material. Irregularities in the transverse intensity structure of the beam can

cause the beam to breakup into several smaller beams, known as filaments, under nonlinear

self-focusing. Filamentation can even be seeded by quantum fluctuations in the beam

intensity [4].

Two-beam coupling occurs when the refractive index experienced by one beam is

modified by the presence of another beam,

𝑛 = 𝑛0 + 𝑛2 [𝐼1(𝒓) + 𝜇𝐼2(𝒓)] , (1.2)

where 𝐼1(𝒓) and 𝐼2(𝒓) are the intensities of the two beams and 𝜇 is a coupling parameter. The

two beams can be distinguished by their frequency, polarization, or direction of propagation,

among other degrees of freedom. Thus, the effective lens mentioned earlier can now be

controlled by an auxilliary beam. Whether it be through self-focusing or two-beam coupling,

a material with an intensity dependent refractive index introduces phase distortions to light

passing through it.

Characterizing and mitigating phase distortions, both linear and nonlinear, are crucial
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for high resolution imaging, optical communications [5], remote atmospheric sensing [6],

laser-based lightning strike control [7], and directed energy applications [8]. Quantum

imaging is a quickly developing field that harnesses the strong spatial correlation entangled

photons to enhance or provide alternatives to classical imaging techniques. In particular,

ghost imaging is a scheme that allows one to image an object at wavelengths where detectors

are either unavailable or cost-prohibitive. This is accomplished by illuminating the object

with a photon from an entangled pair and detecting it in coincidence with its entangled

partner photon. However, like classical imaging techniques, aberrations degrade the image

obtained from this method. Extending the characterization and compensation of optical

aberrations into the quantum domain pushes the boundaries of current adaptive optics

techniques.

In Chap. 2, the strong position and momentum correlation of spatially entangled photons

are used to demonstrate a nonlocal aberration correction scheme. Aberrations introduced

into the path of one photon in an entangled pair degrade the amount of position correlations

measured between the two photons. In a ghost imaging setup, these aberrations are shown to

degrade the imaging resolution. However, by introducing the proper conjugate aberration to

the other photon’s path, the position correlation of the two photons and the original ghost

imaging resolution are recovered. The experiment and results of Chap. 2 extends the field of

adaptive optics into the quantum domain.

In some cases the phase distortion introduced to a light field is the primary object of

interest. Such is the case in the imaging of phase-only objects, which includes the imaging

of live biological samples. Some biological cells, like an alga studied for biofuel production

known as chlamydomonas reinhardtii, are sensitive to illumination at certain wavelengths [9,

10]. As a result, it is difficult to image samples like chlamydomonas reinhardtii at a high

resolution and high signal-to-noise ratio without changing the state of the cell. In Chap. 3, a

quantum-enabled phase imaging method is presented that achieves twice the signal-to-noise



CHAPTER 1. INTRODUCTION 4

ratio and approximately 1.7 times the resolution of classical low-light phase imaging. This

quantum phase imaging technique relies upon the quantum interference between cascaded

spontaneous parametric down-conversion processes. The strong position correlation between

photons created in spontaneous parametric down conversion is used to achieve twice the

phase shift of classical quantitative phase imaging. Furthermore, the wide spatial bandwidth

of spontaneous parametric down-conversion photons leads to an increase in the imaging

resolution compared to illumination with a classical laser beam. These enhancements are

obtained without measuring the entangled photons in coincidence. As a result, the data

collection requires approximately ten seconds, which is three orders of magnitude faster than

state-of-the-art coincidence imaging techniques [11] and closer to the relevant time scales of

biological processes.

As mentioned earlier, a nonlinear material with an intensity-dependent refractive index

can introduce significant phase distortions to high intensity laser beams. In particular,

nonlinear self-focusing can cause caustic features to develop in a beam that wouldn’t

develop caustics under linear propagation [12]. High intensity laser beams are central to the

developing fields of remote atmospheric sensing, laser-enabled lightning strike control, and

directed energy defense systems. Mitigating nonlinear phase distortions will be essential

in the continuing development of these fields. Laser beams with a transversely varying

polarization, sometimes referred to as polarization-structured beams, have been shown to

be more stable against effects due to nonlinear self-focusing [13]. In Chap. 4, a particular

polarization-structured beam that contains all states of full polarization, known as a full-

Poincaré beam, is studied under conditions that lead to the development of nonlinear optical

caustics. Compared to a uniformly polarized beam with the same intensity structure, the full

Poincaré beam is less likely to develop nonlinear optical caustics for a range of beam powers.

Thus, the nonlinear phase distortion is mitigated by imposing polarization structuring on the

beam. The results of this chapter may also be useful for fiber-based optical communications,
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where some polarization-structured beams form the mode basis of certain optical fibers [14].

So far, the study of polarization structured beams under nonlinear propagation has been

limited to beams that contain only states of full polarization. However, more complicated

polarization-structured beams that contain states of both full and partial polarization may

result in a greater resistance to the effects resulting from an intensity-dependent refractive

index [15]. Chapter 5 presents a method of generating polarization-structured beams that

contain both full and partial polarization. This method is then used to generate a beam

that contains all possible states of polarization at some point along the transverse and

longitudinal extent of the beam. Because this beam contains all states on the interior

and surface of the Poincaré sphere, it is referred to here as a volumetrically-full Poincaré

beam. Beams that contain orbital angular momentum are more likely to break up under

nonlinear propagation [16, 17]. Though the full-Poincaré beam in Chap. 4 is more stable

against nonlinear beam breakup, it contains a nonzero orbital angular momentum. The

volumetrically-full Poincaré beam generated in Chap. 5 has the same intensity structure as

the full-Poincaré beam, but it contains zero orbital angular momentum. As a result, it may

have an increased stability to nonlinear beam breakup beyond that of a full-Poincaré beam.

In applications ranging from high resolution imaging to remote atmospheric sensing,

one must contend with phase distortions introduced from either linear or nonlinear effects.

The methods presented in this thesis provide new ways to characterize and mitigate phase

distortions using the properties of spatially entangled photons and polarization structured

beams. The experiments using spatially entangled photons open up new avenues for quantum-

enhanced phase imaging and improve existing quantum imaging protocols. It is also shown

that polarization-structured beams can be used to improve high intensity laser systems, and

a new type of polarization-structured beam involving all possible states of polarization

is demonstrated. By reaching into the quickly developing fields of quantum optics and

structured-light generation, this thesis provides new alternatives to current methods of
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handling phase distortions.



7

2. Quantum Nonlocal Aberration Cancel-

lation

2.1 Introduction

Correlations between entangled particles have been widely studied since Einstein, Podolsky,

and Rosen published an argument regarding the incompleteness of quantum mechanics [18].

Through the use of spontaneous parametric down-conversion in birefringent crystals, photons

entangled in energy-time [19], position-momentum [20], polarization [21], and angular

momentum [22] can be readily produced for experiments. Generally speaking, the optical

path through which the entangled photons propagate determines the level of correlation

that can be measured in the modulus of the two photon wave function [23]. In the case of

energy-time entangled photons, the group velocity dispersion (GVD) of the media through

which each photon passes will effect the amount of correlation measured in the time of

creation of the two photons. This idea was first explored by J.D. Franson with the result that

when the GVD parameters of the media in each photon’s path were equal in magnitude, but

opposite in sign, the effect of GVD on the temporal correlation between the two photons

could be cancelled nonlocally [24]. A local dispersion cancellation scheme relying upon path

distinguishability was reported experimentally by Steinberg et al. shortly after Franson’s

proposal [25].



CHAPTER 2. QUANTUM NONLOCAL ABERRATION CANCELLATION 8

Group velocity dispersion represents only the second-order term in a frequency-dependent

phase shift that can be composed of both even- and odd-order terms of various powers.

Non-simultaneous local cancellation of both even- and odd-order terms in this phase shift

has been demonstrated [26] and the simultaneous cancellation of higher-order frequency-

dependent phase shifts was demonstrated as a quantum encryption method that is analogous

to orthogonal optical coding [27]. Despite being proposed thirty year ago, Franson’s

nonlocal dispersion cancellation scheme was only recently demonstrated experimentally [19].

Classical dispersion cancellation has also been demonstrated since time-frequency correlation

can be achieved classically [28, 29].

The Fourier transform relationship between the basis in which the phase shift is introduced

and the basis of the correlation measurement allows one to extend the ideas of dispersion

cancellation to the position-momentum domain. A transverse momentum-dependent phase

shift introduced to a photon’s path is equivalent to introducing aberration [30]. Such an

aberration will alter the joint probability of detection in the image plane of the crystal

where two position-momentum entangled photons are produced, suggesting the possibility

of a spatial analogue to Franson’s nonlocal dispersion cancellation experiment. No such

experiment has been reported at the time of this writing. Furthermore, no experiment

has demonstrated the simultaneous cancellation of both even- and odd-order aberrations.

Local even-order aberration cancellation has been demonstrated, and revealed through

Hong-Ou-Mandel interference [31]. Local odd-order aberration cancellation has also been

demonstrated [32]. All-order aberration compensation has also been demonstrated recently,

but was still performed locally [33]. The nonlocal compensation of pure phase objects has

been reported, but it was only revealed through polarization correlations [34].

This chapter demonstrates the effect of defocus and its subsequent cancellation on

transverse entanglement measurements and the first successful nonlocal cancellation of

both even- and odd-order aberrations. Further, defocus is cancelled nonlocally in a
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quantum imaging experiment, demonstrating the utility of nonlocal aberration cancellation

in optimizing quantum imaging setups [35–37].

2.2 Background

The two-photon wave function for the entangled photons emitted during spontaneous

parametric down conversion (SPDC), known as the signal and idler, has been derived by a

number of workers in quantum optics [38–41]. This derivation will be summarized in order

to set up the discussion of nonlocal aberration cancellation.

To obtain the two photon wave function for the signal and idler photons, it is necessary to

first derive the Hamiltonian that governs the SPDC process. The energy of the electromagnetic

field inside the material used to produce SPDC is given by,

E =
1
2

∫
𝑉

𝑑3𝑟 [𝑫 · 𝑬 + 𝑯 · 𝑩] , (2.1)

where the integration is performed over the volume of the material, 𝑉 . The displacement

field, 𝑫, is defined in terms of the permittivity of free space, 𝜖0, the dielectric susceptibility

tensor, ↔𝜒, and the electric field, 𝑬: 𝑫 = 𝜖0(1 + ↔
𝜒)𝑬. The magnetic induction, 𝑯 = 𝑩/𝜇,

also stores energy, where 𝜇 is the permiability of the material, and 𝑩 is the magnetic field.

However, the materials typically used for SPDC are non-magnetic. In such cases, 𝑯 = 𝑩/𝜇0,

where 𝜇0 is the permiability of free space. The energy can now be expressed as,

E =
1
2

∫
𝑉

𝑑3𝑟

[
𝜖0𝑬 · 𝑬 + 1

𝜇0
𝑩 · 𝑩

]
+ 1

2

∫
𝑉

𝑑3𝑟
[
𝜖0

↔
𝜒𝑬 · 𝑬

]
. (2.2)

The first term on the R.H.S. of Eq. (2.2) is the free space energy of the EM field. The second

term on the R.H.S. of Eq. (2.2) accounts for the interaction of the field with the material.
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Generally, the electric susceptibiliy depends upon the electric field inside the material,

↔
𝜒 =

↔
𝜒
(1)

+ ↔
𝜒
(2)

𝑬1 +
↔
𝜒
(3)

𝑬1𝑬2 + · · · (2.3)

The first term on the R.H.S of Eq. (2.3) accounts for the linear response of the material,

whereas the terms involving higher orders of 𝑬 account for the nonlinear response of the

material. Accordingly, the susceptibility can be written as, ↔𝜒 =
↔
𝜒
(1)

+ ↔
𝜒𝑁𝐿 . Because the

process of SPDC involves the interaction of multiple fields, it is only the nonlinear term in

the susceptibility that gives rise to SPDC. In particular, SPDC arises from the second order

susceptibility, ↔𝜒
(2)

. In addition to SPDC, the second-order susceptibility leads to effects such

as sum-frequency generation, difference-frequency generation, and optical rectification [42].

However, in SPDC only a single field, known as the pump, is incident on the nonlinear

material that generates SPDC. Furthermore, the generated signal and idler fields are very

weak and will be assumed to produce a negligible sum-frequency, difference-frequency,

or optical rectification field through a cascaded nonlinearity. Thus, the relevant energy

associated with the SPDC process is then,

E𝑁𝐿 =
1
2

∫
𝑉

𝑑3𝑟

[
𝜖0

↔
𝜒
(2)

𝑬𝑝𝑬𝑠𝑬𝑖

]
, (2.4)

where 𝑝, 𝑠, 𝑖 represent the pump, signal, and idler fields respectively. Equation (2.4) can be

simplifed if only type-II phase matching is considered. In this case, the polarizations of the

pump and signal photons lie in the plane of the optical axis of the crystal used to generate

SPDC. This polarization is known as extraordinary polarization [43]. The idler photon’s

polarization is orthogonal to the optic axis of the crystal, known as ordinary polarization.

The signal and idler fields can be cast as operators to switch to the quantum mechanical

picture. The pump field will remain classical under the assumption that it is minimally
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depleted during the SPDC process. Thus, the effective Hamiltonian for the interaction of

a pump field with a nonlinear crystal producing a two-photon state under nearly collinear

type-II phase matching is given by,

Ĥ = 𝜖0

∫
𝑉

𝑑3𝑟 𝜒
(2)
𝑒𝑒𝑜𝐸

(+)
𝑝,𝑒 �̂�

(−)
𝑠,𝑒 �̂�

(−)
𝑖,𝑜

(2.5)

where 𝜒(2) is the second order nonlinear susceptibility. 𝐸
(+)
𝑝,𝑒 is the positive frequency,

extraordinarily polarized, classical electric field of the pump given by,

𝐸
(+)
𝑝,𝑒 =

∫
𝑑3𝑘 𝑝𝐴(𝒌 𝑝)𝑒𝑥𝑝[𝑖(𝒌 𝑝 · 𝒓 − 𝜔𝑝 (𝑘 𝑝)𝑡)] (2.6)

The bounds of integration in Eq. (2.6) are suppressed and range from −∞ to ∞. �̂� (−)
𝑗 ,𝜎

is the

negative frequency component of the electric field operator for the signal or idler photon

( 𝑗 = 𝑠, 𝑖; 𝜎 = 𝑒, 𝑜):

�̂�
(−)
𝑗 ,𝜎

=

∫
𝑑3𝑘 𝑗𝜖𝜎 (𝜔 𝑗 )�̂�†(𝒌 𝑗 , 𝜎)𝑒𝑥𝑝 [−𝑖(𝒌 𝑗 · 𝒓 − 𝜔 𝑗 (𝑘 𝑗 )𝑡)] (2.7)

where

𝜖𝜎 (𝜔 𝑗 ) =
𝑖

(2𝜋)3

√︄
ℏ𝜔 𝑗 (𝑘 𝑗 )𝑉𝑄
2𝜖0𝑛

2
𝜎 (𝜔 𝑗 )

(2.8)

The quantization volume is represented as 𝑉𝑄 and 𝒌 𝑗 = 𝜅 𝑗 �̂� 𝑗 + 𝑘 𝑗 ,𝑧𝑧 𝑗 ( 𝑗 = 𝑠, 𝑖). The

transverse wavevector is connected to the transverse momentum through the de Broglie

relation, 𝒑⊥ = ℏ𝜿. The state of the field after the crystal is obtained by acting upon the

vacuum with the time translation operator approximated to the first order.

|𝜓(𝑡)⟩ = �̂� (𝑡) |0⟩ =
(
1 − 𝑖

ℏ

∫ 𝑡

0
𝑑𝜏Ĥ (𝜏)

)
|0⟩ (2.9)
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Evaluating the right-hand-side (RHS) of Eq. 2.9 results in a rather lengthy expression:

|𝜓(𝑡)⟩ = −𝑖𝜖0𝜒
(2)
𝑒𝑒𝑜

2ℏ

∫
𝑑𝜏

∫
𝑉

𝑑3𝑟

∫
𝑑3𝑘 𝑝

∫
𝑑3𝑘𝑠

∫
𝑑3𝑘𝑖𝜖𝑒 (𝜔𝑠)𝜖𝑜 (𝜔𝑖)

× 𝐴(𝒌 𝑝) exp
[
𝑖(𝒌 𝑝 − 𝒌𝑖 − 𝒌𝑠) · 𝒓 − 𝑖(𝜔𝑝 − 𝜔𝑠 − 𝜔𝑖)𝜏

]
× |𝜔𝑠, 𝒌𝑠, 𝑒⟩|𝜔𝑖, 𝒌𝑖, 𝑜⟩, (2.10)

where the vacuum contribution to the state has been dropped (though it will be important in

Chap. 3). After evaluating the time and volume integrals, Eq. (2.10) becomes

|𝜓(𝑡)⟩ = −𝑖𝜖0𝜒
(2)
𝑒𝑒𝑜

2ℏ

∫
𝑑3𝑘 𝑝

∫
𝑑3𝑘𝑠

∫
𝑑3𝑘𝑖𝜖𝑒 (𝜔𝑠)𝜖𝑜 (𝜔𝑖)𝐴(𝒌 𝑝)

× exp
[
𝑖(𝜔𝑠 + 𝜔𝑖 − 𝜔𝑝)

𝑡

2

]
sinc

[
(𝜔𝑠 + 𝜔𝑖 − 𝜔𝑝)

𝑡

2

]
×

∏
𝑚

exp
[
−𝑖(𝒌𝑠 + 𝒌𝑖 − 𝒌 𝑝)𝑚

ℓ𝑚

2

]
sinc

[
(𝒌𝑠 + 𝒌𝑖 − 𝒌 𝑝)𝑚

ℓ𝑚

2

]
× |𝜔𝑠, 𝒌𝑠, 𝑒⟩|𝜔𝑖, 𝒌𝑖, 𝑜⟩, (2.11)

where 𝑚 = {𝑥, 𝑦, 𝑧}, and ℓ𝑚 is the length of the crystal along a particular dimension.

