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Abstract: The development of metasurfaces has enabled unprecedented portability and func-
tionality in flat optical devices. Spaceplates have recently been introduced as a complementary
element to reduce the space between individual metalenses, which will further miniaturize
entire imaging devices. However, spaceplates necessitate an optical response which depends on
the transverse spatial frequency component of a light field — therefore making it challenging
both to design them and to assess their ultimate performance and potential. Here, we employ
inverse-design techniques to explore the behaviour of general thin-film-based spaceplates. We
observe a tradeoff between the compression factor R and the numerical aperture NA of such
devices; we obtained a compression factor of R = 5.5 for devices with an NA= 0.42, and up to
a record R = 340 with NA of 0.017. Our work illustrates that even simple designs consisting
of realistic materials (i.e., silicon and glass) permit capable spaceplates for monochromatic
applications.

© 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Nanostructured surfaces known as metasurfaces have been gaining much attention for enabling
the creation of flat optics [1–3]. Among the most notable devices are metalenses, optical elements
that promise to yield ultra-thin imaging systems by replacing the relatively thick glass of lenses
with a much thinner optic [4–6]. Unfortunately, these recent advances in miniaturizing lenses do
not address the space between the numerous optics, sources, and sensors, which make up the
largest part of most imaging systems.

Recently, a new optical element has been proposed that can simulate free-space propagation to
further reduce imaging systems, called a ‘spaceplate’ [7–9]. This device consists of a plate of
thickness d; however a transmitted lightfield will experience an effective propagation of length
deff>d (Fig. 1). This expanded propagation is accomplished through a non-local operation
[10–16] that imparts an angle-dependent phase onto an incident beam. By replacing free-space,
spaceplates could one day lead to ultra-thin telescopes, microscopes, and cameras, for example
eliminating the camera bump on the back of smartphones.

Past works have experimentally demonstrated spaceplates in the form of a low-index medium
or a birefringent crystal [7], and have theoretically demonstrated spaceplates in the form of
thin-film multilayer stacks [7], a two-dimensional photonic crystal slab [8], and coupled cavities
[9]. These devices featured compression factors R ≡ (deff/d) that ranged from R = 1.1 to
R = 144, with other metrics of varying performance, such as numerical aperture (NA), insertion
loss, spectral operating bandwidth, and total simulated space deff . Aside from the special
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Fig. 1. A spaceplate compresses the propagation of a length deff into a region of length d.

case of resonator-based spaceplates [9], a general design methodology and identification of the
fundamental limitations of high-performance spaceplates has remained a challenge. This stands
in contrast to other more mature devices, such as metalenses [17] or invisibility cloaks [18], for
which there are established design prescriptions. As a result, it is as of yet unknown what the
fundamental tradeoffs or limitations on these performance metrics may be for this new type of
device.

In this paper, we expand on previous inverse-design work on a class of spaceplates based
on multilayer thin-film stacks. The main goal is to explore the design parameter space for this
class of spaceplates. In doing so, we find high-performance structures and observe trade-offs
between their various performance metrics and design constraints. Thin-film stacks are a mature
technology that can consist of structures of over a thousand layers. It is the basis of standard
commercial dielectric mirrors that exhibit a NA of 0.35 and reflectivity >99% across the visible
spectrum. Commercial thin-film stack bandpass-filters are available that have bandwidths of 350
nm and a transmission of >90%. Multilayer stacks provide a complex and large parameter space
conducive to optimization.

Whereas previous work featuring this multilayer platform used a genetic algorithm [7] and
produced a maximum R = 4.9, here we develop a gradient descent optimization that produces
much higher performance spaceplates. We switched to gradient descent due to its ability to
find local maxima quickly [19]. We kept the global search aspect of the genetic algorithms by
concurrently optimizing a set of random starting structures. In this paper, we do two types of
optimizations. The first is aimed at exploring the space of realistic devices made solely from
silica and silicon. It optimizes the layer thickness. The second type of optimization aims to reveal
the role of refractive index in spaceplate performance. We optimize a continuously variable index
while keeping the layer thicknesses fixed. However, the focus of this paper is not the optimization
algorithm but rather the exploration of the parameter space for multilayer spaceplates.

In Section 2, we introduce the theory behind the spaceplate and give an overview of the
structure optimization method. In Section 3, we present the results of parameter space exploration.
In Section 4, we discuss the implications of these results including design tradeoffs and then
conclude.

