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Abstract

Shannon’s theory of communication created a set of tools for studying complex

systems in an abstract and powerful way, providing the core foundations for the field

of information theory. This thesis uses these ideas to provide a framework for studying

the transverse degree of freedom of an optical field, appropriate for both classical

and quantum states of light. This degree of freedom is in principle an unbounded

space, providing a complex resource for encoding a large amount of information. This

work focuses on studying the physical limits to the information of this space, both in

terms of fundamental theoretical limitations as well as practical limitations due to

experimental implementation and error.

This thesis will pay particular interest to the design and implementation of a

quantum key distribution system encoded using a particular set of transverse modes

for encoding known as orbital angular momentum states, which represent normal

modes of a typical free-space optical system. This specific technological implementation

provides a motivation that acts to unify many of the themes in this work including

quantum state preparation, state detection or discrimination, and state evolution
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or propagation. Additionally, such a setup gives a specific physical meaning to the

abstract tools we will be utilizing as the information that we will be quantifying can

be thought of as a measure of the possible complexity or information content of a

single photon.

Chapter 1 provides a brief introduction to information theory and the basic

concepts and tools that are used throughout this work, as well as a basic introduction

to quantum key distribution. Chapter 2 theoretically explores the fundamental limits

of the information capacity of a channel due to diffraction, as well as computes the

communication modes of a channel using a normal mode approach to propagation.

Chapter 3 concerns the experimental implementation of a free-space quantum key

distribution system including quantum state preparation and detection, as well as

demonstration of a working system. Finally, in chapter 4 we consider the effects

of a noisy channel on our analysis, especially decoherence due to the presence of

atmospheric turbulence.
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Chapter 1

Introduction

As conscious living beings we all have our own subjective experiences that we live with.

One of the amazing features of the human race is the ability to abstract these feelings

and experiences and represent these thoughts and ideas. The appearance of language

within our species has sharpened and extended this ability tremendously, as well as

has given us the ability to transmit meaning to others. This ability to communicate

with other people is one of the fundamental elements of what makes us human.

The tools we use to transmit information have grown and evolved through history

enabling ever more complex communication. The creation of spoken language encoded

ideas or meanings into distinct sounds. The invention of writing put the information

into a form that gave the ideas a permanence that allowed ideas to spread further and

be remembered longer. The modern era gave birth to electronic means of encoding

and transmitting information that now allows the flow of ideas to occur virtually

instantly and between nearly any two points on the earth.
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This chapter will introduce the basics of information theory from the perspective of

communication. These tools will provide the basic context for describing the transverse

degree of freedom of light within the framework of communication or information.

This provides a universal framework for thinking about such topics as spatial mode

modulation, optical beam propagation, and measurement theory that will be explored

in later chapters. In addition, section 1.2 will give a brief introduction to the field of

quantum communication and cryptography which provides a specific technological

implementation that integrates many of the topics that will be discussed throughout

this thesis and thus provides a motivation for many of the ideas that will be presented.

1.1 Shannon Information Theory

The complexity of modern communication has given rise to a number of fields that

try to model and thus better understand this phenomena. One of the major areas

that has arisen in this context is the field of information theory. Information theory

tries to analyze information qua information, and is seen as having been formally

established in the seminal paper by Claude Shannon, “A mathematical theory of

communication” [9]. Shannon gave a generalized picture of communication which is

shown schematically in Fig. 1.1 and consists of three stages; a sender and receiver

(traditionally named Alice and Bob), and a physical medium or channel over which

the intended information is transmitted between Alice and Bob.
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Intended
message

Received
message

ReceiverTransmitter

Channel

Figure 1.1: Schematic of Shannon’s general communication system

Alice must encode the intended information onto some physical medium that

can be transmitted to Bob. This stage is the fundamental stage of abstracting or

symbolically representing meaning. Language is a natural example of this. In speech a

specific idea is represented by a specific sound or grouping of sounds, while in written

language the representation of the idea is in the form of visual characters or symbols.

In general, ideas are represented in some physical form that can be transmitted and

ultimately experienced or sensed by another person. Each physical symbol is chosen

from a set of distinct possible symbols with pre-agreed upon meanings.

So in the general communication scheme of Fig. 1.1, Alice translates the intended

message into a series of abstract symbols. Each symbol is encoded onto the state of

the physical medium in one of a number of different possible configurations. The list

of possible configurations or symbols x 2 X is called the alphabet, in analogy with

written communication. The information I (X ) of a random symbol X with N equally

likely possible values x 2 X is defined to be

I (X ) = log b(N ): (1.1)
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The logarithmic measure of information is chosen because the number of distinct

possible messages generally grows exponentially with resources. For example if a

message contains n independent random symbols X , each chosen from an alphabet of

size N , then the total number of possible combinations of sequences is N n , and the

amount of information contained in this sequence is

I (X n ) = log b(N
n ) = n logb(N ) = nI (X ): (1.2)

It should be noted that information as defined by Eq. (1.1) is only defined to within a

constant, which is equivalent to the freedom to choose the base bof the logarithm which

defines the units of information. If the natural logarithm is chosen then information is

given by nats, and if base two is chosen then the information is in bits.

Although Eq. (1.1) specifies the information for a message with equally likely

outcomes, this is not always the case. A more general method of quantifying the

information of an unknown process or message is to consider a set of possibilities

x 2 X that are not equally likely. In this case each outcome will have an associated

probability

p(x) � p(X = x); (1.3)

that represents the relative likelihood that the event X will be represented by the

particular possibility x. The more probable an event x is to occur, the less weight

or information is conveyed when x occurs. For instance if p(x) = 1 , then there is no
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difference in knowledge before and after the event occurs and thus I (x) = 0 . Whereas,

if p(x) � 0, then if x occurs this is very surprising, i.e. a lot of information is gained

and thus I (x) should be large. The information gained from measuring x 2 X is

therefore given by

I (x) � I (X = x) = log

 
1

p(x)

!

= � log(p(x)): (1.4)

The average information per event X is given by

H (X ) = E[I (x)] =
X

x
p(x)I (x) = �

X

x
p(x) log(p(x)); (1.5)

where E is the expected value operator. H (X ) is known as the Shannon information

or entropy by analogy between Eq. (1.5) and the thermodynamic formula for entropy

S given by

S = kB HB = �k B

X

x
p(x) log(p(x)); (1.6)

where kB is Boltzman’s constant, p(x) represents probabilities of a system existing in

microstate x, and HB is the function used in Boltzman’s H-theorem. Note that if all

outcomes of an event X are equally likely, i.e. if the probabilities are given by

p(x) = 1 =N 8x 2 X; (1.7)
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then the information is

I (x) = � log(1=N) = log( N ); (1.8)

and we recover the expression given by Eq. (1.1).

The Shannon information given by Eq. (1.5) can describe equally well the amount

of information that Alice can encode in a message as well as the amount of information

that Bob learns upon receiving that message. If we say that the channel transmits

from A ! B, i.e. Alice sends some symbol A = a 2 A and Bob measures some

possible state B = b 2 B, then the expectation value of the amount of information

that Bob obtains upon measurement of his received symbol is given by H (B), where

the probabilities p(x) in Eq. (1.5) are replaced by the probability of Bob detecting

mode b2 B given by p(b). If the channel is ideal, than Bob receives the exact encoded

message Alice transmitted and thus Bob has the same amount of information as was

sent and H (B) = H (A). However for a general channel there will be errors and some

of the information necessary to describe Bob’s detection will be caused by these errors.

Assuming that Alice sent a, the amount of the information that Bob gains from his

measurement B = b that are due to these errors alone can be quantified by considering

the entropy of B conditioned on A = a given by

H (B jA = a) = �
X

b

p(bja) log(p(bja)): (1.9)
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The average or expected error is given by the conditional entropy H (B jA) given by

H (B jA) = E[H (B jA = a)] = �
X

a;b

p(a)p(bja) log(p(bja)): (1.10)

The average amount of information that Alice transmits to Bob in a noisy or imperfect

channel is thus given by the mutual information which is simply the information Bob

measures minus the information that is not due to Alice quantified by the conditional

entropy, i.e.

I (A; B) � H (B ) � H (B jA): (1.11)

The relationships between the Shannon entropies, the conditional entropy, and the

mutual information is shown schematically in Fig. 1.2.

