
738 Vol. 9, No. 7 / July 2022 / Optica Research Article

To what extent can space be compressed?
Bandwidth limits of spaceplates
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Spaceplates are novel flat-optic devices that implement the optical response of a free-space volume over a smaller length,
effectively “compressing space” for light propagation. Together with flat lenses such as metalenses or diffractive lenses,
spaceplates have the potential to enable the miniaturization of any free-space optical system. While the fundamental
and practical bounds on the performance metrics of flat lenses have been well studied in recent years, a similar under-
standing of the ultimate limits of spaceplates is lacking, especially regarding the issue of bandwidth, which remains as
a crucial roadblock for the adoption of this platform. In this work, we derive fundamental bounds on the bandwidth of
spaceplates as a function of their numerical aperture and compression ratio (ratio by which the free-space pathway is
compressed). The general form of these bounds is universal and can be applied and specialized for different broad classes
of space-compression devices, regardless of their particular implementation. Our findings also offer relevant insights
into the physical mechanism at the origin of generic space-compression effects and may guide the design of higher per-
formance spaceplates, opening new opportunities for ultra-compact, monolithic, planar optical systems for a variety of
applications. © 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

https://doi.org/10.1364/OPTICA.455680

1. INTRODUCTION

Optical systems, such as cameras, microscopes, and telescopes,
typically have three major components: lenses, detectors, and free
space. Metalenses [1–6] and diffractive lenses [7–11] have the
potential to replace conventional refractive lenses (within certain
limits [12–14]) and, therefore, owing to their light weight and
small thickness, contribute to the miniaturization of a multitude
of optical systems. However, in this quest toward miniaturization,
an often overlooked aspect of optical systems is the large free-space
volume between the detector and the lens, or between lenses,
which is essential to allow light to acquire a distance-dependent
and angle-dependent phase and achieve, for example, focusing
at a certain distance. These free-space volumes can dramatically
increase the overall length of the system and also determine an
increase in weight due to the larger required housing (e.g., lens
barrel), thereby rendering the miniaturization of complex optical
setups a challenge.

An innovative solution to this problem was recently proposed
by Reshef et al . [15] by showing that a low-index isotropic or uni-
axial slab, or a nonlocal, i.e., angle-dependent, (meta)material,
can implement an optical transfer function approximating that of
a volume of free space (or the selected background material) over
a smaller distance. Such a device, named a “spaceplate,” can help
shorten or even, in theory, fully replace the empty spaces in optical

systems by effectively “compressing” space for light propagation.
Several of us recently experimentally implemented and tested two
broadband proof-of-concept spaceplates with a frequency window
spanning the entire visible range, a first one, using a slab made of a
uniaxial crystal, and a second one, using a glass cell containing air,
both submerged in a higher-index medium (oil). The compression
ratio implemented by these homogeneous material spaceplates,
defined as the length of replaced free space (effective length of light
propagation) over the actual spaceplate thickness, was, however,
limited to less than 1.5. In contrast, in another pioneering work,
Guo et al . [16] proposed a nonlocal spaceplate design leveraging
the dispersion of a guided-mode resonance in a photonic crystal
slab to implement the required transfer function, achieving a
much larger compression ratio of 144. The sharp linewidth of the
guided-mode resonance, however, limited the fractional spectral
bandwidth of the device to 10−4 and the numerical aperture (NA)
to 0.01. In the same work, the authors proposed another photonic-
crystal-based spaceplate with a moderately larger NA of 0.11;
however, this was obtained at the cost of the compression ratio,
which was reduced to 11.2.

These early designs and demonstrations suggest that the operat-
ing bandwidth, compression ratio, and NA of spaceplates cannot
be improved independently but are likely to be constrained by
physical bounds and trade-offs. This was further corroborated
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by the results of [17], where three of the present authors observed
a distinct trade-off between the compression ratio and NA in
monochromatic multilayered spaceplates designed using inverse
design techniques, confirming earlier theoretical predictions by
Chen and Monticone in [18]. Within this context, in this paper, we
first elucidate the basic physical mechanisms at the origin of generic
space-compression effects, and we then derive physical bounds
and trade-offs on the performance of spaceplates, with a particular
focus on the issue of bandwidth, which has not yet been addressed
in the literature and remains as a crucial roadblock for the adoption
of this platform. Specifically, starting from well-established limits
on the delay-bandwidth product of linear time-invariant systems,
we derive general fundamental bounds on the maximum achiev-
able bandwidth of spaceplates, as a function of their compression
ratio and NA. We then apply these theoretical results to answer
important questions on the performance of ideal spaceplates, such
as how optimal different reported spaceplate designs are, how to
improve them, how the bandwidth limits of spaceplates and metal-
enses compare, and how high the maximum compression ratio can
be for an ideal spaceplate targeting the entire visible range.

