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Abstract
Electromagnetic planewaves, solutions toMaxwell’s equations, are said to be ‘transverse’ in vacuum.
Namely, thewaves’ oscillatory electric andmagneticfields are confinedwithin a plane transverse to
thewaves’ propagation direction. Under tight-focusing conditions however, the field can exhibit
longitudinal electric ormagnetic components, transverse spin angularmomentum, or non-trivial
topologies such asMöbius strips. Here, we show that when a suitably spatially structured beam is
tightly focused, a three-dimensional polarization topology in the formof a ribbonwith two full twists
appears in the focal volume.We study experimentally the stability and dynamics of the observed
polarization ribbon by exploring its topological structure for various radii upon focusing and for
different propagation planes.

1. Introduction

Since the inception of electromagnetic theory, the polarization of light, i.e. the oscillation direction of the electric
field vector, has been a central concept to our understanding of optics, giving rise to countless applications [1].
For planewaves and in paraxial beams, the polarization has been recognized as a transverse quantity and, hence,
it can be represented by a set of two orthogonal basis vectors. For instance, in the linear and circular bases, the
polarization of an optical beam can be represented by superpositions of linearly horizontally and linearly
vertically, or circularly-left and circularly-right polarized beams, respectively. The ratio and the relative phase
between the two polarization components define the oscillations of the electric field vector’s tip upon
propagation or in time, and its trajectory in the plane transverse to its propagation direction, typically given by
an ellipse [1]. This description of the lightfield by a so-called polarization ellipse at each point in space is even
valid in highly confinedfields exhibiting out-of-plane field components, as long as the field itself is
monochromatic. In two different cases, this ellipse becomes singular [2–4]: (i) the ellipse’smajor andminor axes
are undefined, resulting in circular polarization (C-point); (ii) theminor axis of the ellipse is zero and its surface
normal is undefined, and thus the polarization is linear (L-line). These so-called polarization singularities in
general arise in lightfields with spatially inhomogeneous polarization distributions, whichwe refer to as space-
varying polarized light beams. They have recently received great attention owing to their peculiar optical features
and applications [5–7]. Vector vortex beams [5]—space-varying linearly-polarized beams—and Poincaré beams
[8]—optical beams containing all types of polarization—are among this class of spatially inhomogeneously
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polarized beams. These beams are interesting both at the fundamental and applied levels. For instance, they can
be used to enhancemeasurement sensitivity [9, 10], to transport high-power in nonlinearmedia [11], or to
generate exotic optical beamswith peculiar topological structures [12, 13]. In particular, spatially structured
lightfields withfield components along the propagation directionwere predicted by Freund to show so-called
optical polarizationMöbius strips and twisted ribbons [14, 15], with the former recently confirmed
experimentally in tightly focused fields [16] aswell as in the originally proposed scheme of crossing beams [17],
and numerically in the scattering fromdielectric spheres [18]. Here, wewill experimentally demonstrate the
generation and stability of the latter in highly confinedfields, specifically looking at the dynamics of the twisted
ribbonwhen propagating through the focal volume of a tailored space-varying polarized light beam.

2. Space-varying polarized beamsunder tight focusing

There are several differentmethods to generate optical beams possessing inhomogeneous polarization
distributions in their transverse plane. For instance, phase-only spatial lightmodulators [19–21], non-unitary
polarization transformation [22], and spatially structured birefringent plates [8, 23] have so far been used to
generate Poincaré or vector vortex beams. In this article, we use the latter technique to generate full Poincaré
beams [8] bymeans of a spatially structured liquid crystal device, referred to as q-plate [24]. The q-plate couples
spin to orbital angularmomentum, and thus allows for generating certain classes of space-varying optical beams
when it is fedwith an elliptically polarized input beam. Choosing a left-handed circularly polarizedGaussian
beam, eLˆ , as input, the q-plate coherently transforms thisfield distribution into
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where δ is the chosen optical retardation of the q-plate, ρ,f, z are cylindrical coordinates, q is the q-plate’s
topological charge, eLˆ and eRˆ are the left- and right-handed polarization unit vectors, and EL(ρ, z) andER(ρ, z)
are the beamprofiles of the left- and right-handed circularly polarized beams, respectively [25]. The orientation
of liquid crystalmolecules in the transverse plane of a given q-plate with topological charge of q=−1 is shown
infigure 1(a). Adjusting the optical retardation δ of the plate changes the superposition ratio, and thus the
polarization topology. For instance, when (i) δ=0, 2π, the plate will not change the initial state of the beam and
the beampolarization remains left-handed circular; (ii) δ=π, the plate works as a structured half-wave plate
and converts theGaussian beam into a right-handed circularly polarized doughnut beampossessing orbital
angularmomentumof 2q; (iii) δ=π/2 the plate generates a coherent superposition of (i) and (ii). In the latter
case (iii), the beam exhibits a point of circular polarization on the optical axis (C-point) and an azimuthal
polarization structure with polarization topological charge of η=q. An example of such polarization topology

