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Optical communications, remote sensing, particle trapping, and high-resolution imaging are a few research areas
that benefit from new techniques to generate structured light. We present a method of generating polarization-
structured laser beams that contain both full and partial polarization states. We demonstrate this method by
generating an optical beam that contains every state of partial and full polarization. We refer to this beam as a volu-
metrically full Poincaré beam to distinguish it from full Poincaré beams, which contain all states of full polarization
only. In contrast to methods relying upon spatial coherence to generate polarization-structured beams with par-
tial polarization, our method creates well-collimated beams by relying upon temporal coherence. © 2022 Optica

PublishingGroup

https://doi.org/10.1364/JOSAA.473363

1. INTRODUCTION

Laser beams with spatially varying amplitude, phase, or polari-
zation beyond that of a uniformly polarized Gaussian beam
have garnered a significant amount of attention over the last
few decades and are generically referred to as structured light
[1,2]. Many of the most common amplitude-structured beams
are orthonormal solutions to the scalar paraxial wave equation,
making them suitable as an encoding basis in optical commu-
nications [3,4]. Furthermore, the infinite-dimensional Hilbert
space formed by orthonormal solutions to the paraxial wave
equation allows for an increased channel capacity per photon
[5] compared to binary encoding schemes, such as polarization.
Beams with a spatially varying polarization can also be used as
an encoding basis with a mathematical similarity to the Poincaré
sphere formalism but generalized to higher dimensions [6,7].
Because the polarization structure of these beams may vary
in all three spatial dimensions, it is possible to form knotted
polarization topologies that can also be used as an encoding basis
[8]. Polarization-structured beams have also received attention
for their resistance to beam breakup resulting from turbulence
and/or nonlinear self-focusing [9–11]. Additionally, it has been
demonstrated that radially polarized beams can achieve a tighter
focus [12], potentially increasing the precision of laser trapping
[13] and increasing the resolution in confocal microscopy [14].

Fully polarized beams, such as full Poincaré (FP) and vector
vortex (VV) beams, have been the subject of many studies in the
optics community. FP beams [15,16] contain every polarization
state on the surface of the Poincaré sphere, while VV [17] beams
contain states along a path on the surface of the Poincaré sphere.
Other types of polarization-structured beams that include states

of partial and full polarization have also been reported previ-
ously [18–23]. One such example that is spatially coherent and
contains every polarization state on the surface and interior of
the Poincaré sphere was developed by Beckley et al ., referred to
here as volumetrically FP (VFP) beams [18]. In this paper, we
present a method of generating polarization-structured beams
comprising at most two temporally incoherent beams of oppo-
site orbital angular momenta or of a relative inversion about the
horizontal axis and use it to generate a VFP beam. Furthermore,
the degree of temporal coherence between the two constituent
beams can be varied continuously from fully coherent to fully
incoherent. In partially coherent polarization-structured beams
generated from Gaussian Schell-model sources, the degree of
polarization is intrinsically coupled to the Rayleigh range of the
source [24]. By utilizing temporal coherence rather than spa-
tial coherence to control the degree of polarization, the beams
generated in our system can remain well collimated upon propa-
gation for varying degrees of temporal coherence. Our results
and methods add to the quickly growing field of structured
light generation [25–31] and may have an impact on studies of
what has been called “classical entanglement” [32] and beam
dynamics in complex and nonlinear media.

2. BACKGROUND

A VFP beam comprises an incoherent superposition of two FP
beams of opposite orbital angular momenta [18]:

VFP(ρ, θ, z)= a1FP+(ρ, θ, z)+ a2FP−(ρ, θ, z), (1)

where

FP±(ρ, θ, z)= LG0,0(ρ, θ, z)eL + LG0,±1(ρ, θ, z)eR. (2)
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Fig. 1. Poincaré sphere coverage (top row) and transverse polarization structure (bottom row) of a VFP beam at three positions along the beam’s
propagation axis. Inset between the Poincaré sphere coverage and the polarization structure is the spatially resolved degree of polarization (DOP) for
each location. (top row) As the beam propagates, the polarization states present in the beam form a disk-like surface in the Poincaré sphere that rotates
about the s 3 axis. (bottom row) The transverse polarization structure of the VFP beam contains varying degrees of polarization, as indicated by the
relative size of the polarization ellipses plotted at various locations on top of the beam’s transverse intensity structure (orange). Yellow, blue, and white
ellipses indicate left-circular, right-circular, and linear polarizations, respectively. Upon propagation, the local polarization at a point in the beam
undergoes a rotation. Beam sizes are scaled differently to aid visual inspection.