2. PHYSICAL MECHANISM AND FUNDAMENTAL
LIMITS

Consider a light beam, perhaps shaped by a (meta)lens, that is
converging/focusing at a distance F ′ in vacuum (or a background
material) and at F in the presence of an ideal spaceplate, as illus-
trated in Fig. 1. Intuitively, to mimic light traversing a distance L eff

in a smaller space of length L without distortions, obliquely inci-
dent plane waves should bend away from the surface normal inside
the spaceplate, with a deflection angle dependent on the incident
angle, and then re-emerge from the spaceplate propagating in
the original direction. Crucially, to really mimic free space, the
spaceplate in Fig. 1 should not reduce the focal distance through
a “lensing” mechanism, i.e., deflecting the incident wave due to
a position-dependent phase profile. Instead, the device should
be transversely homogeneous, not adding any focusing power, but
simply implementing the phase transfer function of free space over
a shorter distance L , i.e.,

φ(k0)= L effkz = L eff

√
|k0|

2 − k2
x − k2

y , (1)

Fig. 1. Comparison of a light beam converging at F ′ in vacuum (or a
background material) and at F in the presence of an ideal spaceplate of
length L . The spaceplate can effectively replace a region of space of length
L eff by imparting an angle-dependent transverse shift,1s , to propagating
plane waves.

where k0 is the wavevector in free space, kx and ky are the transverse
wavenumbers, and kz is the longitudinal wavenumber. For simplic-
ity, in the following, we consider propagating waves with ky = 0;
then, kz = |k0| cos(α), where α is the incident angle with respect
to the surface normal (elevation of the ray) on the x z plane. As
mentioned in Section 1, while this space-compression effect can be
achieved with homogeneous media in a higher-index background,
a promising way to realize it in free space is by using a suitable
nonlocal structure, namely, a structure with an angle-dependent
(i.e., transverse-momentum dependent) but position-independent
response designed to match the angle-dependent phase response
of free space given by Eq. (1). Structures with a nonlocal response,
a property also known as spatial dispersion—the spatial analogue
of the concept of frequency dispersion—can be implemented, for
instance, in the form of photonic crystal slabs [16,19] or multilayer
thin-film structures [15,18,20,21]. Regardless of the implementa-
tion, it is clear that, as illustrated in Fig. 1, a generic device for space
compression needs to impart an angle-dependent transverse spatial
shift to the incident waves, relative to propagation in the background ,
equal to 1s = (L eff − L) tan(α). (Interestingly, this is the dual
process of a lens: whereas a lens is a position-dependent device that
changes the angle of a light ray, a spaceplate is an angle-dependent
device that changes the transverse spatial position of a light ray). In
general, the transverse shift s that a wave undergoes as it propagates
through a material or structure is given by s = vgxτ [20], where vgx

is the transverse group velocity and τ is the total time delay (group
delay) imparted by the material or structure, i.e., the difference,
assumed here independent of the transverse position x0, between
the time the wave exits the structure at (x , z)= (x0 + s , L)
and the time it entered at (x0, 0). Alternatively, one could write
τ = L/vgz, but it is important to note that, for non-homogeneous
or non-periodic structures, the group velocities vgx and vgz are
effective quantities, representing the total effect of the structure,
but are not constant within the structure itself [22]. Hence, we do
not make any assumption regarding the relation between vgx and
vgz in the general case. Then, with reference to Fig. 1, the additional
transverse shift with respect to the natural transverse displacement
experienced by a wave propagating in the background medium can
be written as

1s = vgxτ − v
0
gxτ

0
= vgxτ − c sin(α)τ 0, (2)

where τ 0
= L/(c cos(α)) is the time delay experienced by the wave

in the background for the same distance L along the z axis, and
c = c 0/nb is the wave velocity in the background medium, with
refractive index nb assumed dispersionless. Thus, it is clear that,
in order to create a transverse displacement greater than the one
in the background, and hence a space-compression effect, there
are only two possible options: (i) The transverse group velocity vgx is
increased. This may be possible by simply redirecting waves away
from the surface normal, for example, through refraction if the
refractive index of the spaceplate is less than in the surrounding
medium, or through diffraction effects in transversely inho-
mogenous structures. However, in most cases of interest, such as
dielectric stacks, the effective vgx is actually reduced, not increased,
as further discussed below. (ii) The total time delay with respect
to propagation in the background is increased (equivalently, by
reducing the effective vgz). Again, while a reduction in vgz (an
increase in vgx/vgz) may be achieved by simply redirecting waves
through refraction in a low-index homogeneous material, this
option is not available for spaceplates made of materials with a
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refractive index greater than the background. In this scenario, the
only way to decrease the effective vgz, i.e., increase the time delay, is
by making light pass multiple times within the structure through
multiple reflections, i.e., by relying on resonances in the longitu-
dinal direction. This implies that the spaceplate should act as an
angle-dependent optical delay line. However, for a fixed length
L and other general properties of the structure, there are strict
bounds on the maximum “excess” time delay,1T = τ − τ 0, that
a slow-light structure can impart to a signal of certain bandwidth.
Indeed, upper bounds on the product of delay and bandwidth will
be crucial to determine the ultimate bandwidth limitations of a
spaceplate.

