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thanks to their easier fabrication combined 
with exciting application perspectives at 
microwave, THz, and optical frequen-
cies.[1–5] Metasurfaces exhibit a plethora of 
properties, which make them appealing 
for a wide range of applications, such as 
absorbers,[6,7] reciprocal and nonreciprocal 
polarization rotators,[8–10] holograms,[11–16] 
lenses,[17–21] splitters,[22] diffusers,[23,24] light 
sails for space explorations,[25,26] biomed-
ical applications,[27] as well as computa-
tional and quantum applications.[28,29]

The growing number of metasur-
face applications and rapid advances in 
their fabrication and characterization[30] 
prompt methodologies to accurately ana-
lyze and design metasurfaces. While 
full-wave numerical solutions are always 
an option, analytical tools can be much 
more appealing because they facilitate 
the design and provide valuable insights 
into the underlying physics of metas-
urfaces. For periodic metasurfaces that 
consist of a single scatterer per unit cell, 
the type of metasurfaces on which we 

concentrate herein (Figure 1), several techniques exist for this 
purpose. First, comprehensible circuit models of metasurfaces 
and metamaterials[31–33] were developed, which are easy to use 
in industry, especially for microwave applications. A second 
approach follows the homogenization principle. It aims to 
replace metasurfaces at stake with surfaces with equivalent sur-
face susceptibilities.[34–36] Although very helpful for component 
design, these methods are inadequate to describe the internal 
physics of the structures under study, such as the interaction 
of consisting particles. Moreover, circuit modeling and homog-
enization methodologies involve, sometimes, assumptions that 
simplify the investigated problem at the expense of accuracy.

More from “first-principles,” a third approach aims to con-
struct the response of 2D arrays from the bottom-up by sum-
ming the response of its constituting particles. While sharing 
some characteristics with the two approaches mentioned 
initially, this bottom-up approach is more general and ver-
satile. It enables the easier handling of a plethora of designs, 
including mm-wave and optical applications.[7,37–44] In this 
approach, the optical action of the constituting particles is best 
discussed using a multipolar expansion of fields.[45–51] Within 
the multipolar expansion, the scatterers’ optical response is 
expressed in a series of multipole moments induced by the 
external illumination and the scattered field from all the other 
particles forming the metasurface. Using an ever-increasing 
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1. Introduction

During the past decade, research in electromagnetic metamate-
rials has grown into a solid and mature scientific domain. Their 
2D counterparts, metasurfaces, have gained particular attention 
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number of multipole moments is important to capture the 
response of meta-atoms and consequently the metasurface 
more accurately. The involved fields are expanded into an ortho-
normal basis set to reach an algebraic formulation of the scat-
tering process. The amplitude of each mode used to expand the 
incident and the scattered field is one element of a dedicated 
vector. The relation between the expansion coefficient of the 
incident and the scattered field is, then, merely a matrix multi-
plication. The connecting matrix can then be considered as the 
most comprehensive representation of the scatterers’ optical 
properties. Two different formulations for this matrix can be 
found, namely the polarizability matrix and the T matrix.

The polarizability matrix expresses the scattering response in 
Cartesian coordinates. Several methodologies have been devel-
oped to acquire the polarizability matrix beyond simple shapes, 
especially for the lowest, that is, the dipolar order.[52–54] On the 
other hand, the T matrix expresses the scattering response in 
spherical coordinates. It has attracted a substantial share of 
interest as it can easily accommodate higher-order multipole 
moments.[55–57] Due to the equivalence of Cartesian and 
spherical coordinates representations,[58] polarizability and T 
matrices are interchangeable in the sense that they contain the 
same information. This equivalence has been explicitly docu-
mented up to quadrupolar order,[59] and, more recently, up to 
octupolar order.[60]

Modeling of metasurfaces via the multipolar analysis ini-
tially involved considering particles characterized by only 
dipole moments,[37] while specific quadrupole moments were 
added later into the models.[7,61] Moreover, the description of 
the interaction among all the particles forming the periodic 
metasurfaces is crucial in every modeling attempt. Earlier 
works involved approximate expression for this purpose and 
failed to accurately capture the spatial dispersion occurring in 
many applications where the metasurfaces are not operated 
in a deep sub-wavelength regime.[37] Following this observa-
tion, efforts shifted into expressing this lattice interaction more 
accurately, particularly via fast converging Green’s function 
summations.[62] This has resulted in interesting models that 
could accommodate dipole moments at oblique incidence,[63–66] 
dipole and quadrupole moments at normal incidence,[67] and 
even up to octupole moments at normal incidence.[68] How-
ever, these efforts were generally limited in scope, for example, 
focusing on specific particles with specific combinations of 
multipole moments (i.e., isotropic particles most of the time) 
or were limited to normal incidence. Furthermore, diffracting 
metasurfaces were not studied because sub-wavelength metas-
urfaces were considered that sustain only a zeroth-order mode 
in reflection and transmission.

To alleviate these problems, D. Beutel et al.[69] used spherical 
coordinates and a T matrix representation to develop a numer-
ical method to calculate the complete response of a metasur-
face, that is, propagating and evanescent modes, for any par-
ticle and up to a desired multipolar order. Based on previous 
efforts on isotropic particles,[70,71] this approach employs the 
Ewald summation[72,73] for the fast-converging determina-
tion of the lattice couplings to achieve a complete description 
of a 2D array response. Although efficient, this work lacks 
the interchangeability between spherical and more popular-
Cartesian representations. It also lacks closed-form analytical 

expressions, which increases the understanding and versatility 
among users in physics and engineering.

In this work, we derive accessible expressions for the optical 
response of periodic metasurfaces to provide a unifying and 
comprehensive framework. The expressions are based on a 
multipole expansion and accurately express the amplitudes of 
propagating diffraction orders of periodic metasurfaces upon 
illumination at normal or oblique incidence. This approach 
renders our contribution relevant for the study of metasurfaces 
and diffracting metagratings. While higher-order multipole 
moments can be accommodated, we express the response from 
the scattering structure defining the unit cell of the metasur-
face up to the octupolar order. Unlike previous attempts, the 
proposed methodology is interchangeable between a Cartesian 
and spherical basis, meaning that either the polarizability or T 
matrix of a particle can be considered, making our contribu-
tion flexible, general, and convenient to use. Additionally, we 
demonstrate reducing our generally valid expressions to handy 
closed-form analytical formulas for selected specific cases if 
not all degrees of freedom are accommodated. Such reduction 
eases physical explorations and simplifies the design. Finally, 
the robustness of the provided analytical formulas is demon-
strated when applying them to selected design challenges for 
metasurfaces and metagratings.

The paper is structured as follows. The first section defines 
the multipole moments and fields and provides formulas that 
transform them between a Cartesian and spherical basis. Addi-
tionally, the lattice coupling matrices are defined (Figure  2 
Row I), and the concepts of effective polarizability/T matrices 
within 2D arrays are elaborated. At the end of this section, 
closed-form equations to express the optical response from 
scattering metasurfaces composed of meta-atoms with general 
symmetries described up to octupolar order and for an arbitrary 
illumination direction are presented in a Cartesian and vector 
spherical harmonics basis. Simplified expressions are provided 
for rectangular and cubic lattices. In the following section, 
we explore the symmetry of the lattice coupling matrix at the 
practically most important examples of a square and hexagonal 
lattice at normal incidence. The isolated and effective polariz-
ability or T matrices of three meta-atoms with distinct symme-
tries (isotropic, anisotropic, bianisotropic) are explored inside 
and outside a square/hexagonal lattice.

Afterward, we demonstrate how to reduce the most compre-
hensive expressions to some special cases and how to use these 
expressions in specific design challenges. Subsequently, we 
derive an analytic expression for the amplitudes of the propa-
gating diffraction orders in transmission and reflection from a 
square-periodic array decorated with isotropic particles described 
in dipolar–quadrupolar approximation and illuminated at 
normal incidence. These analytic equations help design a fully 
diffracting metagrating and predict the spectral locations of 
bound states in the continuum and collective lattice resonances.

In the last section, we explore obliquely illuminated metas-
urfaces. We derive an analytic expression for the amplitude of 
the zeroth-order in transmission and reflection of metasurfaces 
made from isotropic and dipolar meta-atoms. The analytic 
equations help to design a particle-independent polarization  
filter. It also helps to analyze Huygens’ metasurfaces[3,74–76] 
under oblique incidence.
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Finally, the Appendix includes essential derivations and 
equations, while the Supporting Information includes the step-
by-step derivations and complementary information.

2. Multipolar Calculation of the Scattering Field 
from a 2D Array in Cartesian and Vector Spherical 
Harmonics Basis: General Equations

2.1. Isolated Particles

Let us consider an arbitrary particle placed in an infinite, homo-
geneous surrounding, as shown in Figure  1a. In the vector 
spherical harmonics basis, the scattering response of the par-
ticle to an incident electromagnetic wave outside the smallest 
sphere circumscribing the particle can be described via the T 
matrix, or 0T , as
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herein, expressed up to the third (i.e., the octupolar) order. The 
T matrix represents the electromagnetic response of a scatterer. 
The scattering coefficient vectors in the vector spherical har-
monics (VSH) basis are defined as [ … ], , 1 , 1 ,b b b bj

v
j j
v

j j
v

j j
v

j j
v T= − − + −bb ,  

with v  = {e, m} denoting the electric or magnetic multipoles 
and j  = {1, 2, 3} being the multipolar order corresponding to 
dipole, quadrupole, and octupole response. The vectors j

vqq  con-
tain the amplitude coefficients expanding the incident field 
similarly to the scattering coefficient vectors. The subscript “0” 
for the T matrix refers to the response of an isolated particle.