Generally one does not know the probabilities p(b) a priori, as this depends both

on the encoding scheme as well as the channel itself. Therefore it is often convenient

to use the identity

p(b) =
X

a
p(bja)p(a); (1.12)

to make the dependence on p(a) and p(bja) explicit. This way information due to

the encoding and to the channel are separated as p(a) is based on the encoding used

and the conditional probabilities p(bja) are a property of the channel which can be
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I (A; B) H (B jA)H (AjB )

H (A) H (B )

Figure 1.2: The marginal entropies representing the information that Alice encodes
H (A) and Bob measures H (B) is represented by the blue and red circles respectively.
The areas that do not overlap are the conditional entropies and the overlapping region
represents the mutual information I (A; B).

experimentally tested. Using this identity Eq. 1.11 can be written as

I (A; B) = �
X

b

p(b) log(p(b)) +
X

a;b

p(bja)p(a) log(p(bja))

= �
X

a;b

p(bja)p(a) log

0

@
X

a0

p(bja0)p(a0)

1

A +
X

a;b

p(bja)p(a) log(p(bja))

=
X

a;b

p(bja)p(a) log

 
p(bja)

P
a0 p(bja0)p(a0)

!

;

(1.13)

where the last line is given in terms of quantities that are directly available to the

experimenter.
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The final stage of communication shown in Fig. 1.1 is decoding of the received

message by Bob. However, a noisy channel (i.e. a channel with a non-zero value of

H (B jA)) means that Bob’s message will contain errors, and the average amount of

information contained in the received message that correlates with the message Alice

sent is I (A; B). Alternatively, if Alice and Bob know in advance that the channel

is imperfect, then Alice can encode redundant information in the sent message in a

predetermined way which Bob can than use to correct for possible errors in his received

message. In what is now known as Shannon’s noisy-channel coding theorem [10],

Shannon showed that in principle an intended message could be recovered using error

correction with negligible probability of error. However, this is true only if the average

amount of information that is extracted per symbol is less than the channel capacity

C given by mutual information maximized over all input weightings p(a), i.e.

C = sup
p(a)

I (A; B): (1.14)

The maximum information rate transmitted into the channel is simply the symbol

rate times I (A; B). In order to maximize communication there are three primary

methods available. The first method is to maximize the rate at which symbols are

generated and sent. The second method is to maximize the information of each symbol,

represented by either H (A) or H (B), which is done primarily by using the largest

alphabet possible. Finally one wants to find a means of communication that minimizes
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the errors of transmission H (B jA), which may come from the channel or imperfect

transmitters or receivers.

Much of this work focuses on communication with optical fields that exploit the

large configuration space afforded by the transverse spatial degree of freedom of the

field to maximize the symbol alphabet and the limitations of such a scheme.

1.2 Quantum Cryptography

Maximization of the information capacity of a channel is not the only parameter that

is generally cared about in communication. If the channel is a public channel, or there

is a fear of an eavesdropper listening in on the channel, then it may be desirable to find

a way for Alice and Bob to communicate in a secure fashion. One standard method

used is to encrypt the message with a cryptographic key. This is an algorithm that

takes the message plus a random key to generate a new message that (ideally) contains

only random information if one does not know how to decrypt the message (such as

by knowing the key). Standard methods generally rely on computational complexity

for encryption, but an exciting alternative is quantum cryptographic methods such as

quantum key distribution (QKD), which relies on using quantum resources to securely

distribute a random key for use in encrypting an intended message [11].
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1.2.1 Communication with quantum states

Section 1.1 gave an introduction to some of the theoretical foundations of information

and communication. Expanding this theory to include tools that require quantum

resources leads to the fields of quantum communication and quantum information.

One of the fundamental features of a quantum system that becomes one of the basic

tools in quantum information is the phenomena of superposition. Consider a system

that can be measured in one of two mutually exclusive states which we can write

in the standard Dirac notation as j0i or j1i . If this were simply a classical system

then we would have each symbol or bit x = 0 or 1 encoded using the states j0i or j1i .

However as a quantum system the most general possible state j i of this system is

represented as the (normalized) linear combination

j i = a j0i + bj1i ; (1.15)

where a; b2 C, and

jaj2 + jbj2 = 1: (1.16)

The state in Eq. (1.15) is a general representation of what is called a quantum bit or

qbit with the states j0i and j1i acting as a basis for this representation.

If Alice prepares a qbit in the state given by Eq. (1.15) and Bob checks to see if

the state was in the j0i or j1i state, he will get a definite answer of one or the other
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with probabilities given by

p(x = 0) = jaj2 ; and p(x = 1) = jbj2 : (1.17)

Thus at most Bob only gets one bit of information per measurement. This type of

measurement is known as projection measurement. In general a projection measure-

ment is described by a Hermitian operator M̂ which can be expanded in terms of it’s

spectral decomposition

M̂ =
NX

n
� n P̂n =

NX

n
� n j� n ih� n j ; (1.18)

where P̂n = j� n ih� n j are projectors of the N orthogonal eigenstates j� n i spanning the

N -dimensional space, and � n are corresponding eigenvalues of M̂ . A projection style

measurement of M̂ will result in one of the N outcomes � n with the probability of

measuring the nth state given by

pn = h jP̂n j i =
�
�h j� n i

�
�2 : (1.19)

Therefore the case of Bob testing if the state is j0i or j1i corresponds to projectors

P̂0 = j0ih0j and P̂1 = j1ih1j : (1.20)
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A special feature of measurements of quantum systems is the ability to choose a

different measurement scheme M̂ 0 for the same system with projectors over states j� 0
n i

that are superpositions of the eigenstates j� n i of M̂ . M̂ and M̂ 0 are said to represent

incompatible observables and will introduce uncertainty into Bob’s measurement, i.e.

the entropy of Bob’s measurement conditioned on Alice’s preparation will not be zero.

For instance if Alice prepares the system in the state j0i and Bob measures the state

using the projectors given by Eq. (1.20), he will decide the symbol was zero with 100%

certainty. However if instead Bob makes a measurement by projecting over the states

j� � i =
1
2

�
j0i � j1i

�
; (1.21)

he will find the state in either j� + i or j� � i each with 50% probability. Therefore, even

in the absence of noise the conditional entropy is one bit and the mutual information

between Alice and Bob is exactly zero. After the measurement either the particle itself

will have been destroyed, such as when a photon is detected, or the quantum state

will have been collapsed into the detected state and any subsequent measurement will

yield the same result and so there is nothing more Bob can do to recover the lost

information.
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1.2.2 Quantum key distribution

One of the first papers on QKD was given by Bennett and Brassard in 1984 and is

aptly known as the BB84 protocol [12]. In a BB84 scheme Alice sends a random key

to Bob using at least two distinct sets of modes from incompatible observables M̂ and

M̂ 0 for encoding. For each symbol that is transmitted, Alice randomly chooses which

alphabet or basis of states to choose her symbol from, and Bob randomly chooses

which basis to measure in. An important constraint on these modes is the requirement

that both sets of modes span the same Hilbert (sub)space and each basis of states

must represent a mutually unbiased basis (MUB) with respect to any other basis

used in the scheme. This means that if a state in one basis is measured by projecting

in another, then the probability of detection is equal among all states and thus the

mutual information between the prepared state and measured state is identically zero.

This can alternately be written as

�
�haj bi

�
�2 = 1=N; (1.22)

where jai and jbi are any two states from different MUBs and N is the dimensionality of

the Hilbert space. Security comes from the fact that any eavesdropper (conventionally

referred to as Eve) who may have access to the transmitted state will be ignorant of

which basis each state was prepared and as a result, will introduce errors into the
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stream of symbols due to this ignorance and the inherent quantum uncertainty in

measuring such general unknown states.

H=V basis D=A basis
Symbol 0 1 0 1
State jH i jV i jD i jAi

Table 1.1: Encoding of binary symbols in the original BB84 scheme of Ref. [12]
demonstrating the use of two incompatible polarization bases.

The original example in Ref. [12] used the polarization of photons to encode the

key. Each symbol consisted of a single linearly polarized photon whose orientation

determines whether the state is a binary zero or one. In the first basis the photon

polarization is either horizontally or vertically oriented i.e.

j0i 1 = jH i and j1i 1 = jV i : (1.23)

A second basis was chosen such that the polarization is linear and orientated along

the diagonal and anti-diagonal directions, which can be represented in terms of the

original basis as

j0i 2 = jD i =
1

p
2

(jH i + jV i) and j1i 2 = jAi =
1

p
2

(jH i � jV i) (1.24)

respectively. Alice randomly sends in either the H=V or D=A basis and Bob chooses

which basis to make a measurement in. After sending a sufficiently long message Alice
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and Bob will sift the key by announcing which basis was used for each symbol and

keep only the part of the message in which both choose the same basis.

Alice and Bob then announce part of their key to test for errors to check for the

presence of Eve, as her presence will necessarily introduce errors. For instance if

Eve measures and then resends in a randomly chosen basis, she will measure in the

wrong basis half of the time and thus Bob, measuring in the correct basis, will get an

incorrect bit half of these times. For instance if Alice prepares the symbol x = 0 in the

H=V basis she will send state jH i . There is a 50% chance Eve will choose the correct

H=V basis in which case she will measure and send the same state to Bob introducing

no errors. However, if Eve choses to measure in the D=A basis then she will measure

and resend either jD i or jAi to Bob. In both of these cases a measurement by Bob in

the correct H=V measurement will be completely random with a measurement of jH i

and jV i both occurring with a probability of 50%. A list of possible combinations is

given in Table 1.2. If Eve is using an intercept-resend strategy she will induce an error

rate of at least 25%. Therefore if Alice and Bob measure an error rate of less than

25%, then they can be certain there was no eavesdropper making such an attack.