Starting from Eq. (2) for1s , we can easily find a formula for the
excess time delay that is required to implement a desired transverse
displacement relative to propagation in the background,

1T =
1s + (sin(α)− vgx/c )L sec(α)

vgx
, (3)

which implies that a non-zero positive delay 1T may be needed
to realize a specified displacement 1s . The required 1T may
actually vanish for a sufficiently large vgx, meaning that an increase
in transverse velocity would be sufficient to achieve the desired
displacement and, hence, space-compression effect. In many cases,
however, especially for large α and small length L , and when an
increase in vgx is not possible, it is clear that a positive1T would be
necessary for a specified1s . Also note that if the desired1s were
zero, and vgx > v

0
gx = c sin(α), Eq. (3) would correctly predict that

a negative 1T, i.e., a time advance, would be needed to achieve
zero displacement. However, this is not of interest for our purposes,
and, therefore, for the spaceplate problem, we only consider posi-
tive or zero values of1T; that is, the required time delay should be
written as 1T =max[0, (1s + (sin(α)− vgx/c )L sec(α))/vgx];
however, for simplicity of notation, we omit the cumbersome
max[0, ·]notation in the following.

If αm is the maximum angular range of the spaceplate, an ideal
spaceplate must be able to impart a time delay given by Eq. (3)
for a lateral displacement 1s m = (L eff − L) tan(αm), which is
the maximum displacement realized by the space-compression
device. The fact that, in a spaceplate, maximum 1T is required
at the maximum angle of incidence can be seen by differentiating
Eq. (3) with respect to α [with 1s = (L eff − L) tan(α) assumed
positive]. More intuitively, the difference between the required
displacement for space compression, which scales as tan(α), and
the displacement obtained through a possible increase in vgx

increases with angle [the second term in the numerator of Eq. (3) is
indeed the displacement obtained through a change of vgx alone].
This difference has to be compensated by an excess time delay,
which, therefore, needs to increase with angle. Using the definition
of compression ratio, R = L eff/L , and of numerical aperture,
NA= nb sin(αm), the required spaceplate group delay can be
written as

1T = L
R ·NA/nb − vgx/c

vgx

√
1− (NA/nb)

2
. (4)

As mentioned above, whether this required 1T can be imple-
mented via slow-light effects depends on the desired operating
bandwidth 1ω of the spaceplate, namely, the maximum band-
width of the fields the device is designed to interact with. In
particular, for any linear time-invariant system, there are fun-
damental bounds on the delay-bandwidth product that can be

achieved by the system [23], which can generally be written in the
following form:

1T1ω≤ κ, (5)

whereκ depends on some general properties of the structure, as fur-
ther discussed below. Using the required1T derived above, a gen-
eral expression for the bandwidth upper bound of a spaceplate can,
therefore, be written as

1ω

ωc
≤

1

2π

κ

L/λc

√
1− (NA/nb)

2vgx/c

R ·NA/nb − vgx/c
, (6)

where λc is the center wavelength, in the background medium,
and ωc = 2πc/λc is the corresponding center angular frequency.
Equation (6) is a key result of this paper, as it represents the general
form of the bandwidth bound for any spaceplate acting as an angle-
dependent delay line, as a function of its NA and compression
ratio, and it provides relevant quantitative insight into how easy
or difficult it is to realize a space-compression effect. For example,
the bound predicts the intuitive result that the fractional band-
width reduces with increasing R and goes to zero if R→+∞.
The maximum bandwidth also typically narrows with increasing
NA, but the specific dependence on NA requires knowledge of
κ , which may depend on the angle of incidence, as we will see in
the following. Moreover, consistent with our discussion above,
whenever the factor (R ·NA/nb − vgx/c ) vanishes or becomes
negative for a certain combination of parameters, it is an indication
that an increase in vgx with respect to the background-propagation
case is always sufficient to realize a transverse displacement and
a space-compression effect without the need for the structure to
impart an excess time delay and, therefore, without any bandwidth
limitation due to delay-bandwidth constraints. This observa-
tion also offers important insight toward the design of optimal
spaceplates, specifically about whether a structure acting as a
slow-light device is useful or not. While the group velocity vgx