A few approximations can be made to simplify the (RHS) Eq. (2.11) [39]. The first

approximation is that the transverse dimensions of the crystal are large compared to the

transverse size of the pump beam. Put another way, the pump, signal, and idler effectively

don’t "see" the edges of the crystal. This approximation leads to

sinc
[
(𝒌𝑠 + 𝒌𝑖 − 𝒌 𝑝)𝑥

ℓ𝑥

2

]
sinc

[
(𝒌𝑠 + 𝒌𝑖 − 𝒌 𝑝)𝑦

ℓ𝑦

2

]
≈ 𝛿(𝜿𝑠 + 𝜿𝑖 − 𝜿𝑝) (2.12)

Next, the paraxial approximation is employed, and the crystal is taken to be thin enough to

ignore transverse walk-off of the beam [39] such that,

𝑘𝑧, 𝑗 ≈ 𝑘 𝑗

(
1 −

𝜅2
𝑗

2𝑘2
𝑗

)
𝑗 = {𝑖, 𝑠, 𝑝} (2.13)
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Similarly, is it assumed that 𝑑𝑘𝑧, 𝑗 ≈ 𝑑𝑘 𝑗 . The pump is assumed to be approximately

monochromatic, resulting in 𝐴(𝒌 𝑝) = 𝜈(𝜿𝑝)𝛿(𝑘 𝑝 − 𝑘0), where 𝜈(𝜿𝑝) is the angular spectrum

of the pump. Finally, perfect phase matching is assumed, 𝑘𝑠 + 𝑘𝑖 − 𝑘 𝑝 = 0. With these

approximations, the two photon wave function becomes

|𝜓(𝑡)⟩ = −𝑖𝜖0𝜒
(2)
𝑒𝑒𝑜

2ℏ

∫
𝑑𝑘𝑠

∫
𝑑𝑘𝑖

∫
𝑑2𝜅𝑖

∫
𝑑2𝜅𝑠𝜖𝑒 (𝜔𝑠)𝜖𝑜 (𝜔𝑖)𝜈(𝜿𝑠 + 𝜿𝑖)

× exp
[
−𝑖

(
|𝜿𝑠 + 𝜿𝑖 |2

2𝑘0
− |𝜿𝑠 |2

2𝑘𝑠
− |𝜿𝑖 |2

2𝑘𝑖

)
ℓ𝑐

2

]
× sinc

[(
|𝜿𝑠 + 𝜿𝑖 |2

2𝑘0
− |𝜿𝑠 |2

2𝑘𝑠
− |𝜿𝑖 |2

2𝑘𝑖

)
ℓ𝑐

2

]
× exp

[
−𝑖(𝜔𝑠 + 𝜔𝑖 − 𝜔0)

𝑡

2

]
sinc

[
(𝜔𝑠 + 𝜔𝑖 − 𝜔0)

𝑡

2

]
× |𝜔𝑠, 𝜿𝑠, 𝑒⟩|𝜔𝑖, 𝜿𝑖, 𝑜⟩ (2.14)

where the substitution ℓ𝑧 = ℓ𝑐 has been made for the length of the crystal along the propagation

direction.

After creation, the signal and idler photons are split by a polarizing beamsplitter,

passed through an optical system that adds a transverse momentum-dependent phase shift

(aberration), and are detected in either the position basis or the momentum basis. The

amplitude for coincident detection in the position basis can be evaluated as follows [38]:

𝐴(𝝆𝑠, 𝝆𝑖) = ⟨0|�̂� (+)
𝑠,𝑒 (𝝆𝑠)�̂� (+)

𝑖,𝑜
(𝝆𝑖) |𝜓(𝑡)⟩ (2.15)

where,

�̂�
(+)
𝑗 ,𝜎

=

∫
𝑑2𝜅′𝑗𝜖𝜎

(𝜔𝑝

2

)
𝐻 𝑗 (𝜿′𝑗 )�̂�

(
𝜿′𝑗 , 𝜎,

𝜔0
2

)
× exp

[
𝑖

(
𝜿′𝑗 · 𝝆 𝑗 −

𝜔0
2
𝑇

)]
(2.16)
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Note that it has been explicitly required that the photons be detected at time 𝑇 and at a

frequency 𝜔0
2 . In practice, the frequency of the signal and idler photons are well-defined by

narrow-band interference filters. 𝐻 (𝜿′
𝑗
) represents the transfer function of the optical system

containing the aberration and is given by,

𝐻 𝑗 (𝜿′𝑗 ) = 𝑒𝑥𝑝

[
𝑖𝜙 𝑗 (𝜿′𝑗 )

]
(2.17)

The coincident detection amplitude is given approximately by,

𝐴(𝝆𝑠, 𝝆𝑖) = C
∫

𝑑2𝜅𝑠

∫
𝑑2𝜅𝑖 𝜈(𝜿𝑠 + 𝜿𝑖) sinc

[
ℓ𝑐 |𝜿𝑠 − 𝜿𝑖 |2

4𝑘0

]
× exp

[
−𝑖

(
ℓ𝑐 |𝜿𝑠 − 𝜿𝑖 |2

4𝑘0

)]
𝐻𝑠 (𝜿𝑠)𝐻𝑖 (𝜿𝑖)

× exp[𝑖(𝜿𝑠 · 𝝆𝑠 + 𝜿𝑖 · 𝝆𝑖)] (2.18)

where all factors not depending upon the transverse wavenumber have been subsumed by C.

The integrand in Eq. (2.18) sans the kernel is the wave function for the photons in transverse

wavenumber space. Writing it in a more compact form,

𝜓 (𝜿𝑠, 𝜿𝑖) = C𝜈 (𝜿𝑠 + 𝜿) �̃�(2) (𝜿𝑠 − 𝜿𝑖)𝐻𝑠 (𝜿𝑠)𝐻𝑖 (𝜿𝑖) (2.19)

Because �̃�(2) is effectively the Fourier transform of the nonlinear susceptibility along the

propagation direction, it is typically referred to as the phase-matching function.

2.2.1 Nonlocal Aberration Cancellation

One can see from the functional dependence on 𝜿𝑠 and 𝜿𝑖 that the wave function is

nonseparable in this basis. The term 𝜈(𝜿𝑠 + 𝜿𝑖) depends upon the transverse momentum

coherence properties of the pump and will influence the transverse momentum anticorrelation



CHAPTER 2. QUANTUM NONLOCAL ABERRATION CANCELLATION 15

of the signal and idler photons [44, 45]. In the case that the pump is a plane wave, the

transverse momentum anticorrelation of the signal and idler will be perfect. In most cases

the pump profile is a Gaussian, resulting in less momentum anticorrelation between the

signal and idler than for a plane-wave pump. The remaining terms in the momentum-basis

wave function,

exp
[
−𝑖

(
ℓ𝑐 |𝜿𝑠 − 𝜿𝑖 |2

4𝑘0

)]
sinc

[
ℓ𝑐 |𝜿𝑠 − 𝜿𝑖 |2

4𝑘0

]
𝐻𝑠 (𝜿𝑠)𝐻𝑖 (𝜿𝑖) (2.20)

will also influence the transverse position and momentum correlations of the signal and

idler photons. In particular, the transverse momentum-dependent phase shift introduced to

each beam will influence the form of the coincidence distribution in the position basis. To

explore this effect, the momentum-dependent phase shift introduced to each photon can be

expanded in a Taylor series. For the sake of simplicity, the phase shift will be introduced in

one dimension only.

𝜙 𝑗 (𝜅 𝑗 ,𝑥) = 𝜙 𝑗 ,0 + 𝜙′𝑗 (0) 𝜅 𝑗 ,𝑥 + 𝜙′′𝑗 (0) 𝜅2
𝑗 ,𝑥/2 + · · · (2.21)

where 𝑗 = 𝑠, 𝑖. The pump is taken to be a plane wave, leading to 𝜈(𝜿𝑠 + 𝜿𝑖) = 𝛿(𝜿𝑠 + 𝜿𝑖). In

order to simplify the integration of Eq. (2.18), the sinc function can be approximated by a

Gaussian [23],

sinc
[
ℓ𝑐 |𝜿𝑠 − 𝜿𝑖 |2

4𝑘0

]
≈ exp

[
−𝛾ℓ𝑐 |𝜿𝑠 − 𝜿𝑖 |2

4𝑘0

]
(2.22)

where 𝛾 = 0.455. The amplitude for coincident detection becomes,

𝐴(𝝆𝑠, 𝝆𝑖) ≈ 𝐴1(𝑦𝑠, 𝑦𝑖)
∫

𝑑𝜅𝑥 exp [−𝑖 𝑓 (𝜅𝑥)]

× exp
[
−
𝛾ℓ𝑐𝜅

2
𝑥

𝑘0

]
exp[𝑖(𝜅𝑥 [𝑥𝑠 − 𝑥𝑖])], (2.23)



CHAPTER 2. QUANTUM NONLOCAL ABERRATION CANCELLATION 16

where

𝑓 (𝜅𝑥) =
ℓ𝑐𝜅

2
𝑥

𝑘0
− (Φ0 + 𝜅𝑥 (𝛼𝑠 − 𝛼𝑖) + 𝜅2

𝑥 (𝛽𝑠 + 𝛽𝑖) + · · · ). (2.24)

In arriving at Eqs. (2.23) and (2.24), the plane wave pump approximation led to the

substitution 𝜿𝑖 = −𝜿𝑠 = −𝜿. The coefficients of the expansion (2.21) have been subsumed

by 𝛼 𝑗 and 𝛽 𝑗 , and Φ0 = 𝜙𝑠,0 + 𝜙𝑖,0. One can already see in Eq. (2.24) that under certain

circumstances the effect of the momentum-dependent phase shift introduced to one photon

can be cancelled by the momentum-dependent phase shift introduced to the other in the

two-photon wave function. In particular, if all of the even terms in the expansion (2.21) are

equal in magnitude but opposite in sign for the two photons and all the odds terms are equal,

the two phase shifts will cancel. This leads to the condition

𝜙𝑠 (𝜅𝑥) = −𝜙𝑖 (−𝜅𝑥) (2.25)

for full cancellation to occur. This functional dependence is result of the momentum

anti-correlation of the signal and idler. If the aberrations occurred in the plane where

positions of the signal and idler photons were positively correlated (such as the output facet

of the nonlinear crystal), the condition for all-order aberration cancellation would instead be

𝜙𝑠 (𝑥) = −𝜙𝑖 (𝑥).

If only the terms through second order are kept in Eq. (2.21) and the integration is carried

out in Eq. (2.23) the result is,

𝐴(𝝆𝑠, 𝝆𝑖) ∝ exp

−
(𝑥− + 𝛼−)2

2
(
𝛾 ℓ𝑐
𝑘0

+ 𝑖

(
ℓ𝑐
𝑘0

− 𝛽𝑠 − 𝛽𝑖

))  . (2.26)

where 𝑥− = (𝑥𝑠 − 𝑥𝑖)/
√

2. The terms involving the y-direction and a constant of integration
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have been dropped in Eq. (2.26). The probability for coincident detection is then,

𝑃(𝝆𝑠, 𝝆𝑖) ∝ exp


−2𝛾 ℓ𝑐

𝑘0
(𝑥− + 𝛼−)2(

(𝛾 ℓ𝑐)2
𝑘2

0
+

(
ℓ𝑐
𝑘0

− 𝛽𝑠 − 𝛽𝑖

)2
)


(2.27)

From Eq. (2.27) is it clear that the width of the coincidence distribution in the 𝑥−-direction

is influenced by the sum 𝛽𝑠 + 𝛽𝑖. Intuitively, this is expected because the Fourier transform

of a Gaussian is a Gaussian. The location of the coincidence distribution’s mean in the

𝑥−- direction is influenced by 𝛼− = (𝛼𝑠 − 𝛼𝑖)/
√

2. This can be understood intuitively by

noting that a linear phase results in a displacement in the Fourier space according to the

Fourier shift theorem [46]. If the transverse momentum dependent phase shifts satisfy the

criteria in Eq. (2.25), then the effects of these shifts on the coincidence distribution will

be cancelled nonlocally. This cancellation is the spatial analogue of Franson’s nonlocal

dispersion cancellation [24]. Because the aberration is a phase in the momentum-basis, it

does not affect the form of the probably distribution in this domain. One can generalize the

findings above to include higher-order terms in the expansion of the momentum-dependent

phase shift. For example, if a cubic momentum-dependent phase is introduced to the signal

and idler without cancellation, the skew of the joint position distribution will change.

It should be noted that aberration cancellation relies solely upon transverse momentum

correlation between the signal and idler. Because momentum correlation between two beams

can be achieved classically [47, 48], this effect may be possible in the classical regime.

2.2.2 Common Optical Aberrations

The terms in expansion of the momentum-depdendent phase, Eq. (2.21), are useful for

demonstrating nonlocal aberration canellation but lack a clear connection between common
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Figure 2.1: Diagram depicting the wavefront expansion method of classifying optical aberrations,
adapted from [49]. The reference wavefront (blue) propagates to a point on the paraxial image plane
from the exit pupil of an optical system. Aberrations (undefined in this example) cause the aberrated
wavefront (red) to focus at a location other than the paraxial image plane. The wavefront error,
𝑤(𝑥𝑝, 𝑦𝑝, ℎ), is defined in terms of the pupil coordinates 𝑥𝑝 and 𝑦𝑝 and the normalized image height,
ℎ.

optical aberrations used in optical engineering and adaptive optics. Figure 2.1 diagrams

the wavefront expansion method of classifying optical aberrations [49]. An ideal imaging

system will cause a wavefront at the exit pupil of an imaging system to focus to a point on

the paraxial image plane (blue). This wavefront, the reference wavefront, will be compared

with the wavefront at the exit pupil of an imaging system that contains aberrations (red). The

difference in the reference wavefront and the aberration wavefront is known as the wavefront

error, 𝑤(𝑥𝑝, 𝑦𝑝, ℎ), and is defined in terms of the exit pupil coordinate, 𝑥𝑝 and 𝑦𝑝, and the

normalized image height, ℎ. By convention, the exit pupil coordinates in the polar basis

are defined as 𝑥𝑝 = 𝜌𝑝 sin(𝜃𝑝) and 𝑦𝑝 = 𝜌𝑝 cos(𝜃𝑝), where 𝜃𝑝 is angle in the clockwise

direction from the 𝑦𝑝 axis. By definition, the exit pupil is assumed to be the location of the

Fraunhoffer diffraction pattern formed by the object to be imaged and the imaging system.

Thus, the coordinates of the exit pupil plane are directly proportional to the transverse

momentum coordinates, 𝑥𝑝 ∝ 𝜅𝑥 and 𝑦𝑝 ∝ 𝜅𝑦. As such, any deviations from an ideal phase

(i.e. spherical reference wavefront) in this plane correspond to a momentum-dependent
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phase shift.

For rotationally symmetric systems, the wavefront error is expanded in terms of ℎ2, 𝜌2
𝑝,

and ℎ𝜌𝑝 cos(𝜃𝑝),

𝑤(𝜌𝑝, 𝜃𝑝, ℎ) =
∑︁
𝑖

∑︁
𝑗

∑︁
𝑘

𝑊2𝑖+𝑘,2 𝑗+𝑘,𝑘
(
ℎ2

) 𝑖 (
𝜌2
𝑝

) 𝑗 [
ℎ𝜌𝑝 cos(𝜃𝑝)

] 𝑘
. (2.28)

The coefficient 𝑊 and its subscripts are a shorthand way of referring to a particular type of

aberration. The subscripts on the coefficient 𝑊 are chosen to make them consistent with the

convention used on Ref. [49]. Table 2.1 shows terms in the wavefront expansion of order

five and below, their common name, and their 𝑊 coefficient. By convention, the order is

assigned based upon the order of the ray aberration–one less than the order of the wavefront

aberration.

The dependence of the terms in the wavefront expansion on the image height, ℎ, makes a

straightforward connection between the terms in momentum-dependent phase, Eq. (2.21),

and the terms in Eq. (2.28) difficult. However, if the wavefront is measured for the maximum

image point, ℎ = 1, the connection is more clear. Furthermore, when ℎ is set equal to one,

the terms in the wavefront expansion can be described using the Zernike polynomials [50].

The Zernike polynomials are an orthogonal basis set of polynomials defined on a unit disk

that satisfy the requirement of rotational symmetry common to most optical systems. Their

mathematical form is that of a product solution [51],

𝑍𝑚
𝑛

(
𝜌𝑝, 𝜃𝑝

)
= 𝑅𝑚

𝑛

(
𝜌𝑝

)
exp

(
𝑖𝑚𝜃𝑝

)
(2.29)

The radial function, 𝑅𝑚
𝑛 , is a real polynomial in 𝜌𝑝. Typically, the real part of 𝑍𝑚

𝑛 is chosen if

the angular symmetry of the optical system is relative to the y-axis. However, the imaginary

part of 𝑍𝑚
𝑛 may be chosen if the symmetry is relative to the x-axis. Because the Zernike
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Table 2.1: Common optical aberrations.

aberration coefficient functional form

piston 𝑊000 1

defocus 𝑊020 𝜌2
𝑝

wavefront tilt 𝑊111 ℎ𝜌𝑝 cos
(
𝜃𝑝

)
spherical aberration (SA) 𝑊040 𝜌4

𝑝

coma 𝑊131 ℎ𝜌3
𝑝 cos

(
𝜃𝑝

)
astigmatism 𝑊222 ℎ2𝜌2

𝑝 cos2 (
𝜃𝑝

)
field curvature 𝑊220 ℎ2𝜌2

𝑝

distortion 𝑊311 ℎ3𝜌𝑝 cos
(
𝜃𝑝

)
fifth-order SA 𝑊060 𝜌6

𝑝

fifth-order linear coma 𝑊151 ℎ𝜌5
𝑝 cos

(
𝜃𝑝

)
fifth-order astigmatism 𝑊422 ℎ4𝜌2

𝑝 cos2 (
𝜃𝑝

)
fifth-order field curvature 𝑊420 ℎ4𝜌2

𝑝

fifth-order distortion 𝑊511 ℎ5𝜌𝑝 cos
(
𝜃𝑝

)
sagittal oblique SA 𝑊240 ℎ2𝜌4

𝑝

tangential oblique SA 𝑊242 ℎ2𝜌4
𝑝 cos2 (

𝜃𝑝
)

cubic coma 𝑊331 ℎ3𝜌3
𝑝 cos

(
𝜃𝑝

)
line coma 𝑊333 ℎ3𝜌3

𝑝 cos3 (
𝜃𝑝

)
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Table 2.2: Zernike polynomials, 𝑛, 𝑚 <= 3

aberration 𝑛 𝑚 𝑍𝑚
𝑛

piston 0 0 1

y tilt 1 1 𝜌𝑝 cos
(
𝜃𝑝

)
defocus and piston 2 0 2𝜌2

𝑝 − 1

astigmatism and defocus 2 2 𝜌2
𝑝 cos

(
2𝜃𝑝

)
coma and y tilt 3 1

(
3𝜌2

𝑝 − 2𝜌𝑝
)

cos
(
𝜃𝑝

)
polynomials do not depend upon the image coordinates, their use to characterize aberrations

can lead to errors, such as mistaking field curvature for defocus [52]. The first several

Zernike polynomials and their resulting aberrations are shown in Table 2.2 [52]. Recall

that the exit pupil coordinates are proportional to the transverse wave-vector, 𝝆𝑝 ∝ 𝜿. Thus,

comparing the expansion of the momentum-dependent phase shift, Eq. (2.21), and the Zernike

polynomials in Table 2.2, it is clear that the first-order term in the momentum-dependent

phase shift is most closely related to wavefront tilt. The second-order term in Eq. (2.21) is

related to defocus and the third-order term is related to coma. Higher-order terms follow a

similar relationship.

