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A nonlinear self-focusing material can amplify random small-amplitude phase modulations present in an
optical beam, leading to the formation of amplitude singularities commonly referred to as optical caustics.
By imposing polarization structuring on the beam, we demonstrate the suppression of amplitude
singularities caused by nonlinear self-phase modulation. Our results are the first to indicate that
polarization-structured beams can suppress nonlinear caustic formation in a saturable self-focusing
medium and add to the growing understanding of catastrophic self-focusing effects in beams containing
polarization structure.
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Physical systems governed by wave mechanics are
capable of evolving into configurations that concentrate
energy into small regions of space. In optics, the concen-
tration of nearly parallel rays corresponding to different
wavefronts into a small area is known as caustic formation
[1–4]. A familiar example of this behavior is the pattern of
light formed on the bottom of a swimming pool caused by
refraction from small waves on the water surface. Caustic
formation is a fundamentally linear phenomenon arising
from the diffraction of light fields containing random phase
perturbations [3,4]. However, nonlinear self-phase modu-
lation can enhance the formation of caustics from small
initial phase perturbations [5,6] or from a completely
smooth beam [7] through counter-self-deflection [8]. In
addition to caustic enhancement, self-action effects are
responsible for the breakup of laser beams into small-scale
filaments [9], the formation of nondiffracting beams known
as spatial solitons [10–12], and the creation of optical phase
singularities [13,14]. The dynamical equations governing the
motion of ocean waves also contain a self-phase modulation
term that leads to the formation of rogue waves [15].
Optical communications [16], remote sensing, and light-

ning strike control [17–20] are a few technologies that rely
upon a careful understanding of the interplay between
linear and nonlinear propagation effects. Encoding infor-
mation in the orbital angular momentum (OAM) of light is
a promising way to increase the information capacity of
optical communication channels [21–24]. However, the
amplification of azimuthal modulation instabilities cause
OAM beams to break up during nonlinear propagation
[25–27]. Beams carrying a space-varying polarization have
been suggested as an alternative encoding scheme [28] that
follows an algebra similar to the Poincaré sphere formalism

for plane wave polarization [29]. Such beams are
typically referred to as polarization-structured beams. As
an added benefit, certain polarization-structured beams form
the normal-mode basis of optical fiber waveguides [29–31].
Polarization-structured beams are solutions to the vector

paraxial wave equation and can be categorized by the
number of polarization states represented in their cross
section. Radially and azimuthally polarized beams, typi-
cally called vector vortex beams [32], trace a path on the
Poincaré sphere, parameterized by the azimuthal angle in
the beam’s cross section. Another class of beams, known as
full-Poincaré (FP) beams, sweep out the entire surface area
of the Poincaré sphere, parameterized by both the radial and
azimuthal location in the beam [33]. Examples of FP beams
include lemon, star, andmonstar topologies [34]. There is a
final class of beams involving partially polarized light,
referred to here as volumetrically full Poincaré beams, that
sweep out the entire volume of the Poincaré sphere,
parameterized by the radial, azimuthal, and axial position
in the beam [35].
Recent theoretical [36] and experimental [37] results

have shown that vector vortex and FP beams are less prone
to self-focusing and nonlinear beam breakup, with FP
beams being the most resistant. FP beams are also less
prone to linear beam breakup caused by atmospheric
turbulence [38]. Conversely, certain polarization-structured
beams formed from Hermite-Gauss modes are more sus-
ceptible to nonlinear collapse but in a predictable way that
is stable against random phase modulations [39,40]. These
beams, sometimes referred to as hybrid vector beams, are
the polarization-structured analog of necklace beams [41],
which are known to have stable propagation in nonlinear
self-focusing media.
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In this Letter, we show through both experiment and
simulation that FP beams are less likely to develop caustics
upon nonlinear propagation compared to a uniformly
polarized Gaussian beam and to a uniformly polarized
beam with the same intensity structure as FP beams. We
study this suppression of nonlinear caustic formation in a
saturable, nonlinear self-focusing medium. These findings
add to the growing understanding of rogue phenomena
and are the first to address nonlinear caustic formation in
polarization-structured beams.
Background.—Fully coherent polarization-structured

beams can be decomposed into a superposition of orthogo-
nally polarized transverse spatial modes,

