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Exotic looped trajectories of photons in three-slit
interference
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The validity of the superposition principle and of Born’s rule are well-accepted tenants of

quantum mechanics. Surprisingly, it has been predicted that the intensity pattern formed in a

three-slit experiment is seemingly in contradiction with the most conventional form of the

superposition principle when exotic looped trajectories are taken into account. However, the

probability of observing such paths is typically very small, thus rendering them extremely

difficult to measure. Here we confirm the validity of Born’s rule and present the first

experimental observation of exotic trajectories as additional paths for the light by directly

measuring their contribution to the formation of optical interference fringes. We accomplish

this by enhancing the electromagnetic near-fields in the vicinity of the slits through the

excitation of surface plasmons. This process increases the probability of occurrence of these

exotic trajectories, demonstrating that they are related to the near-field component of the

photon’s wavefunction.
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T
he phenomenon of interference has been recognized as
‘the only mystery’ of quantum mechanics1. The enormous
interest and history of this fundamental effect can be traced

back to the two-slit experiment devised by Thomas Young in the
early 19th century. Young’s experiment is conceptually the
simplest method for demonstrating the superposition principle,
as the appearance of interference fringes in the far-field is
unexplainable unless it is understood that the particle seemingly
travels through both slits simultaneously. Such an experiment,
originally performed with light, has since been conducted on
particles ranging from individual photons, neutrons and atoms,
to large molecules consisting of dozens of atoms2. As the
superposition principle lies at the core of quantum physics, many
of its counterintuitive features such as entanglement, non-locality,
wave-particle duality, and delayed-choice concepts can be
demonstrated or tested using a two-slit system3–10.

The standard interpretation of the two-slit experiment is given
by solving the wave equation for an initially prepared complex
wavefunction, c. For example, if cA represents the wavefunction
at the detector for a photon emerging from slit A, and cB is the
wavefunction for a photon emerging from slit B, then the
implementation of the superposition principle is to assume that
the wavefunction is a superposition of the different paths given by
cAB¼cAþcB. The probability of detection is given by Born’s
rule as

PAB � cABj j2¼PAþPBþ c�AcBþcAc
�
B

� �
; ð1Þ

where PA¼ cAj j
2 and PB¼ cBj j

2. From this equation it is clear
that the outcome of the two-slit experiment is given by the sum of
outcomes from each slit alone, plus an additional interference
term.

Due to the inherent structure of any wave theory, Born’s rule
always bounds the complexity of any effect involving super-
positions of an arbitrary number of wavefunctions to a sum of
terms denoting the interference between pairs of wavefunctions11.
For instance, in accordance with Born’s rule, the interference
pattern obtained in a three-slit experiment can be described by
the following probabilities

PABC¼PABþ PBCþ PAC� PA�PB� PC: ð2Þ
Note that this expression does not include a probability term that
involves three slits, but is entirely described by probabilities
involving only one and two slits. Any possible contribution from
higher-order interference terms (that is, a path involving the three
slits) has been quantified by the so-called Sorkin parameter11,12

E¼PABC � PAB�PBC�PACþPAþPBþPC; ð3Þ
which should be identically zero if only the direct paths through
the three individual slits are considered. Sinha et al.12 showed that
E can be evaluated experimentally by making a set of
measurements for each term in equation (3).

Although it might appear that the measurement of a non-zero
E implies a clear violation of quantum mechanics12, De Raedt
et al.13 demonstrated by numerically solving Maxwell’s equations
that a non-zero value of E can exist without such violation. Later it
was found that this result is a consequence of the presence of
exotic looped trajectories of light (for example, red curve in
Fig. 1a) that arise in the Feynman path integral formulation with
extremely low probability of occurrence14. This interpretation
was subsequently shown to agree with the exact numerical
solution of the wave equation15.

In this work, we demonstrate that looped trajectories of
photons are physically due to the near-field component of the
wavefunction, which leads to an interaction among the three slits.
As such, it is possible to increase the probability of occurrence
of these trajectories by controlling the strength and spatial

distribution of the electromagnetic near-fields around the slits. By
a proper control of the conditions in a three-slit experiment,
we successfully demonstrate a dramatic increase of the probability
of photons to follow looped trajectories, and present the first
successful measurement of a non-zero value of E.

Results
Origin of the looped trajectories of photons. Under the scalar
wave approximation, the propagation of light is described by the
Helmholtz equation

r2þ k2
� �

c rð Þ¼0; ð4Þ
subject to the boundary conditions specifying the physical setup.
This equation can be solved by computing the propagation from
any point r1 to any other point r2 via the Green’s function kernel,
which according to Rayleigh-Sommerfeld theory is given by

K r1; r2ð Þ¼ k
2pi

eik r1 � r2j j

r1� r2j j w; ð5Þ

where w is an obliquity factor16. This equation satisfies
equation (4) and the Fresnel-Huygens principle in the form of
the following propagator relation

K r1; r3ð Þ¼
Z

dr2K r1; r2ð ÞK r2; r3ð Þ: ð6Þ

If one repeatedly applies equation (6), the path-integral
formulation of the propagation kernel is obtained in the form17

K r1; r2ð Þ¼
Z
D x sð Þ½ �exp ik

Z
ds

� �
; ð7Þ

where
R
D x sð Þ½ � is the functional integration over paths x(s).