2.2.3 Transverse Entanglement

A well-known signature of transverse entanglement is the violation of the Heisenberg-type

inequality [20, 45, 53],

Δ𝑥2
−Δ𝑝

2
𝑥,+ ≥ ℏ2

4
. (2.30)

Because it is possible to increase the width of the joint probability distribution in the image

plane along the the 𝑥−-direction without affecting the widths of the distribution in the Fourier

plane, one can arrive at a scenario where no entanglement is observed due to defocus being
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Figure 2.2: Experimental setup for measuring the position and momentum correlation between
signal and idler photons. The signal and idler photons are split by a polarizing beamsplitter (PBS)
and pass through a 4 𝑓 imaging system for the position measurement. Spatially-resolved detection is
achieved using translatable slits. Spatial light modulators (SLM) located in the Fourier plane of the
crystal introduce aberrations to each path. For the momentum measurement, the SLMs are imaged
onto the plane of the slits. The lenses L1 and L2 have focal lengths 𝑓 = 40 cm and 𝑓 /2 respectively.
(BPF–band-pass filter; CCU–coincidence counting unit; HWP–half-wave plate; LPF–low-pass filter;
MMF–multimode fiber; SPCM–single-photon counting module

introduced without cancellation in the signal or idler paths. After the nonlocal cancellation

of defocus, one can arrive back to a scenario where transverse entanglement is observed. It

must be emphasized that the inseparability of the state does not change upon the introduction

of aberrations since they are a unitary operation. For this reason, the effect described above

is a form of entanglement migration [23, 54].

2.3 Experiment

Correlation measurements were performed in the position and momentum bases to study the

effects of introducing aberration to the signal and idler beams separately. Both quadratic
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and cubic aberrations were introduced into each path with and without cancellation. When

only quadratic aberration was introduced, and the level of transverse entanglement was

evaluated using the Mancini criterion [Eq. (2.30)]. The setup for this transverse entanglement

measurement is shown in Fig. 2.2.

To create spatially entangled photons, a beta barium borate (BBO) crystal was pumped

by an ∼ 19 mW Gaussian beam of diameter ∼ 1 mm centered at 405 nm under type-II

phase-matching. The output of the pump laser (Roithner LaserTechnik RLDE405M-100-5)

was filtered by a single-mode fiber to achieve a Gaussian profile. The output signal and idler

photons were nearly collinear with the pump beam and spectrally filtered with a narrow-band

(∼ 10 nm) interference filter centered at 810 nm followed by a long-pass filter with a cutoff

wavelength at 594 nm. Transverse momentum-dependent phase shifts were implemented

using spatial light modulators (SLM, Hamamatsu X10468 − 02) in the signal and idler

paths using a reflective geometry. The SLM pixels were 20 𝜇m x 20 𝜇m. The transverse

momenta of the signal and idler photons are accessible in the Fourier plane of the BBO

crystal. Placing a lens of focal length 𝑓 a distance 𝑓 away from the output facet of the

BBO crystal maps the transverse wave vectors of the signal and idler photons to transverse

position in a plane a distace 𝑓 behind the lens. This mapping is described by the following

relationship: 𝜼𝑠,𝑖 = 𝑓 𝜿𝑠,𝑖/𝑘𝑠,𝑖, where 𝜼𝑠,𝑖 is the transverse position in a plane a distance 𝑓

behind the Fourier transforming lens.

2.3.1 Calibration of Spatial Light Modulators

Before using the SLMs, it is necessary to calibrate them so that the desired phase shift is

achieved. The computer that controls the SLMs treats them as a black-and-white external

monitor that displays an 8-bit grayscale value. The exact correspondence between a particular

grayscale value and the phase shift imparted by the SLM is dependent upon the angle of
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Figure 2.3: Spatial light modulator calibration procedure. A polarizer (pol.) sets the polarization
of the light interacting with the SLM to diagonal (|𝐷⟩). The spatial light modulator changes the
polarization of the light to a state |𝑈⟩ that depends upon phase shift imparted by the SLM. A final
polarizer projects the state onto the anti-diagonal polarization basis |𝐴⟩. Finally, the power (P) is
measured.

incidence and wavelength of the light interacting with the SLM. For this reason, the SLMs

needed to be calibrated with each new alignment of the optical setup in Fig. 2.2. This

process is described in Fig. 2.3. The input polarization is set to diagonal by a polarizer

(pol.). The SLM is a birefringent device that only operates on the horizontal polarization

component of the input beam. Furthermore, in the absence of any phase shift imparted by

the SLM, the reflection from the SLM’s surface causes the input diagonally polarized light

to be transformed to anti-diagonally polarization. Thus, the polarization state of the beam

after reflecting from the SLM is,

|𝑈⟩ = 1
√

2

(
e𝑖𝜙(𝑔) |𝐻⟩ − |𝑉⟩

)
, (2.31)

where the phase shift imparted by the SLM, 𝜙(𝑔), depends on the graylevel, 𝑔, programmed

on the SLM. Each pixel of the SLM is programmed with the same graylevel in this procedure.

A polarizer placed after the SLM projects the polarization state of the beam onto the
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anti-diagonal basis,

⟨𝐴|𝑈⟩ = 1
2

(
e𝑖𝜙(𝑔) + 1

)
. (2.32)

The power measured after the second polarizer is then dependent upon the graylevel displayed

on the SLM,

𝑃(𝑔) = cos2
(
𝜙(𝑔)

2

)
. (2.33)

This expression can then be rearranged to express the phase as a function of the graylevel,

𝜙(𝑔) = cos−1 [2𝑃(𝑔) − 1] (2.34)

This calibration can be performed pixel-by-pixel if the pixels of the SLM are appropriately

imaged onto the pixels of a camera. However, the pixels in the Hamamatsu X10468 − 02 are

sufficiently consistent to justify the simple calibration procedure in Fig. 2.3. An example of

one such calibration is shown in Fig. 2.4.

To measure coincidences as a function of position in the signal and idler paths, slits

of width 100 𝜇m were used to select a small portion of the beam and were moved with

servo-controlled micrometer stages in steps of 100 𝜇m. The photons passing through the

slits were collected by microscope objectives and coupled into a multimode fiber (MMF) to

be detected by single photon counting modules (SPCM). For each setting of the two slits, the

coincidence detection rate was recorded using a home-built coincidence-counting unit [55]

with a coincidence window of ∼ 13 ns. The entire data collection process was automated

using a LabVIEW script. From this data the joint probability of detection as a function of

the transverse position in the signal and idler beams along one dimension was constructed.
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Figure 2.4: Results of the calibration procedure described in Fig. 2.3. A second order polynomial of
the form 𝜙(𝑔) = 𝑎𝑔2 + 𝑏𝑔 + 𝑐 is fit to the data using a least squares method. The values of the fitting
parameters 𝑎, 𝑏, and 𝑐 are −5.8(7) ∗ 10−6, 0.0308(2), and −0.29(1), respectively. Uncertainties in
each data point are too small to visualize on the scale used for 𝜙(𝑔).



CHAPTER 2. QUANTUM NONLOCAL ABERRATION CANCELLATION 27

Figure 2.5: The position- and momentum-basis coincidence distributions in the presence of signal
and idler defocus. In (a) the state is shown (bottom) to violate Eq. (2.30), a signature of transverse
entanglement, without any aberration introduced. (b) and (c) display the broadening of the position-
basis coincidence distribution and the subsequent lack of measured entanglement in the presence
of defocus. When defocus is introduced to the idler path that is equal in magnitude but opposite in
sign to that of the signal path (d), the position-basis coincidence distribution narrows nearly back to
its value without aberrations and Eq. (2.30) is again violated. The white (a,b,c) and black (d) lines
indicate the 1-𝜎 levels obtained from fitting.
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2.4 Results

Data were collected for no aberrations introduced [Fig. 2.5(a)], with only quadratic aberrations

introduced [Figs. 2.5(b-d)], and with quadratic and cubic aberrations introduced under

conditions of no cancellation [Fig. 2.6(a)], partial cancellation [Fig. 2.6(b)], and full

cancellation [Fig. 2.6(c)]. For the case when only quadratic aberrations were introduced to

the signal and idler beams (defocus), transverse entanglement was measured according to

Eq. (2.30).

To obtain the widths of the coincidence distribution in the + and − directions, maximum

likelihood fitting was performed using the model of a bivariate Gaussian distribution,

𝑃(𝑦+, 𝑦−) =
𝑎

2𝜋𝑏𝑐
√

1 − 𝑑2
exp

[
− 𝑧(𝑦+, 𝑦−)

2(1 − 𝑑2)

]
, (2.35)

where,

𝑧(𝑦+, 𝑦−) =
(𝑦+ − 𝑒)2

𝑏2 − 2𝑑 (𝑦+ − 𝑒) (𝑦− − 𝑓 )
𝑏𝑐

+ (𝑦− − 𝑓 )2

𝑐2 . (2.36)

The variable 𝑦± is a stand-in for 𝑥± or 𝜅𝑥,±, depending on whether the fitting was performed

in the position or momentum basis. The fitting parameters in Eqs. (2.35) and (2.36) are

𝑎, 𝑏, 𝑐, 𝑑, 𝑒, and 𝑓 , and the widths along the + and − directions are 𝑏 and 𝑐, respectively.

The parameter 𝑑 describes the correlation in the + and - directions, and the mean of the

distribution in the + and - directions are 𝑒 and 𝑓 , respectively. The distribution is scaled by

the parameter 𝑎. In the maximum likelihood estimation routine, the coincidence data were

assumed to follow Poisson statistics [56]. The errors on the fitting parameters were obtained

through a Monte Carlo simulation.

The results of the entanglement measurement are shown in Fig. 2.5. Without defocus

introduced (a), the two-photon state violates Eq. (2.30), as shown at the bottom of Fig. 2.5.

This indicates the presence of transverse entanglement. When defocus is introduced to either
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Figure 2.6: The position-basis coincidence distributions with both even- and odd-order aberrations
introduced. (a) Quadratic and cubic aberrations are introduced to the idler path only, leading to a
skewing and broadening of the coincidence distribution. In (b) only the cubic aberration is cancelled
leading to a broadening of the distribution and the development of a forked structure. When both
quadratic and cubic aberrations are cancelled the distribution approaches the form in Fig. 2.5(a).

the idler or the signal (b and c, respectively) the width of the position-basis coincidence

distribution broadens substantially in both the 𝑥− and 𝑥+-directions, and Eq. (2.30) is no

longer violated. The broadening in the 𝑥+-direction is a result of the requirement that the

marginal probability distributions for the signal or idler must broaden in the presence of

defocus. After introducing defocus that is equal in magnitude but opposite in sign to both

the signal and idler paths, the width of the position basis distribution along the 𝑥−-direction

approaches the original width without aberrations. The state also returns to a form which

violates Eq. (2.30). In all cases, the width of the coincidence distribution in the momentum

domain does not change significantly because defocus is a multiplicative phase in this basis.

Fig. 2.6(a) shows the coincidence distribution when both quadratic and cubic aberrations

are introduced into the idler path. Cubic aberrations are related to coma. One can observe a

clear skewing of the distribution compared with Fig. 2.5(a). In Fig. 2.6(b) the coefficients of

the cubic phase terms in each path are the same, leading to cancellation of skew. However,
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the distribution is broadened due to the inclusion of a quadratic phase shift in the idler path

but not the signal path, and it displays a forked structure. The forked structure is consistent

with the requirement that the marginal distributions for the signal and idler be skewed, but

only the idler’s marginal distribution can be broadened. Fig. 2.6(c) shows the coincidence

distribution when both paths have the same coefficient for the cubic term in the phase shift,

but equal and opposite coefficients for the quadratic term in the phase shift. It is clear that the

coincidence distribution in Fig. 2.6(c) is approaching the form of the coincidence distribution

without aberrations, but it displays an asymmetry along the 𝑥+ direction. The imperfect

cancellation of the phase shift introduced into each arm is a result of using a non-plane-wave

pump.

2.4.1 Effect of Pump Profile

As mentioned earlier, the pump used in the generation of the signal and idler photons usually

has a Gaussian mode profile. In this case, the momentum anti-correlation between the signal

and idler photons is no longer perfect and complete aberration cancellation is no longer

possible. To explore this behavior, consider the angular spectrum of a Gaussian pump,

𝜈(𝜿𝑝) =
𝜋𝜈0𝑤0𝑒

𝑖Φ(𝑧)

𝑤(𝑧)
√︃

1
𝑤(𝑧)4 +

𝑘2

4𝑅(𝑧)2

exp


−|𝜿𝑝 |2

4
(

1
𝑤(𝑧)2 −

𝑖𝑘
2𝑅(𝑧)

)  (2.37)

where 𝑤(𝑧) = 𝑤0

√︃
1 + (𝜆𝑧/𝜋𝑤2

0)2 is the beam’s radius, 𝑅(𝑧) = 𝑧
[
1 + (𝜋𝑤2

0/𝜆𝑧)
2] is the

radius of the curvature of the beam’s wavefront, Φ(𝑧) = − arctan(𝜆𝑧/𝜋𝑤2
0) is the Gouy

phase, and 𝑤0 is the beam waist. For simplicity, a collimated pump will be assumed such

that 1/𝑤(𝑧)2 >> 𝑘/2𝑅(𝑧) and 𝑤(𝑧) → 𝑤0. Additionally, only quadratic phase aberrations

will be introduced to the signal and idler paths such that 𝜙′′𝑠 (0) = −𝜙′′
𝑖
(0) = 2𝛽. Finally,

by setting 𝑥+ = 0 only the 𝑥−-direction will be considered. After substituting Eq. (2.37)
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into Eq. (2.18) with these approximations, the spatial probability distribution takes the form

𝑃(𝑥−) ∝ exp(−𝑥2
−/2Δ𝑥2

−), where

Δ𝑥2
− =

𝐿2
𝑘
+ ( 4𝛽2

𝑤2
0
+ 𝛾𝐿𝑘 )2

2(𝛾𝐿𝑘 + 4𝛽2

𝑤2
0
)

. (2.38)

In the above equation ℓ𝑐/𝑘0 = 𝐿𝑘 . From Eq. (2.38) it is clear that the defocus introduced

broadens the width of the coincidence distribution even though the aberrations were chosen

according to the conditions for aberration cancellation. In the limit that 𝑤0 >> 𝛽, the width

of the distribution no longer depends upon the defocus introduced, as expected for the plane

wave limit. While only quadratic aberrations were considered here, this demonstration shows

that the pump profile influences the level of aberration cancellation possible.

One may consider why the incomplete cancellation is more obvious in Fig. 2.6(c) than in

Fig. 2.5(d). The reason for this is due to the fact that there is more aberration introduced

in the experiment displayed in Fig. 2.6 compared to the experiment in Fig. 2.5. Had 𝜙′′𝑠 (0)

and 𝜙′′
𝑖
(0) been greater in Fig. 2.5, the incomplete cancellation of defocus would have been

more obvious.

2.4.2 Graphical Description of Aberration Cancellation

A graphical description of aberration cancellation1 is shown in Fig. 2.7 [57]. For the sake of

demonstration, a phase in the form of a 1D rectangular function is introduced to the signal

and idler photons. Graphically, this process can be described by the grey bars overlayed on

top of the joint momentum [Fig. 2.7(left)] or joint position [Fig. 2.7(right)] distributions. The

phases introduced to each photon can only cancel one another where they overlap on the joint

1A conference proceeding for the presentation where this idea was first publicly described is referenced.
However, the conference abstract does not reflect the fact that this idea was presented. The graphical
interpretation of aberration cancellation can be attributed to my colleague Dr. Boris Braverman, QuEra
Computing Inc.
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Figure 2.7: A graphical description of aberration cancellation. Phases are introduced to the signal
and idler photons (grey bars) at a particular location in either the momentum basis (left) or position
basis (right). These phases will only overlap on the joint momentum distribution if they are introduced
at opposite locations relative to the origin of each photon’s coordinate system. Conversely, in the
position basis, the phases will only overlap if they are introduced at the same location relative to
origin of each photon’s coordinate system. The phases introduced to each photon can only cancel
one another where they overlap on the joint distributions. If the signal and idler are not perfectly
correlated, uncancelled phases may be present (green regions) and total aberration cancellation will
not be possible.
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probability distributions. Because the signal and idler produced in SPDC are anticorrelated in

momentum, the phases must be introduced at opposite locations relative to the origin of each

photon’s coordinate system in order for them overlap on the joint momentum distribution.

Furthermore, for the phases to cancel they must be equal in magnitude but opposite in sign.

If the signal and idler photons are not perfectly anticorrelated in momentum, their joint

momentum distribution will have dispersion along the diagonal direction. As a result, there

will be areas where the phases introduced to the two photons do not overlap. These areas

are highlighted in green in Fig. 2.7(left). Thus, the graphical method shows how complete

cancellation of aberrations introduced in the momentum basis is not possible when the signal

and idler photons are not perfectly anticorrelated in momentum. If the rectangular phases

(aberrations) are introduced in the position basis [Fig. 2.7(right)], they must be introduced at

the same location relative to the origin of each photon’s coordinate system since the photons

are correlated in position. Imperfect cancellation in the position basis results from imperfect

position correlation, as indicated by the dispersion of the joint momentum distribution in

the antidiagonal direction, Fig 2.7(right). The graphical method of describing aberration

cancellation can be extended to other scenarios such as ghost imaging or the method of

quantum phase imaging described in Chap. 3.

