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Single-shot measurement of the orbital-angular-
momentum spectrum of light
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The existing methods for measuring the orbital-angular-momentum (OAM) spectrum suffer

from issues such as poor efficiency, strict interferometric stability requirements, and too

much loss. Furthermore, most techniques inevitably discard part of the field and measure

only a post-selected portion of the true spectrum. Here, we propose and demonstrate an

interferometric technique for measuring the true OAM spectrum of optical fields in a single-

shot manner. Our technique directly encodes the OAM-spectrum information in the azi-

muthal intensity profile of the output interferogram. In the absence of noise, the spectrum

can be fully decoded using a single acquisition of the output interferogram, and, in the

presence of noise, acquisition of two suitable interferograms is sufficient for the purpose. As

an important application of our technique, we demonstrate measurements of the angular

Schmidt spectrum of the entangled photons produced by parametric down-conversion and

report a broad spectrum with the angular Schmidt number 82.1.
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It was shown by Allen et al. that a photon in a light beam can
have orbital-angular-momentum (OAM) values in the integer
multiples of ħ1. This result has made OAM a very important

degree of freedom for both classical and quantum information
protocols2–11. This is because an information protocol requires a
discrete basis, and the OAM degree of freedom provides a basis
that is not only discrete but can also be high-dimensional12–15.
This is in contrast to the polarization degree of freedom,
which provides a discrete but only a two-dimensional basis2–4.
High-dimensional quantum information protocols have many
distinct advantages in terms of security16–18, transmission
bandwidth19, 20, gate implementations21, 22, supersensitive
measurements23, and fundamental tests of quantum
mechanics24–27. In the classical domain, the high-dimensional
OAM-states can increase the system capacities and spectral
efficiencies9–11.

One of the major challenges faced in the implementation of
OAM-based high-dimensional protocols is the efficient detection
of OAM spectrum, and it is currently an active research area28–37.
There are several approaches to measuring the OAM spectrum of
a field. One main approach28, 29 is to display a specific hologram
onto a spatial light modulator (SLM) for a given input OAM-
mode and then measure the intensity at the first diffraction order
using a single-mode fiber. This way, by placing different holo-
grams specific to different input OAM-modes in a sequential
manner, one is able to measure the spectrum. However, this
method is very inefficient since the required number of mea-
surements scales with the size of the input spectrum. Moreover,
due to the non-uniform fiber-coupling efficiencies of different
input OAM-modes38, this method does not measure the true
OAM spectrum. The second approach relies on measuring the
angular coherence function of the field and then reconstructing
the OAM-spectrum through an inverse Fourier transform. One
way to measure the angular coherence function is by measuring
the interference visibility in a Mach–Zehnder interferometer as a
function of the Dove-prism rotation angle31, 32. Although this
method does not have any coupling-efficiency issue, it still
requires a series of measurements for obtaining the angular
coherence function. This necessarily requires that the inter-
ferometer be kept aligned for the entire range of the rotation
angles. A way to bypass the interferometric stability requirement
is by measuring the angular coherence function33, 34 using
angular double-slits39. However, this method also requires a series
of measurements and since in this method only a very small
portion of the incident field is used for detection, it is not suitable
for very low-intensity fields such as the fields produced by
parametric down-conversion (PDC). The other approaches to
measuring the OAM spectrum include techniques based on
rotational Doppler frequency shift35, 36 and concatenated
Mach–Zehnder interferometers37. However, due to several
experimental challenges, these approaches35–37 have so far been
demonstrated only for fields consisting of just a few modes.
Thus the existing methods for measuring the OAM spectrum
information suffer from either poor efficiency28, 35 or strict
interferometric stability requirements31, 32, 37 or too much
loss33, 34. In addition, many techniques28, 33, 34 inevitably discard
part of the field and yield only a post-selected portion of the true
spectrum.

In this article, we demonstrate an interferometric technique
for measuring the true OAM spectrum in a
single-shot manner, that is, by acquiring only one image
of the output interferogram using a multi-pixel camera.
Since our method is interferometric, the efficiency is
very high, and since it involves only single-shot measurements,
the interferometric stability requirements are much less
stringent.

