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Dependence of the Efficiency of the Nonlinear-Optical
Response of Materials on their Linear Permittivity and
Permeability

Diego M. Solís,* Robert W. Boyd,* and Nader Engheta*

The dependence of the efficiency of various nonlinear-optical processes on the
background linear relative electric permittivity ϵ and magnetic permeability 𝝁
of the material is analytically and numerically investigated. The conversion
efficiency of low-order harmonic-generation processes, as well as the increase
rate of Kerr-effect nonlinear phase shift and nonlinear losses from two-photon
absorption (TPA), are seen to increase with decreasing ϵ and/or increasing 𝝁.
The rationale and physical insights behind this nonlinear response are also
discussed, particularly its enhancement in ϵ-near-zero (ENZ) media. This
behavior is consistent with the experimental observation of intriguingly high
effective nonlinear refractive indices in degenerate semiconductors such as
indium tin oxide and aluminum oxide (where the nonlinearity is attributed to
a modification of the energy distribution of conduction-band electrons due to
laser-induced electron heating) at frequencies with vanishing real part of the
linear permittivity. Such strong nonlinear response can pave the way for a new
paradigm in nonlinear optics with much higher conversion efficiencies and
therefore better miniaturization capabilities and power requirements for
next-generation integrated nanophotonics. It is concluded that the major
contribution to the enhanced nonlinear response of ENZ materials arises
from propagation effects, that is, the appearance of ϵ and 𝝁 in the reduced
wave equation describing the interaction.
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1. Introduction

Many research endeavors have focused
on the quest for materials with strong
and fast nonlinear light–matter in-
teractions. Large ultrafast nonlinear
optical responses are paramount for a
plethora of applications relying on active
photonic integrated circuits, ranging
from all-optical signal processing[1,2]

to quantum computers.[3,4] But the in-
tegration density of these devices, if
based on nonresonant nonlinear pro-
cesses (hinging upon virtual transitions
and ergo very fast), is burdened by the
intrinsic perturbative nature of such
nonlinear phenomena, which typically
require high optical intensities and/or
long interaction lengths. In order to
circumvent this weak response, di-
verse alternatives have been proposed,
aimed at extrinsically boosting nonlin-
earities with tailored electromagnetic
resonances by means of structuring
materials, like micro-cavities,[5] slow-
light photonic-crystal waveguides,[6,7]

metallo-dielectric composites,[8]

or plasmonic nanostructures.[9–11]

Moreover, materials with near-vanishing permittivity, known
as ϵ-near-zero (ENZ) materials, were initially predicted[12–17]

(by virtue of either electric field enhancement or better phase-
matching) and later observed[18–29] to enhance nonlinear pro-
cesses. More recently, transparent conductive oxides (TCOs)
such as indium tin oxide (ITO) and Al-doped ZnO (AZO)
have drawn much attention as promising candidates to in-
crease the strength of nonlinear interactions. These degener-
ately doped semiconductors i) are complementary metal-oxide-
semiconductor (CMOS)-compatible, ii) have an ENZ wavelength
in the near-IR (tuned by varying post-deposition annealing
time and temperature) for which the nonlinear refractive in-
dex has been experimentally measured to be unprecedentedly
large[22,23]—up to several orders ofmagnitude larger than the pre-
viously reported largest value (As2Se3 glass)

[30]—and with a sub-
picosecond response time, and iii) provide less loss than noble
metals in this spectral region. In fact, the nonlinear response of
these materials is so large that one might question whether the
usual expansion of the material polarization as a power series
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in electric field[31] is still valid. As pointed out in [32], there may
still be a convergent power series for the polarization in terms of
the electric field amplitude in this regime, although the widely
used expression for the intensity-dependent refractive index[31]

n = n0 + n2I (n0 being the linear refractive index, n2 =
3𝜒 (3)

4n0Re{n0}𝜖0c

the nonlinear coefficient, 𝜒 (3) the third-order nonlinear suscepti-
bility, and I the optical intensity), stems from a Taylor expansion
that under ENZ conditions is divergent and should therefore be
reassessed. Thus the dependence of n on I is non-perturbative,
even though the dependence of the polarization on field strength
remains perturbative.
Importantly, although the origin of the nonlinear response

in ENZ media has been explained semi-classically with electron
band theory in refs. [22, 24, 33–36]—the laser induces a tem-
perature rise of free electrons, which lowers the temperature-
dependent electron chemical potential of TCOs’ nonparabolic
conduction band and, in turn, reduces the plasma frequency 𝜔p
in the Drude model, thereby effectively increasing the dielectric
function—it appears that the enhanced nonlinear response near
the ENZ frequency is purely extrinsic and mainly attributed to
the electric-field enhancement[22,24,33] and slow-light effects.[35,36]

Following this spirit, in this manuscript, the theoretical analy-
sis of wave propagation in a nonlinear medium with second- or
third-harmonic, instantaneous (nondispersive) susceptibilities is
revisited, and the dependence of the nonlinear response on the
linear part of the relative dielectric permittivity ϵ, which is al-
lowed to be dispersive, is studied in detail. For the sake of com-
pleteness, the variation of linear relative magnetic permeability
𝜇 is also taken into account. Furthermore, finite-difference time-
domain (FDTD)[37] and frequency-domain (FDFD)[38] full-wave
electromagnetic solvers have been implemented (generalized for
dispersive media and for arbitrary nonlinear phenomena) to val-
idate the theoretical predictions. It is shown that phase-matched
nonlinear propagation has a conversion efficiency that tends to
increase with decreasing ϵ and/or increasing 𝜇, because the in-
verse of the conversion length tends to increase with an increas-
ing relative impedance 𝜂 =

√
𝜇∕𝜖. Additionally, the intensity of

the reflected second/third harmonics tends to increase with de-
creasing ϵ and/or 𝜇 for normal incidence from vacuum to a semi-
infinite region of such nonlinear media. When phase-mismatch
is brought into play, it is well-known that destructive interfer-
ence inhibits the harmonic conversion process and a characteris-
tic space-periodic pattern shows up; it is shown that the maxima
of these periodic oscillations either increase with 𝜇 and/or 1/ϵ,
or remain constant but with a spatial frequency that is roughly
proportional to the same factor

√
𝜇∕𝜖, so the effective conver-

sion length is reduced as ϵ (𝜇) decreases (increases). We will
also connect this 𝜂-dependence observed in harmonic-generation
processes with the fact that the second-order index of refraction
and the two-photon absorption (TPA) coefficient increase with
increasing 𝜂 as well. Finally, we briefly go over the more realistic
dispersive nonlinear susceptibilities that emerge from the above-
mentioned nonparabolicity.