2.4.3 Aberration Cancellation in Ghost Imaging

To demonstrate the utility of nonlocal aberration cancellation, quantum imaging in the

presence of focusing error and the nonlocal cancellation of this error was performed in one

dimension. Three parallel Au bars placed in front of a bucket detector in the signal path

constituted the image. To implement the bucket detector, photons passing through the Au

bars were coupled into a MMF with an NA = 0.39 and a 400 𝜇m core diameter using a

10x microscope objective with an NA = 0.25. The photons were detected using the same
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Figure 2.8: The solid red line is the coincidence image of three Au bars placed in the signal path
without any aberrations present. Each bar has a width of 1.26 mm and a space of 1.26 mm is
between each bar. The dotted blue line is the coincidence image with defocus in the signal path
only, according to 𝜃𝑠 (𝑥𝑠) = 𝜃′′𝑠 (0)𝑥2

𝑠/2, where 𝜃′′𝑠 (0) = 73.7 mm−2. When the defocus is cancelled
[𝜃′′𝑠 (0) = −𝜃′′

𝑖
(0)] nonlocally the coincidence image of the slits is almost completely recovered

(dashed green line). An additional defocus of 𝜃′′
𝑖
(0) = −23.3 mm−2 was introduced to account for

alignment-related focusing error in the setup for all three cases.

SPCMs in Fig. 2.2. Unlike the experiments shown in Fig. 2.2, defocus was introduced in

the image plane of the crystal and coincidence measurements (imaging) took place in the

Fourier plane of the crystal. This configuration was chosen to take advantage of the larger

beam cross section in the Fourier plane. The 𝑥-coordinate of the signal photons was reversed

before interacting with the SLM. As a result, the coefficients of the quadratic aberrations

in the signal and idler paths must be equal in magnitude and opposite in sign for complete

cancellation to occur.

From the results shown in Fig. 2.8, the coincidence image of the slits is clearly lost and

then almost completely recovered with defocus cancellation. The lack of perfect recovery is

due to the length of the crystal generating the entangled photons. Imperfect cancellation

in the momentum basis can be understood following an analysis similar to that which led

to Eq. (2.38), but where aberrations are introduced in the position basis and the effect on

the joint momentum distribution is measured. In this case, the relevant width to consider
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is Δ𝜅𝑥,+ since it describes momentum anticorrelation. If second-order aberrations have

been introduced in the position basis according to the condition for perfect cancellation

(𝜃′′𝑠 (0) = −𝜃′′𝑠 (0) = 2𝛽), and a finite-length crystal is used,

Δ𝜅2
𝑥,+ =

2
[

1
4𝑤4

0𝛾
2 +

(
1

2𝑤2
0
+ 4𝛽2𝐿𝑘 (1+𝛾2)

𝛾

)2
]

4𝛽2𝐿𝑘 (1+𝛾2)
𝛾

+ 1
2𝑤2

0

(
1 + 1

𝛾2

) (2.39)

Thus, when 𝐿𝑘 > 0, the effect of aberrations introduced in the position basis cannot be

perfectly cancelled in the joint momentum distribution. As 𝐿𝑘 → 0, Δ𝜅𝑥,+ no longer depends

on 𝛽 and defocus is perfectly cancelled.

2.5 Conclusion

This chapter shows how aberrations and their subsequent nonlocal cancellation affect the

results of transverse entanglement measurements using the criterion defined in Eq. (2.30).

Furthermore, the results of this chapter constitute first-reported nonlocal and simultaneous

cancellation of even- and odd-order aberrations. This technique was applied to nonlocally

correct for focusing error in a quantum imaging setup. By using SLMs to correct for

aberrations rather than physically moving optics, the optimization of quantum imaging

experiments can be done in a highly controlled manner. Furthermore, aberrations due

to the imperfect manufacturing and design of optics can be corrected as well. Future

work could more deeply explore the lack of perfect aberration cancellation due to the use

of a non-plane-wave pump beam or in the non-paraxial regime. In our experiment, the

entangled photons used to demonstrate nonlocal aberration cancellation were the same

wavelength. However, non-degenerate SPDC produces entangled signal and idler photons

that have different wavelengths. These non-degenerate entangled photons have been used
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to demonstrate imaging at wavelengths where efficient and affordable cameras are not

available [58]. Future research could involve performing nonlocal aberration cancellation in

this "two-color" imaging scheme, demonstrating aberration correction at wavelengths where

adaptive optics are either unavailable or insufficient. It may also be possible to demonstrate

nonlocal aberration cancellation using a light source with classical, rather than quantum

mechanical, correlations.
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3. Quantum-enhanced phase imaging

3.1 Introduction

Before the advent of phase-contrast [59], differential interference contrast [60], and quantita-

tive phase imaging [61–63] techniques, forming an intensity image of a phase-only object

and measuring the phase imparted by that object was an outstanding problem in biological

imaging. Briefly, Zernike’s phase contrast method relies upon destructive interference be-

tween the low and high spatial frequency content of an image, resulting in enhanced contrast

near sharp features in the image. Differential interference contrast relies upon interference

between light that has passed through nearby points on a phase-only object, allowing the

measurement of phase-gradients on a phase-only object. Though they are inherently stable,

phase-contrast and differential interference contrast modalities do not measure the value of

the phase shift imparted by a phase-only object. Generically, quantitative phase imaging

is a method to reconstruct the phase imparted to coherent light that has passed through a

phase-only object by interfering it with a reference beam.

Spatially entangled photons have enabled imaging at wavelengths where cameras are

inadequate [58] and with a higher resolution than classical coherent imaging [64, 65].

Position-momentum entanglement has also been utilized to develop new adaptive optics

schemes [66–68], and recently, new phase imaging modalities have been developed using

entangled photons. In 2019, spatially entangled photons were used to measure both amplitude
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and phase in low-light Fourier ptychography [69]. In 2020, Defienne et al. reported a new

phase-shifting holography scheme that utilized spatial and polarization entanglement [70].

Similarly, in 2021 Camphausen et al. demonstrated a version of differential interference

contrast imaging that used polarization and spatial entanglement [71]. Induced coherence

without induced emission in spontaneous parametric down-conversion was employed by

Lemos et al. to image a phase-only object that was opaque at the detection wavelength [72,

73]. Lemos’s paper inspired several other demonstrations and ideas based on induced-

coherence imaging [74–77]. Induced coherence has also been used to perform infrared

spectroscopy of gaseous samples without the use of an infrared source or infrared detection

equipment [78].

This chapter reports on a wide-field quantitative phase imaging technique that relies

upon quantum interference between sequential down-conversion events in a double-passed

nonlinear crystal. As compared to classical phase-shifting holography, the quantum technique

reported here achieves twice the phase shift and approximately 1.7 times the resolution

when imaging a phase-only object. Furthermore, it is this double phase shift that separates

this chapter’s quantum phase imaging scheme from similar induced-coherence imaging

techniques [73, 76, 79], though the imaging photons must be detected in our scheme. Like

quantum-enhanced differential interference contrast microscopy, this method achieves twice

the phase shift [71], but the contrast in the measured phase does not come at the expense

of resolution. Because the object is illuminated with approximately 40 photons/s/𝜇m2

and at a near-infrared wavelength (810 nm), this low-light imaging technique may be

useful for imaging phase-only biological samples that are sensitive to photon flux or are

prone to photobleaching, without the loss of resolution associated with imaging at longer

wavelengths [9, 10]. Typically, a biological object is considered phase-only if it is unstained

and thin relative to the depth of focus. Importantly, this applies to live-cell imaging in

various media. Though this quantum phase imaging method utilizes the strong momentum
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and position correlation of entangled photons produced in spontaneous parametric down-

conversion, detecting the photons in coincidence is not required. The field of coincidence

imaging has made strides in recent years [11, 80, 81], but state-of-the-art coincidence

imaging still requires tens of hours for data collection. All measurements necessary to

generate a phase image using the methods of this chapter were collected in tens of seconds,

bringing the timescale of quantum imaging closer to that of biological processes. Though

the low-light imaging method reported in this chapter does not take advantage of the signal-

to-noise enhancement associated with coincidence imaging [82], it can easily accommodate

coincidence imaging techniques as equipment that enables shorter acquisition times becomes

more readily available [83, 84].

3.2 Background

The experimental setup (explained in more detail later) for generating entangled photons

that interact with a phase-only object is shown in Fig. 3.1(b). Briefly, the method shown in

Fig. 3.1(b) relies upon the interference between entangled photons created from spontaneous

parametric down-conversion of a pump beam that passes through a nonlinear crystal (BBO)

twice. Recalling Eq. (2.19), the momentum-representation wave function for photons created

in a single spontaneous parametric down-conversion event is given by,

𝜓0(𝜿s, 𝜿i) = 𝐶𝜈(𝜿s + 𝜿i) �̃�(2) (𝜿s − 𝜿i). (3.1)

where s, i denote the signal and idler photons, respectively, C is a constant that includes

properties of the nonlinear crystal [67], and 𝜿 represents the transverse component of the

photons’ wave vectors. The two-photon wave function in the position-representation is
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simply the inverse Fourier transform of 𝜓0(𝜿s, 𝜿i):

Φ0(𝒙s, 𝒙i) = F −1{𝜓(𝜿s, 𝜿i)
}
, (3.2)

where the inverse Fourier transform, denoted F −1, occurs over both the 𝜿s and 𝜿i coordinates.

In Fig. 3.1(b), the signal and idler photons experience the same phase-only object described

by the function 𝜙obj(𝒙 𝑗 ), where 𝑗 = s, i. As a result, the two photon wave function takes the

form

Φ1(𝒙s, 𝒙i) = exp
[
𝑖
(
𝜙obj(𝒙s) + 𝜙obj(𝒙i)

) ]
Φ0(𝒙s, 𝒙i), (3.3)

If the photons described by the state in Eq. (3.3) pass back through the nonlinear crystal with

the pump beam in such a way that the signal and idler modes from one pass are matched

to those of the second pass, it is not possible to determine whether a detected photon was

created on the first pass or the second pass through the crystal. Mathematically, this effect

can be observed by applying the time translation operator for SPDC to the state in Eq. (3.3)

including the vacuum contribution that was omitted:

|𝜓2(𝜿𝑠, 𝜿𝑖, 𝑡)⟩ ∝
(
1 − 𝑖

ℏ

∫ 𝑡

0
𝑑𝜏Ĥ (𝜏)

)
[|0⟩ + |𝜓1(𝜿𝑠, 𝜿𝑖, 𝑡)⟩] (3.4)

The application of the SPDC time translation operator to Eq. (3.3) and the vacuum results in

several terms on the RHS of Eq. (3.4) resulting from various nonlinear optical processes

inside the nonlinear crystal. However, some of these terms can be ignored because Ĥ |𝜓1⟩ is

proportional to the second order nonlinear susceptibility to the second order. Furthermore,

the signal and idler fields are very weak compared to the pump and do not stimulate a

significant nonlinear response in the crystal. These factors justify the omission of the term

involving Ĥ |𝜓1⟩ from Eq. (3.4). Thus, after carrying out a calculation similar to the one that

led to Eq. (2.19) and switching to the position representation, the two-photon wave function
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after the second pass through the crystal is,

Φ2(𝒙s, 𝒙i) = Φ0(𝒙s, 𝒙i)
(
exp(𝑖𝜃) + exp

[
𝑖
(
𝜙obj(𝒙s) + 𝜙obj(𝒙i)

) ] )
/
√

2, (3.5)

where 𝜃 is any additional phase acquired by the pump between the first and second pass. The

probability of detecting only the signal photon is obtained by integrating |Φ2(𝒙s, 𝒙i) |2 over

the entire coordinate space of 𝒙i, i.e. calculating the marginal probability distribution of the

joint probability distribution. In practice, it is easiest to perform the integration numerically.

However, if the pump is assumed to be a plane wave and the nonlinear crystal is thin enough

so that 𝜒(2) (𝒙s − 𝒙i) ≈ 𝛿(𝒙s − 𝒙i), where 𝜒(2) (𝒙s − 𝒙i) = F −1{ �̃�(2) (𝜿s − 𝜿i)
}
, it is possible

to analytically calculate the probability of detecting only the signal photon,

𝑃(𝒙s) = C
(
1 + cos

[
2𝜙obj(𝒙s) − 𝜃

] )
/
√

2 (3.6)

Thus, the image formed on the camera (EMCCD) in Fig. 3.1(b) is an interference pattern

that corresponds to the phase-only object but with twice the phase shift.

The phase object can be reconstructed by employing phase-shifting holography. In

classical phase-shifting holography, the light that interacted with the phase-only object

interferes with a reference field, and the resulting interference pattern, 𝐼, is recorded for four

different phase shifts of the reference field: 𝜙 = arg
[
𝐼0 − 𝐼𝜋 + 𝑖

(
𝐼𝜋/2 − 𝐼3𝜋/2

) ]
, where the

subscript on 𝐼 indicates the reference phase [62]. In quantum phase-shifting holography,

the reference phase is any extra phase acquired by the pump before passing through the

nonlinear crystal a second time, 𝜃 in Eq. (3.6). Alternatively, the phase of the pump can

remain fixed while a constant phase offset is applied to the photons that interacted with the

phase object, but the constant phase offset must be negative rather than positive in this case.

The absolute value of the reference phase applied to the entangled photons must also be half
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Figure 3.1: Experimental setup for (a) classical phase-shifting holography and (b) quantum phase-
shifting holography. Green dotted lines indicate conjugate image planes. 405 nm - narrow linewidth
(<5 MHz), 100 mW, 405 nm laser; 50/50 - 50/50 beamsplitter; 816 nm - 33 𝜇W, 816 nm laser; BPF -
810 ± 5 nm bandpass filter; BBO - type-I beta-barium borate crystal; DM - long-pass dichroic mirror;
EMCCD - electron-multiplying camera; 𝑓3 = 10 cm; 𝑓4 = 30 cm; 𝑓5 = 12.5 cm; 𝑓6 = 40 cm; L1 - 10
cm lens; L2 = 30 cm lens; L3 - 10 cm achromatic doublet lens; L4 - 30 cm achromatic doublet lens;
L5 - 12.5 cm lens; L6 - 40 cm lens; 𝜆/2 - half-wave plate; 𝜆/4 - quarter-wave plate; ND - neutral
density filters, optical density = 7; OI - optical isolator; PBS - polarizing beamsplitter.

the value used in classical phase shifting holography since both photons acquire the phase

shift. In Fig. 3.1(b) the reference phase is applied by the spatial light modulator (SLM) that

also forms the phase object, in effect changing the global phase of the phase object. Thus,

the phase is reconstructed as follows:

𝜙obj(𝒙s) = tan−1
[
𝑃−𝜋/4(𝒙s) − 𝑃−3𝜋/4(𝒙s)
𝑃0(𝒙s) − 𝑃−𝜋/2(𝒙s)

]
, (3.7)

where the subscript on 𝑃 is the value of the constant phase offset added to the SLM. It is

worth noting that phase-shifting holography with four phase shifts, like in Eq. (3.7), reaches

the Cramer-Rao bound for phase estimation [85].

3.3 Experiment

The experimental setups for classical phase-shifting holography and quantum phase-shifting

holography are shown in Fig. 3.1(a) and Fig. 3.1(b), respectively.
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3.3.1 Classical Experiment

In the classical experiment, an ∼ 33 𝜇W, 816 nm diode laser is attenuated by a half-wave

plate (𝜆/2), polarizing beamsplitter (PBS), and a series of neutral density filters (ND) with

a total extinction of approximately 10−7. The attenuation is set so that the photon flux

incident on the object is the same as in the quantum experiment (∼ 40 photons/s/𝜇m2), as

measured by the EMCCD in photon counting mode. Furthermore, the laser is operated

near threshold to mimic the occurrence of background fluorescence created by the 405 nm

pump as it passes through lenses in the quantum experiment. To do this, the laser current is

set so that the visibility of interference is the same as in the quantum experiment, which is

limited by background fluorescence. The polarization is set to vertical by a PBS because the

50/50 plate beamsplitter (50/50) that forms the interferometer is truly 50/50 for the vertical

polarization only. The first 50/50 beamsplitter serves to make the layout of the classical

experiment similar to the quantum experiment. The beam is expanded to have a diameter of

∼ 1 mm using a Keplerian telescope with a magnification of 3X (L1 and L2). The beam is

then directed into another Keplerian telescope consisting of two achromatic doublet lenses

(L3 and L4) with a 3X magnification. A 5 mm-diameter aperture is placed a distance 𝑓 in

front of L3 to mimic the aperture of the nonlinear crystal used in the quantum experiment

(BBO). After passing through the telescope, the beam is split by a 50/50 beamsplitter to

form a Michelson interferometer. One arm of the Michelson interferometer is terminated by

a reflective phase-only SLM (Hamamatsu X15213-02) that forms the phase object (𝜙obj) and

introduces a constant phase offset for phase-shifting holography. The other arm is terminated

by a mirror, and both arms are the same optical length. A half-wave plate placed between the

50/50 beamsplitter and SLM rotates the polarization to be along the optical axis of the SLM

and rotates it back to vertical after reflecting from the SLM. The beam that interacted with

the SLM and the reference beam reflect back through the telescope made from L3 and L4
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and the first 50/50 beamsplitter before passing through another Keplerian telescope with a

3.2X magnification (L5 and L6). An adjustable aperture placed a distance 𝑓2 = 12.5 cm from

L5 (the Fourier plane of the SLM), limits the spatial bandwidth of the imaging system, but

is only engaged when comparing the resolution of the quantum and classical experiments,

Fig. 3.4. The image of the active area of the SLM is then brought to an electron-multiplying

CCD camera (EMCCD, Andor iXon Ultra 888-EXF) by L6.

3.3.2 Quantum Experiment

In the quantum experiment, a narrow linewidth (< 5 MHz) 405 nm laser beam (Toptica

TopMode 405) passes through an optical isolator (OI) and half-wave plate (𝜆/2) before being

directed though a 0.5 mm-long beta-barium borate crystal (BBO) by a long-pass dichroic

mirror (DM). The diamter of the 405 nm pump beam at the BBO crystal is ∼ 1 mm. A

405 nm pump photon is converted to two 810 nm position-momentum entangled photons in

the BBO crystal through degenerate type-I spontaneous parametric down-conversion. Both

the entangled photons and pump beam pass through the same Keplerian telescope used in

Fig. 3.1(a) consisting of two achromatic doublet lens (L3 and L4). The telescope images the

output facet of the nonlinear crystal onto the active area of the SLM (green dotted line). A

second long-pass dichroic mirror placed after L4 splits the pump beam and entangled photons

so that only the 810 nm entangled photons interact with the SLM. The SLM imprints both

the phase object and constant reference phase for phase-shifting holography on the entangled

photons. Accordingly, the phase of the pump is held fixed. A 1.1 cm-diameter aperture is

placed betwen the dichroic mirror and SLM to mimic the aperture of the half-wave plate just

before the SLM in the classical experiment. The visibility of interference between successive

down-conversion events is lower than 100 percent because the combined transmission of

L3 and L4 is ∼ 90 percent. To compensate for this and recover interference visibility, the
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polarization of the pump is set for imperfect phase-matching before the first pass through

the nonlinear crystal using a half-wave plate (𝜆/2) and set for perfect phase matching using

a double-passed quarter-wave plate (𝜆/4) between the first and second passes through the

nonlinear crystal [86]. After the entangled photons reflect from the SLM and the pump

reflects from a mirror, the pump and entangled photons are recombined at the dichroic mirror.