Figure 1.Creation of a full Poincaré beam and subsequent optical polarization ribbonwith twist index−2 under tight focusing. (a)A
left-handed circularly polarizedGaussian beam is converted into a full Poincaré beambymeans of a space-variant birefringent plate
(q-plate)with topological charge q=−1 (see sketch for the orientation of its fast axes) and optical retardation of δ=2.92 rad. The
resulting polarization ellipse at each point in the transverse plane of the beam is superimposed inwhite. (b)Twisted ribbonwith 2
twists and its projection onto the transverse plane, created by tight focusing of the beam shown in (a) and tracing themajor axisα of
the polarization ellipse (see inset for a sketchwith the definition of its parameters) on a circle with ρ=150 nm around the optical axis.
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is shown infigure 1(a). Note that the polarization topology shown infigure 1(a) corresponds to that resulting
froma q=−1-plate. The action of a q=−1-plate can be entirely reproduced using a q=1-plate sandwiched
between two half-wave plates oriented atπ/4. Thus, for practical reasons, we use a q=1-plate followed by a
half-wave plate in the experiment tomimic the q=−1-plate topology, where the input circular polarization is
flipped (see figure 2).

Upon tight focusing, strong (longitudinal) z-components of the incoming transversely polarized beam
described by equation (1) emerge. Using vectorial diffraction theory [26], one can show that the total electric
field at the focuswill have the following form [27]
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where EL and ER are the components of the transverse electricfield (including theweight factors) at the focus,
and E
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can be found in [27]. The last term in equation (2) corresponds to spin–orbit coupling amplified by tight
focusingwith a high-numerical aperture (NA) lens [28], which renders the polarization vector in three-
dimensional space, with its amplitude depending on theNAof the focusing lens. However, the polarization
ellipse traced by the tip of the electric field vector in time remains in a two-dimensional plane for any given point
in space.Nevertheless, the spatial distribution of the polarization ellipse forms a specific topology in three-
dimensional space, which is dictated by the topological charge of the q-plate.Without loss of generality, we
consider a radial position ρ=ρ0 where the amplitude of the contributions of the initial right- and left-circular
polarization components to the longitudinal focalfield component are equal, i.e. E E

z z
L 0 R 0r r= ( ) ( ). The z-

component of the electric field, apart from a phase qexp i f( ), will nowbe proportional to qcos 1 f-[( ) ]. The
electric field intensity of the z-componentwill then be proportional to qcos 1 2f-∣ [( ) ]∣ , which results in a

q2 1-∣ ∣-fold symmetry. This z-component of the electric field turns the two-dimensional into a three-
dimensional polarization topology. The structure of the polarization topology can be studied by evaluating the
spatial dependence of either themajor orminor axes of the polarization ellipse. Tracing the focal field on a closed
loop around the on-axis C-point, themajor axis of the polarization ellipse oscillates q 1-∣ ∣ times through the
transverse plane. In the three-dimensional perspective, themajor (or theminor) axis of the polarization ellipse,
depending on the value of q, forms aMöbius or a ribbon topologywith q 1-∣ ∣ twists.While the existence of
polarizationMöbius strips with 3/2-twists and 5/2-twists, for the case of q=−1/2 and−3/2, respectively, has
been experimentally demonstrated recently [16], we herewill look at the case of ribbonswith integer twists for
integer values of q. In particular, we consider the case of q 1¹ + to avoid the trivial case of ribbonswith no
twists.

Figure 2. Sketch of the experimental setup. (a)Distribution of the local fast axis of the liquid crystalmolecules in the transverse plane
of the employed q=1-plate. (b)Experimentally generated intensity distribution of the resulting full-Poincaré beam that is
subsequently focused. Note that a half-wave plate is used to transform the output polarisation topology into that of a q=−1-plate. (c)
SEM-image of the utilized gold nano-sphere with a diameter of 80 nm. (d) Sketch of the experimental setup utilized to reconstruct the
full vectorial focalfield distribution of the tightly focused full Poincaré beam.
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3. Experimental realization

Todetermine the polarization ellipse, and consequently itsmajor andminor axes in three dimensions, it is
necessary tomeasure amplitude and phase of the full complex vectorial lightfield in the plane of observation.
This can be achieved by employing a probe as a localfield sensor and utilizing the angularly resolved far-field
scattering by this probewhile point-wise scanning the latter relative to the field distribution. This technique,
namedMie-scattering nano-interferometry (see [29] formore details on the technique), was shown to achieve
deep sub-wavelength spatial resolution in the experimental study of vectorial focalfields. TheMie-scattering
nano-interferometry has previously allowed for the experimental verification of optical polarizationMöbius
strips in both, tailored lightfields [16] and in the focal region of a tightly focused linearly polarized beamaround
points of transversely spinning fields [30]. The general experimental concept will be discussed in the following,
while details are discussed in [29].