Note that VSH functions are defined, herein, as in ref.  [47] 
(Appendix A). Alternatively, the scattering coefficients can be 
calculated from the scattered field of a particle as defined in 
Appendix A.

Alternative to the vector spherical harmonics basis, we 
can also describe the scattering response in the Cartesian 
basis by a normalized polarizability matrix, or in short,  
the polarizability matrix, α� 0, defined up to the octupolar 
order through
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with

 (2b)

(2 1)!jjζ π= +  (2c) 

where k  = 2π/λ is the wavenumber of the scattered field in 
the embedding medium, /η µ ε=  is the impedance of the 
embedding medium, ε and μ are the permittivity and perme-
ability of the embedding medium, respectively, and ,

inc
EE HH
�F  is the 
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Figure 1. The set-up: a) An arbitrary particle placed into an infinite, homo-
geneous space, illuminated by an incident wave, Einc, and its subsequent 
scattered wave, Esca. The radius of the smallest sphere enclosing the par-
ticle is rc, while J(r) is the induced current volume density. b) Equivalent 
setup as (a) for r > rc, when the respective T or polarizability matrices are 
used. c) A scattering rectangular 2D lattice of identical scatterers along 
with the set-up Cartesian and spherical coordinate systems. A simpli-
fied equation for the scattered field in Cartesian coordinates is shown 
in the figure. This response depends on the effective polarizability effα� , 
the Cartesian multipole-to-field translation matrix ( , )S θ φ , and the incident 
electromagnetic field ,

inc�
EE HHF . The effective polarizability is a function of the 

lattice coupling matrix C  and the polarizability of the isolated particle 0α� .  
The inset shows the lattice coupling for a rectangular lattice. The labels 
denote the electric (E) and magnetic (M) coupling of dipolar (D), quad-
rupolar (Q), and octupolar (O) orders.
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Figure 2. Symmetries of scatterers and 2D lattices in Cartesian basis: Row I: a) The Cartesian lattice coupling matrix amplitude up to octupolar order 
for b) a square array and d) a hexagonal array under normal incidence (i.e., θinc = 0), as shown in (c). The normalized periodicity Λ̂ for both arrays 
is 0.8. Row II: e) The normalized polarizability matrix amplitude for f) an isolated Ag-core SiO2-shell particle (rcore = 120 nm, rshell = 120 + 30 nm) in 
free space at λ = 780 nm, and g) an isolated amorphous silicon (n = 3.959 + 0.009i) cylinder (r = 291 nm, h = 211 nm) embedded in silica (n = 1.44) at 
λ0 = 900 nm, and h) an isolated silver (n = 0.095 + 8.675i[78]) helix (Raxial = 80 nm, rrod = 20 nm, Ppitch = 105 nm, and Nturn = 2) in free space at λ = 1180 nm. 
Row III: The normalized effective polarizability amplitude of i, j) the core-shell sphere, j,m) the cylinder, and k,n) the helix inside an infinitely periodic 
i–k) square array or l–n) hexagonal array.
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normalized electromagnetic incident field. The tilde indicates 
the normalized polarizability (Appendix B). This dimension-
less and irreducible polarizability matrix 0�α  facilitates analytic 
calculations and will simplify equations later on in this work. 
The vectors En and Hn are the electric and magnetic multipolar 
amplitudes of the incident field as defined in Appendix B, and 
contain spatial derivatives of the Cartesian incident fields at the 
origin considered as the center of the particle.[59,60,77] The vec-
tors p (m), Qe (Qm), and Oe (Om), are the irreducible Cartesian 
electric (magnetic) dipole, quadrupole, and octupole moments, 
respectively (Appendix C). The far-fields radiated by a scattering 
particle as a function of the multipole moments expressed in 
Cartesian basis are also provided in Appendix D.

If we employ the transformation formulas, we can acquire 
the elements of the T matrix from the ones of the polarizability 
matrix and vice versa via

i 1 �T F Fjj
vv

j jj

vv

jα=′
′ −
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where {j, j′} = {1, 2, 3} and ′ =v v{ , } {e,m}. The expressions do 
not have a subscript “0” as they are valid for the particles inde-
pendent of whether we consider them isolated in free space or 
as a part of the lattice. In this work, the use of the normalized 
polarizability matrix and the choice of transformer tensors such 
that ( )= −F Fj j

1
†

 (Appendix E) enabled the formulation of simpler 
formulas than the case of ref.  [60]. This has become possible 
by defining, herein, the multipole and the fields in Cartesian 
coordinates as provided in Appendix C. Therefore, a scattering 
particle can be described either in the Cartesian or the vector 
spherical harmonics basis and be replaced by the respective T 
or polarizability matrix, as depicted in Figure  1b, simplifying, 
subsequently, the analysis extensively.

The normalized polarizability matrix of three objects with 
three different symmetries (spherical, cylindrical, and helical) are 
shown up to octupolar order in Figure 2 Row II. For the interested 
reader and completeness, the vector spherical harmonics counter-
part of the figure is plotted in Figure S3, Supporting Information. 
While analytical solutions for the polarizability of isotropic parti-
cles are available via the Mie theory, the polarizability of the non-
spherical particles has been obtained from full-wave numerical 
simulations based on the finite-element method as described in 
Appendix A. These numerical simulations are the only full-wave 
simulations involved in our analysis. They constitute the base, as 
they provide information on how a single particle scatters light. 
Nevertheless, once it is calculated and stored, it can be reused in 
all future calculations that consider the same particle.

An isotropic particle (Figure 2f) has a diagonal T and polariz-
ability matrix. The diagonal elements of the T matrix are the 
Mie coefficients, but with a negative sign, in agreement with 
the definitions of VSH (Appendix A). The diagonal elements of 
the normalized polarizability are the Mie coefficients with an 
“i” multiplicand. Unlike isotropic particles, a particle with cylin-
drical symmetry (Figure  2g) only has a diagonal polarizability 
matrix for the dipolar order. Beyond dipolar approximation, 
nondiagonal terms appear, which need to be taken into account. 
For helical structures (Figure 2h) that possess a chiral response, 

nonzero terms exist in the diagonal of the electric-magnetic 
polarizability matrices. Note that the white elements in the 
matrices in Figure  2 Row II are either symmetry-protected 
strictly zero or express a diminishing response of the small par-
ticle for higher multipolar orders. Especially these symmetry-
protected zeros are important, as they help construct a theoret-
ical model up to a particular multipolar order and for a specific 
particle symmetry that leads to simplified analytical equations 
for the metasurface scattering response. We can ignore them 
from the very first beginning. The symmetry of the normal-
ized polarizability or the T matrix within the defined bases 
fully describes the electromagnetic symmetry and response of a 
particle. This feature makes these two matrices crucial tools in 
nanophotonics design and analysis.

So far, we have focused on the response of isolated particles. 
The following subsection explores how these polarizabilities/T 
matrices are modified inside a 2D lattice and how to derive 
such effective matrices analytically.

2.2. Periodic Arrangement of Identical Particles

Let us assume an infinite number of arbitrary, but identical 
particles arranged in a 2D lattice described by two unit-cell 
base vectors, u1 and u2, parallel to the lattice plane,[79] with 
|u1|  =  Λ1 and |u2|  =  Λ2 being the two periodicities (Figure  1c). 
The arrangement is embedded in a homogeneous material with 
refractive index r rn ε µ= , with εr and μr being the relative per-
mittivity and permeability of the medium, respectively.

Now, let us assume that the 2D lattice is illuminated 
by a time-harmonic plane electromagnetic wave with 
an electric field corresponding to =inc

0
i ·inc

eEE EE kk rr, with 
θ φ λ = = + +( , , ) ( ˆ ·ˆ) ˆ ˆ ˆinc

inc inc 0 inc
inc inc inck n k k kx y zkk kk rr xx yy zz  being the inci-

dent field wavevector and = | |0 0E EE  being the amplitude of the 
incident plane wave, which, in this work, is normalized, that is, 
E0 = 1 V/m unless explicitly mentioned. Note that λ = λ0/n is the 
wavelength inside the embedding medium.

2.2.1. Vector Spherical Harmonics Basis

For the case of the spherical coordinate, the general equation 
for the amplitude of each diffraction order propagating in a 
medium without absorption and supported by the reciprocal 
lattice G, can be derived as[80] (Sections S.I.A and S.I.B, Sup-
porting Information)
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where ( )·ˆ1 2A = ×uu uu zz is the area of the unit cell, kkGG
±  is the 

wavevector of the diffraction order of the lattice G, and (θ, φ) 
are the polar and azimuth angles of the wavevector. The “+” 
and “−” signs refer to forward (i.e., 0 ⩽ θ ⩽ π/2) and backward 
(i.e., π/2 < θ ⩽ π) propagating diffraction orders, respectively. 
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It corresponds to transmission and reflection. The matrix 
θ φ( , )W  is the spherical multipole-field translation matrix, 

depending only on the direction of the diffraction order, and 
contains trigonometric functions. We have calculated its ele-
ments as analytic relations up to octupolar order. These ele-
ments are provided in Appendix F. These analytic formulas 
facilitate the derivation of closed-form equations beyond 
the complexity of the semianalytic, summation approach of 
Equation (4).