Coefficients a1 and a2 in Eq. (1) are uncorrelated stocastic

variables of equal amplitude. That is, 〈a1a∗2〉 = 〈a2a∗1〉 = 0

and 〈|a1|
2
〉 = 〈|a2|

2
〉, where brackets denote an average over

the exposure time of the camera that records the beam profile.

Equation (2) shows that FP beams comprise two orthogonally

polarized Laguerre–Gauss modes (LGp,l ) with an azimuthal

index, l , differing by one. Depending upon the sign of the

azimuthal index, FP beams can have a “lemon” (l =+1) or a

“star” (l =−1) polarization topology. For the sake of simplicity,

we have ignored any phase difference between the beams on the

R.H.S of Eq. (2), but such a phase difference would impart a

rigid rotation to the polarization structure [15]. Unit vectors eL

and eR denote left- and right-circular polarization, respectively.

The Stokes parameters’ dependence upon cylindrical coordi-

natesρ, θ , and z reveals how every polarization state is present at

some location in the VFP beam [18]:

s 0 = |LG0,0|
2 [

1+ ρ̃2],
s 1

s 0
=

2ρ̃

(1+ ρ̃2)
cos θ cos θG(z),

s 2

s 0
=
−2ρ̃

(1+ ρ̃2)
cos θ sin θG(z),

s 3

s 0
=
ρ̃2
− 1

1+ ρ̃2
, (3)

where ρ̃ =
√

2ρ/w(z),w(z) is the beam radius, and θG(z) is the
Gouy phase [33] of the LG0,0 beam. Aside from the dependence
upon θG(z), Eq. (3) represents parametric equations of a unit
disk whose diameter lies along the s 3 axis of the Poincaré sphere.
As the Gouy phase changes, the disk rotates about the s 3 axis,
eventually sweeping the entire volume of the Poincaré sphere.
Because the Gouy phase depends upon z as −arctan(z/zR),
where zR is the Rayleigh range, half of the disk’s rotation occurs
within ±zR. The full π rotation of the disk occurs only for
propagation from z=−∞ to z=+∞.

Figure 1 shows the Poincaré sphere coverage and transverse
polarization structure of the VFP beam at three locations along
the beam’s propagation: z=−1.7zR, z= 0, and z= 1.7zR.
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In each plane of constant z, there are two regions where the
degree of polarization is zero. These correspond to areas where
the polarizations of the constituent FP beams are orthogonal.
Full polarization occurs in regions where the polarizations of
the constituent FP beams are the same [34]. Areas of partial
polarization in the VFP beam result from the polarizations of
the two FP beams being not completely parallel or orthogonal.
Individually, the polarization structures of the constituent FP
beams rotate due to the difference in the Gouy phases of the
LG0,0 and LG0,±1 beams that they are made from. This fact,
coupled with the smooth transition between regions of parallel
polarizations and orthogonal polarizations in the constituent
FP beams, allows the VFP beam to contain every Poincaré
sphere state. We also draw attention to the seemingly abrupt
change from vertical to horizontal elliptical polarization at the
center of the beam in the horizontal direction at z= 0. Along
the horizontal axis, the constituent FP beams have the same
polarization. Along the vertical axis, the linear component of
the constituent FP beams’ polarization is orthogonal. Between
these axes, the polarizations of the constituent FP beams experi-
ence a smooth transition from the same polarization to having
orthogonal linear components of polarization. The net result
of these effects is that the polarization ellipses in the VFP beam
are in the same direction on either side of the vertical axis of the
beam. Outside of regions of zero polarization, the polarization
along the vertical axis of the VFP beam is perfectly circularly
polarized, though with a varying degree of polarization due to
the varying presence of orthogonal linear polarization compo-
nents of the constituent FP beams. In other words, the vertical
axis is a c-line. The behavior is also present in the z=−1.7zR

and z= 1.7zR profiles.