The custom-built experimental setup is shown infigure 2 [29]. As a nano-probe, a single gold sphere with a
transverse diameter of d=80 nmand a height of h=86 nm (see scanning electronmicrograph infigure 2(c))
on a glass substrate is utilized. For themeasurement, it ismoved through the investigated field distribution via a
three-dimensional piezo stage. The angularly resolved detection of the interference between the light scattered
by the probe into the lower half-space forward direction and the directly transmitted light in this region is
realized by collecting the light via an oil-immersionmicroscope objective (NA=1.3) and imaging its back focal
plane onto aCCDcamera (see figure 2(d)). This interferometric information for each position of the probe
relative to the investigatedfield is equivalent to an observation of the scattering process from various directions.
Thus, it allows for a retrieval of the relative phase information of the distributions under study from the far-field
[29]. The highly confinedfield distribution containing a twisted ribbon formed by tracing themajor axis of the
polarization ellipse along a closed loop around the optical axis is created in the shown setup by sending an
initially right-handed circularly polarizedGaussian beamonto a q=1-plate [24] (see sketch of its structure in
figure 2(a)) and a subsequent half-wave plate.

As discussed in the previous section, this combination results effectively in the operation of a q=−1-plate.
By adjusting the voltage applied to the liquid-crystal-based q-plate [25, 31], a coaxial superposition of the initial
right-handed circular polarizedGaussian beam ( z eHyGG , ,0,0 Rr f( ) ˆ ) and a left-handed circularly polarized
hypergeometric Gauss beam ( z eHyGG , ,2,2 Lr f- ( ) ˆ ) is generated [32, 33]with theHypergeometric Gauss

modesHyGGp, ℓ(ρ,f, z) having the radial and azimuthal indices of p andℓ, respectively. The resulting full
Poincaré beam [8, 25] isfiltered spatially with a pinhole to obtain the lowest radial order of both constituting
beams in the LaguerreGauss basis, i.e. z eLG , ,0,0 Rr f( ) ˆ and z eLG , ,0,2 Lr f( ) ˆ (see figure 2(b) for the
experimentally achieved intensity distribution). The spatiallyfiltered beam is then transmitted through two
orthogonally oriented non-polarizing beamsplitters to redirect part of the incoming beam and the light reflected
from the sample onto corresponding photodetectors. By using two orthogonally aligned beamsplitters, the
remainingweak polarizing effect of non-polarizing beamsplitters can be compensated for. Finally, the generated
beam is focused by amicroscope objective with anNAof 0.9, resulting in the complex focal field distribution
under study, shown infigure 3(a).

Scanning the described nano-probe through this focal field and applying the reconstruction algorithm [29]
to the collected far-field intensity information results in the experimentally reconstructed focalfield
distributions shown infigure 3(b). Here, the excitationwavelengthwas chosen to beλ=530 nm,with an
experimentally determined relative permittivity of the utilized nano-probe of ò=−3.1+2.5 i. The total
electric energy density (depicted on the left side offigure 3(b)) strongly resembles the numerically simulatedfield
distributions calculated via vectorial diffraction theory (figure 3(a)) [26, 34]. The energy density distributions of
the individual electric field components (right side offigure 3(b)) showminor deviations specifically in the
transverse field components, where the skewing of the field structure can be traced back to a residual eLG0, 2 L- ˆ
beam,whichmight be present as a result of the generation of the field via a cascaded q-plate and half-wave plate.
The resulting phase distributions are also shown as insets. The phase distribution of the transverse components
of the electricfield at the focus exhibit two singularities of topological charge±1, both displaced (vertically or
horizontally) away from the optical axis. Due to spin–orbit coupling, the z-component of the electric field under
tight focusing gains extra phase singularity points, in this case five singular points that are shown infigure 3. The
z-component of the electric field now reaches amplitudes comparable to that of the transverse components (see
the scale bar infigure 3(b)), and thus breaks the cylindrical symmetry into a four-fold symmetric pattern.