The vectors e
jbb  and m

jbb  in Equation (4) are the effective elec-
tric and magnetic scattering coefficients of each of the particles, 
respectively. They include the interaction among all the parti-
cles in the array and are identical for all the (identical) particles 
due to symmetry. These effective parameters are calculated via 
Equation (1) by replacing the T matrix of the isolated particle, 
or 0T , with the effective T matrix calculated via the following 
equation[81]

λ
λ λ

λ( ) ( )= − Λ Λ
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
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
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
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ˆ , ,eff 0 inc

1 2
1

0T I T C Ts kk  (5)

where I  is the identity matrix, and Cs
 is the lattice coupling 

matrix expressed in spherical coordinates, which is a function 
of the normalized periodicities Λ� , that is, the physical perio-
dicity normalized to the wavelength, and the direction of illumi-
nation. The coupling matrix elements are infinite summations 
over lattice points and can be calculated using various summa-
tion methods for the translation matrices[47,82] (Section S.I.C, 
Supporting Information). To solve these tedious summations 
efficiently, we divide them into summations in the real and 
Fourier space using Ewald’s method, which results in exponen-
tially convergent summations.[69] Note that no approximation is 
used here, up to the considered multipolar order, unlike other 
references that take approximated Green function summations.

For the specific case of rectangular lattices, like the one 
depicted in Figure 1c, ±kkGG of the respective diffraction orders are 
calculated as[63,80]
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where ,1 2n n ∈Z are the diffraction orders. Note that the dif-
fraction orders are propagating only if ,k z ∈± RGG . A similar pro-
cedure can be used to calculate the wavevector ±kkGG for other 
types of lattices, for example, hexagonal, as elaborated in the 
Section S.II, Supporting Information.

2.2.2. Cartesian Basis

The formulations mentioned above in spherical coordinates 
can be translated into Cartesian coordinates. After employing 
Equation (E1) and applying the transformations to Cartesian coor-
dinates, expressed in Equation (4), and after tedious calculations, 
we arrive at (Sections S.I.A and S.I.B, Supporting Information)
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The θ φ( , )R  matrix is the transformation operator from spherical 
to Cartesian coordinates (Appendix F). The matrix α� eff

 in Equa-
tion (7) is the normalized effective polarizability matrix. The 
matrix includes the coupling between particles on the lattice, in 
the same way as effT , as explained above. The effective polariz-
ability can either be calculated from the ffTe  via applying the 
transformations of Equation (3), or directly via (Section S.VIII, 
Supporting Information)

ˆ , ,eff 0 inc
1 2

1

0kk� � �I Cα α λ
λ λ

α λ( ) ( )= − Λ Λ













−
 (9)

where 0�α  is the normalized polarizability matrix of the isolated 
particle and C FC Fi s

1
=

−
 is the lattice coupling matrix expressed 

in Cartesian coordinates. The matrix C  can be, alternatively, 
calculated using various summation methods for dyadic 
Green’s functions, and, hence, some elements of C  have been 
analytically obtained.[37,38,62] However, only certain simplified 
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metasurface cases are investigated in these publications, or an 
approximated Green’s function is considered.

Therefore, with the closed-form formulas (4) and (7), intro-
duced in this work, one can effectively calculate the response 
of a 2D lattice of particles up to octupolar order when illu-
minated by a plane wave. In particular, Equation (7) that 
employs Cartesian coordinates, which enjoy popularity in the 
metasurface community, is a notable contribution.[63,67,83–85] 
However, we want to point out that both representations, spher-
ical or Cartesian, are physically equivalent,[58] and the choice 
depends on the geometry of the problem or the user comfort.

The lattice coupling matrix expressed in Cartesian coordi-
nates, C, has the exact dimensions as the polarizability matrix 
and is defined as
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where due to electromagnetic duality symmetry[86–89] =′ ′
ee mmC Cjj jj  

and =′ ′
me emC Cjj jj . Generally, based on the 2D lattice symmetry 

and incidence angle, the coupling matrices take different 
arrangements. Specifically, at normal incidence, that is, θinc  = 
0, the coupling matrix takes a much simpler form. Hence, in 
Figure 2, we show the Cartesian coupling matrix C for square 
and hexagonal lattices. The spherical coupling matrix coun-
terpart is shown in Figure  S3, Supporting Information. Note 
that the coupling matrix is a function of the ˆ

inckk . Therefore, for 
normal incidence, the choice of φinc does not make any differ-
ence. Throughout the manuscript, normal incidence refer to 
θinc = 0, unless, explicitly, a constraint on φinc is mentioned.

Following the calculation of C  for a specific lattice, the nor-
malized effective polarizability can, then, be obtained via Equa-
tion (9). The Row III of the Figure 2 shows α eff�  of the spherical, 
cylindrical, and helical particles inside the square and hex-
agonal lattices, that is, including the coupling influence of all 
particles on the 2D array.

Let us now explore a commonly considered case for metas-
urfaces, the square lattice, with Λ1 = Λ2 = Λ as the periodicity. 
If we calculate the coupling matrix for this case and, afterward, 
the effective polarizability via Equation (9), the scattered field in 
Equation (7) is further simplified to
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Here, we have included all the arguments in the equation 
for clarity. The factors that control the response of the par-
ticle square array are evident from Equation (11); specifically, 
the surrounding material, represented by k = 2πn/λ0, the inci-
dent field direction, represented by the field vector and 

ˆ
inckk ,  

the properties of the individual particle, represented by α� 0, and 
the dimensions of the lattice, represented by Λ� . Hence, modi-
fying each of these parameters could change the response of 
the metasurface according to one’s goals. As inserting the argu-
ments in Equation (11), can make the equations lengthy and 
might distract the reader, we ignore them from now on unless 
needed. However, implicitly they are always assumed.

The summations (4) and (7) can describe the diffracted field 
from any 2D array in spherical and Cartesian coordinates, 
respectively, in terms of the incident fields, the lattice, and 
the consisting particles attributes, provided that the problem 
can be sufficiently described with octupoles as the maximum 
multipolar order. Moreover, unlike previous efforts,[38,63] these 
formulas include all the propagating, diffraction orders and 
not only a zeroth-order. It allows the study of metagratings 
operating at wavelengths shorter than the array periodicity 
and further facilitates the design of related optical structures, 
as demonstrated later. For convenience, we provide a summary 
of these equations in Table 1. The verification of the proposed 
equations is performed in the Section S.I.D, Supporting Infor-
mation. using COMSOL Multiphysics[90] for an isotropic par-
ticle, as well as a particle with broken symmetries, namely a 
metallic helix, and under oblique incidence. The T matrix of 
the metallic helix was obtained via an extraction algorithm[56] 
using JCMsuite.[91] The proposed methodology, which employs 
the multipolar expansion, could produce accurate results that 
require fewer computational resources in comparison with 
numerical methods, as similarly reported in ref.  [69], provided 
that the order of expansion is correctly selected.

It should be noted that the form of the matrices and their 
subsequent symmetries are essentially dependent on the  
combinations we choose as an irreducible representation of 
the Cartesian multipole moments and, subsequently, the selec-
tion of the transformation matrices , {1,2,3}F jj =  (Appendix E). 
The utilization of the specific transformation matrices, in this 
work, originates from real spherical harmonic corresponding to 
atomic orbitals, p, d, and f,[92] and enable the conservation of cer-
tain symmetries between Cartesian and spherical bases, such 
as diagonality for T matrices for isotropic particles. Different 
setups of multipole moments in Cartesian basis or a different 
choice of transformation matrices will lead to different matrices 
in Cartesian basis from those demonstrated in Figure  2, as 
shown in ref.  [60]. Additionally, the polarizability matrix via 
a different Cartesian basis can be retrieved from the current 
one through simple algebraic transformations (Section S.IV,  
Supporting Information).

The multipolar formulation used herein to describe the 
response of a metasurface composed of identical particles can 
also be utilized to obtain the resonant modes of this metasur-
face. This approach, previously applied to 1D chains of parti-
cles,[93–95] can analogously be expanded to 2D arrays. Specifi-
cally, after the effective multipole moments in the 2D array 
are written by inserting the effective T matrix of Equation (5) 
into Equation (1), if the driving field is set to zero or e,m

iqq 00= ,   
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i = {1, 2, 3}, then the eigenvalue problem can be formulated in 
spherical coordinates as

− = 00I T Cs  (12)

The solutions of Equation (12) are associated with eigenmodes 
of the metasurface and can be of great importance for research 
into phenomena related to guided modes or bound states in 
the continuum. Equivalently, if the Cartesian basis is employed 
with Equations (2) and (9), then the eigenvalue problem is for-
mulated as

I C 00α− =�  (13)

which was solved in ref. [96] for the case of 2D arrays of electric 
and magnetic dipoles.