They pass back through the telescope formed by L3 and L4 and through the nonlinear crystal.

The first dichroic mirror then splits the pump and entangled photons, and the entangled

photons pass through a 3.2X telescope that images the SLM onto the EMCCD. Like the

classical experiment, an adjustable aperture is placed in the Fourier plane of the phase object

to compare the resolution of the quantum experiment with the classical experiment.

3.3.3 Correcting Unwanted Aberrations

The active area of the SLM used in this experiment is not completely flat when a phase shift of

zero radians is programmed on every pixel. Though the manufacturer supplies a calibration

file to remove this effect, it did not completely remove the background phase in practice.

Furthermore, the waveplates placed in the beam path between the two passes through the

nonlinear crystal added additional phase aberrations that needed to be corrected. To mitigate

unwanted background phase structures, phase-shifting holography was performed with no

object programmed on the SLM. The measured phase was then used to cancel the unwanted

phase structures in the experiment. Figure 3.2 shows the result of measuring aberrations

with photons produced in SPDC. The measured aberration in Fig. 3.2 is the average of 100

measurements at each reference phase in Eq. (3.7). To obtain the uncertainty in the phase
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Figure 3.2: (a) Measured phase error of the optical system in Fig. 3.1 and (b) fit using a model of a
bivariate quadratic. In the particular example above, the photons from SPDC were used to measure
unwanted aberrations. Only the area of the SLM illuminated by the down-conversion photons was
used for the calibration, and the measured phase is twice what each individual signal or idler photon
experiences.

measurement, error propagation is performed using Eq. (3.7),

𝑑𝜙𝑜𝑏 𝑗 =

√︄[
𝜕𝜙𝑜𝑏 𝑗

𝜕𝑃−𝜋/4
𝜎−𝜋/4

]2
+

[
𝜕𝜙𝑜𝑏 𝑗

𝜕𝑃−3𝜋/4
𝜎−3𝜋/4

]2
+

[
𝜕𝜙𝑜𝑏 𝑗

𝜕𝑃0
𝜎0

]2
+

[
𝜕𝜙𝑜𝑏 𝑗

𝜕𝑃−𝜋/2
𝜎−𝜋/2

]2
,

(3.8)

where𝜎𝑗 is the uncertainty in the intensity measured at each phase shift, 𝑗 = −𝜋/4,−3𝜋/4, 0,−𝜋/2.

Note that spatial dependence of 𝑑𝜙𝑜𝑏 𝑗 has been suppressed in Eq. (3.8). The partial derivatives
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in Eq. (3.8) are as follows:

𝜕𝜙𝑜𝑏 𝑗

𝜕𝑃−𝜋/4
=

𝑃0 − 𝑃−𝜋/2(
𝑃0 − 𝑃−𝜋/2

)2 +
(
𝑃−𝜋/4 − 𝑃−3𝜋/4

)2

𝜕𝜙𝑜𝑏 𝑗

𝜕𝑃−3𝜋/4
= −

𝜕𝜙𝑜𝑏 𝑗

𝜕𝑃−𝜋/4

𝜕𝜙𝑜𝑏 𝑗

𝜕𝑃0
= −

𝑃−𝜋/4 − 𝑃−3𝜋/4(
𝑃0 − 𝑃−𝜋/2

)2 +
(
𝑃−𝜋/4 − 𝑃−3𝜋/4

)2

𝜕𝜙𝑜𝑏 𝑗

𝜕𝑃−𝜋/2
= −

𝜕𝜙𝑜𝑏 𝑗

𝜕𝑃0
(3.9)

Because the measured value of the phase flatness, Fig. 3.2(a), contains experimental

uncertainty, a model of a bivariate quadratic is fit to the data and the result is used as the

phase correction,

𝜙𝑒𝑟𝑟 (𝑥, 𝑦) = 𝑎(𝑥 − 𝑏)2 + 𝑐(𝑦 − 𝑑)2 + 𝑒(𝑥 − 𝑓 ) (𝑦 − 𝑔) + ℎ. (3.10)

The model of Eq. (3.10) has eight fitting parameters, 𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓 , 𝑔, and ℎ. The model is

fit using maximum likelihood estimation assuming the phase data are Gaussian distributed

random variables (i.e. the least squares method). The data [Fig. 3.2(a)] are modeled quite

well by Eq. (3.10) [Fig. 3.2(b)]. The presence of higher-order aberrations account of the

lack of perfect agreement between the fit and the data. In practice, the model corrects the

aberrations quite well, and this aberration correction routine was performed during the

alignment of both the quantum and classical experiments.
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3.4 Results

3.4.1 Comparison of Classical and Quantum Phase Sensitivity

Figure 3.3 shows the results of a phase reconstruction experiment using classical and quantum

phase-shifting holography. The phase object encoded on the SLM is shown in Fig. 3.3(a). A

line cut through a portion of the object, Fig. 3.3(b), is approximately a rectangular function

with a height of 𝜋/2 rad. The results of classical phase-shifting holography are shown in

Fig. 3.3(c) and (d). For each reference phase shift used to construct the phase images in

Fig. 3.3, ten frames are averaged together. The EMCCD is set to have an EM gain of 1000,

an exposure time of 0.02 s, and is operated in photon-counting mode. The phase image

in Fig. 3.3 agrees well with the phase object, but contains a slight astigmatism due to the

use of plate-style 50/50 beamsplitters in the optical path. The camera is placed in a plane

where the vertical direction is in focus to make fitting to the vertical line cut (blue line) more

straightforward. The line cut and fit for the classical experiment are shown in Fig. 3.3(d).

Using maximum likelihood estimation (MLE) with the model of a rectangular function,

the maximum phase shift in the line cut is estimated to be 1.6(1) rad, consistent with the

maximum phase shift of the encoded phase object. The uncertainty in the fit is obtained

through Monte Carlo simulation.

The results of phase imaging using quantum light are shown in Fig. 3.3(e), where the

location of the line cut is indicated by the green line. The phase image agrees well with the

encoded phase object, albeit with twice the phase shift. The astigmatism associated with the

plate-style dichroic mirrors is less present in the quantum experiment because they are half

as thick as the 50/50 beamsplitters in the classical experiment. The double phase shift is

clearly present in the line cut, Fig. 3.3(f). MLE returns a maximum phase shift of 3.3(1)

rad, confirming the double phase shift effect. It is worth noting that quantum phase-shifting

holography achieves an estimate of the phase with half the fractional uncertainty of the
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Figure 3.3: A comparison of phase-shifting holography using classical coherent light with a
wavelength of 816 nm (c and d) and "which crystal" quantum interference between photons with a
wavelength of 810 nm (e and f). The phase object (a) is an illustration of round eyeglasses, and a line
cut through the nosepiece (red line) is approximately a rectangular function of height 𝜋/2 rad (b).
The result of classical phase-shifting holography is shown in (c). The ringing around the edges of the
classical phase image is due to astigmatism induced by the plate beamsplitters in Fig. 3.1(a), but the
camera is placed in a plane where the vertical direction is in focus. A rectangular function is fit to
a line cut through the nosepiece (blue line) using maximum likelihood estimation (d), returning a
phase shift of 1.6(1) rad. The result of quantum phase-shifting holography is shown in (e), and the fit
to a line cut through the nosepiece (green line) is shown in (f). With a maximum phase shift of 3.3(1)
rad, the quantum phase-shifting holography result has approximately twice the phase shift and half
the fractional uncertainty of classical phase-shifting holography.
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classical phase-shifting holography method, even though the photons that interacted with

the phase object were not half the wavelength. Of course, the improvement of fractional

uncertainty using quantum phase-shifting holography cannot be achieved in environments

with significant mechanical instability since the double phase shift would enhance the

effect of mechanical vibrations on the phase uncertainty. The primary sources of noise in

the measurement of the phase were background light and noise associated with the EM

amplification in the EMCCD [11, 87].

3.4.2 Comparison of Classical and Quantum Imaging Resolution

Equation (3.6), though illustrative, implies an infinite spatial resolution. In reality, the spatial

resolution of the quantum phase-shifting holography method described in Fig. 3.1(b) is

limited by the width of the position correlation between the signal and idler photons and

the apertures placed in the optical path [79, 88]. A comparison of the aperture-limited

resolutions for quantum and classical phase-shifting holography are shown in Fig. 3.4. To

perform these measurements, a horizontally oriented adjustable slit was placed a distance

𝑓2 away from the lens L5 the telescope just before the camera. The location of the slit

corresponded to the Fourier plane of the phase object and nonlinear crystal. The width of the

slit was fixed at 4.5 mm for both the quantum and classical experiments. A series of three

equally spaced bars along the horizontal direction formed the phase object, Fig. 3.4(a). Each

bar had a phase of 𝜋/2 above the background. The space between each bar was equal to the

width of a single bar. The spatial frequency of the bars in the top, middle, and bottom rows

of Fig. 3.4 were 8 lp/mm, 10 lp/mm, and 13.3 lp/mm, respectively. The aperture-limited

resolution was measured rather than the correlation-limited resolution because it is possible

to increase the correlation-limited resolution by altering the magnification of the optical

system between the crystal and object [79]. Nonetheless, the correlation-limited resolution
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Figure 3.4: A comparison of resolution for classical phase-shifting holography and quantum
phase-shifting holography. (a) A series of three horizontal bars with a maximum phase shift of 𝜋/2
were used to measure resolution. The spatial frequency of the bars varied from 8 lp/mm (top row)
to 10 lp/mm (middle row) to 13.3 lp/mm (bottom row). (b) Experimental results (interferograms)
indicate that the three bars are clearly resolved in both the quantum and classical experiments at
a spatial frequency of 8 lp/mm (top row). However, only the quantum phase-shifting holography
scheme can resolve the bars at a spatial frequency of 10 lp/mm (middle row) and 13.3 lp/mm (bottom
row). (c) A simulation of the experiments in Fig. 3.1 agrees very closely with the experimental results
in (b).

is estimated to be ∼ 30 𝜇m (or ∼ 17 lp/mm) using a crystal of length 0.5 mm and using

the optical system in Fig. 3.1(b). The resolution limit is assumed to be twice the standard

deviation of the position correlation of the signal and idler.

The resolution measurements are shown in Fig. 3.4(b). Each image in Fig. 3.4(b) is the

average of 100 frames collected by the camera with an EM gain 213 and exposure time of

0.22 s. Furthermore, the each image represents a single interferogram with the background

in destructive interference and the bars in constructive interference. The three bars are clearly

resolved at 8 lp/mm (top row) in both the classical (top left) and quantum experiments (top

right). Extraneous fringes are present in the classical experiment due back-reflected light

from lenses L3 and L4. Interestingly, these fringes do not appear in the quantum experiment

because the back reflected light is not mode-matched with the entangled photons created

on the second pass through the crystal. The quantum results have extraneous background
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noise due to broadband fluorescence created by the pump passing through lenses L3 and

L4. At 10 lp/mm (middle row), the classical experiment is no longer able to resolve the

three bars (middle left), but the three bars are clearly resolved in the quantum experiment

(middle right). At 13.3 lp/mm (bottom row), the three bars are still resolved in the quantum

experiment (bottom right) but with lower visibility than for bars at 10 lp/mm. The three bars

at 13.3 lp/mm are not resolved in the classical experiment (bottom left).

The experimental results in Fig. 3.4(b) agree very closely with numerical simulation,

Fig. 3.4(c). The simulation was performed using Fresnel propagation of the classical field

and two-photon state in Eq. (3.1), and it included all apertures present in Fig. 3.1. Though the

imaging systems in Fig. 3.1 are not extremely complex, the operator approach described in

Ref. [89] simplifies the simulation significantly. The four primary operations used to perform

the simulations are multiplication by a quadratic-phase exponential, Fourier transformation,

and multiplication by a binary pupil function. Multiplication by a quadratic phase is defined

as,

Q[𝑐]{𝐸 (𝑥)} = e𝑖𝑘𝑐𝑥
2/2𝐸 (𝑥). (3.11)

Note that in Eq. (3.11), 𝑥 is a stand-in variable for the space where Q is applied. As such, 𝑐

must have units such that the argument of the exponential is unitless. Fourier transformation

is defined in the usual way,

F {𝐸 (𝑥)} =
∫ ∞

−∞
𝑑𝑥𝐸 (𝑥)e−𝑖𝜅𝑥𝑥 (3.12)

Multiplication by a binary pupil function is defined as,

𝑃[𝑤]{𝐸 (𝑥)} = ( |𝑥 | <= 𝑤)𝐸 (𝑥), (3.13)

where 𝑤 is half the width of the pupil. Free-space propagation and propagation through a
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material are defined in terms of Fourier transformation and multiplication by a quadratic

phase,

𝑅

[
𝑑

𝑛

]
𝐸 (𝑥) = F −1

{
Q

[
− 𝑑

𝑛𝑘2

] {
F {𝐸 (𝑥)}

}}
, (3.14)

where 𝑛 is the refractive index of the material through which the light propagates. Free-space

propagation is accomplished by setting 𝑛 = 1.

If 𝐸 (𝑥) is the field just after the pupil between the first 50/50 beamsplitter and L3 in the

classical experiment, the field at the SLM after the first pass through telescope defined by L3

and L4 is,

𝐸𝑆𝐿𝑀 (𝑥) = e𝑖𝜙𝑏𝑎𝑟𝑠𝑅

[
𝑓4 −

𝑡50/50
√

2
𝑛50/50

− 𝑙1

]
𝑅

[
𝑡50/50

√
2

𝑛50/50

]
𝑅[𝑙1]Q

[
− 1
𝑓4

]
· · ·

· · ·𝑃[𝑤𝐿4]𝑅[ 𝑓3 + 𝑓4]Q
[
− 1
𝑓3

]
𝑃 [𝑤𝐿3] 𝑅[ 𝑓3]𝐸 (𝑥). (3.15)

Brackets on the operators have been suppressed for neatness. 𝑤𝐿3 and 𝑤𝐿4 are the radii of

lenses L3 and L4, respectively. The focal lengths of L3 and L4 are 𝑓3 and 𝑓4, respectively.

The thickness and refractive index of the 50/50 beamsplitter just before the SLM are 𝑡50/50

and 𝑛50/50, respectively. The distance between L4 and the 50/50 beamsplitter is 𝑙1, and the

phase object on the SLM is 𝜙𝑏𝑎𝑟𝑠. Because the classical field is a beam as it propagates

to the SLM, the effect of apertures in the optical system are largely insignificant on its

propagation. For this reason, the reference field is recombined with the field that interacted

with the SLM at the pupil between the first 50/50 beamsplitter and L3. The propagation

of the field back through the telescope consisting of lenses L3 and L4 is accomplished by

applying the operators in Eq. (3.15) in reverse order. The propagation from the pupil to the
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camera is described by,

𝐸𝐸𝑀𝐶𝐶𝐷 (𝑥) = 𝑅[ 𝑓6]Q
[
− 1
𝑓6

]
𝑃[𝑤𝐿6]𝑅[ 𝑓6]𝑃

[
𝑑𝑎𝑝𝑝

2

]
· · ·

· · ·𝑅[ 𝑓5]Q
[
− 1
𝑓5

]
𝑃[𝑤𝐿5]𝑅

[
𝑓5 −

𝑡50/50
√

2
𝑛50/50

− 𝑙2

]
· · ·

· · ·𝑅
[
𝑡50/50

√
2

𝑛50/50

]
𝑅[𝑙2]

[
𝐸 (𝑥) + 𝐸𝑆𝐿𝑀,2(𝑥)

]
. (3.16)

In Eq. (3.16), 𝐸𝑆𝐿𝑀,2(𝑥) is the field at the pupil after back-reflecting from the SLM through

the telescope formed by L3 and L4. The focal lengths of lens L5 and L6 are 𝑓5 and 𝑓6,

respectively, and their radii are 𝑤𝐿5 and 𝑤𝐿6. 𝑙2 is the distance between the the pupil and the

50/50 beamsplitter. An adjustable slit placed 𝑓2 after L5 acts as a spatial filter, limiting the

angular spectrum that can pass to the EMCCD. Its width is 𝑑𝑎𝑝𝑝 in Eq. (3.16).

In the simulation of the quantum experiment, the two-photon state is propagated through

the optical system with the operators in Eqs. (3.11 – 3.14) acting on the signal and idler

spaces individually. Thus, the propagation is very similar to the classical propagation shown

in Eqs. (3.15) and (3.16), but for every classical operator, the are two operators applied to

the two-photon state, one for the signal and one for the idler. This results in rather lengthy

expressions for the propagation of the two-photon state, so the two-photon propagation

expressions will not be listed here. After propagating the two-photon state, the marginal

distribution for the signal photon was calculated to form the results in the "quantum" column

of Fig. 3.4(c).

Like the experimental results, the simulation shows that the three bars are clearly resolved

for all of the three spatial frequencies used. Furthermore, the simulation also reproduces

the decrease in visibility for the quantum experimental data at a spatial frequency of 13.3

lp/mm. The classical simulation ("classical" column, Fig. 3.4(c)) reproduces the loss of
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resolution in the classical experiment for both the 10 lp/mm and 13.3 lp/mm data, whereby

the three bars are only resolved as two bars. Quantum phase-shifting holography achieves

a greater resolution than classical phase-shifting holography because the two-photon field

created in SPDC has a larger spatial bandwidth than the laser beam used in the classical

experiment [86]. The spatial bandwidth of SPDC is primarily controlled by the length of the

nonlinear crystal and can be evaluated by considering the marginal of |𝜓0(𝜿𝑠, 𝜿𝑖) |2. Because

the phase object is probed with spatially broadband light in the quantum experiment, more

high spatial frequency content passes through the bandwidth-limiting aperture. This effect

is similar in origin to the increase in spatial resolution granted by structured-illumination

microscopy [90].

3.4.3 Pictorial Explanation of Quantum Resolution Enhancement

For the purpose of demonstration, an intuitive explanation of the resolution difference

between classical and quantum illumination is shown in Fig. 3.5. Because collimated

Gaussian laser beams have a fairly flat wavefront, the laser used for the classical phase

imaging experiment is represented by a single ray in Fig. 3.5(a). A phase grating like the

one used in the resolution measurement of Fig. 3.4 will cause a beam passing through it to

develop diffrative orders around the incident zeroeth order beam (+1 and -1 in Fig. 3.5(a)).