2. Theory and Numerical Results

For simplicity and without loss of generality, let us focus our
description (we herein extend the analytical framework in refs.

[31, 39] to include the effect of linear magnetic permeability) on
second-harmonic generation within a medium that is lossless at
the fundamental and second-harmonic frequencies, 𝜔1 and 𝜔2 =
2𝜔1, respectively. We consider plane-wave propagation in the +z
direction and express Ẽj, the electric field at frequency 𝜔j (j=1,2),
as

Ẽj(z, t) = 2Re
[
Ej(z)e

−i𝜔j t
]
= 2Re

[
Aj(z)e

i(kjz−𝜔j t)
]

(1)

where a slowly varying complex amplitude Aj(z) is used, and
kj = nj

𝜔j

c
is the wavenumber, with nj =

√
𝜇j𝜖j the refractive index,

𝜇j and ϵj being the linear relative permeability and permittivity
at frequency 𝜔j, respectively. The presence of nonlinear polariza-
tion P̃NL,j leads to the followingwell-known inhomogeneouswave
equation for Ẽj

[31]:

𝜕2Ẽj(z, t)

𝜕z2
−

𝜇j𝜖j

c2
𝜕2Ẽj(z, t)

𝜕t2
=

𝜇j

c2𝜖0

𝜕2P̃NL,j(z, t)

𝜕t2
(2)

with:

P̃NL,1(z, t) = 2Re
[
2𝜖0A2(z)A

∗
1(z)𝜒

(2)ei((k2−k1)z−𝜔1t)
]

(3a)

P̃NL,2(z, t) = 2Re
[
𝜖0A

2
1(z)𝜒

(2)ei(2k1z−𝜔2t)
]

(3b)

where the second-order nonlinear optical susceptibility is de-
noted by 𝜒 (2). By placing Equations (1) and (3) into Equation (2),
andmaking the slowly varying amplitude approximation (SVAA),| d2Aj

dz2
| ≪ |kj dAj

dz
|, it is straightforward to arrive at the pair of

coupled-amplitude equations:

dA1

dz
= i

𝜂1𝜔1𝜒
(2)

c
A2(z)A

∗
1(z)e

−iΔkz (4a)

dA2

dz
= i

𝜂2𝜔2𝜒
(2)

2c
A2
1(z)e

iΔkz (4b)

where Δk = 2k1 − k2. It is convenient to introduce normal-

ized field amplitudes uj(z) =
√
Ij(z)∕I, where Ij(z) =

2|Aj(z)|2
𝜂0𝜂j

is

the intensity of the j-th harmonic, 𝜂0 =
√
𝜇0∕𝜖0 is the intrinsic

impedance of vacuum and 𝜂j =
√

𝜇j∕𝜖j is the relative impedance.

Following the Manley-Rowe relations, the total intensity I is con-
stant, so Σju

2
j = 1. If we define a characteristic interaction length

l = c
𝜔1𝜒

(2)

√
2

𝜂21𝜂2𝜂0I
(5)

a measure of the normalized phase velocity mismatch will be
Δs = Δkl.

2.1. Perfect Phase-Matching

If the phase velocity of both harmonics is the same, we have
Δs=0. In this scenario, one can make use of the fact that
u1(z)

2u2(z)cos(𝜃(z)) is a conserved quantity,
[31,39] with 𝜃 = 2ϕ1(z)

− ϕ2(z) + Δkz (ϕj being the phase of the complex amplitude Aj),
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and use Γ = u1(0)
2u2(0)cos(𝜃(0)) to decouple Equations (4a) and

(4b). After some lengthy mathematical manipulations, and using
𝜁 = z/l,[31,39] one can arrive at an equation expressed only in terms
of u2(𝜁 )

du22(𝜁 )

d𝜁
= ±2

√
u22(𝜁 )

(
1 − u22(𝜁 )

)2 − Γ2 (6)

whose general solution has the form of the elliptic integral

𝜁 = ±1
2 ∫

u22(𝜁 )

u22(0)

d(u22)√
u22(1 − u22)

2 − Γ2
(7)

u22, which oscillates between the two lowest positive roots of the
integrand’s denominator, can thus be expressed in closed form
with the help of the Jacobi elliptic function sn().[40] Nonetheless,
assuming u2(0)=0, that is, only the fundamental frequency im-
pinges on the semi-infinitely extended nonlinear medium, the
solution is reduced to the simpler form:

u1(𝜁 ) = sech(𝜁 ), u2(𝜁 ) = tanh(𝜁 ) (8)

In terms of these results we can immediately find the inten-
sity and amplitude conversion efficiencies from the 𝜔1 wave to
the 𝜔2 wave, defined as

I2(z)

I1(0)
and |A2(z)||A1(0)| respectively, as u22(z) and

u2(z). From inspection of Equation (8), it is thus clear that con-
version efficiency increases with increasing l−1, which will vary

with
√

𝜂21𝜂2I1(0) or, equivalently, with
√
𝜂1𝜂2|A1(0)|. For the per-

fect phase-matching condition in an isotropic medium, we need
to have 2𝜔1

√
𝜇1𝜖1=𝜔2

√
𝜇2𝜖2. This can be achieved in several dif-

ferent ways: 1) For non-magnetic isotropic materials where 𝜇1 =
𝜇2 = 1, phase matching occurs when ϵ1 = ϵ2, which is possible
when we are far away from any resonance of the material and
ϵ1 = ϵ2 > 1. However, near the ENZ frequencies, the permittiv-
ity function is dispersive and thus it should be a function of fre-
quency. Therefore, the condition ϵ1 = ϵ2 can be achieved near zero
crossing of the dispersion curves at 𝜔1 and 𝜔2 with properly en-
gineered materials with two or more Lorentzian dispersions (or
one Drude and one or more Lorentzian dispersions); 2) for the
case of magnetic isotropic materials, we can have ϵ1 ≠ ϵ2 when
𝜇1 ≠ 𝜇2 such that 2𝜔1