Alice/Bob’s Basis Eve’s Basis Frequency Error Contribution to total error
H=V H=V 1/4 0% 0%
H=V D=A 1/4 50% 25%
D=A H=V 1/4 50% 25%
D=A D=A 1/4 0% 0%

Table 1.2: Introduction of errors into the sifted key in a BB84 QKD scheme due to an
eavesdropper (Eve) intercepting and measuring each symbol in a random basis and
then resending the measured symbol to Bob.
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The error rate caused by Eve in an intercept-resend strategy can be generalized

to using more than two MUBs and using a state space dimensionality greater than

two. If the number of MUBs used is N , then Eve will choose the wrong basis with

probability (N � 1)=N. If the dimensionality of the Hilbert space is d, and Eve

measures in the incorrect basis, Bob will get an error with probability (d � 1)=d.

Therefore the intercept-resend strategy will in general create an error with probability

(N � 1)(d � 1)=Nd. Thus the security of the protocol can be improved by increasing

the state space or the number or MUBs and it can be shown that this holds true even

for more sophisticated eavesdropping strategies [13, 14]. Although security is improved

by increasing either N or d, increasing the number of MUBs has the disadvantage of

not only increasing the probability that Eve will choose the wrong basis, but also that

Bob will choose incorrectly as well, thus decreasing the sifted key rate by a factor of

N . For this reason our work focuses entirely on an increase in the number of symbols

used for encoding, rather than on finding a large number of MUBs.
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Chapter 2

Theory of spatial mode communication

As was demonstrated in chapter 1, using large alphabets or state spaces to encode

information in a communication channel can allow for significant increases to channel

communication rates as well as improvements in security in QKD. A particularly

attractive physical resource that allows for many distinct states is the transverse or

spatial degree of freedom of light, as the number of modes needed to describe an

arbitrary field in a plane are unbounded. Optical means of communication are a

natural and common means of communication, although exploiting spatial modes of

light have only recently begun to be explored in this context. This interest includes

both increasing transmission rates in classical channels [15] as well as for use in QKD

systems [3, 14, 16, 17]



CHAPTER 2. THEORY OF SPATIAL MODE COMMUNICATION 19

2.1 Diffraction limited communication

As previously seen, the benefit of using a resource for communication depends largely

on the number of distinct possible states N for that resource. Although the spatial

degree of freedom of an optical field appears unbounded, in practice N will always be

limited. The primary physical mechanism limiting N will be diffraction and loss due

to the sender and receiver having finite apertures. N can be estimated by imagining

Alice communicates to Bob by focusing a beam to a spot in Bob’s receiver as shown

in Fig. 2.1. Two spots will be barely resolvable if they are separated by the Rayleigh

criterion given by

�x / �z=D T ; (2.1)

where � is the wavelength, z is the separation between apertures and DT is the

transmitter diameter. The area of each spot therefore takes up roughly

(�x) 2 / (�z )2=AT ; (2.2)

where AT is the area of the transmitting aperture.

The total number of spots distinguishable in the receiver aperture is therefore

equal to the number of spots that fit within an area of the receiver AR which gives

N � AR=(�x) 2 �
ARAT

(�z )2
= DF ; (2.3)
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Figure 2.1: Communication scheme where various symbols are encoded by the location
of distinct spots focused within the receiver’s aperture. The number of distinct spots
is given by the Fresnel number product DF of the sender and receiver.

where DF is known as the Fresnel number product of the sender and receiver. There-

fore the amount of information that can be transmitted by a diffraction limited

communication channel is expected to be approximately

I (A; B) � log(DF ): (2.4)

2.2 Communication modes

The more rigorous method of counting the number of available modes is to consider

the Green’s function operator Ĝ that maps functions in Alice’s aperture A to Bob’s

aperture B, i.e.

Ĝ : A ! B : (2.5)

The Green’s function operator Ĝ includes loss from both apertures as well as the

propagation in the channel, and is therefore generally not a unitary or information
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preserving map. For all physically realistic situations Ĝ will be represented as a

Hilbert-Schmidt operator, meaning an operator that is a linear operator with a norm

of finite measure and therefore by Mercer’s theorem [18] there will be a normal mode

decomposition of Ĝ. Thus we can write the propagator as

Ĝ =
X

n
gn jbn ihan j ; (2.6)

where jan i 2 A and jbn i 2 B are orthonormal sets of modes within their respective

apertures. Equation (2.6) can be rewritten as the set of eigenequations

ĜyĜ jan i = jgn j2 jan i ĜĜy jbn i = jgn j2 jbn i : (2.7)

The modes in Eqs. (2.6) – (2.7) are known as the communication modes [19], and

Eq. (2.6) can be interpreted as a one-to-one map of the set of modes jan i onto the set

jbn i with coupling constant gn (i.e. power efficiency � n = jgn j2). Such a decomposition

discretizes the problem and allows us to apply the discrete tools developed in section 1.1

that allow us to quantify a physical process in terms of information theoretical concepts.

In addition, the communication modes abstract the problem of propagation from all

further analysis, allowing a full characterization of the problem in terms of a single

special set of modes. Therefore a careful examination of the problem of diffraction

using this perspective is both desirable and advantageous.
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2.3 Channel capacity with communication mode

encoding

Since Eqn. (2.6) specifies a one-to-one map of modes, this means we can write the

conditional probability of Bob detecting mode jbn i given that Alice sends mode jan i

as

p(bn jam ) = � m;n ps(� n ); (2.8)

where ps(� n ) is the probability that Bob measures a signal. For communication using

single photons (such as in QKD) then � n is the probability of Bob receiving a photon

or not and thus for ideal detection

pQKD
s (� n ) = � n : (2.9)

For classical communication communication, Bob will still receive a signal, even in

the presence of loss. If the original signal was some power P0, then Bob will receive a

signal with power �P 0. If the noise equivalent power (NEP) is significantly less than

�P 0, then Bob will register the correct symbol with very high probability. Therefore,

a simple model for ps is to treat it as a threshold or step function, i.e.

pclassical
s (� n ) =

8
<

:
1 if � n > � min

0 otherwise
: (2.10)
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The value of � min must be chosen high enough that errors are not introduced from

noise, but low enough that the capacity of the channel isn’t artificially restricted. The

ideal value will depend on optimising these effects which depend on the exact nature

of the noise of the system. This is a major area of study within the fields of signal

processing and estimation theory, the details of which is beyond the scope of this

thesis.

Using the conditional probability defined in Eq. (2.8), the marginal probability of

Bob measuring mode jbn i therefore takes on the simple form

p(bn ) =
X

m
p(bn jam )p(am ) =

X

m
� m;n ps(� n )p(am ) = ps(� n )p(an ): (2.11)

Using these two equations allows us to write the mutual information in a form that

only depends on the values of p(an ) and ps(� n ),

I (A; B) =
X

m;n
p(am )p(bn jam ) log

 
p(bn jam )

p(bn )

!

=
X

m;n
p(am )� m;n ps(� n ) log

 
� m;n ps(� n )
ps(� n )p(an )

!

=
X

n
p(an )ps(� n ) log

 
1

p(an )

!

= �
X

n
p(an )ps(� n ) log

�
p(an )

�
:

(2.12)
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An expression for the channel capacity can be found by finding the supremum of

Eq. (2.12) subject to the constraint

X

n
p(an ) = 1 : (2.13)

Using the method of Lagrange multipliers this requires extremizing the function

L = I (A; B) + �

 
X

n
p(an ) � 1

!

= �
X

n
p(an )ps(� n ) log

�
p(an )

�
+ �

 
X

n
p(an ) � 1

!

;

(2.14)

where � is a constant chosen to satisfy the constraint in Eq. (2.13). The function L in

Eq. (2.14) will be maximized at points of stationarity with respect to the probabilities

p(an ), i.e.
@L

@p(an )
= 0 = �p s(� n ) log(p(an )) � ps(� n ) + �: (2.15)

Solving this equation for p(an ) gives

p(an ) = exp

 
�

ps(� n )
� 1

!

: (2.16)

Since this equation yields non-negative values for p(an ), and the sum of probabilities

is equal to one, we can see that Eq. (2.16) gives the correct range of values

0 � p(an ) � 1 8n: (2.17)
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For the quantum case where we use the signal probability pQKD
s (� n) = � n from

Eq. (2.9) the channel capacity is

CQKD = �
X

n
pQKD (an )� n log(pQKD (an )) (2.18)

with

pQKD (an ) = exp

 
�
� n

� 1

!