Eðρ;ϕ; z; tÞ ¼ ½Eaðρ;ϕ; zÞea þ Ebðρ;ϕ; zÞeb�e−iωt; ð1Þ
where ea and eb are (generally complex) orthogonal unit
vectors. The inseparability of polarization and spatial mode
in Eq. (1) has been the subject of investigations and debate
about its connection with measures of quantum entangle-
ment [42,43], though it describes a purely classical beam.
Because the orthogonally polarized modes in Eq. (1) do not
interfere with each other, some have suggested this as the
reason for polarization-structured beams’ stability against
beam breakup [38,44]. For lemon and star beams, Ea and
Eb are the Laguerre-Gauss modes LG0;0ðρ;ϕ; zÞ and
LG0;�1ðρ;ϕ; zÞ, respectively. The first subscript in LGp;l

denotes the radial index and the second denotes the
azimuthal index. Lemon and star beams are differentiated
by the azimuthal index of the mode Eb, with a lemon beam
having l ¼ þ1 and a star beam having l ¼ −1.
The nonlinear propagation of beams described by Eq. (1)

can be modeled using coupled-mode Helmholtz equations
[9,45,46],

∇2Ea ¼ −k20ð1þ χaÞEa

∇2Eb ¼ −k20ð1þ χbÞEb; ð2Þ
where

χi ¼ χð1Þ þ 8n0ϵ0cn2
3

jEij2 þ μjEjj2
1þ σðjEij2 þ μjEjj2Þ

; ð3Þ

for i ≠ j. In Eqs. (2) and (3), k0 is the free-space wave
number, χð1Þ is the linear susceptibility, n0 is the linear
refractive index, and n2 is the intensity-dependent refrac-
tive index.
Equation (3) is a commonly used phenomenological

model of cross-phase-modulation in a saturable medium
[37,39,47–49]. The cross-coupling coefficient, μ, varies
depending upon the nonlinear material under consideration.
For atomic vapor, the specific atomic level system under
consideration dictates the value of μ [50] and can even lead
to the arrest of self-focusing under conditions of coherent
population trapping [51]. The saturation coefficient, σ,
is proportional to the inverse of the saturation intensity.

The experimental configuration shown in Fig. 1 is well
described by n0 ¼ 1–6 × 10−5, n2 ¼ 1.5 × 10−10 m2=W
[52], μ ¼ 0.3, and σ ¼ 3.9 × 10−9 m2=V2. All values
except μ and σ were obtained by considering the particular
two-level transition described in Fig. 1 [9,53]. μ and σ were
obtained by qualitatively matching the simulation of Eq. (2)
with experiment results.
From the right-hand side of Eqs. (2) and (3) it is clear

that the refractive index experienced by one mode is in-
fluenced by the intensity profile of the other mode [54]. The
resulting cross-coupling behavior [55] leads to the modi-
fication of the self-focusing distance of the composite
beam, as mentioned in Refs. [36,39,40]. In the absence of
cross-coupling (μ ¼ 0), the intensity-dependent suscepti-
bility on the right-hand side of Eqs. (2) leads to the
enhancement of caustic formation through either self-
focusing [5,6,9] or counter-self-deflection [7].
The spatially resolved intensity statistics of beams

undergoing breakup can be modeled by the following
probability density function [6]:

pðIÞ ¼ Ne−ζð
I
hIiÞγ ; ð4Þ

FIG. 1. The experimental setup for measuring spatially resolved
intensity statistics. A diagonally polarized narrow-linewidth laser
beam (þ0.6 GHz above the 87Rb D2 F ¼ 1 → F0 ¼ 2 transition)
enters a system of two spatial light modulators (SLMs) capable of
generating any fully coherent polarization-structured beam (beam
generation). Each SLM acts upon a different orthogonal polari-
zation component of the beam, and the face of the first SLM is
imaged onto the face of the second using a 4f system. A third
SLM divided into two regions, imparts the same spatially random
phase to each polarization component of the beam. The face of
the third SLM (dotted blue line) is imaged onto the entrance facet
of a 7.5 cm-long Rb cell using a Keplerian telescope with a
magnification of −3=4 (L3 and L4). The polarization is trans-
formed to the circular basis using a series of half- and quarter-
wave plates (λ=2 and λ=4, respectively). The output facet of the
Rb cell (dotted green line) is imaged onto a CCD camera (CCD)
to collect pixel intensity statistics. The lens focal lengths are f ¼
20 cm (L1), f ¼ 30 cm (L2), f ¼ 1 m (L3), f ¼ 75 cm (L4);
polarizing beam splitter (PBS).
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where N is a normalization coefficient, ζ describes the
width of the distribution, γ describes the tails of the
distribution, and I is the intensity at each transverse
location in the beam. Brackets denote an average over
the transverse spatial coordinates. Fully developed speckle
patterns follow exponential intensity statistics, correspond-
ing to γ ¼ 1 [56]. Upon the development of caustics,
intrabeam intensities will begin to follow a long-tailed
distribution, characterized by 0 < γ < 1 [6]. A long-tailed
intensity distribution is an indicator of rogue high intensity
peaks within the beam, in analogy with rogue ocean waves.
Experiment.—The experimental setup for generating FP

beams and measuring caustic formation is shown in Fig. 1.
To generate FP beams, a narrow linewidth (∼200 kHz)
diagonally polarized Gaussian beam with a radius of
∼5 mm enters a system of two spatial light modulators
(SLMs). The first SLM is programmed with a blazed
computer-generated hologram (CGH) that encodes a
LG0;1 onto a carrier spatial frequency [57] for the hori-
zontally polarized portion of the beam only. The face of the
first SLM is imaged onto the second SLM using a 4f
system, and the polarization of the beam is rotated by 90° so
that the second SLM acts only on the portion of the beam
that did not interact with the first SLM. The second SLM
then uses a CGH to encode a LG0;0 onto a carrier spatial
frequency that exactly overlaps with the LG0;1 created on
the first SLM. The radius of the generated beam (∼1 mm)
is approximately 5 times smaller than the radius of the input
Gaussian beam, resulting in minimal influence of the
underlying Gaussian structure on the generated beam.
This scheme can be configured to generate any fully
coherent polarization structured beam within the spatial
bandwidth of the SLMs.
The generated beam then travels to a third SLM that

imprints the same random phase mask on both polarization
components of the beam. To do this, the SLM is divided
into two regions, and one region is imaged onto the other
using a 4f system containing a 90° polarization rotation.
Each half of the third SLM contains the same random phase
mask up to a reflection about the horizontal and vertical
axes to compensate for the coordinate reflection imparted
by the intervening 4f system. The correlation length of
random phase features in the mask is 450 μm, and the
maximum phase shift in the mask is π radians. The face of
the third SLM is imaged onto the input facet of an anti-
reflection-coated Rb vapor cell using a Keplerian telescope
with a magnification of −3=4, and the polarization of the
beam is transformed to the circular basis. Because the two
polarization components travel along a common path,
they experience a relative optical delay that is negligible
compared to their individual coherence lengths (∼ 477 m).
Thus, at the input of the vapor cell, the FP beam has a
lemon topology with an overall random phase,

Eðρ;ϕ; zÞ ¼ eiϕrandðρ;ϕ;zÞ½LG0;0eL þ LG0;1eR�: ð5Þ
The 7.5 cm-long vapor cell contains natural abundance