√
𝜇1𝜖1=𝜔2

√
𝜇2𝜖2. There are other cases

such as anisotropic materials in which the phase-matching con-
dition may occur for a given direction of propagation. Here, for
the sake of simplicity, we assume the first case. When ϵ = ϵ1 =
ϵ2 and 𝜇 = 𝜇1 = 𝜇2, we have a stretching/compression of the z-
axis by a factor h such that u2, 𝜂 = h(z) = u2, 𝜂 = 1(hz) when A1(0) is

fixed, or u2,𝜂=h(z) = u2,𝜂=1(
√
h3z) when I = I1(0) is fixed (more-

over, for small 𝜁 , given that tanh(𝜁 ) ≈ 𝜁 , the intensity and am-
plitude conversion efficiencies scale with 𝜂3 and 𝜂, respectively).
This behavior can be seen in Figure 1, which shows the evolu-
tion of u22 versus distance (normalized with respect to the wave-
length of the fundamental frequency in vacuum 𝜆) for 𝜒 (2) = 5
× 10−12 [m V−1] and different values of ϵ = ϵ1 = ϵ2 ranging from
0.01 to 100 (𝜇 = 𝜇1 = 𝜇2 is set to 1), while keeping the electric
field amplitude constant (solid lines) or the intensity constant
(dashed lines). One can see that identical curves would be ob-
tained by setting ϵ=1 and varying 𝜇 from 100 to 0.01. Moreover,

Figure 1. Normalized intensity of the second-harmonic wave as predicted
by the analytic solution of Equation (8) versus z/𝜆 for various values of ϵ

and for 𝜒 (2) = 5 × 10−12 [m V−1]. Solid lines: fixed A1(0) = 5 × 108 [V m−1]
(the data cursors give the values (z∕𝜆, u22) at the indicated point and mark
the distances at which u22(z) = 0.1, illustrating the previously mentioned 𝜂

z-scaling with 𝜂). Dashed lines: fixed I = 2(5 × 108)2/𝜂0, that is, the inten-
sity corresponding to the previous fixed value of A1(0) when ϵ1 = 1 (the
data cursors mark the distances at which u22(z) = 0.8, illustrating now the√
𝜂3 z-scaling with 𝜂). The inset displays, for ϵ = 0.01, the time-averaged

Poynting vector j with (solid lines) and without (markers) the SVAA ap-
proximation, showing that the SVAA is almost perfectly valid. In this latter
case, the initial condition d2A2(0)/dz

2 = 0 is applied. Note that j∕I1(0) is
equal to u2j only when the SVAA approximation is considered, so only j,

and not u2j as defined so far, can be compared.

the magnetic permeability can be used as an extra degree of free-
dom to achieve phase-matching, by choosing the permittivities
and permeabilities such that 𝜇1ϵ1 = 𝜇2ϵ2. Crucially, we note that
the SVAA approximation loses its validity as ϵ𝜇 is reduced (the

wavelength increases and thus the term |kj dAj

dz
| decreases), which

in Figure 1 especially concerns the case for which ϵ=0.01. A nu-
merical resolution of the two coupled equations resulting from

adding the terms
d2Aj

dz2
to Equations (4a) and (4b) yields, however,

time-averaged Poynting vector curves that are very close to the
ones obtained with the second of Equation (8) (see inset in Fig-
ure 1). If we were to reduce the value of the dielectric function
even further, the disagreement between both solutions would be
more apparent.
Analagous derivations for third-harmonic generation (consid-

ering nonlinear processes characterized by 𝜒 (3)(3𝜔; 𝜔, 𝜔, 𝜔) and
𝜒 (3)(𝜔; 3𝜔, −𝜔, −𝜔)) will yield, in the SVAA approximation and
considering Δk = 0 and u3(0) = 0, a closed-form solution of the
form

u1(𝜁 ) =
1√
1 + 𝜁2

, u3(𝜁 ) =
𝜁√
1 + 𝜁2

(9)

where the characteristic interaction length l = z/𝜁 is now defined
as:

l = c
3𝜔1𝜒

(3)

4√
𝜂31𝜂3𝜂0I

(10)

The distance scale for conversion of the fundamental to the
third harmonic will thus decrease as

√
𝜂31𝜂3I or, equivalently, as√

𝜂1𝜂3|A1(0)|2. Assuming ϵ = ϵ1 = ϵ3 and 𝜇 = 𝜇1 = 𝜇3, u3, 𝜂 = h(z)
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= u3, 𝜂 = 1(hz) or u3, 𝜂 = h(z) = u3, 𝜂 = 1(h
2z) will hold when either

A1(0) or I are fixed, respectively. For small 𝜁 , the intensity and
amplitude conversion efficiencies thus scale with 𝜂4 and 𝜂,
respectively.
Let us now study the totality of nonlinear processes arising

from such instantaneous (nondispersive) second-order (P(2)(t) =
ϵ0𝜒

(2)E2(t)) and third-order—or Kerr effect— (P(3)(t)= ϵ0𝜒
(3)E3(t))

nonlinear polarizations. In order to do so, we developed an FDTD
algorithm[41,42] incorporating these nonlinear interactions, which
naturally cover the entire optical spectrumwhen described in the
time domain (that is, all higher harmonics and their nonlinear
interactions are implicitly taken into account). We consider
a “half-space” problem (effectively achieved with perfectly
matched layers) where an incident plane-wave in vacuum meets
the interface with the nonlinear medium with an electric field
amplitude normalized such that, regardless of the different
values of ϵ considered (from 0.01 to 1), the transmitted electric
field immediately on the other side of the interface is kept con-
stant and equal to E0 = 2A1(0) = 109 [V m−1]. Of course, strictly
speaking, higher harmonics may already be created in reflection
at the interface, so the initial condition u2, 3(0)=0 assumed in
our previous analysis is not, in general, strictly satisfied here
anymore[31,43] (see also Equations (19) and (20)); depending on
the initial phase difference among these harmonics, they may
actually first decrease to zero before steadily increasing.
The numerical results in Figures 2 and 3, obtained fromFDTD

simulations (we note that the reached steady states exhibit long-
time stability), very clearly depict the increase of nonlinear
response as ϵ is reduced, in agreement with the analytical
analysis shown above. It is also interesting to point out that, in
normalizing the electric field transmitted through the interface,
the transmitted intensity actually decreases with