Results
Theory of single-shot spectrum measurement. The Laguerre-
Gaussian (LG) modes, represented as LGl

p ρ;ϕð Þ, are exact solu-
tions of the paraxial Helmholtz equation. The OAM-mode index l
measures the OAM of each photon in the units of ħ, while the
index p characterizes the radial variation in the intensity1. The
partially coherent fields that we consider in this article are the
ones that can be represented as incoherent mixtures of LG modes
having different OAM-mode indices33. The electric field Ein(ρ, ϕ)
corresponding to such a field can be written as

Ein ρ;ϕð Þ ¼
X
l;p

AlpLG
l
p ρ;ϕð Þ ¼

X
l;p

AlpLG
l
pðρÞeilϕ; ð1Þ

where Alp are stochastic variables. The corresponding correlation
function W(ρ1, ϕ1; ρ2, ϕ2) is

W ρ1;ϕ1; ρ2;ϕ2ð Þ � E�
in ρ1;ϕ1ð ÞEin ρ2;ϕ2ð Þ� �

e

¼ P
l;p;p0

αlpp0LG�l
p ρ1;ϕ1ð ÞLGl

p0 ρ2;ϕ2ð Þ: ð2Þ

Here � � �h ie represents the ensemble average and
hA�

lpAl0p0 ie ¼ αlpp0δl;l0 , where δl,l′ is the Kronecker-delta function.
When integrated over the radial coordinate, the above correlation
function yields the angular coherence function:
W ϕ1;ϕ2ð Þ � R1

0 ρdρW ρ;ϕ1; ρ;ϕ2ð Þ, which, for the above field,
can be shown to be33

W ϕ1;ϕ2ð Þ ! WðΔϕÞ ¼ 1
2π

X1

l¼�1
Sle

�ilΔϕ; ð3Þ

where Sl ¼
P

p αlpp, Δϕ= ϕ1 − ϕ2, and where we have used the

identity
R1
0 ρLG�l

p ρð ÞLGl
p0 ρð Þdρ ¼ δpp0=2π. The quantity Sl is

referred to as the OAM spectrum of the field. It is normalized
such that

P
l Sl ¼ 1 and

R π
�πW ϕ1;ϕ1ð Þdϕ1 ¼ 1. The Fourier

transform relation of Eq. (3) is the angular analog of the temporal
Wiener–Khintchine theorem for temporally stationary fields (see
Section 2.4 of ref. 40). Therefore, a measurement of W(Δϕ) can
yield the OAM spectrum of the input field through the inverse
Fourier relation

Sl ¼
Z π

�π
W Δϕð ÞeilΔϕdΔϕ: ð4Þ

Now, let us consider the situation shown in Fig. 1a. A partially
coherent field of the type represented by Eqs. (1) and (2) enters
the Mach–Zehnder interferometer having an odd and an even
number of mirrors in the two arms (shown in Fig. 1c). As
illustrated in Fig. 1d, each reflection transforms the polar
coordinate as ρ→ρ and the azimuthal coordinate as ϕ +
ϕ0→−ϕ + ϕ0 across the reflection axis (RA). Here ϕ is the angle
measured from RA, and ϕ0 is the angular-separation between RA
and the zero-phase axis of the incident mode (dashed axis). The
phase ϕ0 does not survive in intensity expressions. So, without the
loss of any generality, we take ϕ0= 0 for all incident modes.
Therefore, for the input incident field Ein(ρ, ϕ) of Eq. (1), the field
Eout(ρ, ϕ) at the output port becomes

Eout ρ;ϕð Þ ¼ ffiffiffiffiffi
k1

p
Ein ρ;�ϕð Þei ω0t1þβ1ð Þ

þ ffiffiffiffiffi
k2

p
Ein ρ;ϕð Þei ω0t2þβ2þ~γð Þ:

ð5Þ

Here, t1 and t2 denote the travel-times in the two arms of the
interferometer; ω0 is the central frequency of the field; β1 and β2
are the phases other than the dynamical phase acquired in the
two arms; ~γ is a stochastic phase which incorporates the temporal