2. Theory

A spaceplate will replace a slab of a medium of length deff if the spaceplate acts on every possible
incident planewave in the same manner as the slab. In particular, each planewave incident at z = 0
should be transmitted through the spaceplate at z = d without loss and receive an angle-dependent
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phase of the form
ϕ(θ, z = d) = kzdeff = |k|deff cos θ, (1)

where θ is the incident angle of the light relative to the interface normal, and k = (kx, ky, kz) is the
wavevector in the background medium [7]. Throughout this publication, the background medium
is air (n = 1).

The spaceplates that we consider are made from layers of materials with parallel interfaces
along the x-y plane. As such, they will conserve momentum along this plane. Moreover, the
imparted phase will be independent of position. These equivalent three aspects describe that
a ray exiting a spaceplate will not change its propagation angle, as illustrated in Fig. 1. This
angle-conservation is contrary to the behaviour of a ray at a lens, where the ray angle changes
due to refraction. In this way, lenses and spaceplates are complementary devices.

A spaceplate is a non-local optic in the sense used in the theory of metamaterials [10,11].
A general linear optic is associated with the function G(x, x′) and transforms an input field
as Eout(x) =

∫
Ein(x′)G(x, x′)dx′. If the output field Eout at x only depends on the input field

local to x, i.e., Ein(x), then G(x, x′) = G(x) and the optic is classified as ‘local’. An example
is a simple phase-mask or thin lens, G(x) = exp[−iβ(x)]. All optics for which G(x, x′) ≠ G(x)
are ‘non-local’. In particular, the effect of the spaceplate is to transform the input field as
Eout(x) = 1√

2π

∫
Ein(kx)H(kx)e−ikxxdkx, where H(kx) = exp(−iϕ) is the Fourier transfer function

of an ideal spaceplate. By the convolution theorem, Eout(x) =
∫

Ein(x′)h(x − x′)dx′, where h(x) is
the inverse Fourier Transform of H(kx). Through h(x − x′) the output field at x will depend on the
input field at all positions, i.e., non-locally. The spaceplate is an extreme example of a non-local
optic since its action solely depends on the input angle θ.

In order to quantify the performance of the spaceplates that we generate through inverse design,
we use the Strehl ratio S [20]. This quantity is commonly used to measure the quality of lenses.
It is the ratio of the peak intensity of a focus of a Gaussian beam that travels through a real (i.e.,
aberrated) lens to the peak intensity created by an ideal lens. S quantifies aberration performance
from poor to ideal by ranging 0 to 1, respectively. Most importantly for this work, a Strehl ratio
of S ≥ 0.8 is considered ‘diffraction limited’ [21]. That is, with an image system containing a
lens with performance S ≥ 0.8, diffraction will limit image resolution more than aberrations will.
Similarly, a real (i.e., designed) spaceplate will impart phase errors to a beam that is already
focusing through it and so the Strehl ratio is also a relevant metric. When calculating a high
Strehl ratio, the following approximation [22] holds:

S ≈ e−σ
2
. (2)

Here, σ is the root-mean-square-error (RMSE) between the phase of an ideal spaceplate ϕ and
a designed spaceplate ϕ′ for the same nominal deff ,

σ2(ϕ′, ϕ) = ⟨(ϕ′ − ϕ)2⟩, (3)

where ⟨f ⟩ ≡
(︂∑︁N

i=1f (θi)
)︂
/N denotes an average over angle across the NA of the device. Here, N

is the number of points between θ = 0 and the acceptance half-angle θNA = sin−1 (NA). Thus,
the RMSE and, in turn, the Strehl ratio quantify the aberrations of a designed spaceplate within
its numerical aperture.

In our exploration, we focus on multilayer stacks. These can be easily and accurately modeled
using the transfer-matrix method (TMM) [23]. This method is used to obtain the phase ϕ and the
transmittance T of a stack over NA. We consider p-polarized light at an operating wavelength of
λ = 1550 nm, thus restricting our study to monochromatic operation. Monochromatic spaceplates
could be used in the many applications that utilize narrow bands of frequencies. The requirements
of commercial applications are diverse and often proprietary. While it is beyond the scope of
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this paper to target a specific application, monochromatic spaceplates could be used to reduce
the size of sensors (e.g., LIDAR or retina scanners), monochromatic displays, or spatial mode
mux/demux devices in telecommunications.