√
𝜖. Therefore,

if one normalizes transmitted intensity rather than amplitude,
the distances in Figure 2a (Figure 3a) will be 1∕ 4

√
𝜖 (1∕

√
𝜖)

times shorter. This is consistent with the conversion efficiencies
previously predicted by our analytic model. Figures 2c and 3c
depicting the magnetic field are the most revealing of the un-
derlying physical mechanism explaining this enhancement: for
fixed |A1(0)|, assuming not only Δk = 0 but also a nondispersive
medium (𝜂j = 𝜂, ∀j) for simplicity, both second- and third-order
processes present a conversion efficiency that increases with
increasing 𝜂, that is, a weaker (in relative terms) magnetic
field enhances the nonlinear response. Let us gain some more
intuitive insight as to why this is the case. Given that nonlocal
effects are not under consideration, it is clear that the (local) non-
linear polarization sees its effect “translated” from time to space
through ∇ ×H, according to Maxwell-Ampère’s law. For a ŷ-
polarized plane-wave propagating in +z and keeping the adopted
e−i𝜔t convention, Maxwell’s curl equations can be written as

dHx(z,𝜔j)

dz
= −i𝜔j

(
𝜖0𝜖Ey(z,𝜔j) + Py,NL(z,𝜔j)

)
(11a)

Hx(z,𝜔j) = − 1
i𝜔j𝜇0𝜇

d
dz

(
Ay,j(z)e

ikjz
)

(11b)

≈ −
kj

𝜔j𝜇0𝜇
Ay,j(z)e

ikjz

Figure 2. Second-order nonlinear response obtained through FDTD sim-
ulations. a) Normalized field amplitudes of the first five harmonics for ϵ

= 0.01 and 0.1 (solid and dashed lines, respectively) versus depth nor-
malized to the vacuum wavelength into the nonlinear medium. b,c) Tem-
poral variation of the electric and magnetic fields at a distance of two vac-
uumwavelengths of the fundamental wave from the interface, for different
values of ϵ. Comparison of panels (b) and (c) seems to suggest that Hx
displays more distortion than Ey, which is consistent with the additional

distortion coming from the term
dAy,j(z)

dz
in Hx(z,𝜔j) = − 1

i𝜔j𝜇0𝜇
(ikjAy,j(z) +

dAy,j(z)

dz
)eikjz. However, this augmented distortion in Hx is much less pro-

nounced than it seems from visual inspection, and is mostly owed to the
ratio of the horizontal and vertical axes (i.e., if both Ey and Hx are normal-
ized to 1, their distortions look very similar).

where
dAy,j(z)

dz
has been neglected in the second form of Equa-

tion (11b) under the assumption, again, that the envelope Ay, j(z)
is slow-varying. A measure of the effective increase in nonlinear
distortion with respect to distance felt by the j-th harmonic could
be written as|||[ dHj(z)

dz

]
NL

||||Hj(z)| ≈
|𝜔jPNL,j(z)|| kj
𝜔j𝜇0𝜇

Aj(z)| = 𝜔j𝜂0𝜂
|PNL,j(z)||Aj(z)| (12)
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Figure 3. Third-order nonlinear response calculated numerically with
FDTD. a–c) Same as in Figure 2, but with 𝜒 (3) = 𝜒 (2)/E0 = 5 × 10−21 [(m
V−1)2].

As expected, the factor 𝜂 shows up again. Otherwise, this depen-
dence on ϵ is consistent with physical intuition in that nonlin-
ear polarization represents a larger fraction of total polarization
as ϵ is reduced. Indeed, Equation (11a) reveals the contributions
of the linear and nonlinear portions of the displacement cur-
rent, demonstrating that in ENZ media the nonlinear part plays
a more dominant role even though the coefficients 𝜒 (2) or 𝜒 (3) are
kept unchanged.
Furthermore, the temporal evolution of the electric field in

the case of instantaneous third-order nonlinear polarization, Fig-
ure 3b, has intriguing resemblance with the time-inverted ver-
sion of the so-called relaxation-oscillations[44] of the Van der Pol
nonlinear damped oscillator (well-known in the analysis of cir-
cuits containing vacuum tubes), whose oscillation amplitude x(t)
obeys the second-order differential equation

d2x(t)
dt2

− 𝜇
(
1 − x2(t)

)dx(t)
dt

+ x(t) = 0 (13)

Figure 4. FDTD-simulated electric field versus normalized distance at a
given instant in time with ϵ = 0.01, for both second- and third-order polar-
izations.

For completeness, a time snapshot of the electric field versus
z/𝜆 in Figure 4 shows how the waveforms associated with 𝜒 (2)

and 𝜒 (3) processes are increasingly distorted with distance when
ϵ=0.01. For visualization purposes, given that the wavelength of
the fundamental frequency in the nonlinear medium is in this
case ten times the vacuum wavelength, we reduce the rate at
which distortion increases with z by decreasing the nonlinear
susceptibilities by one order of magnitude with respect to Fig-
ures 2 and 3, and we increase the simulation domain accord-
ingly. It is thought-provoking to see that the wavefront originat-
ing from the Kerr effect somewhat reminds us of a shockwave.
Actually, onemight think of taking advantage of this high spatial-
frequency content in highly resolved microscopy applications.