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-01215-x

2 NATURE COMMUNICATIONS |8:  1054 |DOI: 10.1038/s41467-017-01215-x |www.nature.com/naturecommunications



coherence between the two arms; k1 and k2 are the scaling
constants in the two arms, which depend on the splitting ratios of
the beam splitters, etc. The azimuthal intensity Iout(ϕ) at the
output port is defined as IoutðϕÞ �

R
ρ E�

out ρ;ϕð ÞE�
out ρ;ϕð Þ� �

edρ,
and using Eqs. (1)–(4), we can evaluate it to be

IoutðϕÞ ¼ 1
2π

k1 þ k2ð Þ þ γ
ffiffiffiffiffiffiffiffiffi
k1k2

p
Wð2ϕÞeiδ þ c:c: ð6Þ

Here, we have defined δ≡ω0(t2 − t1) + (β2 − β1), and γ ¼ ei~γ
� �

quantifies the degree of temporal coherence. The intensity
expression in Eq. (6) is very different from the output intensity
expression one obtains in a conventional Mach–Zehnder
interferometer with a Dove prism having either odd/odd or
even/even number of mirrors in the two interferometric
arms31, 32. In Eq. (6), the output intensity and the angular
correlation function both depend on the detection-plane
azimuthal angle ϕ. As a result, the angular correlation function
W(2ϕ) comes out encoded in the azimuthal intensity profile
Iout(ϕ). In contrast, in the conventional Mach–Zehnder
interferometers31, 32, the output intensity has no azimuthal
variation; one measures the angular correlation function by
measuring the interference visibility of the total output intensity
as a function of the Dove prism rotation angles. For a symmetric
spectrum (Sl= S−l= (Sl + S−l)/2), we have, using the formula in
Eq. (4)

Sl ¼
R π
�πWð2ϕÞei2lϕdð2ϕÞ

¼ 1
2γ cos δ

ffiffiffiffiffiffi
k1k2

p
R π
�π IoutðϕÞ � k1þk2

2π

� �
cosð2lϕÞdϕ: ð7Þ

So, if the precise values of k1, k2, γ, and δ are known then a single-
shot measurement of the output interferogram Iout(ϕ) yields the
angular coherence function W(2ϕ) and thereby the OAM
spectrum Sl. Here, by “a single-shot measurement” we mean
recording one image of the output interferogram using a multi-

pixel camera. The recording may involve collecting several
photons per pixel for a fixed exposure time of the camera.

Theory of two-shot noise-insensitive spectrum measurement.
Although it is in principle possible to measure the OAM spec-
trum in a single-shot manner as discussed above, it is practically
extremely difficult to do so because of the requirement of a very
precise knowledge of k1, k2, γ, and δ. Moreover, obtaining a
spectrum in this manner is susceptible to noise in the measured
Iout(ϕ), which results in errors in the measured spectrum. We
now show that it is possible to eliminate this noise completely
while also relinquishing the need for a precise knowledge of k1,
k2, γ, and δ, just by acquiring one additional output inter-
ferogram. We present our analysis for a symmetric spectrum, that
is, for (Sl= S−l= (Sl + S−l)/2) (see Methods section for the non-
symmetric case). Let us assume that the experimentally measured
output azimuthal intensity I

δ
outðϕÞ at δ contains some noise IδnðϕÞ

in addition to the signal Iout(ϕ), that is,

I
δ
outðϕÞ ¼ IδnðϕÞ þ

1
2π

k1 þ k2ð Þ þ 2γ
ffiffiffiffiffiffiffiffiffi
k1k2

p
Wð2ϕÞcos δ:

Now, suppose that we have two interferograms, I
δc
outðϕÞ and

I
δd
outðϕÞ, measured at δ = δc and δ = δd, respectively. The difference
in the intensities ΔIoutðϕÞ ¼ I

δc
outðϕÞ � I

δd
outðϕÞ of the two inter-

ferograms is then given by

ΔIoutðϕÞ ¼ ΔInðϕÞ þ 2γ
ffiffiffiffiffiffiffiffiffi
k1k2

p
cos δc � cos δdð ÞWð2ϕÞ;

where ΔInðϕÞ ¼ Iδcn ðϕÞ � Iδdn ðϕÞ is the difference in the noise
intensities. Multiplying each side of the above equation by ei2lϕ,
using the formula in Eq. (4), and defining the measured OAM
spectrum as Sl �

R π
�πΔIoutðϕÞei2lϕdð2ϕÞ ¼

R π
�πΔIoutðϕÞei2lϕdϕ,

Synthesized
field

Unknown
field from PDC

SLM

SF

He–Ne
laser

UV
pump EM-

CCD

f=5 cm

T

f=20 cm

10 nm

DM

BBO

Interferometer

Ein (�,�)

�0 �0

e–il�

e–il (�+�0)

incident field
e+il (�–�0)

reflected fieldMirror

e+il�

�

�

Eout (�,�)
RA RA

RA

+

2 |l |
petals

t2

t1

a b c d

e

Fig. 1 Describing the proposed experimental technique and its working priciple. a Schematic of the setup for synthesizing partially coherent fields of the
type represented by Eqs. (1) and (2) with known OAM spectra. b Schematic of the setup for producing the partially coherent fields through parametric
down-conversion. c Schematic of the Mach–Zehnder interferometer. d Describing how a mirror reflection changes the azimuthal phase of an OAM mode.
An incident beam with the azimuthal phase profile eil ϕþϕ0ð Þ transforms into a beam having the azimuthal phase profile e�il ϕ�ϕ0ð Þ, where ϕ0 is the angle
between the reflection axis (RA) and the zero-phase axis (dashed axis) of the incident mode. e Illustrating the interference effect produced by the
interferometer when the incident field is an LGl

p¼0ðρ;ϕÞ mode with l= 4. At the output, we effectively have the interference of an eilϕ mode with an e−ilϕ

mode, and we obtain the output interference intensity in the form of a petal pattern with the number of petals being 2 lj j= 8. SLM: spatial light modulator;
SF: spatial filter; DM: dichroic mirror; BBO: type-I beta barium borate crystal; T: translation stage
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we get

Sl ¼
Z π

�π
ΔInðϕÞei2lϕdϕþ 2γ

ffiffiffiffiffiffiffiffiffi
k1k2

p
cos δc � cosδdð ÞSl: ð8Þ

We see that in situations in which there is no shot-to-shot
variation in noise, that is, ΔIn(ϕ)= 0, the measured OAM-
spectrum Sl is same as the true input OAM-spectrum Sl up to a
scaling constant. One can thus obtain the normalized OAM-
spectrum in a two-shot manner without having to know the exact
values of k1, k2, γ, δc, or δd. Nevertheless, in order to get a better
experimental signal-to-noise ratio, it would be desirable to have

γ≈ 1, k1≈ k2≈ 0.5, δc≈ 0, and δd≈ π. Now, in situation in which
ΔIn(ϕ)≠ 0, it is clear from Eq. (8) that the measured spectrum
will have extra contributions. However, since we do not expect
very rapid azimuthal variations in ΔIn(ϕ), the extra contributions
should be more prominent for modes around l= 0 and should die
down for large-l modes.

Measuring lab-synthesized OAM spectra. We now report the
experimental demonstrations of our technique for laboratory-
synthesized, symmetric OAM spectra. As shown in Fig. 1a, a
He–Ne laser is spatially filtered and made incident onto a
Holoeye Pluto SLM. The LGl

p¼0ðρ;ϕÞ modes are generated using
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Fig. 2 Experimental results obtained with the lab-synthesized fields. a, b Measured output interferograms and the corresponding azimuthal intensities for
input LGl

p¼0 ρ;ϕð Þ modes with l= 1, 4, and 16 for δc≈ 2mπ and δd≈ (2m + 1)π, respectively, where m is an integer. c Measured output interferograms, the
azimuthal intensities, and the measured spectrum for the synthesized input field with a Gaussian OAM-spectrum. d Measured output interferograms, the
azimuthal intensities, and the measured spectrum for the synthesized input field with a Rectangular OAM-spectrum. In all the above azimuthal intensity
plots, the red lines are the experimental plots and the black lines are the theoretical fits
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the method by Arrizon et al.41 and then made incident into the
Mach–Zehnder interferometer shown in Fig. 1c. The measured
interferogram and the corresponding azimuthal intensity I