Once the response of the metasurface is calculated, the con-
tribution of substrates can, in general, be calculated using the 
layer method, as explained in ref. [69]. Specifically, one can get 

the total response by successfully coupling the interfaces and 
the media involved in the whole structure. The calculation of the 
scattering response of the metasurface is here the most crucial 
and challenging part. Nevertheless, properly treating particle  
arrays on metasurfaces is not a trivial matter; generally, the 
T matrix representation of a particle is valid only outside the 
smallest sphere that includes the particle (this is the “Rayleigh 
Hypothesis”), and, thus, the output may diverge, when sub-
strate interfaces are placed inside this sphere. The T or polar-
izability matrix method could still produce accurate results, 
though, provided that a sufficient and correct multipolar expan-
sion order that includes evanescent modes and more diffraction 
orders are used.[69,97] In this work, where only the propagating 
modes are calculated in Equation (4) or (7), the employment of 
the layer method[69] to include the substrate effects can usually 
be only an approximation and, thus, not shown herein. How-
ever, this approximate solution could, in some cases, shed light 
on interesting optical phenomena, such as collective resonances 
in metasurfaces affected by a nonhomogenous environment.[38]
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Table 1. Main equations for the scattering of 2D lattices in spherical and Cartesian coordinates.
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Let us, now, assume specific symmetries about the geom-
etry of the particles in use or a particular wave incidence onto 
the metasurface. In that case, the closed-form equations pro-
vided in this section can be further simplified to accessible 
analytical formulas that could greatly assist the metasurface 
design process. This approach will be demonstrated in the 
following sections. The next section is dedicated to normal 
incidence, while the next but one section is dedicated to 
oblique incidence.

3. Analytic Equations: Normal Incidence

3.1. Propagating Diffraction Orders of Dipole-Quadrupole  
Metasurfaces Made from Isotropic Meta-Atoms

In this subsection, originating from Equation (11), we derive 
a general, simplified, closed-form, analytic expression for 
the amplitudes of the propagating diffraction orders from 
dipole–quadrupole metasurfaces and metagratings made from 
isotropic meta-atoms and illuminated at normal incidence. 
An isotropic particle has spherical symmetry and includes 
homogeneous/core-multishell spheres and isotropic colloidal 
particles.[98] Unlike previous modeling efforts, our analytic pro-
cedure captures the amplitudes in reflection and transmission 
of the zeroth diffraction orders, as well as higher propagating 
diffraction ones.

The analytical formulas, in this work, are developed on 
the spherical basis and presented on the Cartesian basis. 
The two bases are equivalent and interchangeable. While 
the Cartesian basis is more popular in the metasurface com-
munity and provides more intuitive understanding for lower-
order multipolar orders, the spherical basis, enables an accu-
rate description of the particle scattering and coupling. By 
employing the vector spherical harmonics, it is possible 
to compute the lattice coupling matrix quickly, thus, cal-
culating the interaction between particles on the 2D array 
under study accurately and without approximations, unlike 
other attempts that employ the Cartesian basis (Section S.I.C,  
Supporting Information). For the general case, we provide the 
formulas for the response of a metasurface both for the Car-
tesian and the spherical basis, as presented in Table  1. We 
leave the choice to the user according to the specific problem 
under study.

For isolated isotropic particles, as shown in Figure  2f, the 
polarizability matrix is diagonal. Thus, the elements of the 
matrix α� 0 can be written via Equation (2) as

� � � �I Iα α α α= =,11
ee

p 11
mm

m
 (14a)

� � � �I Iα α α α= =,22
ee

Q 22
mm

Qe m  (14b) 

where �α p
 (�α m

), and �α Qe (�α Qm) are the normalized electric (mag-
netic) dipole and quadrupole polarizabilities, respectively. The 
dimensions of the unitary matrix, I , changes according to the 
multipolar order, that is, 3 × 3 for dipole and 5 × 5 for quadru-
pole. These polarizabilities can be linked to the Mie coefficients 
via Equation (3), as[16,60]

� �a bα α= =i , ip 1 m 1
 (15a)

α α= =� �i , iQ 2 Q 2
e ma b  (15b) 

where aj (bj) is the electric (magnetic) Mie coefficient of j’s order. 
When inside the lattice, these polarizabilities will be modulated 
and coupled to each other according to Equation (9).

For normal incidence, or θinc  = 0, the incident TE and TM 
polarizations can be defined as
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(16a)
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
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






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=
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

0
1
0

eTE
inc
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(16b) 

In this work, TE/TM polarizations are equivalent to s-/p- 
polarizations, where the E-field vector direction is the same as 
the unit-vectors of the spherical coordinates’ system, φ̂ and θ̂ ,  
respectively (Sections S.I.A and S.I.B, Supporting Information).

Let us now consider the calculation of the lattice coupling 
matrix. For a square array and under normal incidence, 

C
 has 

a simpler symmetry with many symmetry-protected zeros. 
Additionally, for isotropic particles with elements described 
in Equation (14), not all coupling coefficients enter Equation 
(11), further simplifying calculations. In Figure  3a, we show 
the Cartesian coupling matrix under normal incidence for an 
exemplary normalized periodicity of 0.9Λ =�  up to quadrupolar 
order and the relevant elements of C  for isotropic constituents 
are marked. In Figure 3b,c, the real and imaginary parts of the 
relevant coupling coefficients are shown versus the normal-
ized lattice periodicity. The relevant lattice coefficients for the 
specific normal incidence and square lattice calculations are 
dipole–dipole Cdd, quadrupole–quadrupole CQQ, and dipole–
quadrupole CdQ couplings. As their name suggests, they are 
coefficients for the coupling of multipoles of a different order. 
The imaginary parts of these coefficients can be analytically 
calculated using energy conservation relations. We have calcu-
lated, herein, the imaginary part of these coefficients for sub-
wavelength metasurfaces using the analytic equations for trans-
mission and reflection (Section S.VII, Supporting Information) 
as

π
ℑ =

Λ
−( )

3
4

1dd 2C �  
(17a)

π
ℑ =

Λ
−( )

5
4

1QQ 2C �  
(17b)

π
ℑ =

Λ
( )

15
4

dQ 2C �  
(17c)

The imaginary parts above can be used to determine fun-
damental limits. The imaginary part of the dipole–dipole lat-
tice coupling has already been identified in the literature.[37] 

Adv. Optical Mater. 2022, 2102059
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The real part of the coupling coefficients (Figure  3b) cannot 
be analytically derived, and infinite summations, as discussed 
before, are required for accurate calculations. The real part of 
the coupling coefficients can be linked to the detuning of the 
response of the isolated meta-atoms.[99,100]

In the next step, we calculate the effective multipole 
moments induced in each particle in the lattice as a function of 
the effective Mie coefficients up to quadrupolar order for both 
TM and TE polarized excitation. For TM incidence, they are 
analytically expressed as

 (18a)

and for a TE polarized incidence

 (18b)

The effective Mie coefficients/polarizabilities of the particles in 
these expressions above depend on a) the modulation of the ele-
ments of the same multipolar order through Cdd and CQQ and 
b) the coupling with other multipole moments in the lattice 
through CdQ. The  superscript shows the coupled param-
eters, and the coupling term is written in the circle. Electric 
(magnetic) dipole moments are coupled to magnetic (electric) 
quadrupole moments and vice versa. The modulated and cou-
pled Mie coefficients, that are commonly called the effective 
Mie coefficients, can be written as

 (19a)

 (19b)

 (19c)

 (19d)

The modulated Mie coefficients in Equation (19) are explicitly 
written as

= − = −1 1
i ,

1 1
i

1,mod 1
dd

1,mod 1
dd

a a
C

b b
C  (20a)

= − = −1 1
i ,

1 1
i

2,mod 2
QQ

2,mod 2
QQ

a a
C

b b
C  (20b) 

Writing the above expression in such a manner has the imme-
diate advantage of distinguishing the effect of the lattice and the 
single meta-atom response on the effective response. It is worth 
mentioning that despite a different approach, the above equa-
tions are very similar to the equations in ref.  [67]. In ref.  [101], 
we have exploited the effective moments in Equations (18a,b) to 
find operation regimes in which the magnetic dipole moment 
can be colossally enhanced.

By calculating the relevant lattice coupling matrix elements 
and polarizabilities of the isolated, isotropic particle and by 
deriving the effective Mie coefficients with Equation (19), the 
general equation for square lattices (11), can be simplified for 
both polarizations to

Adv. Optical Mater. 2022, 2102059

Figure 3. The Cartesian coupling matrix: a) The Cartesian coupling matrix amplitude for a square array with a normalized periodicity of  
Λ/λ = 0.9 under normal incidence (θinc = φinc = 0) up to quadrupolar order. The relevant matrix elements for a metasurface made from isotropic  
particles are dipole–dipole Cdd, quadrupole–quadrupole CQQ, and dipole–quadrupole CdQ couplings. They are marked with an arrow. b) The real and 
c) imaginary part of the relevant lattice couplings as a function of the normalized periodicity Λ/λ. For a square array, the electric and magnetic parts 
are equal.
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with
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where (n1, n2) label the different diffraction orders. Note that 
the modes are propagating if θ is real. For θ  > π/2, that is, 

scattering in the backward half-sphere, cos θ is negative. Hence, 
using Equation (21), the transmission and reflection through 
a dipolar–quadrupolar metasurface with isotropic constituents 
can be calculated. The derived formulas from this subsection 
are conveniently summarized in Table 2A.

3.2. Zeroth-Order Transmission and Reflection

Under normal incidence (θinc  = φinc  = 0), if only the zeroth-
order mode is considered, or, simply, a nondiffracting square 
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Table 2. Reflection and transmission coefficients for metasurfaces under A) normal and B) oblique incidence. A.1,B.1) Effective Mie coefficients  
(coupled and modulated). A.2,B.2) Modulated Mie coefficients. A.3) General equations.