2.1.1. Intensity-Dependent Refractive Index

Let us for amoment step back and reflect on how these results on
harmonic-generation processes can be connected to the optical
Kerr effect and consider only the fundamental frequency 𝜔, in
which case the nonlinear polarization can be written as

PNL(𝜔) = 3𝜖0𝜒
(3)(𝜔;𝜔,𝜔,−𝜔)|E(𝜔)|2E(𝜔) (14)

which yields, in the lossless case, an intensity-dependent refrac-
tive index

n = n0 + Δn =
√
𝜇

√
𝜖 + 3𝜒 (3)|E(𝜔)|2 (15)

where Δn is the nonlinear change in n and is usually written
as Δn= n̄2|E(𝜔)|2 or Δn = n2I, with n̄2=

3𝜂𝜒 (3)

4
and n2=𝜂0𝜂n̄2=

3𝜂0𝜂
2𝜒 (3)

4
correct only to terms of order I[31,32]: importantly, the

same factor 𝜂 that shows up in the conversion efficiency of
harmonic-generation processes now arises in the E-dependence
of Δn. The rate of phase shift versus distance is therefore d𝜙

dz
=

(n0+Δn)
𝜔

c
, and thus the total nonlinear phase shift as measured

in Z-scan experiments[45] is Δn𝜔

c
L, where L is the length of the

nonlinear medium; perhaps, though, Δn
n0
≈ 3𝜒 (3)|E(𝜔)|2

4𝜖
= 3𝜂0

√
𝜇𝜒 (3)I

4
√
𝜖3

might represent a better (normalized) measure of nonlinear
phase shift. In any case, while it is true that this first-order cor-
rection leads to n̄2→∞ or n2 → ∞ as ϵ → 0,[32] the fact remains
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that Δn=
√
𝜇
√
𝜖 + 3𝜒 (3)|E(𝜔)|2−√𝜇𝜖, which is exact, increases

towards the asymptotic value of
√
3𝜇𝜒 (3)|E(𝜔)| as ϵ decreases

(this is seen in Figure 5a, where we compare the exact value of
Δn with its first-order approximation versus ϵ when 𝜇 = 1). Con-
sequently, Δn

n0
actually tends to ∞. Incidentally, the relative error

of the first-order approximation of Δn is approximately constant
with 𝜇.
We implemented a nonlinear FDFD full-wave solver so as to

see the effect of this nonlinear phase shift numerically. Figure 5b
shows the resulting electric field when, instead of a plane-wave,
the excitation of our half-space problem is a normally incident
paraxial approximation of aGaussian beam, with a beamwaist ra-
dius of 4𝜆, 𝜆 being the vacuum wavelength. We choose the setup
of this problem to be 2D with TM polarization, and compare the
nonlinear results when ϵ = 0.1 and ϵ = 1, showing a larger beam
distortion when ϵ = 0.1, as predicted by the theoretical on-axis
increase of refractive index: Δnϵ = 0.1 = 0.1021 > Δnϵ = 1 = 0.0368.

2.1.2. Two-Photon Absorption

Analogous considerations apply if we consider the process of two-
photon absorption,[31,46] which we can describe also with Equa-
tion (14) by making 𝜒 (3)(𝜔; 𝜔, 𝜔, −𝜔) purely imaginary. If 𝜒 (3)(𝜔;
𝜔, 𝜔, −𝜔) is generally complex, Equation (15) becomes

n + i c𝛼
2𝜔

=
√
𝜇

√
𝜖 + 3𝜒 (3)|E(𝜔)|2 (16)

where 𝛼=𝛼0+Δ𝛼=𝛼0+𝛼̄2|E(𝜔)|2 is the absorption coefficient,
with 𝛼̄2 the TPA coefficient. Correct to first order in I (and as-
suming no linear absorption for simplicity), we now have 𝛼̄2=
3𝜂𝜔Im[𝜒 (3) ]

2c
, showing the same 𝜂-dependence seen in n̄2.

Similarly as in the previous section, although Δ𝛼 → ∞ (or
𝛼̄2→∞ for that matter) as ϵ → ∞, the exact expression for Δ𝛼
still does increase as ϵ decreases, until reaching the asymptote of

value 2
√
3𝜇𝜔Im[

√
𝜒 (3) ]|E(𝜔)|

c
.

2.2. Imperfect Phase-Matching

If the wavevectors are mismatched such that Δs ≠ 0, the integra-
tion constant is nowΓ+ Δs

2
u22(0)

[39] and Equation (7) is generalized
to

𝜁 = ±1
2 ∫

u22(𝜁 )

u22(0)

d(u22)√
u22(1 − u22)

2 −
[
Γ − Δs

2

(
u22 − u22(0)

)]2 (17)

and u2 now oscillates according to the solution in [39], expressed
in terms of the Jacobi elliptic function sn().[40] For the initial
condition of interest u2(0) = 0, u2 will oscillate between 0 and

1∕( |Δs|
4

+
√
1 + ( |Δs|

4
)2). The maximum of u2 will hence increase

with decreasing |Δs|, which for second-order polarization can be
written as

Δs =
2(n1 − n2)

𝜒 (2)

√
2

𝜂21𝜂2𝜂0I
=
2(n1 − n2)

𝜒 (2)

1√
𝜂1𝜂2|A1(0)| (18)

Figure 5. a)Δn (normalized with respect to its asymptotic value when ϵ =
0) versus ϵ. b) Real part of the total electric field phasor obtained from 2D
FDFD simulations, for an incoming ẑ-polarized Gaussian beam at normal
incidence with respect to the air/nonlinear medium interface (represented
by black dashed lines), with ϵ = 0.1 and ϵ = 1. The incoming electric field is
normalized such that |E(𝜔)|(x, y) = (0, 0) = A1(0) = 5 × 108 [V m−1]. In both
panels, 𝜇 = 1 and 𝜒 (3) = 10−19 [(m V−1)2].
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Figure 6. Analytically obtained (the expressions can be found in [39]) nor-
malized field amplitudes of the second harmonic versus normalized depth
into the nonlinear medium, with ϵ1 = 0.1, 1 and 10, for ϵ2 = ϵ1 + Δ (panel
(a), where the data cursors with XY-pairs (z/𝜆, u2) mark the first maxi-
mum of power conversion for each case) and ϵ2 = ϵ1(1 + Δ) (panel (b)).
Solid lines: Δ = 0.05 (Δs ≈ −20). Dashed lines: Δ = 0.01 (Δs ≈ −4). The
amplitude of the transmitted electric field at the entrance of the nonlinear
medium is kept constant: A1(0) = 5 × 108 [V m−1].

