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ABSTRACT

We report on the experimental demonstration of nonlinear spectroscopy of crystalline quartz in the terahertz
regime. Using accumulated time shift method in the time domain, we observe that with increasing the THz
pulse intensity, the experienced delay increases. At higher field intensities, the delay increases with a smaller
rate, demonstrating a phase saturation. Analysing the frequency response, we estimate a nonlinear refractive
index of the order of 1073 m?/W which exceeds its value in the visible range by seven orders of magnitude.
Furthermore, a negative fifth-order susceptibility of the order of 1073 m*/V# is obtained.
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1. INTRODUCTION

Terahertz (THz) radiation, defined as a region in electromagnetic spectrum between microwaves and the far in-
frared, is gaining a growing importance in applications such as biomedical sensing [1,2], security [3], spectroscopy
and imaging[4], and communication[5]. Furthermore, THz time domain spectroscopy (THz-TDs) systems are
used for monitoring production processes[6], art conservation [7] and characterizing materials [8].

In addition to the amplitude of the signal, the phase of the signal can be detected by THz-TDs, thus, both real
and imaginary parts of refractive index can be retrieved. The development of techniques to generate intense THz
radiations extended the research beyond the linear spectroscopy of materials in THz region and made the study
of nonlinear behavior of different materials possible; nonlinear effects such as THz induced impact ionisation and
inter-valley scattering in semiconductors [9-13], THz high-harmonic generation by hot carriers, [14-16] and THz
induced ferroelectricity and collective coherence control[17,18]

Extreme THz-induced Kerr effects have been reported and predicted for water vapor[19], different liquids [20—-22]
and solids[23-25], where the nonlinear refractive indices can be several orders of magnitude larger than their
values in the optical regime.

In this Article, we report on the nonlinear behavior of crystalline quartz in terahertz regime. First, we perform
nonlinear THz-TDS on crystalline quartz sample. Then, we performed the accumulated time shift analysis.
The results show how the increase in the pulse intensity of the THz radiation changes the delay experienced by
the pulse. Next, the analysis in the Fourier domain reveals an increase in the nonlinear phase and nonlinear
absorption with the increase of field intensity. At higher signal levels, the nonlinear phase growth with respect to
field intensity slows down, whereas the nonlinear absorption grows further. Furthermore, extremely large values
for the nonlinear refractive index and fifth order susceptibility are obtained, where the latter has a negative real
part.
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2. EXPERIMENTAL DETAILS

The intense THz radiation is generated in an optical rectification process in lithium niobate, where the pulse-front
tilting technique is used to make the process phase-matched and efficient[26]. The setup schematic is depicted
in Figure 1 . The beam, coming from a 800 nm Ti:sapphire laser with a pulse duration of 45 fs and repetition
rate of 1kHz, is split into pump and probe paths. In the pump path, the beam diffracts from a grating and after
passing through two cylindrical lenses, it propagates in the generation crystal. The generated THz radiation is
collimated and focused with a number of gold off-axis parabolic mirrors. A pair of wire-grid polarizers is used
to control the THz field amplitude during the measurements.
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Figure 1: THz-TDS experimental setup. Off-axis parabolic mirror (OPM)s are used to focus and collimate THz
beam. Half wave plate (HWP), quarter wave plates (QWP) and polarizing beam splitters (PBS) are used in the
setup.

In the probe path, the probe beam and THz beam copropagate inside the 200 pum thick ZnTe detection crystal.
A delay stage is also used to change the overlap time between THz and probe beam, so that different points of the
signal are measured. As the THz pulse propagates through the detection crystal, the refractive index experienced
by the probe beam is modified through linear electro-optic effect, resulting in the birefringence in the crystal.
The phase difference induced by the birefringence is then converted into the beam ellipticity using a quarter-
wave plate. Finally, the beam ellipticity is translated into the differential electric signal using a Wollastron prism
followed by a balanced photodetector pair connected to the lock-in amplifier. The peak amplitude of the electric
field is estimated to be 225 kV/cm at the focal position, at where a lmm thick crystalline quartz sample is
placed. To eliminate the water vapor absorption, the part of the setup where THz beam propagates, is enclosed,
and purged with nitrogen. Different field amplitudes are obtained by rotating the first wire-grid polarizer and
keeping the second fixed.