The boundary conditions can be included by restricting
the possible paths x(s). If one is concerned only with
diffraction from slits in a single plane, then equation (7) can be
perturbatively expanded as14

K¼K1þK2þK3þ � � � ; ð8Þ
where Kn represents the nth application of equation (6) and
each integration is carried over the plane containing the slits
(see Supplementary Note 1).

Solving the wave equation taking K¼K1 is equivalent to
considering only direct paths, such as the paths in Fig. 1b. These
paths propagate from the source and through one of the slits to
the detector. We call these wavefunctions cA, cB and cC. The
higher-order terms in equation (8) are responsible for the looped
trajectories of photons that propagate from the source to a slit,
and to at least one other slit before propagating to the detector
(see Fig. 1c). It follows that the wavefunction of a photon passing
through the three slits is given by

cABC¼cAþcBþcCþcL; ð9Þ
where cL represents the contribution of the looped trajectories to
the wavefunction cABC. Note that in general E, as defined by
equation (3), is not zero because of the existence of these looped
trajectories. Thus, the presence of looped paths leads to an
apparent deviation of the superposition principle14.

Occurrence of looped trajectories of photons. The conclusion
that cABC is not simply the superposition of the wavefunctions
cA, cB and cC is a consequence of the actual boundary condi-
tions in a three-slit structure. Changing the boundary conditions
affects the near-field components around the slits, but it typically
does not affect the far-field distribution because of the short range
extension of the near fields18. As shown below, the looped
trajectories of photons are physically due to the near-field
components of the wavefunction. Therefore, by controlling the
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strengths and the spatial distributions of the near-fields around
the slits, it is possible to drastically increase the probability
of photons to undergo looped trajectories, thereby allowing
a straightforward visualization of their effect in the far-field
interference pattern. To demonstrate this phenomenon,
a three-slit structure was designed such that it supports surface
plasmons, which are strongly confined electromagnetic fields that
can exist at the surface of metals19,20. The existence of these
surface waves results in near fields that extend over the entire
region covering the three slits6,21, thereby increasing the
probability of looped trajectories.

As a concrete example, we consider the situations depicted in
Fig. 1d,e. First, we assume a situation in which the incident
optical field is a Gaussian beam polarized along the long axis of
the slit (y polarization) and focused to a 400-nm spot size onto
the left-most slit. For this polarization, surface plasmons are not
appreciably excited and the resulting far-field distribution is the
typical envelope, with no fringes, indicated by the dashed curve in
Fig. 1e. This intensity distribution is described by the quantity
cAj j

2. The presented results were obtained through a full-wave
numerical analysis based on the finite-difference-time-domain

(FDTD) method, on a structure with dimensions w¼ 200 nm,
p¼ 4.6 mm, and t¼ 110 nm and at a wavelength l¼ 810 nm (see
Methods). The height of the slit, h, was assumed to be infinite.
Interestingly, the situation is very different when the incident
optical field is polarized along the x direction. The Poynting
vector for this situation is shown in Fig. 1d. This result shows that
the Poynting vector predominantly follows a looped trajectory
such as that schematically represented by the solid path in Fig. 1c.
The resulting far-field interference pattern, shown as the solid
curve in Fig. 1e, is an example of the interference between a
straight trajectory and a looped trajectory. Thus, it is clear that
the naive formulation of the superposition principle does not
provide an accurate description for the case where near fields are
strongly excited.

Experimental implementation. First, we experimentally verify
the role that looped trajectories have in the formation of
interference fringes. For this purpose we exclusively illuminate
one of the three slits. This experiment is carried out in the set-up
shown in Fig. 2a. As shown in Fig. 1f, no interference fringes are
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Figure 1 | Trajectories of light in a three-slit interferometer. (a) The three-slit structure considered in this study. The red path going from point s to point

d illustrates a possible looped trajectory of light. (b) Direct trajectories of light resulting from considering only the first term in equation (8). The widely

used superposition principle, that is, equation (1), accounts only for these direct trajectories. (c) Examples of exotic looped trajectories arising from the

higher order terms in equation (8). The red cloud in the vicinity of the slits depicts the near-field distribution, which increases the probability of photons to

follow looped trajectories. (d) Normalized Poynting vector P in the vicinity of the three slits obtained through full wave simulations at a wavelength

l¼ 810 nm, using a slit width w equals to 200 nm, slit separation p¼4.6mm, sample thickness t equals to 110 nm, and assuming infinite height, h¼N.