Generally, a phase grating will produce higher diffractive orders, but only the +1 and -1

orders are shown in Fig. 3.5(a). If an aperture is placed after the phase grating, its width can

be adjusted so that the +1 and -1 diffractive orders are blocked, limiting the angular spectrum

of the field that passes through the aperture. Thus, the field that passes through the aperture

will not reproduce the image of the phase grating when interfered with a reference field.

The result is different if the phase grating is imaged with light that has a large angular

spectrum, such as the signal and idler fields created in SPDC. Figure 3.5(b) shows one
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Figure 3.5: An intuitive picture of the resolution limit of (a) a laser beam interacting with a phase
grating and (b) signal and idler photons produced from SPDC interacting with a phase grating.

such instance of imaging the same phase grating used in Fig. 3.5(a) with a signal and idler

produced is SPDC. The angle of the incident signal and idler photons is not necessarily

chosen according to an actual experiment, but it is assumed that they represent the maximum

of the output angular spectrum of SPDC. The same spatial bandwidth-limiting aperture used

in Fig. 3.5(a) is shown in Fig. 3.5(b). Notice that the +1 and -1 diffractive orders are now

encoded on a higher spatial carrier frequency since the input signal and idler photons have a

higher spatial frequency than the laser used in Fig. 3.5(a). Furthermore, because of the high

angular correlation of the signal and idler, their angles of incidence on the phase grating are

equal in magnitude but have an opposite sign. For this reason and because of the greater

than zero absolute incidence angles of the signal and idler photons, the 0𝑠, −1𝑠, 0𝑖, and +1𝑖

diffractive orders pass through the aperture. As a result, the signal and idler fields that pass

through the aperture will produce the image of the phase grating when interfered with a

reference signal and idler field derived from another (or the same) nonlinear crystal pumped

coherently.

3.4.4 Graphical Explanation of Quantum Resolution Enhancement

To provide a more quantitative demonstration of the resolution enhancement granted by

spatially broadband illumination, the experiments in Fig. 3.1 are simulated with a phase
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Figure 3.6: A comparison of the effect of an aperture placed in the Fourier plane of (a) the classical
interference pattern and (b) the quantum interference pattern formed by the phase object in Eq. 3.17
and a reference field. Diffractive orders of the classical and quantum interference patterns are labeled
as -2, -1, 0, +1, and +2, accordingly. The width of the aperture, grey overlayed on the plots in (a)
and (b), is the same in both the classical and quantum experiments. (a) The aperture blocks all but
the zeroth and half the -1 and +1 diffractive orders in the classical experiment. (b) In the quantum
experiment the -1, 0, +1, and half the -2 and +2 diffractive orders pass through the aperture due to the
wide spatial bandwidth of the signal and idler photons.

object of the form:

𝜙obj(𝑥) = exp
[
𝑖
𝜋

2
(
1 + cos

[
𝑘grat𝑥

] ) ]
(3.17)

In the simulation, 𝑘grat = 2𝜋/1.95 mm−1. The simulation is stopped 12.5 cm after lens L5,

where the angular spectrum is mapped to position according to 𝜿 = 𝑘𝝃/ 𝑓 , where 𝑓 is the

focal length of the lens and 𝝃 is the position in the focal plane of the lens. For simplicity,

only one spatial dimension is considered. Figure 3.6 shows the result of the simulation. The

angular spectrum of the classical field is shown in Fig. 3.6(a), where,

𝐸grat(𝑥) ∝ 𝐸 (𝑥)
(
1 + 𝑒𝑖𝜙obj (𝑥)

)
(3.18)

In the simulation, the input classical field, 𝐸 (𝑥), is a collimated Gaussian beam of radius 3

mm at the SLM. It is worth noting that the phase in Eq. (3.17) is the phase in the SLM plane.
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The field in the SLM plane is demagnified by a factor of 0.3 before passing through lens

L5. Thus, the spacing between the diffractive orders in the Fourier domain is three times

greater than 𝑘grat = 2𝜋/1.95 mm−1. The grey area of the plot in Fig. 3.6(a) indicates spatial

frequencies that would be blocked by an on-axis aperture of width 6𝑘grat placed 12.5 cm

behind lens L5. As indicated by the figure, this aperture would block half the -1 and +1

diffractive orders and higher diffractive orders.

The two-photon angular spectrum resulting from a simulation of the quantum experiment

is shown in Fig. 3.6(b). The same aperture shown in Fig. 3.6(a) is overlayed on the signal and

idler spaces in grey in Fig. 3.6(b). The first three diffractive orders for particular input signal

and idler spatial frequencies (namely, 𝜅𝑥,𝑖 = −𝜅𝑥,𝑠 = 3𝑘grat) are labeled. Note that the 0, +1,

and half the +2 diffractive orders of the signal photon and the 0, -1, and half the -2 diffractive

orders of the idler photon pass through the aperture for these particular illumination spatial

frequencies. By the symmetry of the two-photon angular spectrum in Fig. 3.6(b), the 0, +1,

and half the +2 diffractive orders of the idler photon and the 0, -1, and half the -2 diffractive

orders of the signal photon pass through the aperture for illumination spatial frequencies of

𝜅𝑥,𝑖 = −𝜅𝑥,𝑠 = −3𝑘grat. Thus, the quantum experiment achieves twice the resolution of the

classical experiment by virtue of the fact that signal and idler photons have a wider spatial

bandwidth than the laser used to illuminate the phase object in the the classical experiment.

This is the same effect described in Fig. 3.5, but shown quantitatively in the simulated

classical angular spectrum and two-photon angular spectrum of the experiments in Fig. 3.1.

It is worth pointing out that the power of each diffractive order passing through the aperture

in Fig. 3.6(b) will not be the same because the aperture will always pass more of the lower

diffractive orders than the higher diffractive orders over the entire angular spectrum of the

illumination source.

The intuitive diagram shown in Fig. 3.5 and the simulation plots shown in Fig. 3.6

allow one to form a mental picture of the physical origin behind the resolution enhancement
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provided by imaging with spatially broadband light. However, a very simple analytical

expression for the mechanism behind this resolution enhancement can be obtained from

basic Fourier Optics principles [91]. The derivation of this expression is summarized here.

Individually, the signal and idler photons produced in SPDC can be characterized as

having a low degree of spatial coherence in the output plane of the nonlinear crystal that

created them [92]. Under the assumption that fields at different points in the illumination

source are statistically uncorrelated, it can be shown that the imaging system follows an

intensity impulse response [93]:

𝐼img(𝑥, 𝑦) =
∬ ∞

−∞
|ℎ(𝜉 − 𝑥, 𝜂 − 𝑦) |2𝐼obj(𝜉, 𝜂)𝑑𝜉𝑑𝜂, (3.19)

where 𝐼obj(𝜉, 𝜂) is the intensity in the object plane as a function of the object spatial

coordinates 𝜉 and 𝜂. The intensity in the image plane is 𝐼img. The point-spread function

for coherent imaging, or impulse response, is given by ℎ(𝑥, 𝑦). It is defined as the inverse

Fourier transform of the amplitude transfer function, 𝐻 (𝜅𝑥 , 𝜅𝑦),

ℎ(𝑥, 𝑦) = F −1{𝐻 (𝜅𝑥 , 𝜅𝑦)
}
. (3.20)

The amplitude transfer function is simply the spatial profile of the bandwidth limiting

aperture of the optical system, i.e. the exit pupil. Thus, using the convolution theorem of

Fourier analysis, the angular spectrum of the image intensity under incoherent illumination

is,

F
{
𝐼img

}
= 𝐻𝑖𝑛𝑐𝑜ℎ (𝜅𝑥 , 𝜅𝑦)F

{
𝐼obj

}
, (3.21)

where 𝐻𝑖𝑛𝑐𝑜ℎ (𝜅𝑥 , 𝜅𝑦) is the optical transfer function of the system. Using the autocorrelation



CHAPTER 3. QUANTUM-ENHANCED PHASE IMAGING 60

theorem of Fourier analysis, it is immediately apparent that,

𝐻𝑖𝑛𝑐𝑜ℎ (𝜅𝑥 , 𝜅𝑦) = 𝐻 (𝜅𝑥 , 𝜅𝑦) ∗ 𝐻 (𝜅𝑥 , 𝜅𝑦). (3.22)

For an amplitude transfer function that is a rectangular function, like that used in the

experiments of Fig. 3.1, H is a triangular function of twice the width as the rectangular

aperture. Thus, the resolution of the quantum experiment is twice that of the classical

experiment. However, because the optical transfer function is a triangular function, the

angular spectrum of the object is attenuated linearly as a function of the spatial frequency.

This is the reason for the loss of visibility associated with the quantum results in Fig. 3.4 at

13.3 lp/mm.

In view of Fig. 3.6, it is natural to wonder why only a factor of 1.7 in resolution

enhancement was observed in the experiment of Fig. 3.4. The reason a factor of two in

resolution enhancement was not observed in Fig. 3.4 is that the resolution of the SLM used

to make the phase object limited the maximum spatial frequency of the bars that could be

used. At the maximum lp/mm used for the three bars in Fig. 3.4 (13.3 lp/mm) the width of

each bar was three pixels on the SLM. At two pixels per bar, cross-talk between the pixels

prevented the formation of clear three-bar object. In principle, the slit used to limit the

bandwidth of the system could be adjusted to a smaller width and larger bars could have been

used. However, the ratio of spontaneous emission from the pump to SPDC light passing

through the slit prohibited the formation of a clear image in this case.

3.5 Conclusion

In this chapter, a phase-shifting holography method that relies upon the indistiguishability

between photons produced in successive down-conversion events in a nonlinear crystal
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was demonstrated. When compared to classical phase-shifting holography, this method

achieves twice the phase shift and ∼ 1.7 times the resolution, in agreement with numerical

simulation. By doubling the phase shift imparted to light interacting with a phase-only object,

it was shown that it is possible to obtain half the fractional uncertainty in a measurement

of the phase imparted by that object. This increase in signal-to-noise has a clear benefit

in low-light imaging of light sensitive samples, which typically suffers from background

noise being of nearly the same intensity as the signal. At the same time, this phase-shifting

holography method avoids coincidence imaging, which can require data collection times on

the order of tens of hours. Only ten seconds were required to collect all the data to construct

the phase object in Fig. 3.3, which is much closer to the relevant time scale of biological

imaging. Implementing the quantum phase-shifting holography technique in high numerical

aperture imaging systems will require careful phase stabilization. Additionally, samples

thicker than the biphoton birth zone in the nonlinear crystal or those with multiple scattering

layers will produce a degraded phase image. It may be possible to achieve a higher spatial

resolution by imaging the signal and idler photons in coincidence because the effective

aperture experienced by the coincidence image is a convolution of the apertures for the

individual signal and idler photons [88]. Furthermore, this scheme may be fundamentally

more phase sensitive than classical phase-shifting holography due to the Heisenberg scaling

of phase uncertainty [94], and future work would involve testing this feature. Furthermore,

non-degenerate SPDC, where the signal and idler photons are different wavelengths, may

allow for more sophisticated quantum-enhanced phase imaging techniques.
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4. Beam Breakup with Polarization-Structured

Beams

4.1 Introduction

Physical systems governed by wave mechanics are capable of evolving into configurations that

concentrate energy into small regions of space. In optics, the concentration of nearly-parallel

rays corresponding to different wavefronts into a small area is known as caustic formation [1,

2, 95, 96]. A familiar example of this behavior is the pattern of light formed on the bottom of

a swimming pool caused by refraction from small waves on the water surface. Caustics have

also been observed in the phase space trajectories of a driven two-level atomic system [97].

Caustic formation is a fundamentally linear phenomenon arising from the diffraction of

light fields containing random phase perturbations [1, 2]. However, nonlinear self-phase

modulation can enhance the formation of caustics from small initial phase perturbations [12,

98] or from a completely smooth beam [99] through counter-self-deflection [100]. In addition

to caustic enhancement, self-action effects are responsible for the breakup of laser beams

into small-scale filaments [101], the formation of nondiffracting beams known as spatial

solitons [102–104], and the creation of optical phase singularities [105, 106]. The dynamical

equations governing the motion of ocean waves also contain a self-phase modulation term

that leads to the formation of rogue waves [107].
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Optical communications [108], remote sensing, and lightning strike control [6, 7, 109,

110] are a few technologies that rely upon a careful understanding of the interplay between

linear and nonlinear propagation effects. Encoding information in the orbital angular

momentum (OAM) of light is a promising way to increase the information capacity of optical

communication channels [111–114]. However, the amplification of azimuthal modulation

instabilities cause OAM beams to break up during nonlinear propagation [16, 17, 115].

Beams carrying a space-varying polarization have been suggested as an alternative encoding

scheme [116] that follows an algebra similar to the Poincaré sphere formalism for plane

wave polarization [117]. Such beams are typically referred to as polarization-structured

beams. As an added benefit, certain polarization-structured beams form the normal-mode

basis of optical fiber waveguides [14, 117, 118].

Polarization-structured beams are solutions to the vector paraxial wave equation and

can be categorized by the number of polarization states represented in their cross section.

Radially, azimuthally, and spiral polarized beams, typically called vector vortex beams [119],

trace a path on the Poincaré sphere, parameterized by the azimuthal angle in the beam’s cross-

section. Figure 4.1 shows an example of a radially polarized beam and the path it traces on

the Poincaré sphere for various azimuthal angles in its transverse cross-section. Another class

of beams, known as full-Poincaré beams, sweep out the entire surface area of the Poincaré

sphere, parameterized by both the radial and azimuthal location in the beam [120]. Examples

of full-Poincaré beams include lemon, star, and monstar topologies [121]. Figure 4.2

shows the polarization and intensity structure of the lemon and star full-Poincaré beams as

well as their Poincaré sphere coverage. There is a final class of beams involving partially

polarized light, referred to here as volumetrically-full Poincaré beams, that sweep out the

entire volume of the Poincaré sphere, parameterized by radial, azimuthal, and axial position

in the beam [122]. Volumetrically-full Poincaré beams will be the subject of Chap. 5.

Recent theoretical [15] and experimental [13] results have shown that vector vortex and
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Figure 4.1: An example of a radially polarized vector vortex beam and the path (blue line on sphere)
it forms on the Poincaré sphere for azimuthal angles of (a) 0 rad, (b) 𝜋/4 rad, (c) 2𝜋/3 rad, and (d)
𝜋 rad in its cross-section (green line in beam profile). R and L represent right- and left- circular
polarization states. Similarly, H and V represent horizontal and vertical polarization, and D and A
represent diagonal and antidiagonal polarization. The purple arrow in the Poincaré sphere indicates
the position along the path for a given azimuthal angle. Red lines overlayed on the beam profile
represent the local polarization.
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full-Poincaré beams are less prone to self-focusing and nonlinear beam breakup, with full

Poincaré beams being the most resistant. Full-Poincaré beams are also less prone to linear

beam breakup caused by atmospheric turbulence [123]. Conversely, certain polarization-

structured beams formed from Hermite-Gauss modes are more susceptible to nonlinear

collapse but in a predictable way that is stable against random phase modulations [124, 125].

These beams, sometimes referred to as hybrid vector beams, are the polarization-structured

analog of necklace beams [126], which are known to have stable propagation in nonlinear

self-focusing media.

In this chapter, it is shown through both experiment and simulation that full-Poincaré

beams are less likely to develop caustics upon nonlinear propagation compared to a uniformly

polarized Gaussian beam and to a uniformly polarized beam with the same intensity structure

as full-Poincaré beams. This suppression of nonlinear caustic formation is studied in a

saturable, nonlinear self-focusing medium. These findings add to the growing understanding

of rogue phenomena and are the first to address nonlinear caustic formation in polarization-

structured beams.

4.2 Background

4.2.1 Polarization-Structured Beams

Fully coherent polarization-structured beams can be decomposed into a superposition of

orthogonally-polarized transverse spatial modes,

E(𝜌, 𝜙, z, t) = [𝐸𝑎 (𝜌, 𝜙, 𝑧)e𝑎 + 𝐸𝑏 (𝜌, 𝜙, 𝑧)e𝑏] e−𝑖𝜔𝑡 , (4.1)

where e𝑎 and e𝑏 are (generally complex) orthogonal unit vectors. The inseparability of

polarization and spatial mode in Eq. (4.1) has been the subject of investigations and debate
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Figure 4.2: (a) A full-Poincaré lemon beam and (b) a full-Poincaré star beam. Red ellipses represent
left-circular polarization, and blue represents right-circular polarization. White lines on the beam
profile represent linear polarization. The line of linear polarization around the center of the lemon
and star beams is known as an l-line. The point of perfect circular polarization at the center of the
beam is known as a c-point. (c) The polarization states present in the lemon and star beams form a
shell (gold) on the surface of the Poincaré sphere. In principle, this shell includes all states of full
polarization, but only if the transverse extent of the beam is allowed to extend to infinity.
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about its connection with measures of quantum entanglement [127, 128], though it describes

a purely classical beam. Because the orthogonally polarized modes in Eq. (4.1) do not

interfere with each other, some have suggested this as the reason for polarization-structured

beams’ stability against beam breakup [123, 129]. For lemon and star beams, 𝐸𝑎 and 𝐸𝑏

are the Laguerre-Gauss modes LG0,0(𝜌, 𝜙, z) and LG0,±1(𝜌, 𝜙, z), respectively. The first

subscript in LG𝑝,𝑙 denotes the radial index and the second denotes the azimuthal index.

Lemon and star beams are differentiated by the azimuthal index of the mode 𝐸𝑏, with a

lemon beam having 𝑙 = +1 and a star beam having 𝑙 = −1.