δ
outðϕÞ

for a few LGl
p¼0ðρ;ϕÞ modes for δc≈ 2mπ, and δd≈ (2m + 1)π,

where m is an integer, are presented in Fig. 2a, b, respectively. A
very good match between the theory and experiment indicates
that the LGl

p¼0ðρ;ϕÞ modes produced in our experiments are of
very high quality. By controlling the strengths of the synthesized
LGl

p¼0ðρ;ϕÞ modes for l ranging from l= −20 to l= 20, we syn-
thesize two separate fields: one with a rectangular spectrum and
the other one with a Gaussian spectrum. The representative
interferogram corresponding to a particular field as input is
obtained by adding individual interferograms for l ranging from
l= −20 to l= +20. Two such representative interferograms, one
with δ= δc and other one with δ= δd are recorded for each field.
Figure 2c, d show the measured output interferograms, the cor-
responding azimuthal intensities, and the measured spectrum Sl
computed using Eq. (8) for the synthesized Gaussian and Rec-
tangular OAM spectra, respectively. We find a very good match
between the synthesized spectra and the measured spectra. There
is some mismatch in the measured spectra for low-l modes. We
attribute this to SLM imperfections, various wave-front aberra-
tions, and the non-zero shot-to-shot noise variation ΔIn(ϕ).

Measuring angular Schmidt spectrum of entangled states. The
state of the two-photon field produced by PDC has the following
Schmidt-decomposed form when the detection system is sensitive
only to the OAM-mode index33:

ψ2j i ¼
X1

l¼�1

ffiffiffiffi
Sl

p
lj is �lj ii: ð9Þ

Here s and i stand for signal and idler photons, respectively, lj i
represents a mode with OAM-mode index l, and Sl is referred to
as the angular Schmidt spectrum. The angular Schmidt spectrum
quantifies the dimensionality and the entanglement of the state in

the OAM basis32, 42, 43. There are a variety of techniques for
measuring the angular Schmidt spectrum28, 32, 33, 44, 45. In the
context of spatial entanglement, there has even been a theoretical
proposal46 and its subsequent experimental implementation47 for
measuring the spatial Schmidt spectrum in a single-shot manner
using coincidence detection. However, all the above mentioned
work, including the single-shot work in the spatial domain46, 47,
are sensitive to noise and require either a very precise knowledge
of the experimental parameters, such as beam splitting ratio, or a
very stable interferometer. In contrast, as an important experi-
mental application of our technique, we now report an experi-
mental measurement of the angular Schmidt spectrum of the
PDC photons that not only is a single-shot, noise-insensitive
technique but also does not require coincidence detection.

As derived in ref. 33, the angular coherence functionWs(ϕ1, ϕ2)
corresponding to the individual signal or idler photon has the
following form:

Ws ϕ1;ϕ2ð Þ ! WsðΔϕÞ ¼ 1
2π

X1

l¼�1
Sle

�ilΔϕ; ð10Þ

where Sl ¼
P

p αlpp is the OAM spectrum of individual photons.
Comparing Eqs. (9) and (10), we find that the OAM spectrum of
individual photons is same as the angular Schmidt spectrum of
the entangled state. Therefore, it is clear that one can measure the
angular Schmidt spectrum in a single-shot manner by measuring
the OAM-spectrum of individual photons in a single-shot
manner. As depicted in Fig. 1b, entangled photons are produced
by PDC with collinear type-I phase matching. The photons are
collected by a lens arrangement whose collection angle is larger
than the emission cone-angle of the crystal. This ensures that no
part of the produced field is discarded from the measurement and
thus that the true spectrum is measured. This field is then made
incident into the Mach–Zehnder interferometer of Fig. 1b. For a
type-I collinear down-conversion with a 2-mm thick beta barium
borate (BBO) crystal and a 0.85-mm beam-waist pump laser, the
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Fig. 3 Experimental results obtained with fields produced by parametric down-conversion. a, b Measured output interferogram and the azimuthal intensity
for δ= δc and δ= δd, respectively. c The normalized measured spectrum Sl as computed using Eq. (8), and the normalized theoretical spectrum as
calculated using the formalism of ref. 42, for our setup parameters, namely, a type-I collinear down-conversion with a 2-mm thick BBO crystal and a 0.85-
mm beam-waist pump laser. The theoretical spectrum has no fitting parameters. The angular Schmidt number K ¼ 1=