in a realistic structure may exhibit a complicated dependence
on the angle and frequency, to make our results as general and
design-agnostic as possible, in the following we consider and plot
two different versions of the bandwidth bound in Eq. (6) with
different assumptions for vgx: (i) the upper bound for the most
optimistic, albeit unrealistic, case with vgx→ c 0 (dashed lines in
Fig. 2), which leads to the loosest form of the bound; and (ii) a
tighter bound assuming that the transverse group velocity in the
spaceplate does not exceed vgx in the background material for the
considered maximum incidence angle, i.e., vgx = c sin(αm) (solid
lines in Fig. 2), which is relevant for spaceplates made of slabs/films
with a refractive index greater than the background index. If better
estimates of vgx for specific classes of structures are known, they
may be plugged into Eq. (6) to produce tighter limits on the band-
width. For example, in dielectric multilayer thin-film structures
surrounded by free space, it was demonstrated in [22] that vgx is
approximately frequency-independent (whereas the effective vgz

can have significant frequency dispersion) and can be estimated
as vgx = c 0 sin(α)/n2

eff, where n2
eff is a weighted average of the

square of the refractive indices in the structure. Moreover, while
we do not make any assumption regarding the relation between
vgx and vgz in generic structures, if a strict relation between these
velocities is known for specific classes of structures, as for example
in homogeneous slabs, this would impose strict upper limits on vgx

for a given vgz, and vice versa, potentially leading to tighter bounds
on the space-compression effect.
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Fig. 2. Bandwidth bounds compared with published spaceplate designs. The lines are the fractional bandwidth bounds derived in the main text (suitably
normalized to allow for comparison between different designs) with dashed lines representing the loosest form of the bound with vgx→ c 0, whereas the cor-
responding solid lines are for a tighter version of the bound assuming vgx = c sin(αm)= c NA/nb (details in the main text). The dots in all plots represent the
published designs given in Table 1, color-coded to match their respective bound curve. The bounds in (a) and (b) are calculated using the delay-bandwidth
product for a single-mode resonator (applicable to spaceplates based on a single guided-mode resonance) and (c), (d) using the delay-bandwidth product of
transversely invariant structures, corresponding to Eq. (7). (a), (c) Bandwidth bounds plotted as a function of the compression ratio R , for different values
of the numerical aperture (NA) and background refractive index nb chosen on the basis of published designs. The number in parentheses next to each dot
is the corresponding NA reported. (b), (d) Bandwidth bounds plotted as a function of NA for different values of R and nb chosen on the basis of published
designs. The reported compression ratio for each published design is written in parentheses. If not specified, the background material is free space. Note that
in panel (d) only one dashed curve is plotted since, for the other two cases (corresponding to designs b2 and b3), the loosest bound is actually infinite as the
reported parameters satisfy R ·NA< nbvgx/c = n2

b for any value of NA (hence, the space-compression effect can be achieved with no excess time delay; see
discussion in the main text).

3. SPECIFIC CASES

The general bandwidth limit in Eq. (6) can be specialized for
any class of structures for which an upper bound κ on the delay-
bandwidth product is known. In the following, we consider two
main types of spaceplates, based on different structures for which
different expressions for κ should be used, leading to different
bandwidth limits. The first class of spaceplates represents those
based on structures supporting a single guided-mode resonance,
such as the photonic-crystal-based spaceplate in [16,19] or the
spaceplates based on a single Fabry–Perot cavity in [18,24]. In this
case, assuming that only one resonance is used (as done in [16,24]
and the first part of [18]), we can apply the delay-bandwidth prod-
uct for a single-mode resonator, κ = 2 (valid for any individual
single-mode resonator, reciprocal or nonreciprocal [25]) to calcu-
late the maximum achievable fractional bandwidth from Eq. (6).
The upper bound is plotted in Figs. 2(a) and 2(b) and is compared
with the spaceplate designs reported in the literature. As mentioned
above, it is apparent from these plots that the bandwidth bound is
lower for spaceplates with a higher NA or compression ratio. It can
also be seen that the guided-mode resonance-based designs from
[16], marked as c 1 and c 2, obey the bound and, moreover, there is
still significant room for improvement especially if a design could
be found that not only imparts a delay, but also somewhat increases

vgx. The microwave design in [24], marked as d , is the closest to
the tighter bound (solid line), albeit for a lower compression ratio,
which is not surprising since this spaceplate structure is mostly
empty, except for thin metallic metamaterial mirrors; hence, the
average vgx in the spaceplate is close to its free-space value. In addi-
tion, we note that, even at a single frequency, these resonator-based
designs are constrained by other fundamental trade-offs between
the NA and the length of compressed space, as demonstrated in
[18].