4.2.2 Nonlinear Propagation

The nonlinear propagation of beams described by Eq. (4.1) can be modeled using coupled-

mode Helmholtz equations [101, 130, 131],

∇2𝐸𝑎 = −𝑘2
0 (1 + 𝜒𝑎) 𝐸𝑎

∇2𝐸𝑏 = −𝑘2
0 (1 + 𝜒𝑏) 𝐸𝑏,

(4.2)

where

𝜒𝑖 = 𝜒(1) + 8𝑛0𝜖0𝑐𝑛2
3

|𝐸𝑖 |2 + 𝜇 |𝐸 𝑗 |2

1 + 𝜎
(
|𝐸𝑖 |2 + 𝜇 |𝐸 𝑗 |2

) , (4.3)

for 𝑖 ≠ 𝑗 . In Eqs. (4.2) and (4.3), 𝑘0 is the free-space wave number, 𝜒(1) is the linear

susceptibility, 𝑛0 is the linear refractive index, and 𝑛2 is the intensity-dependent refractive

index. Equation (4.3) is a commonly used phenomenological model of cross-phase

modulation in a saturable medium [13, 124, 132, 133]. The cross-coupling coefficient,

𝜇, varies depending upon the nonlinear material under consideration. For atomic vapor

nonlinearity, the specific atomic level system under consideration dictates the value of 𝜇 [134]

and can even lead to the arrest of self-focusing under conditions of coherent population

trapping [135]. The linear susceptibility and refractive index can be estimated from the
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full susceptibility for a two-level atomic system in the steady state, given by the following

well-known expression [101]:

𝜒 =

[
𝑁 (𝜌𝑏𝑏 − 𝜌𝑎𝑎) (𝑒𝑞) |𝜇𝑎𝑏 |2

𝑇2
𝜖0ℏ

]
Δ𝑇2 − 𝑖

1 + Δ2𝑇2
2 +Ω2𝑇1𝑇2

. (4.4)

In Eq. 4.4, 𝜇𝑎𝑏 is the dipole moment of the atomic transition under consideration, 𝑇1 is

the natural spontaneous emission lifetime, 𝑇2 is the dipole dephasing time, Δ = 𝜔 − 𝜔ab is

the angular frequency detuning from line center, 𝜔𝑎𝑏, and 𝑁 is the atomic number density.

The on-resonance Rabi frequency, Ω, is given by the expression Ω = 2|𝜇𝑎𝑏 | |𝐸 |/ℏ, and it

describes the strength of the interaction. The equilibrium population density, (𝜌𝑏𝑏 − 𝜌𝑎𝑎) (𝑒𝑞) ,

is typically assumed to be -1.

In order to account for Doppler broadening of the susceptibility, it is necessary to

convolve the full-susceptibility model (Eq. 4.4) with a Gaussian distribution of angular

frequencies [136]:

𝑔(𝜔) = 1
𝜎dopp

√
𝜋

e
−
(

𝜔
𝜎dopp

)2

, (4.5)

where 𝜎dopp = 𝜔0𝑢/𝑐 with 𝑢 =
√︁

2𝑘𝐵𝑇/𝑚. 𝜔0 is the angular frequency of the laser beam

interacting with the Rb atoms. 𝑇 is the temperature of the atomic vapor, and 𝑚 is the mass

of a Rb atom. Thus, the susceptibility takes the form,

𝜒Dopp(𝜔) =
∫

𝑔(𝜔′)𝜒(𝜔 − 𝜔′)𝑑𝜔′ (4.6)

The saturation coefficient, 𝜎, is proportional to the inverse of the saturation intensity.

The theoretical value of 𝜎 for a two-level atomic system can be used to estimate its value in

experiment [101]:

𝜎(Δ) = ℏ2

4|𝜇𝑎𝑏 |2𝑇1𝑇2

(
1 + Δ2𝑇2

2

)
(4.7)
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The intensity-dependent refractive index coefficient, 𝑛2, is estimated by taking the low-

intensity limit of the Doppler-broadened index of refraction for a two-level atom [137,

138]:

𝑛2 =
4𝜋7/2

3
𝜇4
𝑎𝑏
𝑁

𝑐𝜖2
0ℎ

3

(
𝑇2

𝑘2𝑢2

)
𝑥e−𝑥

2
(4.8)

The experimental configuration shown in Fig. 4.3 is well described by 𝑛0 = 1 − 6 × 10−5,

𝑛2 = 1.5 × 10−10 m2/W [138], 𝜇 = 0.3, and 𝜎 = 3.9 × 10−9 m2/V2. All values except

𝜇 and 𝜎 were obtained by considering the particular two-level transition described in

Fig. 4.3 [101, 139]. 𝜇 and 𝜎 were obtained by qualitatively matching the simulation of

Eq. 4.2 with experiment results. From the right-hand-side of Eqs. (4.2) and (4.3) it is clear

that the refractive index experienced by one mode is influenced by the intensity profile of the

other mode. The resulting cross-coupling behavior [140] leads to the modification of the

self-focusing distance of the composite beam, as mentioned in Refs. [15, 124, 125]. In the

absence of cross-coupling (𝜇 = 0), the intensity-dependent susceptibility on the right-hand-

side of Eqs. (4.2) leads to the enhancement of caustic formation through self-focusing [12,

98]. This effect is the result of small phase perturbations being amplified through a four-wave

mixing process in the nonlinear medium [101].

4.2.3 Intensity Statistics of Beam Breakup

The spatially-resolved intensity statistics of beams undergoing breakup can be modeled by

the following probability density function [98],

𝑝(𝐼) = 𝑁e−𝜁
(

𝐼
⟨𝐼 ⟩

)𝛾
, (4.9)

where 𝑁 is a normalization coefficient, 𝜁 describes the width of the distribution, 𝛾 describes

the tails of the distribution, and 𝐼 is the intensity at each transverse location in the beam.
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Brackets denote an average over the transverse spatial coordinates. Fully-developed speckle

patterns follow exponential intensity statistics, corresponding to 𝛾 = 1 [141]. Upon the

development of caustics, intrabeam intensities will begin to follow a long-tailed distribution,

characterized by 0 < 𝛾 < 1 [98]. A long-tailed intensity distribution is an indicator of rogue

high intensity peaks within the beam, in analogy with rogue ocean waves.

4.3 Experiment

The experimental setup for generating FP beams and measuring caustic formation is shown

in Fig. 4.3. To generate FP beams, a narrow linewidth (∼ 200 kHz) diagonally polarized

Gaussian beam with a radius of ∼ 5 mm enters a system of two spatial light modulators

(SLM). The first SLM is programmed with a blazed computer-generated hologram (CGH)

that encodes an LG0,1 onto a carrier spatial frequency [142] for the horizontally polarized

portion of the beam only. The face of the first SLM is imaged onto the second SLM using a

4 𝑓 system, and the polarization of the beam is rotated by 90◦ so that the second SLM acts

only on the portion of the beam that did not interact with the first SLM. The second SLM

then uses a CGH to encode an LG0,0 onto a carrier spatial frequency that exactly overlaps

with the LG0,1 created on the first SLM. The radius of the generated beam (∼ 1 mm) is

approximately five times smaller than the radius of the input Gaussian beam, resulting in

minimal influence of the underlying Gaussian structure on the generated beam. This scheme

can be configured to generate any fully coherent polarization structured beam within the

spatial bandwidth of the SLMs.

The generated beam then travels to a third SLM that imprints the same random phase

mask on both polarization components of the beam. To do this, the SLM is divided into

two regions, and one region is imaged onto the other using a 4 𝑓 system containing a 90◦

polarization rotation. Each half of the third SLM contains the same random phase mask
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Figure 4.3: The experimental setup for measuring spatially resolved intensity statistics. A diagonally
polarized narrow-linewidth laser beam (+0.6 GHz above the 87Rb D2 F = 1 → F′ = 2 transition)
enters a system of two spatial light modulators (SLM) capable of generating any fully coherent
polarization-structured beam (beam generation). Each SLM acts upon a different orthogonal
polarization component of the beam, and the face of the first SLM is imaged onto the face of the
second using a 4 𝑓 system. A third SLM divided into two regions, imparts the same spatially random
phase to each polarization component of the beam. The face of the third SLM (dotted blue line)
is imaged onto the entrance facet of a 7.5 cm-long Rb cell using a Keplerian telescope with a
magnification of −3/4 (L3 and L4). The polarization is transformed to the circular basis using a
series of half- and quarter-wave plates (𝜆/2 and 𝜆/4, respectively). The output facet of the Rb cell
(dotted green line) is imaged onto a CCD camera (CCD) to collect pixel intensity statistics. The
lens focal lengths are 𝑓 = 20 cm (L1), 𝑓 = 30 cm (L2), 𝑓 = 1 m (L3), 𝑓 = 75 cm (L4); polarizing
beamsplitter (PBS).
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up to a reflection about the horizontal and vertical axes to compensate for the coordinate

reflection imparted by the intervening 4 𝑓 system. The correlation length of random phase

features in the mask is 450 𝜇m, and the maximum phase shift in the mask is 𝜋 radians. The

face of the third SLM is imaged onto the input facet of an anti-reflection-coated Rb vapor

cell using a Keplerian telescope with a magnification of −3/4, and the polarization of the

beam is transformed to the circular basis. Because the two polarization components travel

along a common path, they experience a relative optical delay that is negligible compared to

their individual coherence lengths (∼477 m). Thus, at the input of the vapor cell, the FP

beam has a lemon topology with an overall random phase,

E(𝜌, 𝜙, 𝑧) = e𝑖𝜙rand (𝜌,𝜙,𝑧) [
LG0,0eL + LG0,1eR

]
(4.10)

The 7.5 cm-long vapor cell contains natural abundance Rb and is heated to 115 ◦C to

achieve a high number density of Rb atoms
(
∼1019 atoms/m3) in the cell. The laser is

blue-detuned to +0.6 GHz above the 87Rb D2 F = 1 → F′ = 2 transition and experiences a

self-focusing nonlinearity. At the maximum power used in this experiment (130 mW), the

LG0,0 beam experiences a maximum nonlinear phase shift of ∼ 2𝜋 rad. The field at the output

facet of the Rb cell is then imaged onto a camera to collect pixel intensity statistics. We

investigated scenarios where 𝑛2 was less than zero during the undertaking of this experiment

but observed no rogue intensity peaks at any power, consistent with Ref. [143].

4.4 Results

4.4.1 Comparison of Intensity Statistics

Figure 4.4 shows intensity statistics collected for three different beams: a lemon beam (FP),

a uniformly polarized beam with the same intensity structure as a lemon beam (FPA), and a
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(a) linear (b) nonlinear, 50 mW (c) nonlinear, 90 mW (d) nonlinear, 130 mW

Figure 4.4: The experimentally obtained intensity statistics of FP (orange diamonds), FPA (blue
circles), and LG0,0 (green squares) beams after (a) linear and (b,c,d) nonlinear propagation. The solid,
dashed, and dotted lines are Eq. (4.9) fitted to the FP, FPA, and LG0,0 data, respectively. The value of
𝛾 obtained from fitting Eq. (4.9) to each dataset is shown at the bottom of the figure. The shaded
area indicates the one standard deviation uncertainty in the fits. Under linear propagation, all beams
have very similar intensity statistics that display no caustic formation. Under nonlinear propagation,
the uniformly polarized LG0,0 and FPA beams begin to display caustic formation that increases
with increasing beam power (b and c). For the same beam powers, the polarization-structured FP
beam maintains exponential intensity statistics with no caustics present. The suppression of caustics
afforded by the polarization structure of the beam is no longer present at a beam power of 130 mW.

uniformly polarized LG0,0 beam with the same beam waist as the LG0,0 component of the

FP beam. Each histogram is comprised of pixel intensities from the imaging camera for

500 trials with different random phase masks. The frames from the camera are truncated to

include only pixels within a region that contains nonzero intensity when all frames from

the 500 trial collection are averaged together. The frame sizes for the FP and FPA trials

are similar, but the frame sizes are smaller for the LG0,0 trials–as expected for the smaller

LG0,0 beam. The pixel intensities are divided by the average intensity observed in all trials.

Equation (4.9) is fit to the tails of the histograms using maximum likelihood estimation to

measure the “tailiness" of the intensity distribution. Uncertainties in the fits were obtained

through Monte Carlo simulation.

When the beam power is low (∼ 4 mW) and the Rb vapor is at room temperature, the

beams propagate linearly through the cell, Fig. 4.4(a). Under linear propagation, the FP,
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FPA, and LG0,0 behave almost identically with no caustic formation present, as indicated

by 𝛾 > 1. In fact, the beams do not even display speckle pattern statistics under these

conditions. In Fig. 4.4(b) the cell temperature is increased to 115 ◦C and the beam powers

are increased to 50 mW. The LG0,0 and FPA beams begin to develop long-tailed intensity

statistics, 𝛾 < 1, indicating the presence of caustics. Under these same conditions, the FP

beam displays speckle-pattern statistics. Thus, the tendency of the beam to display nonlinear

caustics is seen to be suppressed through use of a polarization structured beam. As the beam

powers are increased to 90 mW, Fig. 4.4(c), the intensity histograms for the LG0,0 and FPA

beams develop longer tails while the FP beam maintains Gaussian amplitude statistics. At

the maximum achievable beam power of our system, 130 mW, all beams display similar

long-tailed intensity statistics, Fig. 4.4(d).

The suppression of caustic enhancement in the polarization-structured beam can be

attributed to two primary effects. The first is that FP beams can be treated as a mutually

incoherent superposition of an LG0,0 and an LG0,±1 beam. This leads to the decrease in linear

beam breakup from phase perturbations [123] through an effect known as complementary

diffraction, as described in Ref. [129]. The second effect contributing to the suppression of

nonlinear caustic formation is the cross-phase modulation between the two modes comprising

the FP beam. Mutual interaction can stabilize the beam under nonlinear propagation [13,

15, 132]. The suppression of caustic enhancement afforded by polarization structure does

not persist at higher powers, as indicated by the results of Fig. 4.4(d). Furthermore, caustic

enhancement also appears to saturate at higher powers because 𝛾 has increased for all but

the FP beam at 130 mW.
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4.4.2 Simulation of Nonlinear Propagation

Figure 4.5 compares the experimentally obtained polarization and intensity structure of the

FP beam [Fig. 4.5(a)] to numerical simulation [Fig. 4.5(b)] for both linear and nonlinear

propagation after the implementation of a random phase mask. The simulation was

performed by numerically solving Eqs. (4.2) using a split-step Fourier method that accounts

for nonparaxiality [131] with a beam power of 90 mW. The simulation results display good

qualitative agreement with experiment. Under linear propagation, the intensity structure

does not change dramatically because the maximum of the random phase mask (𝜋 rad) is

small compared with that which typically leads to caustics (∼ 8𝜋 rad)[12]. Remarkably,

after nonlinear propagation, the lemon polarization topology of the FP beam changes very

little, despite the dramatic change in its intensity structure. This is likely due to the fact

that the fields in each circular polarization component of the FP beam experience similar

nonlinear phase shifts due to the cross-phase terms in Eqs. 4.2. If the coupling coefficient, 𝜇,

were equal to unity, the polarization structure would not change at all because both circular

polarization components would experience the exact same nonlinear phase. That is, there

would be no nonlinear birefringence [130]. In this case, the polarization structure would be

the same for both linear and nonlinear propagation results.

In Fig. 4.5(c) we simulate the intensity statistics of FP, FPA, and LG0,0 beam after

nonlinear propagation for beam powers of 90 mW. The FP beam is the least likely to

develop rogue intensity peaks and the LG0,0 is the most likely to develop rogue intensity

peaks, in agreement with experiment. Compared with experiment, the FP beam has slightly

longer-tailed statistics in simulation. This is likely due to small differences in the intensity

structure of the beam in experiment and simulation. Nonetheless, the model of Eqs. (4.2)

and (4.3) describe the experimental results quite well.
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Figure 4.5: Comparison of experimental and simulation results for linear and nonlinear propagation
at a beam power of 90 mW. The polarization handedness in (a) and (b) is indicated by color, where
red, blue, and white indicate left-circular, right-circular, and linear polarization respectively. The
same random phase mask is used in (a) and (b). The intensity structure does not change dramatically
after linear propagation because the maximum phase of the phase mask is many times smaller than the
maximum phase at which caustics usually develop (∼8𝜋 rad) (top). However, the intensity structure
changes dramatically upon nonlinear propagation over the same distance (bottom). Nonetheless, the
polarization structure remains similar to the linear result. The polarimetry simulation (b) shows good
qualitative agreement with the experimental results (a). (c) In the numerical simulation of nonlinear
propagation with 500 different random phase masks, the FP beam has shorter-tailed statistics than
either the FPA or LG0,0 beams, in agreement with experiment (Fig. 4.4). The random phase masks
used in obtaining (c) have the same parameters as those used in experiment.
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4.5 Conclusion

This chapter demonstrated that a full-Poincaré lemon beam is less susceptible to developing

caustics upon propagation through a saturable, nonlinear self-focusing medium than either a

uniformly polarized beam with the same intensity structure or a uniformly polarized LG0,0

beam with the same waist as the LG0,0 component of the lemon beam. The experiment was

simulated by numerically solving coupled-mode Helmholtz equations for a beam propagating

through a saturable self-focusing medium, resulting in good agreement with experiment.

These results add to the growing understanding of rogue behavior [12, 98], and they bear

upon the use of polarization-structured beams to control nonlinear self-focusing processes in

remote sensing [6, 7, 109], optical communications [118], and laser engineering [144]. The

extent to which polarization structure is maintained during nonlinear self-focusing warrants

further study. Such investigations would extend the field of singular optics into the nonlinear

domain [121, 145], potentially revealing topologically protected quantities that could be

used for information transfer.
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5. Generation of volumetrically-full Poincaré

beams

5.1 Introduction

Laser beams with spatially-varying amplitude, phase, or polarization beyond that of a

uniformly polarized Gaussian beam have garnered a significant amount of attention over

the last few decades [146, 147]. These beams are generally referred to as structured light.

As shown in the previous chapter and in other studies, polarization-structured beams are a

promising candidate for communications and high power applications. Additionally, radially

polarized beams can achieve a tighter focus [148], potentially increasing the precision of laser

trapping [149] and increasing the resolution in confocal microscopy [150]. Full-Poincaré and

vector vortex beams are fully polarized beams with polarization structure. However, other

types of polarization-structured beams that include states of partial and full polarization

also exist. While fully polarized beams, such as full-Poincaré and vector vortex beams,

have been studied extensively, partially polarized beams with polarization structure have

not yet generated as much research. Fully polarized beams with polarization structue

only contain two mutually incoherent beams, resulting in two-beam coupling effects under

nonlinear propagation. This coupling is responsible for the the modification of the critical

power of self-focusing, which can lead to an increased resistance to beam breakup [15].
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Because partially polarized polarization-structured beams can be comprised of an incoherent

superposition of many spatial modes, they may hold promise for further increasing the

resistance to beam breakup beyond that of fully polarized polarization-structured beams.

One such partially polarized beam that contains every polarization state on the surface

and interior of the Poincaré sphere was developed by Beckley et al., referred to here as

volumetrically-full Poincaré (VFP) beams [122]. In this chapter, a method of generating

polarization-structured beams comprised of at most two temporally incoherent beams of

opposite orbital angular momenta or a relative inversion about the horizontal axis is presented.

This method is used to generate a VFP beam. The results and methods of this chapter add to

the quickly growing field of structured light generation and may have an impact on studies

of "classical entanglement" and beam dynamics in complex and nonlinear media.