The lack of states at the top of the Poincaré sphere is fun-
damentally related to the fact that states at the north pole of
the Poincaré sphere are located infinitely far from the beam’s
propagation axis. Geometrically, FP beams are a stereographic
projection of the Poincaré sphere to an infinite plane [15],
placing the northernmost Poincaré sphere states at infinity.
However, the finite numerical precision of the VFP beam’s rep-
resentation in the computer coupled with the finite window size
chosen in Fig. 1 also limits the amount of states plotted at the top
of the Poincaré sphere. We note that methods to generate finite
FP beams have been demonstrated theoretically and experimen-
tally [35,36]. The disk-like surface of Poincaré sphere states in
Fig. 1 rotates from approximately −59.53◦ at z=−1.7zR to
59.53◦ at z= 1.7zR . Thus, a majority of Poincaré sphere states
are present within several Rayleigh ranges of the beam waist.

3. EXPERIMENT

The experimental setup for generating a VFP beam is shown in
Fig. 2. In the “coherence control system” stage, a 780 nm tunable
diode laser (Toptica DL pro 780) is coupled into a phase-shifting
electro-optic modulator (EOM) via a polarization-maintaining
fiber (PMF). The EOM is driven with amplified white noise
with a bandwidth of∼1 GHz and an amplitude of 39 dBm. For
the EOM used in Fig. 2 (AdvR WPM-K0780-P85P85ALO),
39 dBm corresponds to a phase shift of∼6.5π . Maximum phase
shift values lower than 6π were found to yield an incomplete
broadening of the laser’s bandwidth. The use of phase-only
devices to broaden a laser’s linewidth is described in more detail
in Ref. [37]. The beam is then coupled into a tapered amplifier
(TA) with a flat gain profile over the bandwidth of the beam
(Toptica BoosTA). The spectrum of the beam is measured after

Fig. 2. Experimental setup for generating a VFP beam. 780 nm, tunable diode laser; PMF, polarization-maintaining fiber; EOM, phase-shifting
electro-optic modulator; TA, tapered amplifier; PBS, polarizing beam splitter; λ/2, half-wave plate; SLM, spatial light modulator; L1, f = 20 cm
lens; λ/4, quarter-wave plate; 50/50, 50/50 beam splitter; L2, f = 2.5 m lens; L3, f = 1 m lens; CCD, camera.
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Fig. 3. Experimentally measured Poincaré sphere coverage (top row) and transverse polarization structure (bottom row) of a VFP beam. The mid-
dle row shows the degree of polarization across the transverse extent of the beam. Generally, the experimental results are in close agreement with the
theoretical results of Fig. 1.

the TA with and without noise (upper-left inset) using a scan-
ning Fabry–Perot interferometer (FPI) (Thorlabs SA210-5B),
confirming the broadening of the spectrum from the added
phase noise. With no phase noise added, the measured band-
width corresponds to the resolution of the FPI (67 MHz). In
the “beam generation” stage, the beam’s polarization is rotated
to diagonal before reflecting from two spatial light modulators
(SLMs) with coinciding image planes [27].

The polarization is rotated and carefully controlled by three
quarter-wave plates (λ/4) between the two SLMs such that each
SLM acts on a different orthogonal linear polarization. The
SLMs are programmed with computer-generated holograms
[26] such that the beam produced on the −1 diffractive order
is LG0,0eV + LG0,1eH. Because both polarization components
copropagate through the optical system, this method of beam
generation is inherently phase stable. In the “incoherent beam
combination” stage, the polarization components of the gen-
erated beam are transformed to the circular basis to produce
an FP+ beam with the polarization of the two constituent
modes exchanged before the beam is split into two paths by
a 50/50 beam splitter. A quarter/half/quarter series of wave
plates is used rather than a single quarter-wave plate because
it offers greater control over the resulting polarization states.
The transmitted path consists of a 10 m imaging delay line with
an even number of reflections and a series of quarter-wave and
half-wave plates to correct for polarization rotations induced
by the dielectric mirrors. The FP beam that was reflected from
the first 50/50 beam splitter experiences an odd number of