The bandwidth bounds in Figs. 2(a) and 2(b) only apply to
structures where the space-compression effect is based on a sin-
gle resonance at any angle. Better performance can be achieved
by including more resonators within the spaceplate thickness,
increasing the number of available modes in the bandwidth of
operation, as commonly done for slow-light devices [26]. A more
general limit to the delay-bandwidth product, valid for any linear
time-invariant one-dimensional structure, was derived by Miller
in [23,27] (hereafter referred to as Miller’s limit), which is funda-
mentally based on the idea that the product scales with the number
of modes. In this case, the upper bound is given by κ = π

√
3

L
λc
ηmax,

where ηmax = |(εmax − εmin)/εb | is the maximum permittivity
contrast, with εmax and εmin defined as the maximum and min-
imum permittivity at any point within the structure and at any
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Table 1. List of Various Spaceplate Designs Reported in the Literature, Their Parameters, and Corresponding
Bounds

a

Paper L/λ0 ηmax NA R Rmax (Miller) Rmax (κ = 2) 1ω
ωc

1ω
ωc

|max

(Miller)

1ω
ωc

|max

(κ = 2)

a [18] 9.00 14.00 0.33 5.00 81.83 1.67 0.05 1.01 8.35E-03
b1 [15] (metamaterial) 6.56 10.06 0.26 5.00 146.20 3.34 0.02 0.73 0.01
b2 [15] (low index material) 8.27E+ 03 0.54 0.38 1.48 1.29* 1.00* 0.55 0.33* 7.75E-05∗
b3 [15] (uniaxial crystal) 5.60E+ 04 0.25 0.85 1.12 1.13* 1.00* 0.55 0.62* 3.98E-05∗
c 1 [16] (small NA design) 1.22 11.00 0.01 144.00 3.02E+ 04 2.49E+ 03 1.05E-04 0.02 1.82E-03
c 2 [16] (large NA design) 0.16 11.00 0.11 11.20 3.02E+ 04 1.88E+ 04 1.05E-04 0.31 0.19
d [24] 1.02 — 0.22 6.60 — 13.13 0.03 — 0.05

aFor various spaceplate designs in the literature, the table reports their thickness (L/λc ), maximum permittivity contrast (ηmax), numerical aperture (NA), compres-
sion ratio (R), fractional bandwidth (1ω/ωc ), and the corresponding maximum achievable compression ratio (for the reported NA) and maximum achievable band-
width (for the reported R) calculated in this work. The limits are calculated using both the delay-bandwidth product for a single-mode resonator (κ = 2) and Miller’s
limit for transversely homogeneous structures. For these calculations, we assumed vgx = c sin(αm)= c NA/nb ; namely, the transverse group velocity in the spaceplate
is assumed not to exceed its value in the background material. This is true for all spaceplate designs reported in the literature, except the ones denoted with b2 and b3,
which indeed approach or exceed this bound (numbers with an asterisk) since they are based on refraction in a low-index material (further details in the main text).
Miller’s bound is more relevant for a , b1, b2, b3, whereas the single-resonance bound (κ = 2) is more relevant for c 1, c 2, and d (ηmax and Miller’s bound are not listed for
d as the corresponding spaceplate is made of very good conductors at microwave frequencies; hence, ηmax→∞).

frequency within the considered bandwidth [23], and εb =
√

nb is
the relative permittivity of the background. Miller’s limit, however,
was derived for one-dimensional structures, while spaceplates are
clearly not one-dimensional devices. We circumvent this problem
by noting that most spaceplate designs reported in the literature are
transversely invariant, such as the homogeneous or multilayered
structures in [15,17,18]. In this case, the problem is equivalent to a
one-dimensional one, as the transverse wavenumber kx is invariant
in such a structure and, for transverse-electric (TE) or transverse-
magnetic (TM) incident plane waves, a one-dimensional effective
wave equation can be derived that does not depend on the trans-
verse direction (see, e.g., [28,29]). This wave equation applies to
the transverse component of the fields, Uy (x , z)= u(z)e− j kx x ,
and, in the non-magnetic case, can be written in the following
general form: k−2

z,b∂
2u(z)/∂z2

+ u(z)=−η(z, ω, α)u(z),
where kz,b is the longitudinal wavenumber in the background
medium. Miller’s limit can be derived for any system that can
be described by a wave equation of this form [27], but, com-
pared to the original case, here the background wavenumber kb