: (2.19)

For the classical case we assume there are N total states with efficiencies greater than

the threshold � min given by Eq. (2.10), i.e.

pclassical
s (� n ) =

8
<

:
1 if n � N

0 otherwise
: (2.20)

In this case

pclassical(an ) =

8
<

:
exp (� � 1) if n � N

0 otherwise
; (2.21)

which solving for the constraint specified in Eq. (2.13) gives

pclassical(an ) =

8
<

:
1=N if n � N

0 otherwise
: (2.22)

Therefore by Eq. (2.12) the channel capacity of a classical channel is given as

Cclassical =
NX

n=1

1
N

log(N) = log( N ): (2.23)
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2.4 Communication modes of a free-space channel

An important metric that will be shown to correspond roughly to the total number of

modes is the Hilbert-Schmidt inner product of Ĝ defined as






 Ĝ








2
� Tr

�
ĜyĜ

�
=

X

n
jgn j2 =

X

n
� 2

n : (2.24)

Assuming propagation over a distance z within a free-space optical channel assumed

to be within the paraxial regime, then the Green’s function can be written as [20]

D
r

�
�
� Ĝ

�
�
� r 0

E
� G(r; r 0) =

PR(r)P T (r 0)
i�z

exp
�

ikz + ik
�
�
�r � r 0

�
�
�
2

=2z
�

; (2.25)

where � is the wavelength, k = 2�=� is the wavenumber, and PT (r ) and PR (r ) are the

pupil transmission functions for Alice and Bob. For such a propagator






 Ĝ








2
=

ZZ �
�
�G(r; r 0)

�
�
�
2

dr 0dr = ARAT =(�z )2 = DF (2.26)

where

A =
Z �

�P(r)
�
�2 dr (2.27)

is the area of the aperture. Therefore by combining the above expressions with

Eq. (2.24), we see that the sum of the mode coupling efficiencies equals the Fresnel
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number product DF , i.e.
X

n
jgn j2 = DF : (2.28)

In order to gain any more information about the communication modes or their

coupling strengths gn , we need to solve the eigenequations in Eq. (2.7). The spatial

representation of these eigenequations is

ZZ D
r T

�
�
� ĜyĜ

�
�
� r 0

T

E
	 n (r 0

T ) dr 0
T =

ZZ
K (r T ; r 0

T )	 n (r 0
T ) dr 0

T = jgn j2 	 n (r T )

ZZ D
r R

�
�
� ĜĜy

�
�
� r 0

R

E
� n (r 0

T ) dr 0
T =

ZZ
K 0(r R ; r 0

R )� n (r 0
R ) dr 0

R = jgn j2 � n (r R );

(2.29)

where

	 n (r) � h rja n i and � n (r ) � h r jbn i (2.30)

are the spatial representations of the communication modes in Alice and Bob’s

apertures respectively. The integral kernels K and K 0 of Eq. (2.29) can be found using

Eq. (2.25). This is given by

K (r T ; r 0
T ) =

D
r T

�
�
� ĜyĜ

�
�
� r 0

T

E

=
ZZ D

r T

�
�
� Ĝy

�
�
� r R

ED
r R

�
�
� Ĝ

�
�
� r 0

T

E
drR

=
P �

T (r T )PT (r 0
T )

(�z )2

ZZ �
�PR(r R )

�
�2 e�i k

2z jr T �r R j2 ei k
2z jr 0

T �r R j2 drR ;

(2.31)

and similarly

K 0(r R ; r 0
R ) =

PR(r R )P �
R(r 0

R )

(�z )2

ZZ �
�PT (r T )

�
�2 ei k

2z jr R �r T j2 e�i k
2z jr 0

R �r T j2 drT : (2.32)
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Note that if the channel is symmetric, i.e. if

PT (r ) = PR(r ); (2.33)

then K 0 = K � and thus the eigenequations in Eq. (2.29) are complex conjugates of

each other. In this situation the eigenstates are simply related as

� n (r ) = 	 �
n (r ): (2.34)

The solutions to Eq. (2.29) depend on the form of the pupil functions PT and

PR . Two typical cases are are given in sec. 2.5 – 2.6. Section 2.5 looks at the case

of rectangular apertures, which gives solutions in separable Cartesian coordinates.

Section 2.6 gives solutions for the more typical round apertures which leads to a

natural decomposition in cylindrical coordinates.

2.5 One dimensional apertures (square geometry)

The first and simplest geometry we consider is one in which the pupil functions are

separable in Cartesian coordinates, i.e.

PR(x; y) = PR;x (x) � PR;y (y) and PT (x; y) = PT;x (x) � PT;y(y): (2.35)
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In this case Eq. (2.31) can be written as

K (r T ; r 0
T ) =

P �
T (r T )PT (r 0

T )

(�z )2

ZZ �
�PR(r R )

�
�2 e�i k

2z jr T �r R j2 ei k
2z jr 0

T �r R j2 drR

=
P �

T;x (xT )PT;x (x0
T )

�z

Z �
�
�PR;x (xR)

�
�
�
2

e�i k
2z jx T �x R j2 ei k

2z jx 0
T �x R j2 dxR

�
P �

T;y(yT )PT;y(y0
T )

�z

Z �
�
�PR;y (yR)

�
�
�
2

e�i k
2z jyT �y R j2 ei k

2z jy 0
T �y R j2 dyR

= K 1D(xT ; x0
T ) � K 1D(yT ; y0

T ):

(2.36)

Therefore we can write the eigenequation for 	(x; y ) from Eq. (2.29) as

Z
K 1D(xT ; x0

T ) m;x (x0
T ) dx0

T �
Z

K 1D(yT ; y0
T ) n;y (y0

T ) dy0
T

= � m;x  m;x (xT ) � � n;y  n;y (yT );

(2.37)

where 	 m;n (x; y) =  m;x (x) �  n;y (y) and � n = � m;x � � n;y . This means that for a

square geometry we only need to solve the one dimensional eigenequations

Z
K 1D(x; x 0) m;x (x0) dx0 = � m;x  m;x (x)

Z
K 1D(y; y0) n;y (y0) dy0 = � n;y  n;y (y):

(2.38)

It is convenient to define the one dimensional version of the norm,





 Ĝ








2
, given in

Eq. (2.26). This can be written as






 Ĝ1D








2
=

ZZ �
�
�G1D(x; x 0)

�
�
�
2

dx dx0 �
Z �

�K 1D(x; x)
�
�2 dx =

LRLT

�z
= DF;1D ; (2.39)
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where DF;1D is the 1D Fresnel number product and

L =
Z �

�P(x)
�
�2 dx (2.40)

is the generalized pupil length, which acts as the 1D analog to the area defined in

Eq. (2.27).

2.5.1 Gaussian apodized apertures

In order to solve for the eigenequations in Eq. (2.38), we need to know K 1D and thus

have a specific form for the apertures. We first consider apertures that are Gaussian

apodized as these results are known to have analytic solutions [21]. Such apertures

will be specified by the (one dimensional) pupil functions

PT (x) = exp

 
�x 2

2� 2
T

!

and PR(x) = exp

 
�x 2

2� 2
R

!

; (2.41)

which have characteristic lengths based on Eq. (2.40) of

LR=T =
Z �

�
�PR=T (x)

�
�
�
2

dx =
Z

e�x 2=� 2
R=T dx = � R=T

p
�: (2.42)

This system has a (one dimensional) Fresnel number product of

DF =
LRLT

�z
=

�� R � T

�z
=

k� R � T

2z
: (2.43)



CHAPTER 2. THEORY OF SPATIAL MODE COMMUNICATION 31

Now we can compute the kernel K 1D by plugging the pupil expressions into

Eq. (2.36). This gives

K 1D(x; x 0) =
P �

T;x (x)P T;x (x0)
�z

Z �
�
�PR;x (xR)

�
�
�
2

e�i k
2z (x�x R )2

ei k
2z (x 0�x R )2

dxR

=
e�(x 2+x 02)=2� 2

T

�z
ei k

2z (x 02�x 2 )
Z

e�x 2
R =� 2

R ei k
z (x�x 0)x R dxR

=
e�(x 2+x 02)=2� 2

T

�z
ei k

2z (x 02�x 2 )LRe�k 2 � 2
R (x�x 0)2=4z2

=
e�(x 2+x 02)=2� 2

T

�z
ei k

2z (x 02�x 2 )LRe�2D 2
F (x�x 0)2=2� 2

T :

(2.44)

Our eigenequation now becomes

� m  m (x) =
Z

K (x; x 0) m (x0)

=
LR

�z

Z
e�(x 2+x 02)=2� 2

T ei k
2z (x 02�x 2 )e�2D 2

F (x�x 0)2=2� 2
T  m (x0) dx0:

(2.45)

If we make the substitution

 (x) =  0(x) exp

 

�i
k
2z

x2

!