Rb and is heated to 115 °C to achieve a high number density

of Rb atoms (∼1019 atoms=m3) in the cell. The laser is
blue-detuned to þ0.6 GHz above the 87Rb D2 F ¼ 1 →
F0 ¼ 2 transition and experiences a self-focusing non-
linearity. At the maximum power used in this experiment
(130 mW), the LG0;0 beam experiences a maximum non-
linear phase shift of ∼2π rad. The field at the output facet of
the Rb cell is then imaged onto a camera to collect pixel
intensity statistics. We investigated scenarios where n2 was
less than zero during the undertaking of this experiment but
observed no rogue intensity peaks at any power, consistent
with Ref. [58].
Results.—Figure 2 shows intensity statistics collected for

three different beams: a lemon beam (FP), a uniformly
polarized beam with the same intensity structure as a lemon
beam (FPA), and a uniformly polarized LG0;0 beam with
the same beam waist as the LG0;0 component of the FP
beam. Each histogram is comprised of pixel intensities
from the imaging camera for 500 trials with different
random phase masks. The frames from the camera are
truncated to include only pixels within a region that
contains nonzero intensity when all frames from the
500-trial collection are averaged together. The frame sizes
for the FP and FPA trials are similar, but the frame sizes are
smaller for the LG0;0 trials—as expected for the smaller
LG0;0 beam. The pixel intensities are divided by the
average intensity observed in all trials. Equation (4) is
fit to the tails of the histograms using maximum likelihood
estimation to measure the “tailiness” of the intensity
distribution. Uncertainties in the fits were obtained through
Monte Carlo simulation.
When the beam power is low (∼ 4 mW) and the Rb

vapor is at room temperature, the beams propagate linearly
through the cell, Fig. 2(a). Under linear propagation, the FP,
FPA, and LG0;0 behave almost identically with no caustic
formation present, as indicated by γ > 1. In fact, the beams
do not even display speckle pattern statistics under these
conditions. In Fig. 2(b) the cell temperature is increased to
115 °C and the beam powers are increased to 50 mW. The
LG0;0 and FPA beams begin to develop long-tailed intensity
statistics, γ < 1, indicating the presence of caustics. Under
these same conditions, the FP beam displays speckle-
pattern statistics. Thus, the tendency of the beam to display
nonlinear caustics is seen to be suppressed through use of a
polarization-structured beam. As the beam powers are
increased to 90 mW, Fig. 2(c), the intensity histograms
for the LG0;0 and FPA beams develop longer tails while the
FP beam maintains Gaussian amplitude statistics. At the
maximum achievable beam power of our system, 130 mW,
all beams display similar long-tailed intensity statistics,
Fig. 2(d).
The suppression of caustic enhancement in the polari-

zation-structured beam can be attributed to two primary
effects. The first is that FP beams can be treated as a
mutually incoherent superposition of a LG0;0 and a LG0;�1

beam. This leads to the decrease in linear beam breakup
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from phase perturbations [38] through an effect known as
complementary diffraction, as described in Ref. [44]. The
second effect contributing to the suppression of nonlinear
caustic formation is the cross-phase-modulation between
the two modes comprising the FP beam. Mutual inter-
action can stabilize the beam under nonlinear propagation
[36,37,48]. The suppression of caustic enhancement
afforded by polarization structure does not persist at
higher powers, as indicated by the results of Fig. 2(d).
Furthermore, caustic enhancement also appears to saturate
at higher powers because γ has increased for all but the FP
beam at 130 mW.
Figure 3 compares the experimentally obtained polari-

zation and intensity structure of the FP beam [Fig. 3(a)] to
numerical simulation [Fig. 3(b)] for both linear and non-
linear propagation after the implementation of a random
phase mask. The simulation was performed by numerically
solving Eqs. (2) using a split-step Fourier method that
accounts for nonparaxiality [46] with a beam power of
90 mW. The simulation results display good qualitative
agreement with experiment. Under linear propagation, the
intensity structure does not change dramatically because
the maximum of the random phase mask (π rad) is small
compared with that which typically leads to caustics
(∼8π rad) [5]. Remarkably, after nonlinear propagation,
the lemon polarization topology of the FP beam changes
very little, despite the dramatic change in its intensity
structure. This is likely due to the fact that the fields in each
circular polarization component of the FP beam experience
similar nonlinear phase shifts due to the cross-phase terms
in Eqs. (2). If the coupling coefficient, μ, were equal to
unity, the polarization structure would not change at all
because both circular polarization components would