A) Normal incidence*: θinc = φinc = 0
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,

1 1
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*Note that θ and φ are the angles of the scattering field (i.e., for the reflection cos θ < 0). In A) for ‘±’ use ‘+’ for transmission and ‘−’ for reflection. In B) = 0incky .
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array with Λ < λ, then the calculation formulas for the reflec-
tion (θ = π, φ = 0) and transmission (θ = φ = 0) coefficients for 
TE/TM polarization can be simplified to

 (23a)

 (23b)

t t=TE TM  (23c)

r r= −TE TM  (23d) 

Note that the reflection phase for the TE and TM polarizations 
are the same, and the sign difference is only due to the specific 
definition of the TE and TM vectors. The final equations above, 
for this specific case of a square lattice, normal incidence, and 
isotropic consisting particles are very similar to the equations 
derived by ref. [102].

3.3. Bound States in the Continuum

As discussed in Section 2, the expression for the effective T or 
polarizability matrix can provide the formulation of the general-
case eigenvalue problem, as demonstrated in Equations (12) and 
(13). Solving these equations, either on the Cartesian or spher-
ical basis, one can obtain the modes propagating or bound on 
the metasurface. In this subsection, we will demonstrate how 
bound states in the continuum (BICs) on metasurfaces[1,39,96] 
can be identified and possibly engineered using the analytical 
formulas presented in Section 3.1.

Let us now form the eigenvalue problem of Equation (13), 
for the reduced case of a 2D array of identical isotropic particles 
with an induced electric dipole and a magnetic quadrupole, and 
under normal incidence. Starting from Equation (18a) for the 
TM incidence, we remove the magnetic dipole and the electric 
quadrupole and, eventually, we write the analytical formulas 
in a matrix form. In the absence of excitation, in order for the 
system to have a nontrivial solution, the determinant of the 
inverse effective polarizability matrix must be zero. After some 
algebra, the condition for the modes of the metasurface is 
reached (Section S.X, Supporting Information), as

+ =1 0dQ
2

1,mod 2,modC a b  (24)

The same condition can be reached for the TE incidence due 
to symmetry. Because normal incidence is enforced in Equation 
(18a), no propagating modes on the metasurface exist. Thus, the 
solutions of Equation (24) correspond to the BICs of the 2D array.

This derived condition above for identifying BICs can, after-
ward, be utilized for engineering 2D arrays with bound states 
and, most important, quasi-BICs with very high Q-factor. If the 
Mie coefficient a1 is kept constant, the b2 coefficients that satisfy 
the condition Equation (24) are

( )= −
− +

1 i

i
2

1 dd

1 dd QQ dQ
2

QQ

b
a C

a C C C C
 (25a)

with

{ } | |2 2
2b bℜ =  (25b) 

The condition (25b) is necessary to obtain physically mean-
ingful solutions from Equation (25a), that correspond to real-
istic and non-absorbing scatterers.

Let us now explore an example to demonstrate how Equation 
(25) can predict the location of a BIC. For this purpose, we will 
employ the Mie angles representation of Mie coefficients[103], 
that is, θE1 and θM2 for a1 and b2, respectively (Appendix H). If 
we arbitrarily choose an electric dipole with the Mie coefficient 
a1 = 1 (or θE1 = 0), then, the only solution at a normalized perio-
dicity interval Λ/λ = [0.1, 1] from (25) is b2 = 0.7855 − i 0.4105 (or 
θM2 = −0.4815 rad) and at Λ/λ = 0.7114.

In the next step, we calculate the transmission from the 
same 2D array for θE1  = 0 and for sweeping through all the 
Mie angles θM2 via Equation (21). The results are depicted in 
Figure 4a. As shown, for θM2  =  −0.4815 and Λ/λ  = 0.7114, the 
|t|  = 0 or |t|  = 1 resonances are nullified, demonstrating that 
Equation (24) provide the BIC’s wavelength location, as well as 
the θE1 and θM2 combinations required. Finally, knowing the 
parameters for engineering a BIC, one can easily, afterward, 
construct a high-Q quasi-BIC resonance, that interacts with the 
environment. In Figure  4b, it is demonstrated that, if a slight 
deviation from the θM2 that fulfills Equation (25) is imposed, 
then a very sharp quasi-BIC resonance is produced. Eventually, 
particle swarm optimization method[104] can be employed to 
design core–shell spheres with the corresponding θE1 and θM2, 
to realize the proposed setup.[101]

3.4. Single Multipolar Resonance

This subsection explores metasurfaces made from isotropic 
particles that only support a single multipolar resonance while 
other multipolar components are negligible. In such explora-
tion, the effective Mie coefficients in Equation (19) are simplified 
and are equal to the modulated Mie coefficients in Equation (20). 
The investigation helps identify the contribution of a single 
multipolar order in the collective response of the lattice.

3.4.1. Collective Lattice Resonances

The collective lattice resonance (CLR) refers to the resonance 
in the collective response of the infinitely periodic arrangement 
of the identical particles.[105,106] Using the derived analytical 
equations, we can explore how the resonance spectrum of an 
isolated particle changes collectively inside the infinite lattice. 
If we assume a square lattice decorated with identical isotropic 
particles supporting only a single magnetic dipole resonance 
and vanishing higher-order moments, from Equation (23) the 
zeroth-order transmission and reflection of the metasurface 
under normal incidence simplifies to

π
= + = −

Λ −




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1 1
3

4
1

1/ i
TE TE 2

1 dd

t r
b C�  (26)
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For a metasurface made from particles supporting a single 
resonance, at the collective lattice resonance, the transmission 
drops to zero and all the light is reflected. Therefore, to derive 
the condition for the lattice resonance, we need to solve the fol-
lowing equation

πΛ −






=3
4

1
1/ i

12
1 ddb C�

 (27)

To solve the above equation, we exploit the Mie angles to repre-
sent any possible Mie coefficients[103] (Appendix H). Here, we only 
assume nonabsorbing particles represented with a (detuning) 
magnetic dipole Mie angle θM1. Inserting the imaginary  

part of the coupling coefficient from Equation (17) and using 
the Mie angle representation, after some algebra, the lattice 
resonance condition is derived as (Section S.XI, Supporting 
Information)

θ = −ℜtan { }M1 ddC  (28)

The above condition is equivalent to putting the real part of the 
denominator in Equation (27) to zero. This condition is used 
in refs. [105, 106] to find the CLR in a dipolar metasurface. For 
a metasurface made from isotropic particles with other single 
resonances up to a quadrupolar order, the CLR condition can 
similarly be derived as

Adv. Optical Mater. 2022, 2102059

Figure 4. Applications of the analytical formulas for normal incidence: a) The transmittance of a metasurface made from isotropic particles supporting 
only electric dipole and magnetic quadrupole as a function of the magnetic quadrupole Mie angle θM2 and the normalized periodicity Λ/λ. The electric 
dipole Mie angle is set to zero, that is, θE1 = 0, and all other Mie coefficients are assumed negligible. b) The transmittance of the same metasurface 
as a) for θM2 = −0.4815 rad (or θM2 = −27.5879°) and θM2 = −0.469 rad (or θM2 = −26.8717°), as a function of the normalized periodicity Λ/λ. Similarly, 
θE1 = 0 and all other Mie coefficients are assumed negligible. c) The required Mie angles for the collective lattice resonance (i.e., where t = 0), in a single 
multipolar resonance metasurface illuminated under normal incidence, as a function of the normalized periodicity Λ/λ. The equivalent Mie coefficient 
amplitude is also shown for simplicity. The plot is based on Equations (28) and (29a). d) The transmittance of a single multipolar resonance metas-
urface near the point of diffraction. For (c) and (d) the identical particles building the metasurface are isotropic and support a single Mie coefficient, 
represented by the Mie angle in the legend, while the rest are assumed negligible.
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θ = −ℜtan { }E1 ddC
 

(29a)

θ = −ℜtan { }M2 QQC  (29b)

θ = −ℜtan { }E2 QQC
 

(29c)
 

where θE1 is the electric dipole Mie angle, and the θM2 (θE2) is 
the magnetic (electric) quadrupole Mie angle. Figure 4c shows 
the required Mie angle that is required for each normalized 
periodicity in a metasurface supporting a single multipolar res-
onance for a CLR. The equivalent Mie coefficient amplitude is 
also shown for simplicity.

For the magnetic dipole metasurface, when the isolated 
particle is at the resonance (i.e., b1  = 1 or θM1  = 0), the lattice 
resonance occurs at normalized periodicities where the real 
part of the dipole–dipole coupling coefficient vanishes. From 
Figure 3b, ℜ{Cdd} crosses zero for two normalized periodicities 
Λ ≈ 0.2,0.8�  (Λ ≈ 0.21,0.88�  for a Hexagonal lattice). This “magic 
lattice spacing”[99] is where the “cooperative resonance”[100] of 
the meta-atoms reflects all the incident light. At this point of 
operation, the resonance of the isolated meta-atom experiences 
no detuning, and hence the effective resonance also occurs at 
the same spacing. The same is true for a metasurface made 
from particles supporting a single electric dipole moment.

For the quadrupole–quadrupole coupling, ℜ{CQQ} does not 
cross the zero point. Therefore, a spectral detuning between the 
collective lattice resonance and the quadrupolar resonance of 
the isolated particle is unavoidable.