; (2.46)

then this becomes the real-valued eigenequation

� m  0
m (x) = ei k

2z x2
Z

K 1D(x; x 0) m (x0)

=
LR

�z

Z
e�(x 2+x 02)=2� 2

T e�2D 2
F (x�x 0)2=2� 2

T  0
m (x0) dx0

=
LR

�z

Z
e�(1+2D 2

F )(x 2+x 02)=2� 2
T e4D 2

F xx 0=2� 2
T  0

m (x0) dx0:

(2.47)
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Using a substitution of variables we can write the exponential function as

exp

 
�(1 + 2D 2

F )(x 2 + x02) + 4 D 2
F xx 0

2� 2
T

!

= exp

 
�(1 + t2)(y2 + z2) + 4 tyz

2(1 � t2)

!

=
q

� (1 � t2)
X

n
HGn (y) HGn (z)t n ;

(2.48)

where we have used Mehler’s formula [22] to express the exponential function in terms

of a bilinear expansion using the complete and orthogonal Hermite-Gaussian functions.

These functions are given by

HGn (z) =
1

q
2nn!

p
�

e�z 2=2Hn (z); (2.49)

where Hn (z) are the Hermite polynomials which can be written as

Hn (z) = ( �1) nex2 dn

dxn
e�x 2

: (2.50)

The first few Hermite-Gaussian functions are plotted in Fig. 2.2. The value of n

corresponds to the degree of the Hermite polynomial Hn(z) that makes up HGn(z).

As a result of this the HGn mode will have n � 1 nodes and thus a larger mode number

can be seen as corresponding to higher spatial frequencies of the mode. In addition

the width (or variance) of the function itself will also grow with n as can be seen in

the figure.
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Figure 2.2: Plots of the six lowest order Hermite-Gaussian functions HGn (z) given by
the expression in Eq. (2.49).

The substitution in Eq. (2.48) is true if we have

y =

s
1 � t2

1 + t2

q
1 + 2D 2

F

� T
x; z =

s
1 � t2

1 + t2

q
1 + 2D 2

F

� T
x0;

and t
1 + t2

=
D 2

F

1 + 2D 2
F

:

(2.51)

Solving for t gives

t =
1 + 2D 2

F �
p

1 + 4D 2

2D2
F

(2.52)

and

y =
(1 + 4D 2

F )1=4

� T
x; z =

(1 + 4D 2
F )1=4

� T
x0: (2.53)
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With this substitution our eigenequation becomes

� m  0
m (y) =

LR

�z

Z
e�(1+2D 2

F )(x 2+x 02)=2� 2
T e4D 2

F xx 0=2� 2
T  0

m (x0) dx0

=
DFq

1 + 2D 2
F

p
1 + t2

X

n
tn HGn (y)

Z
HGn (z) 0

m (z) dz

=
p

t
X

n
tn HGn (y)

Z
HGn (z) 0

m (z) dz

=
p

t t m  0
m (y);

(2.54)

where the integration is performed by assuming that  0
m (z) / HGm (z). We have

therefore found the communication modes which are given by the normalized functions

 m (x) =

s
(1 + 4D 2

F )1=4

� T
HGm

0

@(1 + 4D 2
F )1=4

� T
x

1

A e�i k
2z x2 (2.55)

in Alice’s aperture, and similarly by

� m (x) =

s
(1 + 4D 2

F )1=4

� R
HGm

0

@(1 + 4D 2
F )1=4

� R
x

1

A ei k
2z x2 (2.56)

at Bob’s aperture. These modes have a power coupling efficiency given by the

eigenvalues

� m =
p

t t m =

0

B
@

1 + 2D 2
F �

q
1 + 4D 2

F

2D2
F

1

C
A

1
2 +m

: (2.57)
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HG0;0 HG1;0 HG2;0

HG0;1 HG1;1 HG2;1

HG0;2 HG1;2 HG2;2

Figure 2.3: Plots of the nine lowest order 2D Hermite-Gaussian wavefunctions
HGm;n (x; y) given by the expression in Eq. (2.61). The magnitude of the ampli-
tude is represented by the color brightness, while phase (e.g. sign) is represented by
the color hue with red representing a real and positive value and blue representing a
real and negative value.

The full two dimensional solutions are just given as the product of the one

dimensional solution, i.e.

	 m;n (x; y) =  m (x) �  n (y); � m;n (x; y) = � m (x) � � n (y);

and � m;n = � m � � n :

(2.58)
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In particular, if � R;x = � R;y = � R and � T;x = � T;y = � T then the communication

modes are given by

	 m;n (x; y) =
(1 + 4D 2)1=4

� T
exp

 

�i
k
2z

�
x2 + y2

�
!

� HGm;n

0

@(1 + 4D 2)1=4

� T
x;

(1 + 4D 2)1=4

� T
y

1

A

(2.59)

in Alice’s aperture, and similarly by

� m;n (x; y) =
(1 + 4D 2)1=4

� R
exp

 

i
k
2z

�
x2 + y2

�
!

� HGm;n

0

@(1 + 4D 2)1=4

� R
x;

(1 + 4D 2)1=4

� R
y

1

A

(2.60)

at Bob’s aperture, where we have defined the two dimensional Hermite-Gaussian

functions

HGm;n (x; y) � HGm (x) � HGn (y): (2.61)

These modes have a power coupling efficiency given by the eigenvalues

� m;n = � m � � n = t1+m+n =

0

B
@

1 + 2DF;2D �
q

1 + 4DF;2D

2DF;2D

1

C
A

1+m+n

; (2.62)

where

DF;2D = DF;x � DF;y = D 2
F (2.63)

is the usual (two dimensional) Fresnel number product.
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We can use the expression for the power efficiencies � m;n given by Eq. (2.62) to

compute the informational capacity of the channel. For communication using single

photons the capacity as given by Eq. (2.18) is

CQKD = �
X

m;n
pQKD (an )� m;n log(pQKD (an ))

= �
X

m;n
exp

 
�

� m;n
� 1

!

� m;n log

0

@exp

 
�

� m;n
� 1

! 1

A

= �
X

m;n
exp

 
�

t1+m+n
� 1

!

t1+m+n log

0

@exp

 
�

t1+m+n
� 1

! 1

A ;

(2.64)

where � is the Lagrange multiplier that must be chosen such that the probabilities

are properly normalized.

There is no simple analytic formula for � in Eq. (2.64), so one must resort to using

numerical methods such as by minimizing the error function

�(�) �

0

@1 �
X

m;n
pm;n (�)

1

A

2

=

0

@1 �
X

m;n
exp

 
�

t1+m+n
� 1

! 1

A

2

: (2.65)

The results of numerically computing the channel capacity from Eq. (2.18) for a range

of values for the Fresnel number product NF;2D are plotted in Fig. 2.4. As is shown in

the figure the capacity can be expressed as

CQKD �
1
2

log(DF;2D): (2.66)
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Figure 2.4: Plot of the single photon channel capacity for a free-space channel with
apodized apertures encoded using the Hermite-Gaussian communication modes of the
channel as given by Eq. (2.64). Also plotted (dashed lines) for comparison are the
plots for log(DF;2D ) and 1

2 log(DF;2D ).

The classical channel capacity given by Eq. (2.23) is simply logN , where N is

the number of modes with efficiencies greater than � min . This means we are only

considering modes HGm;n such that

� m;n = t1+m+n > � min : (2.67)

The maximum value of Nmax such that m + n < N max is given by

� min = t1+N max ! Nmax =
log(� min )

log(t)
� 1: (2.68)
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m
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N 0
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N 0
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Figure 2.5: A configuration space diagram of Hermite-Gaussian communication modes
HGm;n . The red area indicates those states for which m + n � N 0

max .

The total number of modes N is given by counting all the modes HGm;n such

that m + n < N max which is shown diagramatically as the modes in the red region in

Fig. 2.5. This is equivalent to

N =
X

m+n<N max

1

=
N 0

maxX

m=0

0

B
@

N 0
max �mX

n=0

1

1

C
A

=
N 0

maxX

m=0

�
N 0

max � m + 1
�

=
1
2

(N 0
max + 2)(N 0

max + 1);

(2.69)
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where N 0
max = bNmaxc is the largest interger less than Nmax . Therefore the channel

capacity is

Cclassical = log

 
1
2

(N 0
max + 2)(N 0

max + 1)

!

� log

0

@1
2

 
log(� min )

log(t)
+ 1

!
log(� min )

log(t)

1

A :

(2.70)
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Figure 2.6: Plots of the classical channel capacity for a free-space channel with
apodized apertures encoded using the Hermite-Gaussian communication modes of the
channel for various threshold values � min . Also plotted (dashed lines) for comparison
is the plot for log(DF;2D ).