5.2 Background

A VFP beam is comprised of an incoherent superposition of two FP beams of opposite

helicity [122],

VFP(𝜌, 𝜃, 𝑧) = 𝑎1FP+(𝜌, 𝜃, 𝑧) + 𝑎2FP−(𝜌, 𝜃, 𝑧), (5.1)

where,

FP±(𝜌, 𝜃, 𝑧) = LG0,0(𝜌, 𝜃, 𝑧)𝒆L + LG0,±1(𝜌, 𝜃, 𝑧)𝒆R (5.2)

The coefficients 𝑎1 and 𝑎2 in Eq. 5.1 are uncorrelated stocastic variables of equal amplitude.

That is, ⟨𝑎1𝑎
∗
2⟩ = ⟨𝑎2𝑎

∗
1⟩ = 0 and ⟨|𝑎1 |2⟩ = ⟨|𝑎2 |2⟩, where brackets denote an average over

the exposure time of the camera that records the beam profile. For the sake of simplicity,

we have ignored any phase difference between the beams on the R.H.S of Eq. 5.2, but such

a phase difference would impart a rigid rotation to the polarization structure [120]. The

unit vectors 𝒆L and 𝒆R denote left- and right-circular polarization, respectively. The Stokes
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parameters’ dependence upon 𝜌, 𝜃, and 𝑧 reveal how every polarization state is present at

some location in the VFP beam,

𝑠0 = |LG0,0 |2
[
1 + �̃�2]

𝑠1
𝑠0

=
2�̃�

(1 + �̃�2)
cos 𝜃 cos 𝜃G(𝑧)

𝑠2
𝑠0

=
−2�̃�

(1 + �̃�2)
cos 𝜃 sin 𝜃G(𝑧)

𝑠3
𝑠0

=
�̃�2 − 1
1 + �̃�2 .

(5.3)

where �̃� =
√

2𝜌/𝑤(𝑧), 𝑤(𝑧) is the beam radius, and 𝜃G(𝑧) is the Gouy phase [151] of the

LG0,0 beam. Aside from the dependence upon 𝜃G(𝑧), Eqs. 5.3 are the parametric equations

of a unit disk in the Poincaré sphere with a normal vector that is perpendicular to the 𝑠3-axis.

As the Gouy phase changes, the disk rotates about the 𝑠3-axis, eventually sweeping the entire

volume of the Poincaré sphere. Because the Gouy phase depends upon 𝑧 as − arctan(𝑧/𝑧R),

where 𝑧R is the Rayleigh range, half of the disk’s rotation occurs within ±𝑧R. The full 𝜋

rotation of the disk only occurs for propagation from 𝑧 = −∞ to 𝑧 = +∞.

Figure 5.1 shows the Poincaré sphere coverage and transverse polarization structure of

the VFP beam at three locations along the beam’s propagation: 𝑧 = −1.7𝑧R, 𝑧 = 0, and

𝑧 = 1.7𝑧R. In each plane of constant 𝑧, there are two regions where the degree of polarization

is zero. These correspond to areas where the polarizations of the constituent FP beams are

orthogonal. Full polarization occurs in regions where the polarizations of the constituent FP

beams are the same. The lack of states at the top of the Poincaré sphere is a result of the

finite numerical precision of the VFP beam’s representation in the computer coupled with

the finite window size chosen in Fig. 5.1. It is worth noting that it is not possible to obtain

polarization states at the very top of the Poincaré sphere because perfectly right-circularly

polarized states only exist infinitely far from the propagation axis of the beam.
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Figure 5.1: Poincaré sphere coverage (top row) and transverse polarization structure (bottom row) of
a VFP beam at three positions along the beam’s propagation. (top row) As the beam propagates, the
polarization states present in the beam form a disk in the Poincaré sphere that rotates about the 𝑠3
axis. (bottom row) The transverse polarization structure of the VFP beam contains varying degrees of
polarization, as indicated by the relative size of the polarization ellipse. Upon propagation, the local
polarization at a point in the beam undergoes a rotation. Yellow, blue, and white ellipses indicate
left-circular, right-circular, and linear polarization, respectively. Beam sizes are scaled differently to
aid visual inspection.
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5.3 Experiment

The experimental setup for generating a VFP beam is shown in Fig. 5.2. In the "coherence

control system" stage, a 780 nm tunable diode laser (Toptica DL pro 780) is coupled into

a phase-shifting electro-optic modulator (EOM) (AdvR WPM-K0780-P85P85ALO) via a

polarization-maintaining fiber (PMF). The EOM is driven with amplified white noise (noise

with equal power at all frequencies) to broaden the linewidth of the laser used to generate the

VFP beam. Because the laser has a free-running bandwidth of approximately 200 kHz, one

FP beam used to create the VFP beam would have to be delayed by more than 500 m relative

to the other in order to create the incoherent superposition of two FP beams necessary for

the VFP beam. By decreasing the coherence length (increasing the bandwidth) of the laser,

the relative delay distance can be brought down to a more manageable distance. The process

of using a phase-only device to broaden the laser linewidth is described below.

5.3.1 Linewidth Broadening with Phase-only Devices

When driven with white noise, the operation of the phase-shifting EOM used in Fig. 5.2 is to

add a random phase to the input to the device,

𝐸noise(𝑟, 𝑡) = 𝐸in(𝑟, 𝑡)e𝑖𝑎𝑔rand (𝑡) . (5.4)

In Eq. (5.4), 𝑔rand(𝑡) is function that varies randomly between −1/2 and 1/2 with time and

has a flat spectrum over a given bandwidth. The peak-to-peak amplitude of the random

phase shift is dictated by 𝑎. The input to the EOM is a single mode fiber, so 𝐸in(𝑟, 𝑡) is

a CW Gaussian mode. Because the spatial dependence is insignificant for the following

treatment, it will be suppressed. Generally, the underlying bandwidth of 𝐸in will influence
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SLM
PBS

CCD

Figure 5.2: Experimental setup for generating a VFP beam. 780 nm: tunable diode laser; PMF:
polarization-maintaining fiber; EOM: phase-shifting electro-optic modulator; TA: tapered amplifier;
PBS: polarizing beamsplitter; 𝜆/2: half-wave plate; SLM: spatial light modulator; L1: 𝑓 = 20 cm
lens; 𝜆/4: quarter-wave plate; 50/50: 50/50 beamspliter; L2: 𝑓 = 2.5 m lens; L3: 𝑓 = 1 m lens;
CCD: camera.
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the bandwidth of 𝐸noise. In particular, the bandwidth of 𝐸noise is as follows:

F
{
𝐸noise

}
= F

{
𝐸in

}
∗ F

{
e𝑖𝑎𝑔rand (𝑡)}, (5.5)

which follows directly from the Fourier convolution theorem. For the narrowband laser used

in Fig. 5.2, F
{
𝐸in

}
≈ 𝛿(𝜔 − 𝜔0), where 𝜔0 is the central angular frequency of the laser. As

a result of the sifting property of the delta function, the spectrum of 𝐸noise is centered at 𝜔0

and dictated by the bandwidth of the added phase noise:

F
{
𝐸noise

}
(𝜔0) ≈ F

{
e𝑖𝑎𝑔rand (𝑡)} (𝜔0). (5.6)

It is now necessary to choose a value of the peak-to-peak phase shift, 𝑎, that will result

in 𝐸noise having the same bandwidth as 𝑔rand. In practice, it is not possible to arrive at

an analytical expression for the bandwidth of an arbitrary phase-only signal, but it is very

straighforward to obtain the spectrum of 𝐸noise from simulation.

Figure 5.3 shows a simulation of the spectrum of Eq. 5.4 for various values of 𝑎. For

simplicity, it is assumed that 𝐸in(𝑡) = exp(−𝑖𝜔0𝑡), where 𝜔0 = 2𝜋 ∗ 3.84 ∗ 1014 rad/s. Each

spectrum is obtained from an average of 100 different realizations of Eq. (5.4). In each

realization, 𝑔rand is constructed by creating an array of random numbers and multiplying its

spectrum by a rectangular function of width 𝜔0/5. After transforming the bandwidth-limited

signal back to the temporal domain, it is normalized so that varies between −1/2 and 1/2

and is multiplied by 𝑎. As the peak-to-peak phase shift imparted by the randomly driven

EOM is increased from 𝑎 = 2𝜋 to 𝑎 = 6.5𝜋 the bandwidth of the light increases. For values

of 𝑎 less than 6.5𝜋, a narrow central peak at 𝜔0 is present. Interestingly, the bandwidth of

𝐸noise depends on 𝑎 in a nonlinear way. At 𝑎 = 6.5𝜋, the random phase noise dominates

the bandwidth of 𝐸noise rather than the strong central peak at 𝜔0. For the EOM used in
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Figure 5.3: The simulated spectrum of a CW beam multiplied by a randomly varying phase. The
value of 𝑎 in the upper left corner of each panel is the peak-to-peak phase shift imparted by the
random phase. The central frequency of the CW beam is 384 THz. In each panel, the bandwidth of
the noise is 77 THz. For values of 𝑎 lower than 6.5𝜋, the narrow central peak associated with the
underlying carrier beam dominates. However, at 𝑎 = 6.5𝜋 the bandwidth of the noise dominates the
spectrum.
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Fig. 5.2, a phase shift of ∼ 6.5𝜋 can be achieved by driving it with a peak-to-peak voltage

corresponding to a power of 39 dBm. The inset plot in the upper left corner of Fig. 5.2

shows the effect of driving the EOM in Fig 5.2 with 1 GHz bandwidth white noise at 39

dBm. Before measuring the spectrum of the light exiting the EOM, the beam is then coupled

into a tapered amplifier (TA) with a flat gain profile over the bandwidth of the beam (Toptica

BoosTA). The spectrum of the beam is measured after the TA with and without noise

(upper-left inset) using a scanning Fabry-Perot interferometer (FPI) (Thorlabs SA210-5B),

confirming the broadening of the spectrum to approximately 1 GHz from the added phase

noise. With no phase noise added, the measured bandwidth corresponds to the resolution of

the FPI (67 MHz). The use of phase-only devices to broaden a laser’s linewidth is described

in more detail in Ref. [152].

5.3.2 VFP Beam Generation

In the "beam generation" stage of Fig. 5.2, the beam’s polarization is rotated to diagonal

before reflecting from two spatial light modulators (SLM) with coinciding image planes.

Each SLM acts on a different orthogonal linear polarization. The SLMs are programmed

with computer-generated holograms [142] such that the beam produced on the -1 diffractive

order is LG0,0eV +LG0,1eH. Because both polarization components traverse the same optical

path, this method of beam generation is inherently phase stable. In the "incoherent beam

combination" stage, the polarization components of the generated beam are transformed

to the circular basis to produce an FP+ beam with the polarization of the two constituent

modes exchanged before the beam is split into two paths by a 50/50 beamsplitter. The

transmitted path consists of a 10 m imaging delay line with one extra reflection than the

reflected path and a series of quarter-wave and half-wave plates to correct for polarization

rotations induced by the dielectric mirrors. The extra reflection of the delayed FP beam
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reverses it’s helicity relative to the beam reflected from the first 50/50 beamsplitter. The two

FP beams are then recombined at a second 50/50 beamsplitter. The 10 m freespace delay

between the two beams ensure that they combine incoherently since the coherence length

of the beams is ∼ 95.4 mm. After recombination, the beam travels through a quarter-wave

plate, a half-wave plate, a polarizing beamsplitter and an 𝑓 = 1 m lens to perform spatially

resolved polarimetry at three longitudinal positions around the beam waist: 𝑧 = −1.7𝑧R,

𝑧 = 0, and 𝑧 = 1.7𝑧R.

5.4 Results

Figure 5.4 shows the results of generating a VFP beam with the setup in Fig. 5.2. The

experimentally generated VFP beam agrees closely with the ideal theoretical VFP beam

shown in Fig. 5.1. Like an ideal VFP beam, the Poincaré sphere coverage is a disk that

rotates about the 𝑠3-axis. However, the Poincaré sphere coverage for the experimentally

generated VFP beam is a disk with nonzero thickness. The deviation from an ideal thickness

of zero is primarily due to the imperfect retardation of the quarter- and half-wave plates that

control the polarization. The lack of states near the 𝑠3 pole of the disks can be attributed to

finite sensor size and bit depth of the camera. That is to say, pure right-circular polarization

is only present far from the center of the beam, where the intensity is low and the edges of

the camera sensor are located. The low signal-to-noise ratio far from the center of the beam

is responsible for the increased noise present near the 𝑠3 pole. The rotation angle of the disk

at each longitudinal position is estimated using maximum likelihood (ML) fitting with the

model of a plane containing the 𝑠3-axis and one free parameter describing the angle of the

plane relative to the 𝑠1-axis. Monte Carlo simulation was used to determine the uncertainty

in the fits. ML fitting returns the following values of the rotation angle for 𝑧 = −1.7𝑧R, 0, and

1.7𝑧R, respectively: 𝜙 = −44.03(1)◦, 12.03(3)◦, 59.58(1)◦. Ideally, the angle of the disk at
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Figure 5.4: Experimentally measured Poincaré sphere coverage (top row) and transverse polarization
structure (bottom row) of a VFP beam. Generally, the experimental results are in close agreement
with the theoretical results of Fig. 5.1.
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𝑧 = −1.7𝑧R, 0, and 1.7𝑧R should be approximately −59.53◦, 0◦, and 59.53◦, respectively.

The difference between the ideal VFP beam and the experimental results can be primarily

attributed to the waveplates used to control and measure the polarization, as well as the

uncertainty in the exact location of the beam waist.

5.5 Conclusion

In conclusion, this chapter has reported an optical system capable of producing fully and

partially polarized beams with varying amounts of temporal coherence. Using this system, a

volumetrically-full Poincaré beam was generated for the first time to our knowledge. While

past reports of VFP beam generation have relied upon the incoherent addition of polarimetry

data taken sequentially from two full Poincaré beams of opposite helicity [122], our method

produces a VFP beam available in real time. With minimal reconfiguration (amounting

to blocking beams), our system can generate any arbitrary fully polarized polarization-

structured beam with varying amounts of temporal coherence. Furthermore, this system can

be used to generate beams that consist of either a coherent or an incoherent superposition of

polarization-structured beams of opposite helicity or a relative inversion about the horizontal

axis, though phase stabilization would be necessary for coherent combination. The results

of this chapter add a method of generating polarization-structured beams with regions

containing varying degrees of polarization to the quickly growing toolbox of structured light

generation. Polarization-structured beams like the VFP beam generated in this chapter will

continue to advance the fields of imaging, nonlinear optics, and communications.
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6. Summary and Outlook

Controlling and characterizing phase distortions in optical systems is an inevitable barrier to

advancement in many areas of optics. These phase distortions can take the form of linear

and nonlinear phase distortions. Linear phase distortions impact the fields of high resolution

imaging, optical communications, and applications involving free-space propagation through

the atmosphere, among others. Nonlinear phase distortions can lead to unpredictable beam

breakup and caustic generation in areas of physics such as remote atmospheric sensing,

lighting-strike control, and directed energy defense systems. By leveraging the strong spatial

correlations of entangled photons, this thesis has provided ways to handle linear phase

distortions in quantum-enabled modes of imaging. Furthermore, the effects of nonlinear

phase distortions were minimized using polarization-structured light.

Chapter 2 presented a new method of aberration correction whereby phase distortions

(aberrations) introduced in the path of one entangled photon in an entangled photon pair

is cancelled nonlocally by introducing the proper conjugate aberration into the path of its

entangled partner photon. The effect of aberrations and their subsequent cancellation on

a measurement of transverse entanglement were shown. Furthermore, the extent to which

aberration cancellation can be achieved and its dependence on experimental parameters was

analyzed, providing limits for this nonlocal aberration cancellation scheme. The results and

methods of Chap. 2 add a new quantum protocol to the adaptive optics toolbox.

In Chap. 3, a quantum method of imaging phase-only objects was presented, and it was
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shown to be twice as sensitive as classical phase imaging. Furthermore, the resolution of this

quantum phase imaging scheme achieved approximately 1.7 times the resolution of classical

quantitative phase imaging, though the resolution enhancement was not quantum in origin.

The physical origin of the interference that enabled this method, namely induced coherence

without induced emission, was described theoretically. Numerical simulations of both the

quantum and classical imaging systems agreed closely with experimental results. Because the

phase object was only illuminated with approximately 40 photons/s/𝜇m2, the quantum phase

imaging method in Chap. 3 is well-suited for imaging light-sensitive biological samples.

When compared to low-light quantum imaging protocols that rely upon measuring photons

in coincidence, data collection times using our method are nearly three orders of magnitude

faster. As a result, Chap. 3 presents a quantum imaging method that is ready for real-world

application.

Nonlinear phase distortions, namely nonlinear optical caustics, were the subject of

Chap. 4, and the results of Chap. 4 showed that polarization-structured full-Poincaré beams

can transmit more power than uniformly polarized beams without developing into caustics.

Numerical simulations of a phenomenological nonlinear self-focusing model agreed well

with experimental results. Importantly, the results of this chapter were obtained without

using a high power laser system. Instead, a moderately powered laser (approximately 100

mW) was tuned close to the D2 transition in atomic Rb vapor to achieve similar nonlinear

self-focusing conditions. Chapter 4 adds more understanding to the literature surrounding

the behavior and uses of polarization-structured light.

With an eye toward the future, Chap. 5 describes a method of generating polarization-

structured beams that contain states of both full and partial polarization. Such beams could

further increase the resistance of high intensity laser beams to nonlinear beam breakup

and may find use in optical communications, imaging, or remote sensing. This method

is demonstrated by generating a beam that contains every possible state of polarization at
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some location in its transverse and longitudinal extent, a volumetrically-full Poincaré beam.

Structured light generation has received a significant amount of attention over the last couple

of decades, and our method represents a new to addition to this popular area of research.

New experiments that extend the ideas of this thesis are already underway within our

group. A two-color version of the experiment in Chap. 2 has been constructed and is awaiting

data collection. Additionally, nonlocal aberration cancellation is being explored by members

of our group as an encryption method similar to orthogonal optical coding. We are currently

constructing a high numerical aperture microscope in conjunction with researchers at the

Pacific Northwest National Lab to apply quantum-enhanced phase imaging in the study of

Chlamydomonas reinhardtii, a light-sensitive alga studied for biofuel production. We are

also developing ways to use non-degenerate SPDC to improve quantitative phase imaging.

Building upon the results of Chap. 4, our group is generating polarization knot beams and

studying their behavior under nonlinear propagation. An experiment is also underway to

measure the stability of volumetrically-full Poincaré beams under conditions of small-scale

filamentation. The experiments listed above will improve upon the ideas presented in this

thesis and create new ways to utilize, mitigate, and characterize phase distortions in quantum

and nonlinear optical systems.
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