From Figure 3b, the large values of the real part of the cou-
pling coefficients for very dense arrangements (i.e., Λ/λ  ≪ 1) 
and also subwavelength periodicities close to the wavelength 
(i.e., Λ/λ ≈ 1−) are worth mentioning. For practical reasons, we 
ignore the dense arrangements in our further analysis. From 
Equations (28) and (29a), we can find out that for a very large 
positive real value of the coupling coefficient, the detuning 
Mie angle required for a lattice resonance tends to an extreme 
off-resonance case of −π/2. For an upper value of Λ/λ = 1, the 
required detuning Mie coefficients are: a1 or b1 = 1.58 × 10−15 − 
3.97i × 10−8, a2 or b2 = 5.68 × 10−16 − 2.38i × 10−8. These minus-
cule Mie coefficients, surprisingly, can rise to a collective reso-
nance of the lattice for the sweet spot periodicity of Λ = λ.

Another interesting feature of near diffraction lattice reso-
nances is the emergence of high Q-factors or sharp features. In 
Figure 4d, we have plotted the transmission of single resonance 
metasurface near the point of first diffraction order. It is noted 
that for very small Mie coefficients, a collective resonance with a 
very high Q-factor is achievable. The quality factor increases for a 
weaker Mie coefficient (i.e., larger Mie angle values). Furthermore, 
as shown in the figure, dipole moments produce sharper reso-
nances as compared to quadrupole moments. Please note, unlike 
the BIC case that was studied in the previous subsection, the theo-
retical limit for the quality factor of the resonance is finite.

3.4.2. Optical Cross-Section

It might be interesting to find out the scattering cross-section 
of a single resonance dipolar meta-atom inside and outside a 
lattice for the two “magic lattice spacings,” that is, at the CLR. 

In Appendix G, we have calculated the scattering, extinction, 
and absorption cross-sections in spherical and Cartesian coor-
dinates. For a single magnetic resonance, the scattering cross-
section is calculated as

σ η
π

=
| | 6

| |sca
c

4 2

0
2

2k

E
mm  (30)

For a single magnetic dipole at resonance (i.e., b1 = 1) and outside 
the lattice, for a plane wave excitation, and exploiting Equations (2)  
and (30), the Cartesian scattering cross-section turns to[107,108]

σ π λ
π( )Λ = ∞ = =6 3

2
sca,0
c

2

2

k
�  (31)

and, now, for the meta-atom inside the lattice[109]
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 (32)

It is clear from the results that at the two resonances, one 
can achieve much weaker (at Λ ≈ 0.2� ) or more substantial (at 
Λ ≈ 0.8� ) scattering cross-section in comparison to the response 
of the isolated object.

3.5. Fully Diffracting Metagratings

This subsection demonstrates the applicability of the analytical 
expressions from Table  2A to a design challenge. We seek a 
non-absorbing metagrating that diffracts all the light to a polar 
angle of θ = 64o into the first diffraction orders, or for modes 
for which it holds |n1| +  |n2| = 1, and with no other propagating 
modes. The goal of the design process is presented in Figure 5a. 
Note that for the first diffraction orders, there are four distinct 
branches with azimuth angles of φ = 0o, 90o, 180o, 270o, or, alter-
natively, the diffraction order pairs, (n1, n2) = {(1, 0), (− 1, 0),  
(0, −1), (0, 1)}. For each of the four branches, two different 
polarizations are possible, TE and TM. However, due to the 
isotropy of the constituents and lattice symmetry, some modes 
are zero. Herein, without losing generality, we have assumed a 
TE polarized plane wave excitation at normal incidence.

As presented in the equation in Table 2A.3, for normal inci-
dence, or, θinc  = 0, the diffraction angles (θ, φ) are uniquely 
determined by the diffraction order pair (n1, n2). For a set dif-
fraction angle of θ  = 64°, the required normalized periodicity 
is, then, calculated as λΛ = Λ =/ 1.12�  Note, that the 2D array lat-
tice dimension is not subwavelength. In the next step, using 
the analytics expressions in Table 2A for the amplitudes of the 
diffraction modes, we seek to find the required Mie coefficients 
that suppress the amplitude into the zeroth diffraction order, 
or n1 = n2 = 0, transmission. For this purpose, we rely on repre-
senting the possible Mie coefficients using the Mie angles.[103] 
Representing the possible values of the Mie coefficients using 
the Mie angles allows to systematically search through all pos-
sible electric and magnetic dipole and quadrupole Mie coeffi-
cients for regimes where the zeroth-order transmission is zero 
at the fixed periodicity. It should be mentioned that due to 
the analytic equations at hand, the numerical calculations are  
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computationally cheap, and this fosters multidimensional 
investigation. After the identification of a set of Mie coeffi-
cients that cancel the zeroth-order transmission, we use a par-
ticle swarm optimization method[104] to find the dimensions 
and material parameters of a core-shell sphere that provide 
the required Mie coefficients. At the operational wavelength 
of λ  = 500  nm, we, finally, find that a core-shell sphere with 
rcore = 170 nm, rshell = 170 + 30 nm, ncore = 1.86, and nshell = 1.43 
satisfies the requirement.

In Figures 5b–d, we show the simulated response of a meta-
grating made from the designed core-shell spheres arranged in a 
square array at λ = 500 nm. Figure 5b shows the power efficiency 
of the metagrating in diffracting the power at the chosen peri-
odicity Λ  = 1.12λ  = 556 nm (marked with vertical dashed line). 
Thus, most of the power is diffracted. Figures  5c,d show the 
transmittance and reflectance of the individual diffraction orders. 
The reflectance and transmittance can be expressed as a function 
of reflection and transmission coefficients, respectively, as

θ
θ

θ
θ

= =| |
| cos |

| cos |
, | |

| cos |

| cos |
2

inc

2

inc

T t R r  (33)

where for our case θ = 64o and θinc = 0o. It can be seen that the 
zeroth-order transmission and the zeroth-order reflection are suc-
cessfully suppressed at the assigned periodicity. This novel fully 
diffracting metagrating is a prime example of how our analytic 
equations are a powerful design tool for on-demand applications.

4. Oblique Incidence: Analytic Equations

4.1. Zeroth-Order Modes of Metasurfaces with Isotropic Dipole 
Meta-Atoms

Even though metasurfaces have been extensively studied under 
normal incidence, the oblique incidence is less explored.  

However, understanding the complete angular response is 
essential for designing metasurface-based photonic devices.[65] 
Therefore, this section provides simplified analytical equations 
to express the optical response of metasurfaces made from 
dipolar isotropic particles illuminated at oblique incidence. 
Higher-order expressions for particles with certain symmetries 
can also be derived from Equation (11).

For the case of an oblique incidence, the symmetry of the 
lattice coupling matrix changes in comparison to normal inci-
dence, and there are more non-zero elements on the matrix 
C . Nevertheless, the symmetry of the coupling matrix at 
oblique incidence is only affected by the lattice type. Therefore, 
changing the lattice constant or the incidence angles for a spe-
cific 2D lattice does not alter the symmetry of the matrix, but 
only the values of the coefficients. In Figure S4, Supporting 
Information, we have plotted the Cartesian coupling matrix of 
an obliquely illuminated square array up to quadrupolar order. 
Furthermore, the effective polarizability of the Ag-core SiO2-
shell particle considered in Figure  2f inside the square lattice 
when illuminated at the oblique angle is shown.

The dipolar Cartesian coupling matrix can be written as
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(34)

Now, let us assume that a metasurface consists of isotropic 
dipoles, and we try to derive the zeroth-order response. In this 
case, not all the coupling coefficients are relevant; the elements 
of C  that determine the amplitudes of the propagating diffrac-
tion orders of the metasurface made from isotropic dipolar par-
ticles are Cxx, Cyy, Czz, and Cyz. Note that for simplicity, we have 
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Figure 5. Fully diffracting metagrating. a) A square array of core–shell spheres (rcore = 0.34λ, rshell = (0.34 + 0.06)λ, ncore = 1.86, nshell = 1.43) illuminated 
with a TE polarized plane wave at normal incidence shall diffract all the light to the first diffraction orders at an operational wavelength of λ = 500 nm. 
b) The lattice’s normalized specular and diffracted power as a function of the periodicity Λ. c) The transmittance and d) the reflectance of the zeroth 
and the higher diffraction orders of the lattice. The dashed line shows the periodicity where diffraction to θ = 64° occurs.
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ignored the “dd” subscript, compared to the previous section, as 
we anyhow only consider dipolar particles. Prior knowledge of 
the nonzero and relevant elements of the coupling coefficients 
for this case of study enables us to construct an analytic model 
that we can use for the upcoming expressions.

Next, we follow a similar procedure to the normal incidence 
case of the previous section to derive an analytic equation for 
the zeroth diffraction order, characterized by (n1, n2) = (0, 0), 
from a metasurface made from dipolar isotropic particles. 
Additionally, in all the following equations, without losing 
generality, we assume the azimuthal angle to be zero, that is, 
φinc = 0. Assuming, then, a plane wave oblique incidence, the 
TE and TM polarizations can be defined as

θ
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where θ= sininc
inck kx  and θ= cosinc

inck kz  are the x and z compo-
nent of the impinging wavevector.