The classical channel capacity was computed and the results are plotted in Fig. 2.6.

The capacity was plotted for a range of values for � min from 0.1 to 0.4. In addition a

dashed curve representing log(DF;2D ) is also shown. As can be seen a threshold value
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of � min = 0:25 gives a capacity that is close to log(DF;2D ), while smaller values of � min

give larger capacities and vice versa.

2.5.2 Hard rectangular apertures

Although the Gaussian apodized pupils given in Eq. (2.41) allowed us to analytically

solve the one dimensional eigenequations of Eq. (2.38), a more realistic situation is to

have hard apertures. For hard apertures with Cartesian or rectangular symmetry the

(one dimensional) pupil functions are given by

PT (x) = rect

 
x

LT

!

and PR(x) = rect

 
x

LR

!

; (2.71)

where rect(x) is the rectangle function defined as

rect(x) =

8
<

:
1 for jxj < 1

2

0 otherwise
: (2.72)

We can see immediately that LT and LR are the characteristic lengths based on

Eq. (2.40) as
Z �

�P(x)
�
�2 dx =

Z
P(x) dx =

Z
rect

� x
L

�

dx = L: (2.73)

This system also has the simple (one dimensional) Fresnel number product as given in

Eq. (2.39) of

DF =
LRLT

�z
: (2.74)
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Now again we must compute the kernel K 1D by plugging the pupil expressions

into Eq. (2.36). Doing this gives

K 1D(x; x 0) =
PT (x)P T (x0)

�z

Z �
�PR(xR)

�
�2 e�i k

2z (x�x R )2
ei k

2z (x 0�x R )2
dxR

=
rect

�
x

L T

�
rect

�
x0

L T

�

�z
ei k

2z (x 02�x 2 )
Z

rect

 
xR

LR

!

ei k
z (x�x 0)x R dxR

=
rect

�
x

L T

�
rect

�
x0

L T

�

�z
ei k

2z (x 02�x 2 )LR sinc

 
LR

�z
(x � x0)

!

=
rect

�
x

L T

�
rect

�
x0

L T

�

�z
ei k

2z (x 02�x 2 )LR sinc

 

DF
x � x0

LT

!

;

(2.75)

where the function sinc(x) is defined to be

sinc(x) �
sin(�x )

�x
: (2.76)

As we did before, we make the substitution

 (x) =  0(x) exp

 

�i
k
2z

x2

!

; (2.77)

which gives us the real-valued eigenequation

� m  0
m (x) = ei k

2z x2
Z

K 1D(x; x 0) m (x0)

=
DF

LT
rect

 
x

LT

! Z
rect

 
x0

LT

!

sinc

 

DF
x � x0

LT

!

 0
m (x0) dx0:

(2.78)
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The solutions to Eq. (2.78) are known as the prolate spheroidal wavefunctions

(PSWs) [23]. Writing Eq. (2.78) in standard form [24] gives

2R2
0;m (c;1)S0;m (c; t) =

Z 1

�1
sinc

 
c(t � s)

�

!

S0;m (c; s) ds; (2.79)

which is equivalent to Eq. (2.78) with the substitutions

s =
2x0

LT
; t =

2x
LT

; c =
�D F

2
;

R2
0;m (c;1) =

� m

DF
; and  0

m (t) = S0;m (c; t):

(2.80)

The functions Sm;n (c; t) and Rm;n (c; t) are known as the angular prolate spheroidal

and radial prolate spheroidal functions respectively. These functions are solutions of

the differential eigenequation [24]

(t 2 � 1)
d2u
dt2

+ 2t
du
dt

+

 

c2t2 �
m2

t2 � 1

!

u = � m;n u; (2.81)

where

um;n (c; t) =

8
<

:
Sm;n (c; t) for jtj � 1

Rm;n (c; t) for jtj � 1
: (2.82)

Our eigenvalues, which are related to the radial prolate spheroidal functions, are

given by

� m = DF R2
0;m (c;1) = DF R2

0;m

 
�D F

2
; 1

!

: (2.83)
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Figure 2.7: Plot of the transmission efficiencies � m for a free-space channel with hard
apertures encoded using the prolate spheroidal communication modes of the channel.
The efficiencies display a sharp cutoff for m > D F .

A plot of � m is given in Fig. 2.7. Generally, � m falls off very rapidly for m � DF .

Therefore, for systems with DF > 1, the eigenvalues are well approximated by the

step functions

� m =

8
<

:
1 for m < D F

0 otherwise
: (2.84)

For DF � 1 we only have approximately one mode which is transmitted with an

efficiency

� � DF : (2.85)

It is a general feature of systems with hard apertures to have an abrupt cutoff in the

transmission of spatial modes as one goes to larger spatial frequencies [25]. This can
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be simply understood using Abbe’s model of diffraction in which optical propagation

between pupils is understood in terms of geometrical optical rays [20]. Each ray leaves

the aperture at a different angle with larger angles being associated with larger spatial

frequencies. The light that can be collected after the second pupil is simply the sum of

all spatial frequencies that are within the solid angle of the pupil. Since the aperture

has a hard edge, there is a hard cutoff in the angle of the rays that make it into the

aperture. This is represented diagrammatically in Fig. 2.8.

Figure 2.8: Schematic representing Abbe’s model of diffraction in which a field at a
pupil can be represented by a set of geometrical rays representing the different spatial
frequency components of that field within the first aperture. The second aperture
blocks the rays representing the high order spatial frequencies while leaving untouched
the moderate and low order frequencies.

The sharp cutoff in the spectrum of � m , as well as the fact that P
� = DF ,

means that we essentially have DF good modes to communicate with nearly lossless

transmission. For a classical channel this gives a capacity of

Cclassical = log(D F ): (2.86)
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We expect this also to be the case for communication with single photons. Again we

use the expression in Eq. (2.18) for communication using single photons given as

CQKD = �
X

m
pQKD (am )� m log(pQKD (am ))

= �
X

m
exp

 
�

� m
� 1

!

� m log

0

@exp

 
�

� m
� 1

! 1

A ;

(2.87)

and solve for the value of � that properly normalizes the probabilities. The results are

plotted in Fig. 2.9 along with log(DF ) (as the dashed line). As can clearly be seen,

the two are nearly identical and thus to a very good approximation we can claim that

CQKD = log( DF ): (2.88)

We have also uptained the eigenfunctions to Eq. (2.78) which are given by

 m (x) = So;m

 
�D F

2
;

2x
LT

!

exp

 

�i
k
2z

x2

!

(2.89)

at Alice. Repeating the procedure to find the modes at Bob gives us the kernel K 0
1D

in the eigenequation for � m that is identical to the complex conjugate of K 1D if we

make the substitution

LT ! LR : (2.90)
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Figure 2.9: Plot of the single photon channel capacity for a free-space channel with
hard apertures encoded using the prolate spheroidal communication modes of the
channel (Eq. (2.87)). Also plotted (dashed lines) for comparison is the plot for log(DF ).

Therefore the communication modes at Bob are simply

� m (x) = So;m

 
�D F

2
;

2x
LR

!

exp

 

i
k
2z

x2

!

: (2.91)

The functions So;m
�
�D F =2;2x=L

�
are real and continuous and have exactly m

zeros within the aperture (i.e. for x 2 (�L= 2; L=2)) [24]. These eigenfunctions are very

similar to the eigenmodes that were derived in section 2.5.1 (Eqs. (2.55) – (2.56)), and

for mode numbers m � DF , the two sets of modes are nearly indistinguishable [26].

Plots of the communication modes for a system with a (one dimensional) Fresnel

number product of DF = 5 are shown in Fig. 2.10 for the modes with non-negligible
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Figure 2.10: Plots of the prolate spheroidal wavefunctions that act as the commu-
nication modes for a system with hard apertures and a Fresnel number product of
DF = 5 . In addition the Hermite-Gaussian communication modes of an analogous
channel with Gaussian apodized apertures are plotted (dashed lines) in order to show
the close similarities between the two sets of modes.

transmission efficiencies � m . In addition the Hermite-Gaussian modes for a system

with identical Fresnel number product and aperture size L = �
p

� are superimposed

as the dashed line demonstrating the similarities between the two sets of modes.
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2.6 Cylindrical apertures

The second type of geometry we consider is one in which the pupil functions are

cylindrically symmetric, i.e.