Themajor andminor semi-axes of the polarization ellipse r r,a b( ) ( ) aswell as the normal to the
polarization ellipse rg ( ) for the electric fieldE at any point of r can be calculated (see [3, 35]) using the
terminology of [36]
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where u u,( ) ( )R I and u* represent the real and imaginary parts of u, and its complex conjugate, respectively.
With these equations, we calculated the local polarization ellipse in the focal plane, z=0, from the experimental
field data at each point on a circular trace with radius ρ=150 nmaround the optical axis (shown infigure 3(b)
as a black dashed circle). Themajor axes of the polarization ellipses for these points in three-dimensional space
are shown in the central row offigure 4. In order to see the three-dimensional topological structure, the semi-
axes are colored in blue and green, revealing a twisted ribbonwith twist index−2.Note that the number of twists
is given by q 1-∣ ∣, which for the above case is 1 1 2- - =∣ ∣ (theminus sign indicates that the direction of the
twists is clockwise). The projection of themajor axis onto the transverse plane is shownnext to the ribbon in
figure 4(b). Following themajor axes of the ellipses around theC-point also shows the two-dimensional
polarization topologywith the polarization topological index of−1 in the transverse plane.We observe the same

Figure 3.Electric energy density distributions of a tightly focused structured beam. (a)Numerically calculated focalfield distribution
for a tightly focused composite beamgenerated from a coherent superposition of z eLG , ,0,0 Rr f( ) ˆ and z eLG , ,0,2 Lr f( ) ˆ . The total
electric energy density distribution is plotted on the left, while the individual Cartesian components aswell as their relative phase
distribution are depicted on the right. (b)Experimentally reconstructed focalfield distribution of the same input field used in (a),
showing the very good overlap between experiment and calculation. All distributions are normalized to themaximumvalue of the
corresponding total electric energy density distribution.

Figure 4.Experimentally reconstructedmajor axes of the polarization ellipses in the focal volume. Experimentally reconstructed
distribution of themajor axis of the polarization ellipse traced around the optical axis in the focal plane of the tightly focused
structured beamaswell as onewavelength before and after the focus. (a)The resulting polarization ribbonwith twist number of−2
and (b) its projection onto the transverse plane are depicted for a trace radius of ρ=150 nm, shown as a red solid line in the semi-
transparent focal plane.
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three-dimensional (ribbonwith two twists) and two-dimensional (polarization topological index of−1)
topologies for different radii around theC-point (not shownhere). However, for radii, ρ?500 nm, thefield
amplitudes drop quickly due to the strong spatial confinement of the focalfield, resulting in a low signal-to-
noise ratio.

In a next step, we also studied the behavior of the observed ribbon topology in other planes parallel to the
focal planewithin the focal volume. In order to observe the evolution of the three-dimensional polarization
topology, we retrieve the electric field components and their relative phases onewavelength before and after the
focus, i.e. z=±λ=±530 nm from the reconstructed focal data. Again, themajor axes of the polarization
ellipses are retrieved for a given radius, i.e. ρ=150 nm, and plotted in three-dimensional space. Figure 4 shows
the evolution of themajor axes of the polarization ellipses upon free-space propagationwhen it passes through
the focal plane. The three-dimensional polarization topology, i.e. ribbonwith−2 twists, as well as the two-
dimensional polarization topology, shown infigure 4(b) as a projection onto the corresponding planes, are
conserved upon propagation through the focus.However, twomain effects can be observed. First, the
magnitude of the z-component of electricfield is weaker outside the focal plane. Second, the topological
structure rotates while traversing the focal plane. The latter effect ismore visible in the projection shown in
figure 4(b) as two-dimensional topology, andwas previously observed for the two-dimensional case [25]. Such a
rotation in the three-dimensional and two-dimensional polarization topologies is caused by the difference in
Gouy phases for LG0,0(ρ,f, z) and LG0,−2(ρ,f, z) beams. This propagation distance-dependent phase equals

p z z2 1 arctan R- + +ℓ( ∣ ∣ ) ( ) for LGp, ℓ(ρ,f, z), where zR is the Rayleigh range. Thus, one expects a relative
accumulated phase when propagating from−z to the focal plane (with z zR∣ ∣ ), and, hence, a rotation ofπ/2
of the polarization topology.

4. Conclusion

In summary, we studied the topological structure of an optical beampossessing a transverse polarization
topological charge of−1 in the tight focusing regime.When such a structured beam is tightly focused, the
longitudinal component of the electric field is enhanced, and the polarization structure forms a three-
dimensional topology.We utilized a recently introduced nanoscopicfield reconstruction technique tomeasure
all three components of the electric field as well as their relative phases. Calculating themajor axes of the
polarization ellipses from themeasured data in three-dimensional space reveals a ribbon-type topologywith two
twists when following a circular trace around the optical axis.We also observed the evolution of themulti-
twisted polarization ribbon upon propagation through the focus.
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