experience the exact same nonlinear phase. That is, there
would be no nonlinear birefringence [45].
In Fig. 3(c) we simulate the intensity statistics of the FP,

FPA, and LG0;0 beams after nonlinear propagation for

FIG. 3. Comparison of experimental and simulation results for
linear and nonlinear propagation at a beam power of 90 mW. The
polarization handedness in (a) and (b) is indicated by color, where
red, blue, and white indicate left-circular, right-circular, and
linear polarization, respectively. The same random phase mask is
used in (a) and (b). The intensity structure does not change
dramatically after linear propagation because the maximum phase
of the phase mask is many times smaller than the maximum phase
at which caustics usually develop (∼8π rad). (top). However, the
intensity structure changes dramatically upon nonlinear propa-
gation over the same distance (bottom). Nonetheless, the polari-
zation structure remains similar to the linear result. The
polarimetry simulation (b) shows good qualitative agreement
with the experimental results (a). (c) In the numerical simulation
of nonlinear propagation with 500 different random phase masks,
the FP beam has shorter-tailed statistics than either the FPA or
LG0;0 beams, in agreement with experiment (Fig. 2). The random
phase masks used in obtaining (c) have the same parameters as
those used in experiment.

FIG. 2. The experimentally obtained intensity statistics of FP (orange diamonds), FPA (blue circles), and LG0;0 (green squares) beams
after (a) linear and (b),(c),(d) nonlinear propagation. The solid, dashed, and dotted lines are Eq. (4) fitted to the FP, FPA, and LG0;0 data,
respectively. The value of γ obtained from fitting Eq. (4) to each dataset is shown at the bottom of the figure. The shaded area indicates
the one standard deviation uncertainty in the fits. Under linear propagation, all beams have very similar intensity statistics that display no
caustic formation. Under nonlinear propagation, the uniformly polarized LG0;0 and FPA beams begin to display caustic formation that
increases with increasing beam power [(b) and (c)]. For the same beam powers, the polarization-structured FP beam maintains
exponential intensity statistics with no caustics present. The suppression of caustics afforded by the polarization structure of the beam is
no longer present at a beam power of 130 mW.
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beam powers of 90 mW. The FP beam is the least likely to
develop rogue intensity peaks and the LG0;0 is the most
likely to develop rogue intensity peaks, in agreement with
experiment. Compared with experiment, the FP beam has
slightly longer-tailed statistics in simulation. This is likely
due to small differences in the intensity structure of the
beam in experiment and simulation. Nonetheless, the
model of Eqs. (2) and (3) describe the experimental results
quite well.
Conclusion.—We have shown that a full-Poincaré lemon

beam is less susceptible to developing caustics upon
propagation through a saturable, nonlinear self-focusing
medium than either a uniformly polarized beam with the
same intensity structure or a uniformly polarized LG0;0
beam with the same waist as the LG0;0 component of the
lemon beam. We simulate our experiment by numerically
solving coupled-mode Helmholtz equations for a beam
propagating through a saturable self-focusing medium and
obtain good agreement with experiment. Our results add to
the growing understanding of rogue behavior [5,6], and
they bear upon the use of polarization-structured beams to
control nonlinear self-focusing processes in remote sensing
[17,19,20], optical communications [31], and laser engi-
neering [59]. The extent to which polarization structure is
maintained during nonlinear self-focusing warrants further
study. Such investigations would extend the field of
singular optics into the nonlinear domain [34,60], poten-
tially revealing topologically protected quantities that could
be used for information transfer.
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