P
l S

2
l

� �
for the measured spectrum

is evaluated to be 82.1

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-01215-x ARTICLE

NATURE COMMUNICATIONS |8:  1054 |DOI: 10.1038/s41467-017-01215-x |www.nature.com/naturecommunications 5



measured output interferograms and the corresponding azi-
muthal intensities for two values of δ have been shown in Fig. 3a,
b. Figure 3c shows the normalized measured spectrum as
computed using Eq. (8) and the normalized theoretical spectrum
as calculated using the formalism of ref. 42. The near-perfect
match without the use of any fitting parameter shows that we
have indeed measured the true theoretical angular Schmidt
spectrum of PDC photons. There is some mismatch for low-l
values, which we attribute to the very small but finite shot-to-shot
noise variation ΔIn(ϕ). The angular Schmidt number computed

as K ¼ 1=
P

l S
2
l

� �
is K= 82.1, which, to the best of our

knowledge, is the highest-ever reported angular Schmidt number
so far.

Discussion
In conclusion, we have proposed and demonstrated a single-shot
technique for measuring the angular coherence function and
thereby the OAM spectrum of light fields that can be represented
as mixtures of modes with different OAM values per photon. Our
technique involves a Mach–Zehnder interferometer with the
central feature of having an odd and an even number of mirrors
in the two interferometric arms, and it is very robust to noise and
does not require precise characterization of setup parameters,
such as beam splitting ratios, degree of temporal coherence, etc.
This technique also does not involve any inherent post-selection
of the field to be measured and thus measures the true OAM
spectrum of a field. As an important application of this technique,
we have reported the measurement of a very high-dimensional
OAM-entangled states in a single shot manner, without requiring
coincidence detection. For such high-dimensional states, our
technique improves the time required for measuring the OAM
spectrum by orders of magnitude. This can have important
implications in terms of improving the signal-to-noise ratio and
reducing the interferometric stability requirements for both
classical and quantum communication protocols that are based
on using OAM of photons.

The technique presented in this article is for fields that can be
represented as incoherent mixtures of modes carrying different
OAM-mode indices. However, in many important applications,
such as OAM-based multiplexing in communication protocols9–
11, one uses fields that are coherent superpositions of OAM-
carrying modes. For such fields, we believe that the general-
izations of the reconstruction techniques48, 49 used for complex-
valued objects could be a possible way of getting the state
information in a single-shot manner. Moreover, in recent years,
finding efficient ways for measuring a partially coherent field is
becoming an important research pursuit50, and we believe that, at
least in the OAM degree of freedom, the generalized versions of
the existing techniques for coherent fields in combination with
our technique presented in this article might pave the way
towards a full quantum state tomography in a single-shot or a
few-shots manner.

Methods
Details of the experiment with lab-synthesized fields. In this experiment, the
LGl

p¼0ðρ;ϕÞ modes were generated by an SLM using the method by Arrizon et al41.
These modes were made sequentially incident into the interferometer and the
corresponding output interferograms were imaged using an Andor iXon Ultra
electron-multiplied charge-coupled device (EMCCD) camera having 512 × 512
pixels. For each individual LGl

p¼0ðρ;ϕÞ mode the camera was exposed for about
0.4 s. The sequential acquisition was automated to ensure that δ is the same for all
the modes. The azimuthal intensity I

δ
outðϕÞ plots were obtained by first precisely

positioning a very narrow angular region-of-interest (ROI) at angle ϕ in the
interferogram image and then integrating the intensity within the ROI up to a
radius that is sufficiently large. To reduce pixelation-related noise, the inter-
ferograms were scaled up in size by a factor of four using a bicubic interpolation
method. In order to ensure minimal shot-to-shot noise variation, the

interferometer was covered after the required alignment with a box and the
measurements were performed only after it had stabilized in terms of ambient
fluctuations.