We use gradient descent as our optimization technique, where we define the figure of merit
(FOM) that we maximize to be 1/σ(ϕ′, ϕtarget). The RMSE σ is taken between the phase of a
candidate spaceplate and an ideal spaceplate with deff = Rtargetd. Each device optimization thus
targets a Rtarget and NA. The result of the optimization is the designed device. Its aberration
performance is quantified by the Strehl Ratio (Eq. (2)) calculated using RMSE 1/σ(ϕ′, ϕfit),
where ϕfit is the phase of an ideal spaceplate where Rfit is found from a fit of Eq. (1) to the device
phase ϕ′ over the target NA.

It is unknown whether this FOM establishes a convex optimization for multilayer structures.
If it is not convex, the globally optimal solution may not be reached. In order to temper this
potential limitation, we use a randomization procedure to globally search the parameter space.
We describe this procedure in more detail in the following section.

3. Optimizations and results

We explore the optimization of two different parameters. The first explores the space of realistic
devices by using solely silica and silicon and optimizes the layer thicknesses. The goal of this
optimization is to investigate the role of layer thickness on spaceplate performance and also to
identify realistic structures with high R and/or NA. The second optimization type uses fixed layer
thicknesses and optimizes each layer’s refractive index. The goal is to observe the influence of
index contrast on the spaceplate performance.

Both optimization types use gradient descent. For both types, we pre-define the number of
layers, the targeted compression factorR, and acceptance half-angle θNA (i.e., the NA = sin (θNA)).
It is unknown whether either optimization type is convex. To mitigate this possibility we introduce
randomness, with each run starting from a structure comprising random initial parameters. In
this sense, we are performing a global search to increase the likelihood of finding global or
near-global optima. For the first optimization type, we randomize the layer thicknesses by
simultaneously optimizing a ‘swarm’ of 200 gradient descent optimization runs. In the second
type, we randomize the refractive index profile; however, due to the increased number of degrees
of freedom, the optimization is much more numerically cumbersome, and so we optimize a
swarm of only 10 devices.

3.1. Optimizing layer thicknesses

The first approach considers a structure of alternating layers of silicon (n = 3.48) and silica
(n = 1.44). The structure is surrounded on both sides by air (n = 1). Here, we set a fixed number
of thin-film layers and the thicknesses of the individual layers are used as the optimization
parameters. Our optimization starts by initializing a group of 200 spaceplate candidate designs,
each with randomly generated layer thicknesses. For each optimization case, the code then
applies the gradient descent algorithm to each layer of the spaceplate, discretely differentiating
by the layer thickness to find the gradient. For a given candidate design, the algorithm starts by
simultaneously optimizing the first three layers, and once they are fully optimized, it includes the
next layer into the simultaneous optimization process. The FOM = 1/σ(ϕ′, ϕtarget). Once all of
the layers have been sequentially included and optimized, the spaceplate’s actual compression
Rfit and Strehl ratio are assessed.

Figure 2 illustrates a resulting device consisting of 27 layers optimized for operation for an
acceptance half-angle of θNA = 1◦ (NA = 0.017). The device is 7.6 µm thick and replaces
propagation for 2.6 mm, corresponding to a compression factor of R = 340. This value is the
largest observed in any study. This device has a maximum insertion loss of only 3.3 dB over
its designated angular operating bandwidth. Figure 2(b) gives the imparted phase of the device
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(blue line), which fits well to the ideal spaceplate curve (dashed line, given by Eq. (1)). This
device has a Strehl ratio of S = 0.9992, far above diffraction-limited performance.

Fig. 2. a) A spaceplate consisting of 27 alternating layers of Si (black) and SiO2 (grey) with
a total thickness of 7.6 µm, which is surrounded by air. The layers are drawn to scale with
respect to the scale bar (2 µm). b) The transmission phase of the device fit to the expected
output phase of an ideal spaceplate with an effective advance of deff = 2.6 mm. It behaves as
a spaceplate with a compression factor of R = 340 for NA = 0.017 (up to 1◦ — the unshaded
region). c) The normalized transmittance and reflectance of the spaceplate. This device
has an angle-dependent transmission profile, with a maximum insertion loss of 3.3 dB at
an incident angle of 1◦. d) Analytic Fourier optics propagation is used to find the intensity
|E |2 of a focusing Gaussian beam (waist of 30 µm, divergence of 0.94◦) propagating in free
space (FP) and after propagating through the metamaterial spaceplate (SP) from left to right.
e) Beam cross section along the vertical dashed lines in d).