The simulations consider a Gaussian beam excitation polarized along x, and focused onto slit A. The Poynting vector clearly exhibits a looped trajectory

such as the solid path in c. (e) Far-field interference patterns calculated under x-polarized (solid) and y-polarized (dashed) optical excitation. Interference

fringes are formed in the far field only when strong near fields are excited (x-polarization), and occur from the interference of light following a direct

trajectory and a looped trajectory. (f) Experimental evidence that shows the far-field pattern for a situation in which only one slit is illuminated with

y-polarized heralded single-photons. (g) The presence of exotic looped trajectories leads to an increase in the visibility of the far-field pattern. This effect is

observed when x-polarized light illuminates one of the slits. (h) The transverse profile of the patterns shown in f,g.
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formed when heralded single-photons illuminating the slit are
y-polarized. Remarkably, when the illuminating photons are
polarized along the x direction the visibility of the far-field
pattern is dramatically increased, see Fig. 1g,h. This effect unveils
the presence of looped trajectories. In our experiment, the
contributions from looped trajectories are quantified through the
Sorkin parameter by measuring the terms in equation (3). To this
end, we measured the interference patterns resulting from
the seven arrangements of slits depicted in Fig. 2b, thus the
illumination field fills each arrangement of slits. In our
experiment, we use heralded single-photons with wavelength of
810 nm produced via degenerate parametric down-conversion
(see Methods). The single photons were weakly focused onto the
sample, and the transmitted photons were collected and
collimated by an infinity-corrected microscope objective (see
Fig. 2c). The resulting interference pattern was magnified using a
telescope and recorded using an intensified charge-coupled device
(ICCD) camera, which was triggered by the detection event of the
heralding photon22. The strength of the near fields in the vicinity
of the slits was controlled by either exciting or not exciting surface
plasmons on the structure through proper polarization selection
of the incident photons.

The scanning electron microscope images of the fabricated slits
are shown in the first row of Fig. 3. The dimensions of the slits
are the same as those used for the simulation in Fig. 1, with
h¼ 100 mm being much larger than the beam spot size (B15 mm).
The interference patterns obtained when the contribution from
near-field effects is negligible (y polarization) are shown in the
second row, while those obtained in the presence of a strong near
fields in the vicinity of the slits (x polarization) are shown in the
third row. These interference patterns are obtained by adding 60
background-subtracted frames, each of which is captured within a
coincidence window of 7 nsec over an exposure time of 160 s
(see insets in Fig. 3). Only the pattern for PAB is shown in Fig. 3
because PAB and PBC produce nearly identical patterns in the far
field, a similar situation occurs for PA, PB and PC. The bottom
panels show detail views of the interference patterns measured
along an horizontal line.

Note that the intensities of the interference patterns (that is, the
probability amplitudes) for the two polarizations scale differently
for each arrangement of slits. This is shown by the ratios of the
position-averaged probabilities, Px/Py, indicated at the bottom of
Fig. 3. The significant changes in the probabilities obtained with
x-polarized photons ultimately lead to a value of E that
significantly deviate from zero. This interesting effect is produced
by constructive and destructive interference among looped
trajectories, whose probability has been increased through the
enhancement of the near fields (see Supplementary Note 2).

Discussion
We quantify the contribution from the looped trajectories
through the normalized Sorkin parameter, defined as k�E/Imax

with Imax being the intensity at the central maximum of the three-
slit interference pattern14. Both theoretical and experimental
values of this parameter are shown in Fig. 4a. The theoretical
values were obtained via FDTD simulations, while the
experimental values were calculated from the results in Fig. 3.
Clearly, we observe that when the near fields are not enhanced,
the parameter k is much smaller than the uncertainty associated
with our measurements. However, when the near fields are
enhanced, k is dramatically increased due to the increased
probability for the looped trajectories14, enabling the
measurement of this parameter despite experimental
uncertainties. Taking as a reference the central maximum of the
k profile, the experimental results indicate that the contribution
of looped trajectories has been increased by almost two orders of
magnitude.

Finally, we show that it is possible to control the probability of
photons undergoing looped trajectories by modifying the
dimensions of the three slit structure or by changing the
wavelength of the optical excitation. Figure 4b,c show theoretical
predictions and experimental data at the central maximum for
different slit parameters and wavelengths. These measurements
were taken with classical light from a tunable diode laser.
Figure 4b shows the normalized Sorkin parameter for a situation
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The refractive index of the immersion oil matches that of the glass substrate creating a symmetric index environment around the gold film.
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in which looped trajectories significantly contribute to the
formation of interference fringes, whereas Fig. 4c shows the
same parameter for a situation in which near-field effects,
and consequently looped trajectories, are negligible. In general,
we note that the theoretical and experimental results are in good
agreement, with the observed discrepancies being attributed to
experimental uncertainties due to imperfections in the fabricated
sample and due to the limited dynamic range of the camera.