Following Equation (2), the induced multipole moments in 
each particle for TM polarization as a function of the effective 
Mie coefficients are derived as

 (36a)

Similarly, for TE polarization, the following relation can be 
derived for the effective dipole moments

 (36b)

For a normal incidence excitation, that is, θinc  = 0, the 
induced moments are the same as what we derived in 
Equation (18). However, at oblique incidence, the main dif-
ference is the induced moments normal to the metasurface 
plane. These exited moments bring about novel interference 
patterns not seen at θinc  = 0 incidence. We will explore, later 
on, how these normal moments modify the optical response 
of a metasurface. The effective dipolar polarizabilities of the 
particles in Equation (36) depend on a) the modulation of the 
elements with the coupling coefficients Cxx, Cyy, and Czz and 
b) the coupling with other multipole moments through the Cyz 
coefficient. The  shows the coupled parameters, and the cou-
pling term is written inside the circle. Electric (magnetic) dipole 
moments are coupled to magnetic (electric) dipole moments. 
The effective Mie coefficients are, therefore, expressed as

 (37a)

 (37b)

 (37c)

 (37d)

while the modulated Mie coefficients are calculated as

 

= − = −1 1
i ,
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i

1,mod. 1 1,mod. 1a a
C

b b
C

vv
vv

vv
vv  (38)

where a1 and b1 are the Mie coefficient of the isolated scatterer 
and v  = {x, y, z}. If we follow a procedure similar to the one 
performed for normal incidence, the zeroth-order reflection 
and transmission coefficients of a dipolar metasurface under 
normal incidence can be calculated. The resulting formulas are 
provided in Table 2B.

The analytical equations for the transmission and reflection 
of an obliquely incident metasurface enable efficient and more 
accessible exploration of the physics involving metasurface 
structure. In the following subsections, we derive a particular 
Brewster angle for a single metasurface and further explore the 
transmission through a Huygens’ metasurface under oblique 
incidence.

Note that higher-order analytic equations, that is, involving 
quadrupoles, can also be derived from equations in Table  1. 
However, in this contribution, we focus on the simpler dipolar 
expressions for the oblique case. If a particular application for a 
specific scenario is demanded, other analytic equations can be 
further derived.

4.2. Brewster Angle: Particle-Independent Polarization Filter

As a direct application of the analytic equations for metasurfaces 
under oblique incidence presented in Table  2B, we can search 
for specific metasurfaces that offer a desired and predefined 
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optical response. Polarization, for example, is a crucial prop-
erty of light, and its control is a fundamental necessity for wave 
modulation. A question at hand concerns the Brewster angle 
for metasurfaces. The Brewster angle is the angle at which the 
reflection for TM or TE polarization vanishes.[110–112] Therefore, 
it provides an important tool to separate different polarizations 
of light. In this subsection, we provide an example to demon-
strate the strength of the analytical equations in finding impor-
tant regimes for on-demand applications. Here, the set goal is to 
give the recipe for a metasurface that can separate the two polar-
izations in reflection. First, we assume a metasurface consisting 
of only isotropic magnetic dipolar scatterers, or equivalently  
an > 0 = bn > 1 = 0. Magnetic dipoles constitute the lowest-energy 
resonance in homogeneous high-refractive-index spheres and 
are easier to achieve. From the equations in Table 2B, the reflec-
tion coefficient for such a metasurface can be written as
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The equation above shows that the moment induced normal 
to the metasurface interferes destructively with the moment 
induced in-plane. To derive the Brewster angle, one needs to 
find the metasurface parameters where reflection vanishes for 
the TE polarization. Therefore, the Brewster angle condition 
further simplifies to
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 (40)

At an incidence angle of θinc  = π/4, the Brewster condition 
becomes independent of the scatterer’s Mie coefficient, and 
thus, simplifies to Cxx = Czz. In other words, at an oblique inci-
dence angle of 45°, a metasurface can separate the two polariza-
tions irrespective of its constituents, as far as the dipolar approx-
imation holds and the condition mentioned above is satisfied. 
Sweeping through the lattice constants, we find out that for a 
Brewster angle of 45 degrees, the required lattice constant is

 

λ
Λ

=θ π= 0.5352/4B  (41)

which is smaller than the dimension where the first diffrac-
tion order appears for this incidence angle (i.e., �Λ = 0.58) and, 
hence, no diffraction occurs.

Therefore, a metasurface at a normalized periodicity of 
0.5352 suppresses the reflection for TE polarization as far as 
the spheres are small enough compared to the operational 
wavelength to be described with a magnetic dipole response. 
The reflected amplitude for the other polarization can be deter-
mined via Equation (40) by the strength of the effective mag-
netic Mie coefficient. A similar Brewster angle can be derived 

to suppress reflection in TM polarization, that is, the s-polariza-
tion, with a metasurface made from electric dipolar particles at 
the same normalized periodicity point of operation.

Using the analytical formulas of Equation (40), we can, gen-
erally, derive the condition for the Brewster angle for different 
metasurfaces, depending on combinations of the Mie coef-
ficients and the lattice dimension. Here, we demonstrated a 
simple but powerful case.

4.3. Huygens’ Metasurfaces under Oblique Angle

Huygens’ metasurfaces have attracted significant attention 
in the optics community due to their ability to provide unity 
transmittance, and broad phase coverage.[3,32,74–76,113] Although 
Huygens’ metasurfaces are extensively studied at normal inci-
dence, the oblique incidence case is not well studied yet,[114,115] 
the main reason potentially being the lack of analytical tools. 
Questions of retaining the unity transmittance or additionally 
providing a phase coverage are still under-explored.

This subsection, shortly, studies the transmission of Huy-
gens’ metasurfaces in the subwavelength regime, depending 
on the lattice constant and the incidence angle. The Huygens’ 
metasurface we study is made from dipolar isotropic particles at 
resonance when considered isolated (i.e., a1 = b1 = 1). Figure 6 
shows the amplitude and phase of transmission versus the nor-
malized periodicity and the angle of incidence via the formulas 
of Table  2B. The dashed line shows the onset of the first dif-
fraction order. We ignore the results above this dashed line to 
assure a single-mode operation.

For a Huygens’ metasurface, due to the electromagnetic 
duality symmetry of its constituents, both TE and TM excita-
tions result in the same reflection and transmission.

When illuminated at normal incidence, or θinc = 0, regardless 
of the polarization, transmission amplitude is 1, as seen from 
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Figure 6. Obliquely illuminated Huygens’ metasurface: a) The trans-
mittance and b) phase of the zeroth-order transmission coefficient of 
a Huygens’ metasurface as a function of the incident angle θinc and the 
normalized periodicity Λ/λ. The metasurface is made from a particle with 
an isolated electric and magnetic Mie coefficient of 1, that is, at resonance 
(a1 = b1 = 1). The dashed blue line indicates the onset of diffraction orders. 
Note that for a Huygens’ metasurface, the TE and TM excitations are 
equivalent.
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Figure 6a. Furthermore, a broad phase shift coverage of almost 
3π/4 is achievable when changing the normalized periodicity 
in the range [0.7,1].[16] If different but equal electric and mag-
netic Mie coefficients are considered, the periodicity range in 
which a broad phase coverage is accessible changes. Therefore, 
depending on the particle size and the permissible densities, a 
proper point of operation can be chosen for the metasurface.

For those currently chosen Mie coefficient values 
(a1  = b1  = 1), it is apparent from the results in Figure  6, 
that for small oblique incidence (i.e., θinc  < π/6), the broad 
phase coverage range (i.e., Δ(∠t) > π) falls, primarily, into the 
regime for which the metasurface is diffracting, and hence 
the transmission is suppressed. Therefore, we find out that 
for a better phase coverage with high transmittance under 
oblique incidence, one must carefully choose a different 
Mie coefficient to avoid the diffracting region and the sharp 
zero-transmittance resonance.

If the incidence is only slightly tilted at a normalized perio-
dicity of 0.71, a sharp resonance appears in the transmittance 
of the metasurface. This resonance can be traced back to the 
destructive interference of the in-plane and out-plane induced 
moments, as described previously. Although the sudden drop 
of the transmittance may spoil the functionality of a Huygens’ 
metasurface for its phase coverage, the prior information of the 
regime in which it occurs can help avoid this point of opera-
tion. Moreover, this interesting region for a metasurface can be 
exploited in other applications in which normal transparency 
and oblique opacity are sought after.

In short, our analytic tool can help in designing a Huygens 
metasurface for a specific application, avoiding the certain 
undesired point of operations.

5. Conclusion 

This paper provides exact, robust, and accessible equations to 
calculate the amplitudes of all propagating diffraction orders 
from a 2D lattice decorated with identical but otherwise arbi-
trarily shaped particles. We provided explicit expressions in 
both Cartesian and spherical bases up to the octupolar order. 
By utilizing the polarizability/T matrix of the individual par-
ticles and the lattice coefficients, we calculated the effective 
polarizability/T matrix of the particles. Besides the primary 
one, the proposed formulas enable the explicit calculation of 
the amplitudes of all propagating diffraction orders. In addi-
tion, tools for the convenient transformation of the two equiv-
alent bases are also provided. Although the main manuscript 
is focused on the Cartesian basis, the Supporting Information 
provides complimentary graphs on the spherical basis.