3. RESULTS AND DISCUSSION

The time domain signals for different signal levels for both free space and crystalline quartz sample are shown in
Figure 2. We observe that with increasing the field amplitude, the pulse experiences further delay with respect
to the lowest signal level of 25 kV/cm. A linear refractive index of 2.11 is also obtained which is in a good
agreement with the literature[27].
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Figure 2: THz time domain signal in freespace (dashed) and crystalline quartz (solid) for different signal levels.
The inset shows the increasing delay experienced in quartz.

Figure 3 shows the accumulated time shift for each of the signal levels compared to the lowest level, where
the time shift for each level is calculated by

H(si) = %Zt(vi = Vi) = t(Viow = Vi) (1)
k

Accumulated time shift
400 T ; .

B Quartz

® Freespace

300

Delay(fs)
[ye)
3

. .
[ |
g B
100} u
.I
Of S e R S e -$®
0 50 100 150 200 250
Field Amplitude(kV/cm)

Figure 3: The accumulated time shift in free space (blue) and crystalline quartz (red) for different signal levels.
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where #(s;) is the averaged time shift, V; is the ith signal and V., is the lowest level signal. The analysis
is performed over the main lobe as it represents most of the THz features. The delay experienced by the pulse
increases with the increase of the field amplitude. However, as the field amplitude grows further, the nonlinear
delay grows at a lower pace, suggesting a saturation effect in the nonlinear phase.

Figure 4 shows the spectral density for the quartz sample and free space in the frequency range between 0.3 to 2
THz. We observe as the signal level increases, the difference between the free space spectrum and quartz sample
increases, revealing an increase in the absorption.
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Figure 4: Signal spectral density for free space (dashed) and quartz (solid). The difference between free space
signal and quartz signal increases as the signal level increases.

Figure 5a shows the nonlinear phase experienced by the signal for different intensity levels at 0.5 THz, where
the spectral density is maximum.It indicates that as intensity increases, the nonlinear phase cannot be expressed
with a single linear term and suggests a negative higher order nonlinearity term. The differential nonlinear phase
for the higher signal is related to the intensity by

¢ (W) = ¢i(w) — drow (W)
= no(w) ;2 d + na(w) 122 d 2)
c c
where ¢; is the total phase of the i-th signal and ¢;,,, is the phase experienced by the lowest signal, as the linear

response of the material.ns and ny are second-order and fourth-order nonlinear refractive indices, respectively.
Finally, I, is the peak intensity of the i-th level signal.

The absorption coefficient of crystalline quartz is depicted in Figure 5b. The absorption coefficient of the material
can be expressed as

i (w) = ap(w) + Bo(W)I; + Ba(w)I? (3)

where «; ,aq , B2 and (4 are total absorption coefficient for i-th signal, linear absorption coefficient, second-order
nonlinear absorption coefficient and fourth-order absorption coefficient, respectively.

Proc. of SPIE Vol. 11985 119850A-4

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 23 Apr 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



0 8Nonlinear phase at 0.5 THz vs intensity %(l))sorption coefficient at 0.5 THz vs intensity

° Quartz ° Quartz
fitted curve 50}

fitted curve

o (cm'l)

0 : : - 0 : : -
0 5 10 15 0 5 10 15
Intensity (W/mz) x 10" Intensity (W/mz) x 10"
(a) (b)
Figure 5: (a) nonlinear phase for different intensities at 0.5THz (b) absorption coefficient for different intensities
at 0.5THz
The measurements show ny = 8 x 107 m?/W, ngy = —2.6 x 10726 m*/W?2, 3, = 1.1 x 1071 m/W

and B4 = 5 x 10723 m®/W2. The complex third-order and fifth-order nonlinear susceptibility are found as
X2 =(1.3x1071% 484 x 10717) m?/V? and x° = (—2.7 x 10739 4+ 42.5 x 10731) m*/V*%, respectively. In the
lower intensities, the dominant effect is x* making the relation nonlinear phase and absorption coefficient linearly
proportional to the pulse intensity. However, as the intensity surpasses 600 GW/m?, the x° also reveals itself,
being responsible for the decrease and increase in the nonlinear phase and absorption coefficient growth rates,
respectively. The calculated value of the ns is approximately seven orders of magnitude larger than the value
for the fused silica at optical frequencies.

4. CONCLUSION

We observed an extremely large nonlinear response of crystalline quart in the THz region. Time domain spec-
troscopy was carried out on a crystalline quartz sample. The accumulated time shift analysis showed that in
addition to the x3 effect on the nonlinear phase, we also have a negative x° that suppress the nonlinear phase
at higher intensities. Using the Fourier analysis, we calculated an ny = 8 x 10~* m? /W, which is several orders
of magnitude larger than its value for silica in optical regime.
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