is replaced by the longitudinal wavenumber, kz,b = kb cos(α),
and the permittivity contrast factor becomes angle-dependent,
η(z, ω, α)= η(z, ω)/ cos2(α). In addition, only for the TE case
we have η(z, ω)= (ε(z, ω)− εb)/εb as in the original paper
[27], whereas the TM case is significantly more complicated as
this factor also depends on spatial derivatives of the permittiv-
ity distribution [29]. While it can easily be verified that the TM
case is approximately equal to the TE case if the permittivity
does not change too rapidly in space, this dependence on the
spatial derivatives of ε(z) suggests the intriguing possibility of
potentially relaxed bounds for the TM case, which will be the
subject of future studies. Here, instead, considering that ideal
spaceplates should work for both polarizations, we consider
the more stringent TE case, for which Miller’s limit can be red-
erived with the only difference being that the wavelength λ in the
background medium is replaced by the longitudinal wavelength
λz = 2π/kz,b = λ/ cos(α) and the maximum permittivity con-
trast becomes ηmax(α)= ηmax/ cos2(α). Finally, the modified
upper bound can be written as κ = π

√
3

L
λc
ηmax/ cos(α), which

converges to the one-dimensional case for normal incidence and
increases with the angle, suggesting that larger time delays may

be possible, for the same bandwidth, at oblique incidence. We
stress that this bound applies to transversely invariant structures
made of materials with a refractive index greater than the back-
ground index. If that is not the case, a large time delay with respect
to propagation in the background may be obtained, even if no
resonance is involved, through simple refraction away from the
surface normal in a low-index medium, a process that, however,
suffers from other limitations as discussed below. Substituting the
modified κ above in Eq. (6), we obtain the following limit on the
fractional bandwidth of the space-compression effect:

1ω

ωc
≤
ηmax

2
√

3

vgx/c

R ·NA/nb − vgx/c
, (7)

which is valid for any spaceplate based on a transversely invariant
structure, such as multilayer or graded-index slabs and nonlocal
metamaterials composed of thin-film stacks, made of materials
with a refractive index greater than the background index. The
bound is plotted in Figs. 2(c) and 2(d). As in the previous case, the
maximum achievable fractional bandwidth decreases significantly
for spaceplates with larger compression ratios, whereas the depend-
ence on NA is significantly reduced, and completely removed in the
case with vgx = c sin(αm), because the requirement of a larger delay
at oblique incidence to achieve a space-compression effect, with
the maximum incident angle being the most stressing condition in
terms of required delay, is compensated by the fact that the delay-
bandwidth product limit is larger at oblique incidence for this
type of structures. All spaceplate designs for operation in free space
reported in the literature are below the appropriate upper bound
given by Eq. (7). Consistent with the discussion above, the two
implementations with the broadest bandwidth —the isotropic and
uniaxial slabs in a higher-index background [15] (denoted as b2

and b3 in Figs. 2(c) and 2(d))—are permitted to operate over such
a broad bandwidth (one of them exceeding the solid-line bound
for the case with no increase in vgx) because their compression ratio
and/or NA is sufficiently small such that the spaceplate effect can
be achieved even without a resonance-induced excess time delay,
but purely through light refraction in the low-index material,
which is not limited by delay-bandwidth constraints. However,
low-index refraction effects can be nearly frequency-independent
only if the low-index material forming the spaceplate is air or an
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approximately dispersionless dielectric embedded in a higher-
index dielectric background. Instead, if the background medium
is free space, a spaceplate of this type necessitates a material with
a refractive index lower than unity, which is only possible over a
limited bandwidth and with non-zero frequency dispersion due to
physical constraints on the properties of causal passive materials
[30]. In such a case, the spaceplate bandwidth would be limited by
the unavoidable dispersion of the low-index material, which trans-
lates into dispersive vgx and vgz and, in turn, a frequency-dependent
space-compression effect. Moreover, for any low-index spaceplate,
the NA is limited by the critical angle for total internal reflection at
the first interface [15].