Details of the experiment measuring angular Schmidt spectrum. As depicted in
Fig. 1b, a 405 nm ultraviolet pump laser with a beam radius 0.85 mm and having a
Gaussian transverse mode profile was made incident onto a 2-mm thick BBO
crystal. The crystal was phase-matched for collinear type-I PDC. The pump power
of 100 mW ensured that we were working within the weak down-conversion limit,
in which the probability of producing a four-photon state is negligibly small
compared to that of producing a two-photon state. The residual pump photons
after the crystal were discarded by means of a dichroic mirror. The down-converted
photons were passed through an interference filter of spectral width 10 nm cen-
tered at 810 nm and then made incident into the Mach–Zehnder interferometer of
Fig. 1b. The output of the interferometer was recorded using an Andor iXon Ultra
EMCCD camera having 512 × 512 pixels with the acquisition time of 13 s. The
azimuthal intensity I

δ
outðϕÞ plots were obtained by first precisely positioning a very

narrow angular ROI at angle ϕ in the interferogram image and then integrating the
intensity within the ROI up to a radius that is sufficiently large. To reduce
pixelation-related noise, the interferograms are scaled up in size by a factor of eight
using a bicubic interpolation method.

We note that since we are using collinear down-conversion, the individual
signal and idler photons have equal probability of arriving at a given output port of
the interferometer. As a result, what is recorded by the camera at a given output
port is the sum of the interferograms produced by the signal and idler fields at that
output port. However, since the individual signal and idler fields have the same
OAM spectrum, the azimuthal profile of the sum interferogram is same as that of
the individual interferograms produced by either the signal or the idler field. One
assumption that we have made here is that the probability of simultaneous arrivals
of the signal and idler photons at the same EMCCD-camera pixel is negligibly
small. This assumption seems perfectly valid given that the EMCCD camera has
512 × 512 pixels, and as shown in Fig. 3, the output interferograms occupy more
than half of the EMCCD-camera pixels.

Theory of non-symmetric OAM-spectrum measurement. This section presents
our analysis for a non-symmetric spectrum, that is, when Sl= S−l condition is not
necessarily met. Just as in the case of symmetric spectrum, let us assume that the
measured azimuthal intensity I

δ
outðϕÞ at the output contains the noise term IδnðϕÞ in

addition to the signal Iout(ϕ). Thus,

I
δ
outðϕÞ ¼ IδnðϕÞ þ IoutðϕÞ

IδnðϕÞ þ k1þk2
2π þ γ

ffiffiffiffiffiffiffiffiffi
k1k2

p
Wð2ϕÞe�iδ þ c:c:½ �: ð11Þ

Now, suppose we have two interferograms measured at two different values of δ,
say at δc and δd. The difference ΔIoutðϕÞ in the intensities of the two interferograms
is then given by

ΔIoutðϕÞ ¼ I
δc
outðϕÞ � I

δd
outðϕÞ

¼ ΔInðϕ Þ þ γ
ffiffiffiffiffiffiffiffiffi
k1k2

p
Wð2ϕÞe�iδc þW�ð2ϕÞeiδc½

�Wð2ϕÞe�iδd �W�ð2ϕÞeiδd �;
ð12Þ

where ΔInðϕÞ ¼ Iδcn ðϕÞ � Iδdn ðϕÞ is the difference in the noise intensities. Unlike in
the case of symmetric spectrum, ΔIoutðϕÞ is not proportional to the angular
coherence function W(2ϕ). Multiplying each side of Eq. (12) by ei2lϕ and using the
angular Wiener–Khintchine relation Sl ¼

R π
�πWð2ϕÞei2lϕdð2ϕÞ, we obtain

R π
�πΔIoutðϕÞei2lϕdð2ϕÞ ¼ R π

�πΔInðϕÞei2lϕdð2ϕÞ
þγ

ffiffiffiffiffiffiffiffiffi
k1k2

p
Sle�iδc þ S�leiδc � Sle�iδd � S�leiδd½ �:

ð13Þ

Now, multiplying each side of Eq. (12) by e−i2lϕ and using the angular
Wiener–Khintchine relation Sl ¼