Incidentally, note that Δs as defined here will, in general, be a
negative number due to Foster’s reactance theorem.[47] If we as-
sume there is no magnetic response, |Δs| will be proportional to
(
√
𝜖1−

√
𝜖2) 4

√
𝜖1𝜖2∕|A1(0)|. To study the dependence on ϵ1 and ϵ2

more fully, we assume that ϵ2 = ϵ1 + Δ, we fix Δ and vary ϵ1: we
find that (

√
𝜖1−

√
𝜖2) 4

√
𝜖1𝜖2 is practically constant (this is seen in

Figure 6a, where the maximum of power conversion is inde-
pendent of ϵ1), yet |Δk|∝ |√𝜖1−

√
𝜖2| decreases with ϵ1 (i.e.,

a smaller ϵ1 will render a larger |Δk| but have practically no
effect on |Δs|). With respect to intensity, nevertheless, |Δs|∝
4
√
𝜖1. It is paramount to realize, however, that A1(0) (or I =

I1(0) for that matter) is referred to the inner side of the vac-
uum/nonlinear medium interface, so the transmission coeffi-
cient, which for normal incidence diminishes with ϵ1 as

2
1+

√
𝜖1
,

plays an important role: conversion efficiency in the nonlinear
medium still increases with decreasing ϵ when defined with re-
spect to the incident intensity in vacuum. If we consider, al-
ternatively, ϵ2 = ϵ1(1 + Δ), then |Δs|∝ϵ1, so the maximum of
power conversion grows with diminishing ϵ1, as depicted in
Figure 6b.
As expected, the behavior is the opposite if we consider the

case in which ϵ1 = ϵ2 = 1 and vary 𝜇1, 2. For 𝜇2 = 𝜇1 + Δ, |Δs|
grows with diminishing 𝜇1, whereas for 𝜇2 = 𝜇1(1 + Δ),

√
𝜇1−

√
𝜇2

4
√
𝜇1𝜇2

is a constant equal to 1−
√
1+Δ

4√1+Δ
(with respect to I, |Δs|∝1∕ 4

√
𝜇1).

The transmission coefficient for normal incidence will now grow

with 𝜇1 as
2
√
𝜇1

1+
√
𝜇1
.

In addition, although the oscillation period of u2(𝜁 ) decreases
with increasing |Δs|,[39] 𝜁 is just a stretched/compressed version
of z, so it is easy to see that u2(z), for fixed Δs, will see its period
reduced as ϵ1 (𝜇1) decreases (increases). In other words, whenΔs
is roughly constant with respect to ϵ1 (ϵ2 = ϵ1 + Δ and 𝜇1 = 𝜇2
= 1) or 𝜇1 (𝜇2 = 𝜇1(1 + Δ) and ϵ1 = ϵ2 = 1), and assuming that
A1(0) is fixed, the first maximum of power conversion is found
at a distance into the medium that roughly scales with

√
𝜖1∕𝜇1,

given that z∝ 𝜁√
𝜂1𝜂2|A1(0)| ≈ 𝜁

𝜂1|A1(0)| for sufficiently small Δ. This is
illustrated in Figure 6a, where the data cursors mark the position
of these maxima.
Having reached this point, it is imperative to note that our

FDTD half-space problem in Figures 2–4 is not exactly described,
at the inner face of the boundary, by the initial conditions as-
sumed throughout the analytical derivations for propagation in a
nonlinearmedium. In actuality, weak higher harmonic waves are
generated in reflection at the interface. Restricting the problem to
second-harmonic generation, and neglecting the 𝜒 (2)(𝜔; 2𝜔, −𝜔)
process, the boundary value problem can be easily solved as in
[43], whose generalization to account for (linear) magnetic per-
meability yields the following expression, restricted here to the
simplified scenario of normal incidence, for the amplitude of the
reflected electric field at the second-harmonic frequency:

A2(0) =
√
𝜇2(

√
𝜇1𝜖1 −

√
𝜇2𝜖2)

(
√
𝜇2 +

√
𝜖2)(−𝜇1𝜖1 + 𝜇2𝜖2)

𝜒 (2)A2
1(0) (19)

As for the second-harmonic wave transmitted into the nonlinear
medium, it can be expressed as the superposition of a plane-wave
with wavenumber k2—general solution to the homogeneous
wave equation—and a particular solution to the nonhomoge-
neous equation, in this case a plane-wave with wavenumber 2k1;
or in more compact form:

E2(z) = A2(0)

[
1 −

√
𝜇2(

√
𝜇2 +

√
𝜖2)√

𝜇1𝜖1 −
√
𝜇2𝜖2

(eiΔkz − 1)

]
eik2z (20)

It is clear that E2(0), obviously equal to the reflected wave’s am-
plitude A2(0), can be used as initial condition for Equations (4a)
and (4b), which do take into account the coupling of E2(z) into
E1(z) described by 𝜒

(2)(𝜔; 2𝜔, −𝜔). If 𝜇1 = 𝜇2=1, and we calculate
the limit when ϵ1 → ϵ2, the above expression has a simplified
factor of− 1

2(𝜖1+
√
𝜖1)
. Similarly, if ϵ1 = ϵ2=1, the limit when 𝜇1 → 𝜇2

is − 1
2(1+

√
𝜇1)
. That is, reducing ϵ not only increases conversion ef-

ficiency but also the amplitude of the reflected second-harmonic
wave. Interestingly, though, increasing 𝜇 increases conversion
efficiency but decreases nonlinear reflection. Going back to
imperfectly matched phase velocities, it was stated before that
for a fixed Δ = ϵ2 − ϵ1, the maximum of conversion efficiency is

independent of ϵ1. On the contrary, the ratio
√
𝜖1−

√
𝜖1+Δ

Δ(1+
√
𝜖1+Δ)

, and thus

u2(0) = A2(0), now decreases with ϵ1. If one realizes that 𝜃(0) =
𝜋 for real 𝜒 (2), u2(0) is exactly the lower root of the denominator
in Equation (17): without loss, A2(0) is a negative real number
and, for very small z, the term eiΔkz − 1 is purely imaginary and
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Figure 7. FDTD-calculated time-averaged Poynting vector j for the first
(dashed lines) and third (solid lines) harmonic versus distance (normal-
ized with respect to the ENZ wavelength), for different wavelengths of
the fundamental, such that ϵ1 = −1.00 + 0.50i, 0.00 + 0.35i and 1.00 +
0.22i (black, blue and red, respectively). While the 𝜔1 wave feels a metal-
lic medium, the 𝜔3 (and higher harmonics) wave undergoes much lower
losses, which allows for propagation. 1(1065nm) is divided by 50 for vi-
sualization.