Since spaceplates based on multilayer structures have a large
number of controllable variables such as layer thicknesses and
refractive indices, they have the potential to access a wider range of
spaceplate parameters. For example, it can be seen in Figs. 2(b) and
2(d) that the multilayer structures denoted as a [18] and b1 [15]
achieve a good combination of relatively high NA, compression
ratio, and bandwidth. At the same time, it is clear that there is still
room for improvement, consistent with the fact that these early
designs were not fully optimized. We anticipate that the inverse
design techniques that have been recently developed to design
high-performance multilayered spaceplates at a single frequency
[17] may be extended to also widen the operating bandwidth.
Moreover, since the effective transverse group velocity in dielectric
stacks was shown in [22] to depend on a weighted average of the
refractive indices in the structure, we speculate that an ideal space-
plate design would utilize the highest possible refractive index to
increase the delay-bandwidth product limit (which depends on the
maximum permittivity contrast anywhere within the structure),
while confining the high-index material in limited spatial regions
(e.g., thin layers) such that the effective transverse group veloc-
ity would not decrease too much compared to free space. These
qualitative criteria were satisfied for the spaceplates designed in
[18], which indeed show the highest fractional bandwidth of all
the existing multilayer designs (see Table 1). Other more exotic
options could perhaps involve combining both near-zero-index
materials and dielectrics to increase the maximum excess time delay
and transverse velocity simultaneously.

Finally, for applications in optical imaging, it is interesting
to assess the ultimate performance limits of spaceplates that are
designed to function over the entire visible range. We do this by
plotting in Fig. 3 the bandwidth bound for transversely homo-
geneous spaceplates, given by Eq. (7), as a function of compression
ratio and ηmax, comparing it to the fractional bandwidth of the
entire visible range. We assumed vgx = c sin(αm)= c NA/nb ;
namely, the transverse group velocity in the spaceplate is assumed
not to exceed its value in the background material, leading to
a NA-independent bandwidth bound. As an example, a low-
contrast spaceplate withηmax = 3 can achieve a frequency-constant
compression ratio no greater than R ≈ 2 over the entire visible
spectrum, whereas a high-contrast spaceplate with ηmax = 15
can achieve a compression ratio of ≈ 8 (we note that ηmax = 15 is
arguably the largest contrast that can be achieved at visible frequen-
cies with natural materials [31]). These results demonstrate that,
at least in theory, spaceplates with good performance may indeed
cover the entire visible range. Even just a twofold reduction in the
length of an optical system (e.g., a camera) would be highly ben-
eficial for many real-world applications. We emphasize, however,
that there is no guarantee that the derived bounds are achievable

Fig. 3. Fractional bandwidth bound of a transversely homogeneous
spaceplate as a function of its compression ratio R and maximum per-
mittivity contrast ηmax, compared to the fractional bandwidth of the
entire visible range (flat plane). The bound is calculated using Miller’s
delay-bandwidth product limit given by Eq. (7) [for the case with
vgx = c sin(αm)= c NA/nb] and with background refractive index set to
unity. The optimal trade-off between maximum permittivity contrast
and compression ratio for a fixed bandwidth is indicated by the solid lines
(level curves), with the thicker line and flat plane corresponding to the
fractional bandwidth of the visible frequency range:1ω/ωc = 0.65.

by a physical, good-quality spaceplate, as these bounds have been
determined from the maximum required transverse shift for the
maximum angle of incidence, and not for the specific angle-shift
relationship of an ideal spaceplate. In other words, the bandwidth
bound may be achievable by spaceplates with strong monochro-
matic aberrations (i.e., with a distorted angle-shift relationship) as
long as they implement the same maximum transverse shift at the
maximum angle as an ideal spaceplate. Tighter bounds might exist
for the specific angle-shift relationship of an ideal spaceplate.

4. CASCADED METALENS AND SPACEPLATE

Cascading metalenses, spaceplates, and sensors can result in ultra-
thin imaging platforms that are completely planar, ultra-compact,
and potentially monolithic, which is one of the main motivations
behind research on spaceplates and nonlocal flat optics [15,16,18].
In this context, it is interesting and practically important to study
whether the bandwidth would be limited by the spaceplate or
by the flat lens itself. This is particularly relevant since one of the
most popular classes of broadband flat lenses, namely, achromatic
dispersion-engineered metalenses, is constrained by bandwidth
limits analogous to the ones studied here, as their operating mecha-
nism is based on implementing, in addition to a standard phase
profile, a certain group delay profile to achieve dispersion com-
pensation over a broad bandwidth [4,5]. Bandwidth limits on
achromatic metalenses, also originating from delay-bandwidth
constraints, have been derived by Presutti and Monticone in [12],
where it was shown that the upper bandwidth bound is given by

1ω

ωc
≤

1

2
√

3

Lmηmax

F

√
1− (NA/nb)