PT (r) = PT (r ) and PR(r) = PR(r ); (2.92)

where r � jr j. The area of such pupils can be given by the one dimensional integral

over r as

A �
ZZ �

�P(r )
�
�2 dr = 2�

Z �
�P(r )

�
�2 r dr: (2.93)

Such a geometry represents round pupils which is a more typical case relative to

the geometry discussed in section 2.5. Assuming such a geometry, Eq. (2.31) can be

written as

K (r T ; r 0
T ) =

P �
T (r T )PT (r 0

T )

(�z )2

ZZ �
�PR(r R)

�
�2 e�i k

2z jr T �r R j2 ei k
2z jr 0

T �r R j2 drR

=
P �

T (r T )PT (r 0
T )

(�z )2 exp

 
ik
2z

�
r 02

T � r 2
T

�
! ZZ �

�PR(r R)
�
�2

� exp

"

i
kr R

z

�
rT cos(� R � � T ) � r 0

T cos(� R � � 0
T )

�
#

drR :

(2.94)

We can expand the exponential terms in the integral in terms of Bessel functions using

the identity

eiz cos(�) =
1X

n=�1
i nein� Jn (z); (2.95)
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where the functions Jn(z) are the Bessel functions which can be defined by the

generating sequence [27]

e
1
2 (t�1=t)z =

1X

n=�1
tnJn (z): (2.96)

Equation (2.95) is known as the Jacobi-Anger expansion and is derived by the substi-

tution t = i exp(i� ) in Eq. (2.96). Therefore our kernel becomes

K (r T ; r 0
T ) =

P �
T (r T )PT (r 0

T )

(�z )2 e
ik
2z (r 02

T �r 2
T )(�1) n im+n

Z �
�PR(r R)

�
�2 rR drR

�
X

m;n
ein� 0

T e�im� T Jm

 
kr RrT

z

!

Jn

 
kr Rr 0

T

z

! Z 2�

0
ei(m�n)� R d� R

=
P �

T (r T )PT (r 0
T )

(�z )2 e
ik
2z (r 02

T �r 2
T ) X

m
eim(� 0

T �� T )

� 2�
Z �

�PR(r R)
�
�2 Jm

 
kr RrT

z

!

Jm

 
kr Rr 0

T

z

!

rR drR :

(2.97)

Now if we make the substitution

	 `;p (r; �) =  `;p (r )e�i k
2z r 2

ei`� ; (2.98)
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where we have used the ansatz that all of the azimuthal dependence is due to ei`� ,

where ` is an integer, then our eigenequation (Eq. (2.29)) becomes

� `;p  `;p (r ) =
ZZ

e� ik
2z (r 02�r 2)ei`� e�i`� 0

K (r; r 0) `;p (r 0) dr 0

=
P �

T (r )PT (r 0)

(�z )2

X

m

Z
ei(`�m)� e�i(`�m)� 0

d� 0
Z

 `;p (r 0)r 0dr 0

� 2�
Z �

�PR(r R)
�
�2 Jm

 
kr Rr

z

!

Jm

 
kr Rr 0

z

!

rR drR

=

 
k
z

! 2

P �
T (r )

Z �
�PR(r R)

�
�2 J`

 
kr Rr

z

!

rR drR

�
Z

PT (r 0) `;p (r 0)J `

 
kr Rr 0

z

!

r 0dr 0:

(2.99)

We can simplify Eq. (2.99) if we assume that the pupil functions PT and PR are

simply scaled versions with the same functional form. Therefore, we assume we can

write our pupil functions as

PT (�L T ) = PR(�L R) = P(�); (2.100)

where LT and LR are characteristic lengths for the transmitter and receiver pupils

respectively, and � is a dimensionless radial coordinate. Now if we rewrite Eq. (2.99)

with the coordinate change

� = r=L T ; � 0 = r 0=LT ; and � R = rR=LR ; (2.101)
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then we get

� `;p  `;p (�) =

c2P � (�)
Z �

�P(� R)
�
�2 J` (c� R �) � R d� R

Z
P(� 0) `;p (� 0)J `

�
c� R � 0

�
� 0d� 0;

(2.102)

where

c = kL T LR=z: (2.103)

Eigenfunctions of the above equation are also eigenfunctions of the simpler equation

� `;p  `;p (�) = P � (�)
Z

P(� 0) `;p (� 0)J ` (c� 0�)� 0d� 0: (2.104)

This can be shown by applying the integral operator

Ô = P � ( ��)
Z

P(�)J (c� ��)� d� (2.105)

to Eq. (2.104), i.e.

� `;pÔ `;p (�) = � 2
`;p  `;p ( ��)

= P � ( ��)
Z �

�P(�)
�
�2 J` (c� ��) � d�

�
Z

P(� 0) `;p (� 0)J `

�
c�� 0

�
� 0d� 0;

(2.106)
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which is identical to Eq. (2.102) with

� `;p =
p � `;p

c
: (2.107)

Therefore we only need to solve Eq. (2.104) to find the communication modes.

2.6.1 Gaussian apodized apertures

In order to go any further in solving Eq. (2.104), we need to specify the form of the

apertures. As we did in section 2.5.1, we first consider Gaussian apodized apertures

in order to obtain analytic solutions [21] to gain physical insight and intuition to the

problem. Such apertures are specified by the radial pupil functions

PT (r ) = exp

 
�r 2

2� 2
T

!

and PR(r ) = exp

 
�r 2

2� 2
R

!

: (2.108)

Such apertures have areas based on Eq. (2.93) of

AR=T = 2�
Z �

�
�PR=T (r )

�
�
�
2

r dr = 2�
Z

exp

0

@ �r 2

� 2
R=T

1

A r dr = �� 2
R=T ; (2.109)

and therefore the Fresnel number product of this system is

DF =
ARAT

(�z )2
=

� �� R � T

�z

� 2

=

 
k� R � T

2z

! 2

: (2.110)
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The Gaussian widths � T and � R provide natural lengths for the transmitter and

pupil receiver, and so we use

LT = � T and LR = � R (2.111)

for our normalized coordinates as defined by Eq. (2.101). In this case our general

pupil function is simply

P(�) = exp(�� 2=2); (2.112)

and Eq. (2.104) becomes

� `;p  `;p (�) = P � (�)
Z

P(� 0) `;p (� 0)J ` (c� 0�)� 0d� 0

= e�� 2=2
Z

e�� 02=2 `;p (� 0)J ` (c� 0�)� 0d� 0:

(2.113)

In addition we have that the scaling parameter c is given by

c =
k� T � R

z
= 2

q
DF : (2.114)

Using a substitution of variables we can write

e� 1
2 (� 2+� 02)J` (c� 0�) = e� 1

2 (x+y )( 1�t
1+t )J`

 
2
p

xyt
1 + t

!

= (1 + t)t j`j=2
X

n
tn � `

n (x)� `
n (y);

(2.115)
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where we have used the Hill-Hardy theorem [28] to express the function in terms of

a bilinear expansion using the complete and orthogonal Laguerre functions. These

functions are given by

� `
n (z) =

s
n!

(n + j`j)!
e�z= 2zj`j=2 L j`j

n (z); (2.116)

where L j`j
n (z) are the generalized Laguerre polynomials which can be written as

L j`j
n (z) =

ezz�j`j

n!
dn

dzn

�
e�z zn+j`j

�
: (2.117)

The substitution in Eq. (2.115) is true if we have

� 2 =
1 � t
1 + t

x; � 02 =
1 � t
1 + t

y;

and 2
p

xyt
1 + t

= c�� 0 = 2
q

DF �� 0:

(2.118)

Solving for t gives

t =
1 + 2DF �

p
1 + 4DF

2DF
(2.119)

and

x =
q

1 + 4DF � 2; y =
q

1 + 4DF � 02: (2.120)
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With this substitution our eigenequation becomes

� `;p  `;p (y) =
Z

e� 1
2 (x+y )( 1�t

1+t )J`

 
2
p

xyt
1 + t

!

 `;p (� 0)

p
t

c(1 + t)
dx

=
t (j`j+1)=2

c

X

n
tn � j`j

n (y)
Z

� j`j
n (x) `;p (x) dx

=
t (2p+j`j+1)=2

c
� j`j

p (y);

(2.121)

where the integration is performed by assuming that  `;p (x) / � j`j
p (x). We have

therefore found the communication modes which are given by the normalized functions

	 `;p (r; �) =  `;p (r; �)e i`� e�i k
2z r 2

=
(1 + 4D F )1=4

p
�� T

� j`j
p

0

@

p
1 + 4DF

� 2
T

r 2

1

A ei`� e�i k
2z r 2

=
(1 + 4D F )1=4

p
�� T

LG`
p

0

@(1 + 4D F )1=4

� T
r; �

1

A e�i k
2z r 2

(2.122)

at Alice, where LG`
p are the Laguerre-Gaussian functions defined as

LG`
p(�; � ) = � j`j

p

�
� 2

�
ei`� : (2.123)

By symmetry we know that the communication modes at Bob’s aperture are given by

� `;p (r; �) =
(1 + 4D F )1=4

p
�� R

LG`
p

�

0

@(1 + 4D F )1=4

� R
r; �

1

A ei k
2z r 2

; (2.124)
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Figure 2.11: Plots of nine of the lowest order Laguerre-Gaussian wavefunctions
LG`

p(�; � ) given by the expression in Eq. (2.123). The complex phase information is
represented by the hue of the color in the plots, while the amplitude is represented by
the color’s brightness.