To further probe the potential performance of the thin-film multilayer stack platform as a
spaceplate, we explored the parameter space in a thorough series of simulations. Though a direct
search of this type is not in any sense exhaustive (i.e., completely comprehensive), its results can
be instructive in drawing certain conclusions, as we shall see. In our study, for a given number of
layers ranging from 9 – 29, we swept over targeted compression factors from Rtarget = 2 – 60 and
explored devices with five NAs: 0.087, 0.17, 0.26, 0.34, and 0.42, corresponding to acceptance
half-angles of θNA = 5◦, 10◦, 15◦, 20◦ and 25◦, respectively.

The results from this study are summarized in Fig. 3. Figure 3(a) shows the maximum R

obtained using the optimization procedure outlined above as a function of the device’s NA
independent of the number of layers. As mentioned above, the largest compression factor,
R = 340, is obtained for devices with the smallest NA. Conversely, for the largest NA (NA = 0.43,
corresponding to an acceptance half-angle of θNA = 25◦), we obtain R = 5.5 in a 1.61 µm-thick
device. Thus, we observe a tradeoff between NA and R. Moreover, we observe that for large NA,
the highest R occurs for structures with fewer layers.

Figure 3(b) contains a summary of the performance of multilayer stacks comprising only 13
layers as a function of Rtarget for a range of NAs. We observe a clear tradeoff between S and R of
a spaceplate for a given NA. Conversely, for a given R, a higher NA results in lower device Strehl
ratio. Though we do not reproduce it here, this trend holds for all optimized devices for every
number of layers we explored (9, 11,. . . , 27, 29 layers).
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Fig. 3. a) The maximum observed compression factor R as a function of NA of any
spaceplate with 9, 11,. . . , 27 or 29 layers. The compression factor decreases with increasing
numerical apertures. b) The Strehl ratio S as a function of Rtarget for devices with acceptance
half-angles of θNA = 5◦, 10◦, 15◦, 20◦, and 25◦ (NA = 0.09, 0.17, 0.26, 0.34 and 0.42,
respectively). Devices with S ≥ 0.8 (dashed line) are considered diffraction limited. c)
Compression factor as a function of the thickness of layer 2 of the device in Fig. 2. d)
R/Rtarget as a function of the targeted compression factor Rtarget for devices formed of 9,
11,. . . , 27, 29 layers for NA = 0.17. Increasing the number of layers enables devices with
higher compression factors. This improvement plateaus for devices with more than 17 layers.

We observe threshold values for Rtarget above which S starts to decrease from 1. At these
thresholds, the optimization procedure is obtaining devices with increasing aberration (i.e.,
decreasing S) as it is more challenging to reach larger values of Rtarget

In Fig. 3(d), we explore the impact of the total number of layers on the performance of the
device. Here, we fix the NA to 0.17, and optimize devices for a range of Rtarget and for a number
of layers ranging from 9 to 29. Increasing the number of layers enables devices with better
performance and higher compression factors, which makes intuitive sense as doing so expands
the space of possible devices.

In Fig. 3(c), we show that for a spaceplate designed for a given target compression factor
R, when increasing the thickness of any one layer, the compression factor is oscillatory. The
multiple maxima suggest that the optimization is non-convex and that the results of optimizations
may not be global maxima.

Our search yielded a few other qualitative observations of interest. First, our optimization
procedure favoured devices with an odd number of layers, and where the outermost layers had
a higher refractive index. Additionally, devices optimized for operation with p-polarized light
tended to yield higher compression factors.

3.2. Optimizing layer indices

In our second approach to optimizing the spaceplate structures, we fix the total number of layers
and their respective thicknesses and use the refractive indices of the layers as the optimization
parameters. This approach is similar to the one explored in previous work featuring a different
non-local operation in a thin-film multilayer stack [11]. Here, we set the thickness of 101
individual layers to 5 nm for a total device thickness of 505 nm, and we constrain the refractive
index to a chosen range. These ranges define two optimization sub-types: the first is a realistic
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range for dielectric materials at optical frequencies (n = 1 – 4), and the second is an expanded
range of any positive value (n>0). This latter range explicitly includes materials for which n<1,
so-called epsilon-near-zero media [24,25]. Unlike the dielectric materials in the first sub-type,
these tend to have high absorption, which makes them less feasible for realistic devices.

In our first attempts at this second type of optimization, we observed that the resulting
structures exhibited impractically small transmission. To counter this effect, we also maximized
the transmission by including it in the FOM= 1/(σ(1− ⟨10 log10(T)⟩)). Here, T is the normalized
transmittance, and therefore ⟨10 log10(T)⟩ is the magnitude of the insertion loss in dB, where ⟨⟩

denotes an average over angle across the NA of the device, as in Eq. (3). Since this quantity is
located in the denominator of the FOM, the optimization works to reduce loss, increasing overall
transmittance. In this approach, the total number of layers is substantially larger than in the
devices explored previously. This optimization approach is much more numerically cumbersome
and so we are forced to iterate over fewer parameters. Consequently we only optimize for a
swarm of 10 candidate devices at a time.