We investigated the impact of the lattice and that of the dec-
orating particle on the optical response of the metasurfaces. 
Our analytical framework constitutes an extraordinary tool to 
disentangle the individual impact. For this purpose, we have 
introduced the coupling matrix of a 2D lattice and explored it 
explicitly for square and hexagonal lattices. Moreover, based on 
the defined bases, symmetries of polarizability and T matrix 
of isotropic, anisotropic, and helical objects were investigated. 
Stemming from the symmetry-protected zeros of the particle’s 
polarizability and the lattice’ coupling matrix in the Cartesian  

basis, we introduced simplified, efficient, and closed-form 
analytical formulas, which we used to conveniently design and 
explore three contemporary metasurface applications, namely a 
fully-diffracting metagrating, a polarization filter, and a Huygens’ 
metasurface. In addition, our proposed analytical formulas ena-
bled the investigation of the novel and exciting phenomena of 
bound states in the continuum and collective lattice resonances.

The authors hope that the techniques proposed herein 
will allow physicists and engineers to conduct investigations 
related to metasurface phenomena and propose novel photonic 
designs. Specifically, the analytical formulas presented herein 
are accessible for optimization problems and may speed up the 
optical design process. Our comprehensive multipolar theory 
not only paves the way for further exploration of the rich physics 
of metasurfaces but also enables a paradigm shift in designing 
next-generation optical devices. As far as further endeavors are 
concerned, the presented work could be expanded to incorpo-
rate evanescent modes from the 2D arrays and extract more 
analytical expressions from the existing general equations for 
on-demand, specific metasurface applications.

Appendix A: Field Expansion via Spherical  
Wave Functions

Assume a particle positioned inside an infinite, nonisotropic, 
linear, homogeneous, and isotropic medium. An electromag-
netic field illuminates the particle. The total electric field in the 
spatial domain outside and around the particle at an angular 
frequency ω consists of the incident and scattered fields. Each 
of these fields can be expanded using vector spherical har-
monics (VSH) as[47]
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with jmqv  and jmbv , j  = {1, 2, 3}, m  = {− j, …, j}, v  = {e, m}, the 
electric/magnetic incident and scattered field expansion coef-
ficients, respectively. The wavenumber k corresponds to the 
medium that surrounds the particle, and r  > rc, with rc being 
the radius of the sphere that circumscribes the particle. More-
over, the VSH functions are defined as
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with l = 1 for the incident field and l = 3 for the scattered one. 
( ) ( )(1)z x j xj j=  is the spherical Bessel function of the first kind, 
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while ( ) ( )(3)z x h xj j=  is the spherical Hankel function of the first 
kind. Finally, ( )P xj

m  is the associated Legendre polynomial.
The scattering coefficients can be calculated, using the 

orthogonality relations, as a function of the incident field via 
the following formulas,
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where the integrating surface S is any sphere enclosing the 
particle, as shown in Figure 1. Generally, Equation (A3) cannot 
be calculated analytically, except for simple geometries, like 
spheres.[116] Therefore, the elements of the T matrix of the 
particle understudy can be numerically obtained after a series 
of simulations for a sufficient number of either plane-wave 
incidences[55] or normalized VSH functions of (A2) as inci-
dence.[56,57] Up to the octupolar order or N = 3, which is the limit 
of this work, the calculation is affordable and adequately fast 
for most particle geometries with a modern computer. Thus, it 
is a proper pre-processing step for the 2D array scattering com-
putations performed herein. Moreover, the T matrix calculation 
is done once. Afterward, metasurface response computations 
can be performed quickly for various lattice setups, angles of 
incidence, and frequency ranges via the presented formulas.

Appendix B: Normalized Polarizability and 
Denormalized Polarizability in SI Units

In this work, the normalized polarizabilities are used in the 
definition of Equation (2). They are all dimensionless and, 
hence, can be directly compared to each other. Nevertheless, if 
the polarizabilities in SI units are required, they can be directly 
obtained from the normalized ones as
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with {j, j′} = {1, 2, 3} and {v, v′} = {e, m}. More information 
about calculating the prefactors ζj can be found in Section S.III, 
Supporting Information.

Appendix C: Field and Multipole Vector 
Definitions

The irreducible multipole moment vectors in Equation (2) are 
defined as
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while the fields are defined as in Equation (C2)
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with the magnetic multipoles m, Qm and Om and fields 
, {1,2,3}HH jj = , defined in similar fashion as the electric ones 

above, but with a multiplication with the prefactor iη, as in the 
case of Equation (2).

The components of multipole moment vectors used, 
herein, and defined in Equation (C1), form an irreducible set 
of Cartesian multipole moments that are sufficient for the 
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representation of a scatterer’s response up to the respective 
expansion order. We have used the real spherical harmonics 
corresponding to atomic orbitals, p, d, and f[92] for the combina-
tion and order of the vectors. Other irreducible sets of multipole 
moments can be formed from the quadrupole, and octupolar 
matrices,[86] depending on the problem under study or for con-
venience (Section S.IV, Supporting Information).

Appendix D: Radiation Field Definition 
in Cartesian Coordinates
The scattering far-field from a particle described up to octupolar 
order in Cartesian coordinates is defined as
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where r̂r  is the position unit-vector.
The components of the vectors Q  and O  are defined as

ˆQ Q rv v∑=α
β

αβ β  (D2a)

ˆ ˆO O r rv v∑=α
βγ

αβγ β γ  (D2b) 

with {α, β, γ} = {x, y, z} and v = {e,m}. The Cartesian multipole 
moments Qv

αβ  and O v
αβγ  are the elements of the 2D quadru-

polar and 3D octupolar matrices, respectively, as defined in 
ref. [86]. The vectors of Equation (D2) are used only for the cal-
culation of the far-field in Equation (D1) and are different from 
the irreducible Cartesian multipole moment vectors Qv and O 
used in this work and defined in Appendix C.

Appendix E: Transformations between 
Spherical and Cartesian Coordinates for 
Multipoles and Fields

Following the procedure of ref.  [60], the induced Cartesian 
multipole moments are related to the scattering coefficients of 
Equation (1) as
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Note that ( )1 †F Fj j= − .
The transformations between Cartesian and spherical mag-

netic multipole moments are performed similarly, according to 
the definitions of Equations (1) and (2). Moreover, the local or 
incident fields on the scatterer are related to the incidence coef-
ficients of Equation (1) as
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Herein, for the sake of simplicity, normalized incident field 
amplitudes are employed.

The induced multipole moments of a particle in the Car-
tesian coordinates when illuminated by an incident wave 
can be calculated as a function of the induced currents, as 
depicted in Figure  1a. Specifically, the multipoles in Carte-
sian coordinate up to the quadrupolar order can be calcu-
lated via[117]
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where {α, β} = {x, y, z}. The connection between the multipole 
moments defined above in Cartesian coordinates and the 
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multipole moments vectors defined in Equation (C1) is further 
elaborated in the Supporting Information.

Appendix F: Multipole-to-Field Translation Tensor 
WW  and Coordinates Transformation Tensor RR

In Equation (4), the W j is defined as
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The elements of the tensor W  for each multipolar order, 
required for the scattered field calculation in Equations (4) and 
(7), are given as in
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where θ is the polar angle of the wavevector of the respective 
diffraction order. The vectors θ̂  and φ̂ can be expressed as a 
function of the vectors x̂x, ŷy, and ẑz using the tensor R  as
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Appendix G: Transformations between Spherical 
and Cartesian Coordinates for Scattering and 
Extinction Cross-Sections

The scattering cross-section, expressed in spherical coordinates, 
is defined as[47]
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where | · |2 is the 2-norm of a vector or a matrix. Herein, the 
multipole order is limited to the octupole or j = 3, as it is the 
scope of this work.

To express σsca as a function of the multipole moments 
in Cartesian coordinates, transformations (E1) and (E2) are 
employed. Therefore, (G1) is rewritten with the multipole 
moments expressed in Cartesian coordinates, defined in 
Appendix A. However, for the specific transformation matrices 
|Fj−1|2 = 1, (G1) can be manipulated further if ζj are, also, calcu-
lated. Therefore,
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Similarly, the extinction cross-section can be calculated as a 
function of the multipole moments and the fields represented 
in Cartesian coordinates. The extinction cross-section, herein 
up to j = 3 order, is defined as[47]
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where the superscript * denotes the conjugate operation and 
the superscript T denotes the transpose operation. If the trans-
formations Equations (E1)–(E3) are employed, and after the 
identity 1,T 1,F F Ij j =− − ∗  is utilized, Equation (G3) finally arrives to
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The absorption cross-section can be, afterward, calculated 
from Equations (G2) and (G4), as σabs = σext − σsca.
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More information about deriving the formulas of 
this Appendix can be found in Section S.V, Supporting  
Information.

Appendix H: Definition of the Mie Angles

Assume that a particle is isotropic and is described by the elec-
tric and magnetic Mie coefficients, aj and bj, respectively, where 
Nj ∈ . If the particle is non-absorbing, then the complex-valued 

Mie coefficients can be represented with a single real valued 
angle as[103,108,118,119]

1

1 i tan
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E

i Ea ej

j
j

j

θ
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−
= θ  (H1)

1

1 i tan
cos

M
M

i Mb ej

j
j

j

θ
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where −π/2 ⩽ θEj ⩽ π/2 and −π/2 ⩽ θMj ⩽ π/2 are the electric and 
magnetic (detuning) Mie angles, respectively.[103] The expres-
sions above capture any possible and physically meaningful 
Mie coefficient values that agree with the optical theorem.
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