R π
�πWð2ϕÞei2lϕdð2ϕÞ, we obtain

R π
�πΔIoutðϕÞe�i2lϕdð2ϕÞ ¼ R π

�πΔInðϕÞe�i2lϕdð2ϕÞ
þγ

ffiffiffiffiffiffiffiffiffi
k1k2

p
S�le�iδc þ Sleiδc � S�le�iδd � Sleiδd½ �:

ð14Þ

Adding Eqs. (13) and (14), we get
R π
�πΔIoutðϕÞcosð2lϕÞdð2ϕÞ ¼ R π

�πΔInðϕÞcosð2lϕÞdð2ϕÞ
þγ

ffiffiffiffiffiffiffiffiffi
k1k2

p
Sl þ S�lð Þ cos δc � cos δdð Þ: ð15Þ

Subtracting Eq. (14) from Eq. (13), we get
R π
�πΔIoutðϕÞsinð2lϕÞdð2ϕÞ ¼ R π

�πΔInðϕÞsinð2lϕÞdð2ϕÞ
�γ

ffiffiffiffiffiffiffiffiffi
k1k2

p
Sl � S�lð Þ sin δc � sin δdð Þ: ð16Þ
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Now the question is how should one define the spectrum so that the defined
spectrum becomes proportional to the true spectrum. Upon inspection we find that
for the non-symmetric case it is not possible to define the spectrum the way we did
it in the case of symmetric spectrum. Nevertheless, in the special situation in which
δc + δd= π/2, it is possible to define the measured spectrum just like we did it in the
symmetric case. Let us consider the situation when δc= θ and δd= π/2 − θ such that
δc + δd= π/2. Equations (15) and (16) for this situation can be written as

R π
�πΔIoutðϕÞcosð2lϕÞdð2ϕÞ ¼ R π

�πΔInðϕÞcosð2lϕÞdð2ϕÞ
þγ

ffiffiffiffiffiffiffiffiffi
k1k2

p
Sl þ S�lð Þðcos θ � sin θÞ: ð17Þ

and
R π
�πΔIoutðϕÞsinð2lϕÞdð2ϕÞ ¼ R π

�πΔInðϕÞsinð2lϕÞdð2ϕÞ
þγ

ffiffiffiffiffiffiffiffiffi
k1k2

p
Sl � S�lð Þðcos θ � sin θÞ: ð18Þ

Adding Eqs. (17) and (18), we get
R π
�πΔIoutðϕÞ cosð2lϕÞ þ sinð2lϕÞ½ �dð2ϕÞ

¼
Z π

�π
ΔInðϕÞ cosð2lϕÞ þ sinð2lϕÞ½ �dð2ϕÞ

þ2γ
ffiffiffiffiffiffiffiffiffi
k1k2

p
cos θ � sin θð ÞSl :

ð19Þ

So, now if we define the measured spectrum Sl to be

Sl � R π
�πΔIoutðϕÞ cosð2lϕÞ þ sinð2lϕÞ½ �dð2ϕÞ

¼ R π=2
�π=22ΔIoutðϕÞ cosð2lϕÞ þ sinð2lϕÞ½ �dϕ

¼ R π
�πΔIoutðϕÞ cosð2lϕÞ þ sinð2lϕÞ½ �dϕ;

ð20Þ

we get,

Sl ¼ R π
�πΔInðϕÞ cosð2lϕÞ þ sinð2lϕÞ½ �dϕ
þ2γ

ffiffiffiffiffiffiffiffiffi
k1k2

p ðcos θ � sinθÞSl :
ð21Þ

In situations in which the noise neither has any explicit functional dependence
on δ nor has any shot-to-shot variation, we have ΔIn(ϕ)= 0. Thus the defined
spectrum Sl becomes proportional to the true spectrum Sl. We see that just as in the
case of symmetric spectrum, one does not have to know the exact values of k1, k2, γ,
and θ. The only thing different in this case is that one has to take the two shots
such that δc + δd= π/2.

Data availability. The authors declare that the main data supporting the findings
of this study are available within the article. Extra data are available from the
corresponding author upon request.
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