Fig. 4. a) A spaceplate device with R = 6.4 designed by optimizing the refractive index of
thin layers. Here, the index is bound within 1<n<4. b) A spaceplate with R = 80, where n is
bound to positive values during optimization. Here, the resulting refractive index ranges 0.2
to 14. c) The transmission phases of the devices in (a) and (b) as a function of incident angle,
and their respective fits to ideal spaceplate profiles. d) The normalized transmittance of the
devices. e) R/Rtarget as a function of the targeted compression factor Rtarget for devices
formed of various different pairs of refractive index nL and nH . The compression factor
increases with index contrast.
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For NA = 0.26, the first sub-type (n = 1 – 4) yielded a maximum compression factor of
R = 6.4 (Fig. 4(a)) when targetting Rtarget = 7. The second sub-type (n>0) yielded a device with
refractive indices ranging from n = 0.2 to n = 14, and a maximum compression factor of R = 80
for a target value Rtarget = 80 (Fig. 4).

Though this second type of optimization yields less feasible devices due to the continuous
refractive index values, it suggests that the ultimate compression of multilayer spaceplates is
likely tied to the refractive index of the constituent materials. To test this aspect more thoroughly,
we conducted a new optimization study of the first type (i.e., optimizing the layer thicknesses
only) where we fix the number of layers to 17, and explored the indices of the two materials used.
We found that as the index contrast (the ratio of the refractive indices, nH/nL) increases, the
achieved compression factor increases as well (Fig. 4(e)). Additionally, spaceplates with similar
index contrast perform similarly even though the materials used may widely differ (e.g., the
orange and light green curves in Fig. 4(e), corresponding to nH/nL = 4/2 and 2/1, respectively).

4. Discussion and conclusion

Our study with the first optimization type suggests that the maximum compression factor is
limited by the NA of the device. For example, for devices with an identical S and number
of layers, reducing the NA from 0.26 to 0.17 had the effect of nearly doubling R from 9.6
to 18.0. This observation echoes a recent finding that the total effective propagation distance
deff of resonator-based spaceplates is limited by the NA [9]. Despite this limit, we find that
spaceplates based on this platform are shown to enable diffraction-limited operation with record
high compression factors for large numerical apertures.

We had expected the second optimization type to yield devices with larger compression factors
since it considered a larger parameter space with access to many more degrees of freedom.
However, the best compression factor obtained by this approach (R = 6.4) fell short of the
solution found in the previous search for NA = 0.26, which yielded a maximum compression
factor of R = 11.5. We suspect that the dramatic increase in optimization parameters hampered
locating the global maximum for this class of devices. Nevertheless, increasing the range of
allowable indices further increased the compression factor from R = 6.4 to 80. Paired with
the study where we explored making spaceplates out of two different indices using the first
optimization type, we can comfortably claim that R is also limited by index contrast.

In applications, it may be desirable to constrain deff to a target length in the optimization. Our
designs result in a deff ranging from about 10 µm to 1 mm, a factor of 100, which demonstrates
an impressive range of performance. In the second type of optimization, we have constrained
the physical size of the spaceplate d = 505 nm while targeting a series of values of R, which is
equivalent to targeting specific values of deff . We demonstrated a range of performance with this
d. This shows that it is possible to target both deff and R. Moreover, recent work has proposed a
periodic design that allows for any chosen deff [9]. Future work will focus on the possibility of
cycling our optimization procedures in order to achieve a desired deff .

In summary, we have successfully inversely designed high-performing spaceplates based on
multilayer thin-film stacks. We observed tradeoffs between the number of layers, NA, compression
factor R, and the degree of aberration (i.e., the Strehl ratio). While this work was focused
on monochromatic spaceplates, these tradeoffs suggest there may be similar tradeoffs with the
spaceplate’s spectral bandwidth. Broadband operation and achromatic design are topics for
future research. We observe signs that our gradient descent is non-convex which suggests that
other inverse-design schemes might be even more fruitful than gradient descent and, thus, may
fully capitalize on the enormous design parameter space of the thin-film platform. Finally, while
previous spaceplate designs have achieved very high R [8], this work demonstrates that even
higher R can be achieved in thin-film stacks, a mature commercial fabrication platform.
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