The LG`
p communication modes have a power coupling efficiency given by the

eigenvalues

� `;p = c2� 2
`;p = t2p+j`j+1 =

0

@1 + 2DF �
p

1 + 4DF

2DF

1

A

2p+j`j+1

: (2.125)

This expression is identical to the expression found in section 2.5.1 for the efficiencies

of the Hermite-Gaussian modes of a square Gaussian apodized aperture given in

Eq. (2.62) if we replace 2p + j`j by m + n. This is not a coincidence, however as a
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square Gaussian function also has cylindrical symmetry, i.e.

exp

 
�x 2

2� 2

!

exp

 
�y 2

2� 2

!

= exp

 
�x 2 � y2

2� 2

!

= exp

 
�r 2

2� 2

!

: (2.126)

This additional symmetry is also the reason for the degenerate eigenvalues in either

the HG or LG spectrum. In addition, the LG`
p modes can be expressed as a linear

combination of HGm;n modes (and vice versa) within this degenerate subspace [29]

spanned by

2p+ j`j + 1 = m + n + 1 = constant; (2.127)

i.e.

LG`
p(r; �) =

X

m+n=2p+j`j

cm;n HGm;n (x; y): (2.128)

Therefore we know that all the results concerning the channel capacity for a Gaus-

sian apodized channel encoded with LG modes is identical to the results found in

section 2.5.1.

2.6.2 Hard circular apertures

As was done in section 2.5, Gaussian apodized apertures allowed for the analytic

computation of the communication modes but hard apertures provide a more realistic

geometry. For the case of hard apertures, a communication system with cylindrical
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symmetry means we have circular apertures with (radial) pupil functionals given by

PT (r ) = circ

 
r

RT

!

and PR(r ) = circ

 
r

RR

!

; (2.129)

where circ(�) is the circle function defined as

circ(�) =

8
<

:
1 for � < 1

0 otherwise
: (2.130)

These pupils have the obvious areas of

AR=T = �R 2
R=T ; (2.131)

and therefore such a channel has a Fresnel number product of

DF =
ARAT

(�z )2
=

 
�R RRT

�z

! 2

=

 
kRRRT

2z

! 2

: (2.132)

The circular widths RT and RR provide natural lengths for the transmitter and

pupil receiver, and so we use

LT = RT and LR = RR (2.133)
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for our normalized coordinates as defined by Eq. (2.101). In this case our general

pupil function is simply

P(�) = circ(�) (2.134)

and Eq. (2.104) becomes

� `;p  `;p (�) = P � (�)
Z

P(� 0) `;p (� 0)J ` (c� 0�)� 0d� 0

= circ( �)
Z 1

0
 `;p (� 0)J ` (c� 0�)� 0d� 0;

(2.135)

where our scaling parameter c is given by

c =
kRT RR

z
= 2

q
DF : (2.136)

The solutions to Eq. (2.135) are known as the circular prolate spheroidal wavefunc-

tions (CPSW), and are the cylindrical analog of the PSWs found in section 2.5.2 [26].

Writing Eq. (2.135) in standard form [30] gives


 `;p ' `;p (�) =
Z 1

0

q
c�� 0' `;p (� 0)J ` (c� 0�) d� 0; (2.137)

which is equivalent to Eq. 2.135 with the substitutions

' `;p (�) =  `;p (�)
p

�; and 
 `;p =
p

c� `;p =
r

� `;p

c
: (2.138)
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The functions ' (� ) are known as the generalized prolate spheroidal functions and are

also solutions of the differential eigenequation

(� 2 � 1)
d2'
d� 2

+ 2�
d'
d�

+

 

c2� 2 �
1=4� `2

� 2

!

' = �'; (2.139)

which is identical to the differential equation for the prolate spheroidal functions given

in Eq. (2.81) except for the (1=4 � `2)=� 2 term. Finding numerical expressions for

' (� ) is computationally intensive, although there exist approximations that make the

problem more tractable [31].

We have therefore found the communication modes which are given by the functions

	 `;p (r; �) =  `;p (r; �)e i`� e�i k
2z r 2

=
' `;p (r=RT ; � )

q
r=RT

ei`� e�i k
2z r 2

= CPSW `;p (r=RT ; � )e�i k
2z r 2

(2.140)

at Alice and

� `;p (r; �) = CPSW �
`;p (r=RR ; � )ei k

2z r 2 (2.141)

at Bob. We have defined the CPSWs as

CPSW`;p (�; � ) �
' `;p (�; � )

p
�

ei`� : (2.142)
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Figure 2.12: Plots of nine of the lowest order CPSWs given by the expression in
Eq. (2.142) for a system with hard apertures and a Fresnel number product of
DF = 25. The dotted white lines represent the edge of the aperture. The complex
phase information is represented by the hue of the color in the plots, while the
amplitude is represented by the color’s brightness. These modes have the same scaling
as the LG modes plotted in Fig. 2.11 in order to show the close similarities between
the two sets of modes.

Plots of the communication modes for a system with hard circular apertures and

a Fresnel number product of DF = 25 are shown in Fig. 2.12. It was demonstrated

in section 2.5.2 that the PSWs communication modes of a system with hard square

apertures are very similar to the HG modes of the analogous system with Gaussian

apodized apertures. In the same way a comparison of Fig. 2.12 with Fig. 2.11 shows

that the CPSWs can be closely approximated by the LG modes of an analogous

apodized system.
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`
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N�N

N=2

Figure 2.13: A configuration space diagram of CPSW communication modes. The red
area indicates those states for which 2p+ j`j � N .

As was discussed in section 2.5.2, we expect the transmission efficiencies � `;p to

be approximately equal to unity up to some sharp cutoff in the modal indices (`; p)

due to Abbe’s model of diffraction between apertures. We know from section 2.5.1

that the maximum spatial frequencies of mode (`; p) is related to the quantity 2p+ j`j ,

therefore we expect

� `;p �

8
<

:
1 for 2p+ j`j � N

0 otherwise
; (2.143)

where N is some number related to the total number of modes the communication

system supports.
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Figure 2.14: Plot of the transmission efficiencies � `;p for a free-space channel with hard
apertures encoded using the circular prolate spheroidal communication modes of the
channel. The efficiencies display a sharp cutoff for 2p+ j`j > N which is represented
by the dashed line.

The total number of modes such that Eq. (2.143) holds true is approximately DF

and thus

DF �
X

2p+j`j�N

1

=
N=2X

p=0

0

B
@

N �2pX

`=�(N �2p)

1

1

C
A

=
N=2X

p=0

�
2(N � 2p) + 1

�

=
1
2

(N + 1)(N + 2);

(2.144)

which is represented diagrammatically as the red region in Fig. 2.13. Inverting this

equation gives

N =
1
2

� q
1 + 8DF � 3

�

�
q

2DF : (2.145)
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A two dimensional plot of � `;p is shown in Fig. 2.14 showing the accuracy of Eq. (2.143)

(represented by the dashed line) compared with the actual numerically computed

values.

2.7 Orbital angular momentum of light

The communication modes derived in section 2.6 are orbital angular momentum

(OAM) eigenstates of light as will be demonstrated in this section. This is due to

azimuthal dependence of the beam being described by the ei`� phase term. Such

beams are sometimes known as vortex beams with topological charge equal to ` due

to the fact that the phase is singular at r = 0 with a topological winding number of `

about the optical axis [32].

As the “vortex” name suggests, there is a rotation of the field that is responsible

for the existence of angular momentum in the beam. This can be seen if one considers

the wavefronts of the beam. The phase of a vortex beam has the form

phase � kz + `�; (2.146)

which for surfaces of constant phase, will rotate about the optical axis with period

�=` . A plot of the wavefronts of the states ` 2 [� 3; 3] are shown in Fig. 2.15 which

clearly show the rotational nature of the wavefront of these beams.



CHAPTER 2. THEORY OF SPATIAL MODE COMMUNICATION 66

Figure 2.15: Plots of the seven lowest order Orbital angular momentum states of light.
The top row shows states with negative topological OAM charge while the bottom
row shows plots of states with negative charge. Two dimensional slices are presented
at z = 0 and z = � , while only the surface with phase equal to zero is shown between
these two planes. Phase of the beams is represented by the color hue, while amplitude
is represented by the color’s brightness.

2.7.1 Rotational eigenmodes

In section 2.6 we made the ansatz that the azimuthal dependence of the communication

modes of a system with circular apertures was completely described by the term ei`� .

This is due to the fact that the system has cylindrical symmetry about the optical z
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