We have demonstrated that exotic looped paths occur as a
physical consequence of the near-field component of the wave
equation. As such, it is possible to control the probability of
occurrence of such paths by controlling the strength and spatial
distribution of the near-fields around the slits. By doing so,

we have shown a drastic increase in the probability of photons to
follow looped paths, leading to the first experimental observation
of such exotic trajectories in the formation of interference fringes.
Our work elucidates new properties of light that could be used to
enrich protocols that rely on interference effects such as quantum
random walks and quantum simulators3,23.

Methods
Sample design. Full-wave electromagnetic simulations were conducted using a
Maxwell’s equation solver based on the finite difference time domain method
(Lumerical FDTD). The dispersion of the materials composing the structure was
taken into account by using their frequency-dependent permittivities. The per-
mittivity of the gold film was obtained from ref. 24, the permittivity of the glass
substrate (BK7) was taken from the manufacturer’s specifications, and the
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permittivity of the index matching fluid (Cargille oil Type B 16484) was obtained
by extrapolation from the manufacturer’s specification.

Sample fabrication. The glass substrates are standard BK7 cover slips (SCHOTT
multipurpose glass D 263 T eco Thin Glass) with a thickness of B170 mm, polished
on both sides to optical quality. The substrate was ultrasonically cleaned for 2 h in
2% Hellmanex III alkaline concentrate solution and subsequently rinsed and
sonicated in methyl ethyl ketone (MEK) denatured Ethanol and then in demi-
neralized water. The gold films were evaporated directly onto the clean glass
substrates with no additional adhesive layer using a Plassys MEB 550S e-beam
evaporation system. The growth of the film thickness was monitored in-situ during
the evaporation by a water cooled quartz micro-balance. The slit patterns were
structured by Ga ion beam milling using a Tescan Lyra 3 GMU SEM/FIB system
with a canion FIB column from Orsay Physics. Each slit pattern consisted of
100mm long slits. While fabricating the different slit sets, proper focusing of the
FIB was checked by small test millings and if needed the FIB settings were read-
justed accordingly to provide a consistent and reproducible slit quality.

Experiment. We generate single photons by means of heralding a photon by a
‘partner’ photon detection from a photon pair source. The photon pairs were
created in a spontaneous parametric down conversion process using a 2 mm-long
type-I nonlinear crystal (periodically poled potassium titanyl phosphate. We pump
the crystal with a blue 405 nm continuous-wave diode laser (B200 mW), thereby
creating degenerate photon pairs at 810 nm wavelength. Both photons are passed
through a 3 nm band-pass filter, coupled into a single-mode fibre and split by a 50/
50-fibre beams splitter, which led to a coincidence count rate of B40kHz. The
heralding photon is detected with a single-photon avalanche photo diode. Its
partner photon is delayed by a 22 m long fibre, send through the setup and imaged
by an ICCD. The ICCD is operated in the external triggering mode (7 ns coin-
cidence gate time), where the heralding detection signal is used as an external
trigger, to ensure that only these single photon events are registered22. Note that
due to the low coincidence count rate there is only one photon at a time in the
experimental set-up. For experiments using a weak laser instead of heralded single
photons, the ICCD was operated in the continuous mode, where the intensifier is
permanently switched on.

For the case in which we used single photons, the idler photons are detected by
an avalanche photodiode (APD) that heralds the detection of signal photons with
an ICCD. We used either y- or x-polarized light which is selected by means of a
polarizer and half-wave plate. The beam is weakly focused onto the arrangement of
slits that is mounted on a motorized three-axis translation stage that can be
displaced in small increments of 60 nm. An infinity-corrected oil-immersion
microscope objective (NA¼ 1.4, magnification of 60� , working distance of
100mm) was used to collect the light emerging from the slit patterns. The light
collected by the objective was then magnified with a telescope and measured by an
ICCD camera.

Data analysis. The background subtracted interference patterns were used to
determine the magnitudes of k shown in Fig. 4. In Fig. 4a, we show the values of k,
obtained in the single photon regime, for different positions of the detector. The
deviation from the theory and the magnitude of the error bars are larger at the
edges of the k profile because the signal is low at the edges of the interference
patters, which results in a noisier signal. On the other hand, the central maximum
of the interference patterns permits a more reliable characterization of k. The
values of k obtained for classical light as a fuction of the wavelength, shown in
Fig. 4b,c, were calculated using central maximum of the interference patterns. For
these cases, we used only the regions of central fringe having intensities within 70%
of the peak value. The data was then used to obtain the mean value and standard
deviations for k.

Data availability. The data that support the findings of this study are available
from the corresponding author upon reasonable request.
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