Table 1. Complex values of the medium’s linear permittivity at 𝜔, 3𝜔 and
5𝜔 for the three scenarios of Figure 7, with fundamental wavelengths 1397,
1240, and 1065 nm (black, blue, and red lines, respectively).

ϵ1 ϵ3 ϵ5

Black −1.00 + 0.50i +3.27 + 0.02i +3.61 + 0.00i

Blue +0.00 + 0.35i +3.38 + 0.01i +3.65 + 0.00i

Red +1.00 + 0.22i +3.49 + 0.00i +3.69 + 0.00i

grows linearly with z; if we match this initial condition at the
interface with propagation in the bulk, we have ϕ2(0) = 𝜋 which,
assuming ϕ1(0) = 0, implies u2(0) is a minimum. Therefore
reducing ϵ1 can raise the bounds of oscillation of u2(z).

2.2.1. Lossy Dispersive 𝜒 (1) and Nondispersive 𝜒 (3)

The presence of losses in the nonlinear material substantially de-
grades power conversion. Yet it might be of interest to exploit
the dispersion of the linear permittivity to our advantage by cen-
tering the fundamental harmonic at a frequency for which the
material possesses metallic character but behaves essentially as
a dielectric for higher harmonics. This transition region can be
found in Drude-type plasmonic materials around the ENZ fre-
quency. In Figure 7 the time-averaged Poynting vector is depicted
versus distance into the unbounded nonlinear half-space, in this
case ITO, for E0 = 109 [V m−1] (incident intensity of 1.33 × 1015

[W m−2]). The linear dielectric function of ITO is assumed to
follow a Drude model with the parameters of [22]: free-electron
plasma frequency𝜔p = 2.9719× 1015 [rad s−1], collision frequency
𝛾 = 0.0468𝜔p, and high-frequency permittivity ϵ∞=3.8055. These
constants fix the ENZwavelength at 1240 nm. Three wavelengths
are considered for the fundamental excitation: 1397, 1240, and
1065 nm, such that Re[ϵ1]=−1, 0 and 1, respectively (Table 1 lists
all the complex permittivity values for the first three harmonics).
A nonlinear susceptibility 𝜒 (3) = 2 × 10−19 [(m V−1)2] is now con-
sidered. Figure 7 clearly shows how the third harmonic carries
more power than the fundamental after a certain distance, as it

Figure 8. 1D FDFD simulations with the same Drude model as in Fig-
ure 7, considering 𝜒 (3) = 10−19 [(m V)2] and an incident electric field of
|E(𝜔)| = 5 × 108 [V m−1]. Δn and Δ𝛼 are depicted versus. Re[ϵ] following
the Drude model of parameters indicated above, in the wavelength range
of [940,1540] nm. We also perform linear simulations (𝜒 (3) = 0) and calcu-
late the ratio of nonlinear/linear intensity at z = 4𝜆ENZ (solid red curve in
the plot, following a different ordinate axis as indicated on the right-side)
and z = 𝜆ENZ/4 (dashed red curve).

experiences a much lower decay. Notably, the third-harmonic in-
tensity is larger at the ENZ crossing point.
Leaving harmonic generation aside, let us now restrict the dis-

cussion to 𝜒 (3)(𝜔;𝜔,𝜔,−𝜔) processes only. If we calculateΔn and
Δ𝛼 with the dielectric function of the Drude model and use the
same 𝜒 (3) as in Figure 5, we get, respectively, the black and blue
curves in Figure 8. One can see how the maxima of Δn and Δ𝛼
are slightly blue-shifted and red-shifted with respect to the ENZ
frequency, respectively. Note also that the plot is showing −Δ𝛼
(more precisely, normalized as the imaginary part of the com-
plex refractive index), that is, the Kerr effect is effectively reduc-
ing absorption loss. If we now perform monochromatic nonlin-
ear FDFD simulations with the same Drude parameters of Fig-
ure 7, andmeasure the ratio of nonlinear-to-linear intensity NL(𝜔)

L(𝜔)

at two different depths, we obtain the red curves in Figure 8, with
maxima of the nonlinear response very close to the ENZ wave-
length of 1240 nm. Importantly, these results are perfectly con-
sistent with the experimental observations of an enhanced non-
linear response from ITO thin layers reported in [22, 24]: please
note that, although the actual origin of this nonlinearity is ITO’s
nonparabolic conduction band, one can still define an effective,
though dispersive, 𝜒 (3).[35,36]

2.2.2. Realistic Scenario with Both 𝜒 (1) and 𝜒 (3) Dispersive

The mechanism behind the (dispersive) nonlinear susceptibil-
ity of TCOs, mentioned above, is extensively studied in [35,
36]: in short, the nonparabolic energy-wavevector ( − k) disper-
sion relation of ITO’s conduction band can be parameterized as
ℏ2k2

2m∗ =+2 (m* is the free electrons’ effective mass at k = 0
and  is the nonparabolicity parameter[48]). This gives rise to
both virtual and real third-order nonlinear transitions, of an-
harmonic (instantaneous) and thermal (delayed) nature, respec-
tively. The latter present a nonlinear susceptibility of the order
of ≈10−17 [(m V−1)−2]—roughly two orders of magnitude larger
than the former[36]—and are responsible for, for example, ITO’s
large effective nonlinear refractive index reported near its ENZ
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Figure 9. Same scenario as in Figure 8, except we now consider the dis-
persive nonlinear susceptibility of thermal origin given by Equation (22),
with 𝜏ep = 100 fs[36] andmeff equal to 0.4 times the electron mass.[50] This

leads to 𝜒 (3)
t ≈2×10−17 [(m V−1)2] at the ENZ frequency (green solid line),

so the incident intensity is reduced by a factor of 10 with respect to Figure 8
in order to keep the nonlinear polarizations of roughly the same order of
magnitude.

frequency.[22] This is explained by an increase in the effective
mass of the thermalized free carriers promoted above the Fermi
level due to optically induced absorption. In the case of degener-
ately doped TCOs like ITO, it is possible to go without the delayed
two-temperature model[49] in the characterization of the thermal
energy densityUt, by approximating the average effectivemass of
the electron gas meff as the effective mass at the Fermi level[35,36]

under the assumption that the electrons’ thermal energy is con-
siderably lessthan the ≈1eV Fermi level (𝜅= Ut