2

1−
√

1− (NA/nb)
2
, (8)

where Lm and F are the thickness and focal length of the metalens.
We stress that, when a (meta)lens is followed by a spaceplate as
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Fig. 4. Comparison of bandwidth limits for metalenses and spaceplates. (a) Illustration of a flat optic focusing/imaging system consisting of a dispersion-
engineered achromatic metalens followed by a spaceplate shifting the focal plane closer to the lens. (b) Normalized bandwidth bounds for a dispersion-
engineered metalens with F /Lm = 100 for different values of NA [horizontal lines, Eq. (8)] and a transversely invariant spaceplate with compression ratio
R . The spaceplate bound is calculated using Eq. (7), for the case with vgx = c sin(αm)= c NA/nb , leading to a NA-independent bandwidth bound. The
devices are assumed to be in free space (nb = 1) and to have the same maximum permittivity contrast ηmax. Crossing points between the bounds are denoted
by black circles; for larger values of R , the spaceplate is the limiting factor to the bandwidth of the combined system.

illustrated in Fig. 4(a), although focusing is achieved at a shorter
distance due to the presence of a spaceplate, the focal length F is
unaltered since it is an intrinsic property of the lens itself (of its
transverse profile) and it cannot be modified by the presence of a
transversely invariant structure behind the lens. In other words,
an ideal spaceplate does not change the imaging functionality or
performance of the system, but it simply “shifts” the entire field
distribution closer to the lens [18]. We also note that other classes
of flat lenses, such as achromatic diffractive lenses [11,32], are not
bound by the same limitations stemming from delay-bandwidth
constraints since they are based on a different mechanism to
achieve achromaticity, as nicely discussed in [13]; however, they
suffer from other performance constraints, most notably the fact
that they can provide near diffraction-limited performance only
at very low Fresnel numbers [13], making them less appealing for
several applications.

By comparing Eqs. (8) and (7), we see that the bandwidth of a
hybrid system composed of a metalens followed by a spaceplate,
as in Fig. 4(a), is limited by the space-compression effect if the
compression ratio is sufficiently large. This is further confirmed
in Fig. 4(b), where we compare the two bounds, as functions of
R and for different values of NA, assuming F /Lm = 100 and
the same maximum permittivity contrast for both devices. We
see that, for this example, the crossing point is for compression
ratios ranging from values near unity to around 100, depending
on the NA, above which, even in the most optimistic scenario, the
spaceplate becomes the limiting factor with respect to bandwidth.
These results also imply that, even if flat lenses with broader band-
widths are employed, such as multilevel diffractive lenses [32,33],
the bandwidth of the combined system cannot improve if large
compression ratios are desired.

5. CONCLUSION

In this paper, we have derived, for the first time, fundamental
bandwidth limits on spaceplates, novel optical components that
implement the optical response of free space over a shorter length.
Using relevant upper bounds on the delay-bandwidth product
of linear time-invariant structures, we have found that the space-
compression effect is fundamentally limited in bandwidth if
the necessary transverse spatial shift of a light beam propagating

through the spaceplate requires the beam to be temporally delayed,
with respect to propagation in the background medium, by relying
on resonances. In particular, we have shown that the achievable
bandwidth necessarily decreases with an increase in the compres-
sion ratio. Importantly, however, we have found that the existing
spaceplate designs are still relatively far from their performance
limits and that, at least in theory, compression ratios on the order
of 10 may be physically achievable over the entire visible range,
using spaceplates made of realistic dielectric materials (with the
caveat that there is no guarantee the derived bounds are tight). We
also stress that our derived bounds indicate over what bandwidth
a certain frequency-constant compression ratio can be achieved,
corresponding to an achromatic space-compression effect. If a
frequency-dependent compression ratio can be tolerated, with a
lower compression ratio at some frequencies, broader bandwidths
may be possible. In other words, if a bandwidth wider than the one
predicted by our bounds is desired, the compression ratio cannot
stay constant within that band. Moreover, while the compression
ratio is constrained by bandwidth, the absolute length of com-
pressed free space L eff = R · L can be made arbitrarily large, at
least in theory, by cascading a large number of ideal spaceplates
(i.e., with ideal transmission efficiency), as also discussed in [18].
While our results already apply to broad classes of spaceplates,
we believe that future investigations should focus on identifying
bandwidth bounds on more complex spaceplate devices, not nec-
essarily transversely homogeneous or periodic, perhaps designed
using inverse-design techniques applied to thick, volumetric, pla-
nar structures merging local metalenses and nonlocal spaceplates
within the same volume [34]. Moreover, a better understanding
of the fundamental limits to the transmission efficiency of space-
plates, and of the trade-offs between efficiency, bandwidth, and
other metrics, would also be important to assess the potential of
spaceplates for practical applications.

In summary, our work sheds new light on the physics, limi-
tations, and potential of space-compression effects in optics and
electromagnetics (some of these results and considerations may
also be extended to other areas of wave physics). We believe these
findings will help guide the design of new spaceplates with bet-
ter performance, which may pave the way for the realization of
ultra-compact, monolithic, planar optical systems for a variety of
applications.
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