reflections, reversing its orbital angular momentum relative to
the transmitted FP beam. The two FP beams are then recom-
bined at a second 50/50 beam splitter. The 10 m freespace delay
between the two beams ensures that they combine incoher-
ently since the coherence length of the beams is ∼95.4 mm.
After recombination, the beam travels through a quarter-wave
plate, a half-wave plate, a polarizing beam splitter, and an
f = 1 m lens to perform spatially resolved polarimetry at three
longitudinal positions around the beam waist: z=−1.7zR,
z= 0, and z= 1.7zR. The full-width at half max of the beam
at z=−1.7zR, z= 0, and z= 1.7zR is approximately 0.66(2)
mm, 0.33(2) mm, and 0.62(2) mm, respectively. The cam-
era used to record the spatially resolved polarimetry results
(Gentec-EO Beamage-4M) has a pixel size of 5.5 µm.

4. RESULTS

Figure 3 shows the results of generating a VFP beam with the
setup in Fig. 2. The experimentally generated VFP beam agrees
closely with the ideal theoretical VFP beam shown in Fig. 1. At
positions z=−1.7zR and z= 1.7zR, approximately 40,000
pixels were used to create the Poincaré sphere coverage. At z= 0,
approximately 15,000 pixels were used to create the Poincaré
sphere coverage. Like an ideal VFP beam, the Poincaré sphere
coverage is a disk-like surface that rotates about the s 3 axis.
However, the Poincaré sphere coverage for the experimen-
tally generated VFP beam is a surface with nonzero thickness
in each plane. The deviation from an ideal thickness of zero
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is primarily due to the imperfect retardation of the quarter-
and half-wave plates that control the polarization. The lack of
states near the positive s 3 pole of the surface can be attributed
to finite sensor size and bit depth of the camera. That is to say,
pure right-circular polarization is present only far from the
center of the beam, where the intensity is low and the edges of
the camera sensor are located. The low signal-to-noise ratio far
from the center of the beam is responsible for the increased noise
present near the s 3 pole. The rotation angle of the surface at each
longitudinal position is estimated using maximum likelihood
(ML) fitting with the model of a plane containing the s 3 axis and
one free parameter describing the angle of the plane relative to
the s 1 axis. Monte Carlo simulation was used to determine the
uncertainty in the fits. ML fitting returns the following values
of the rotation angle for z=−1.7zR, 0, and 1.7zR, respectively:
φ =−44.03(1)◦, 12.03(3)◦, 59.58(1)◦. Ideally, the angle of the
disk-like surface at z=−1.7zR, 0, and 1.7zR should be approx-
imately −59.53◦, 0◦, and 59.53◦, respectively. The difference
between the ideal VFP beam and the experimental results can
be primarily attributed to the wave plates used to control and
measure the polarization, as well as the uncertainty in the exact
location of the beam waist.

5. CONCLUSION

We have demonstrated an optical system capable of producing
fully and partially polarized beams with varying amounts of
temporal coherence. Using this system, we generated a VFP
beam for the first time, to our knowledge. While past reports of
VFP beam generation have relied upon the incoherent addition
of polarimetry data taken sequentially from two FP beams of
opposite orbital angular momenta [18], our method produces a
VFP beam available in real time. With minimal reconfiguration
(amounting to blocking beams), our system can generate any
arbitrary fully polarized polarization-structured beam with
varying amounts of temporal coherence. Furthermore, this
system can be used to generate beams that consist of either
a coherent or an incoherent superposition of polarization-
structured beams of opposite orbital angular momenta or a
relative inversion about the horizontal axis, though phase sta-
bilization would be necessary for a coherent combination. Our
results add a method of generating polarization-structured
beams with regions containing varying degrees of polarization
to the quickly growing toolbox of structured light generation. It
may be possible to generate a VFP beam using spatially, rather
than temporally, incoherent light, but the Rayleigh range of
such a beam will depend upon the transverse coherence length.
Polarization-structured beams such as the VFP beam generated
in our experiment will continue to advance the fields of imaging,
nonlinear optics, and communications.
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