NF ≪1, where N is

the electron volumetric density and F is the Fermi energy). We
can thus write:

Ũt(r, t)
dt

= J̃(r, t)⋅Ẽ(r, t) −
Ũt(r, t)
𝜏ep

(21)

with J the free-carrier polarization current, and 𝜏ep the electron-
phonon relaxation time.[36] Correct to first order, the thermalized
nonlinear plasma frequency can be approximated as 𝜔2

p,t(r, t)≈
𝜔2
p(1−𝜅(r, t)), which allows to substantiate an effective Kerr sus-

ceptibility of

𝜒
(3)
t (𝜔;𝜔,−𝜔,𝜔) ≈ −2𝜖0𝜒 (1)(𝜔)

𝛾𝜏ep𝜔
2
p

(𝜔2 + 𝛾2)NF (22)

This nonlinear process is exemplified in Figure 9, which comple-
ments the numerical experiment of Figure 8 by replacing an arbi-
trary instantaneous 𝜒 (3) with the more realistic situation of Equa-
tions (21) and (22). The strength of this thermal process leads to
even higher nonlinear-to-linear transmission ratios than before
with as much as 10 times less laser intensity. The introduction of
nonlinear dispersion (see green curves), though evident from the
tilt of these ratios (red curves) with respect to the previous ones,
still places the peak at the ENZ point.
In addition, the numerous reports of enhanced harmonic gen-

eration from thin TCO films excited with obliquely incident TE-
polarized light at the ENZ frequency[19,21,25–28] can only be ex-
plained through anharmonic nonlinear interactions. We now
take a look at these from a purely classical heuristic perspec-

Figure 10. Same scenario as in Figure 7, but considering the disper-
sive nonlinear susceptibility of quasi-instantaneous nature given by Equa-
tion (24).

tive and draw a parallelism with the Lorentz model of bound
electrons subject to a nonparabolic centrosymmetric restoring
force.[31] From the  -k dispersion written previously, the kinetic
energy of the free electron in the Drude model can be derived as

= −1+
√
1+2m ̇̃x2

2 (with x̃ the free electron’s displacement), which

leads to a force F= m ̈̃x√
1+2m ̇̃x2

or, keeping only the first nonlinear

term in the Taylor expansion in ̇̃x, F=m ̈̃x(1−m ̇̃x2). The equa-
tion of motion of the free electron’s position can then be cast as

m ̈̃x(1−m ̇̃x2) +m𝛾 ̇̃x = qẼ(t) (23)

with q the electron charge. In analogy with the thermal nonlin-
earity, we now have an anharmonic nonlinear plasma frequency
𝜔2
p,a(r, t)≈𝜔2

p(1+m( J̃(r,t)qN
)2), where 𝛾 = 0 is assumed for simplic-

ity, which gives rise to the cubic anharmonic susceptibility

𝜒
(3)
a (3𝜔;𝜔,𝜔,𝜔) ≈ −4𝜒 (1)(3𝜔)m

(
i𝜔𝜖0𝜒

(1)(𝜔)
qN

)2

(24)

Taking =0.4191 [eV−1] from [50], we obtain 𝜒
(3)
a ≈

{2.10−0.51i, 1.32−0.28i, 0.72−0.13i}×10−19 [(m V−1)2] at
{1397, 1240, 1065} nm, respectively. These numbers are consis-
tent with the dispersion from the band-theory analysis in [36],
proportional to 1

3𝜔(𝜔+i𝛾)3
. With these values, we repeat in Figure 10

the numerical simulations of Figure 7: due to the newly added
dispersion, the intensity of the third harmonic is now similar
for Re[ϵ1] = −1 and Re[ϵ1] = 0. But let us not forget that the
enhanced ENZ nonlinear response reported in the literature for
subwavelength TCO-layers is mainly extrinsic and goes back to
the magnification of the normal component of the p-polarized
electric field at a given angle, be it by critically coupling the
incident transverse wave to the bound plasmon polariton ENZ
mode (as in the Kretschmann configuration of [19]) or by exciting
the leaky Ferrell–Berreman mode from the longitudinal bulk
plasmon resonance (e.g., ref. [21]). A pseudo-Brewster angle
with a dip in reflectivity and a peak in absorption can hence be
engineered in order to harness the nonlinear response in an
extrinsic fashion.
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3. Conclusions

We have theoretically shown that the efficiency of the nonlinear
response of a material tends to increase with an increasing lin-
ear permeability and/or a decreasing linear permittivity, accord-
ing to a conversion length that decreases with an increasing rel-
ative impedance, under phase-matched conditions. We have also
seen from Equations (15) and (16) how, in considering the Kerr
effect and TPA, this

√
𝜇∕𝜖 dependence emerges in the nonlin-

ear change of both the refractive index and the absorption coef-
ficient. Moreover, if wave propagation is phase-mismatched, we
have considered two scenarios (we herein restrict the notation to
second-harmonic generation): if ϵ2 − ϵ1 (𝜇2 − 𝜇1) is kept con-
stant, the maximum of power conversion does not vary with ϵ1
(increases with 𝜇1) and the oscillation period increases with ϵ1
(increases with 𝜇1); if ϵ2/ϵ1 (𝜇2/𝜇1) is kept constant, the maxi-
mum of power conversion decreases with ϵ1 (does not vary with
𝜇1) and the oscillation period decreases with ϵ1 (decreases with
𝜇1). Consequently, either the oscillation amplitude of power con-
version tends to increase with increasing 𝜇 and/or decreasing ϵ,
or else this amplitude stays constant with respect to 𝜇 and ϵ, but
with an oscillation period that decreases with increasing 𝜇 and/or
decreasing ϵ.
The behavior described here is consistent with previous ex-

perimental measurements of unusually large nonlinear phase
shifts of ENZ materials,[22,23] and yet proves that a stronger non-
linear response—restricted in this paper to low-order harmonic-
generation processes, Kerr effect and TPA—does not necessar-
ily require a larger nonlinear susceptibility, but can rather be
traced back to the relative strengths of the electric and magnetic
fields, quantified through the relative impedance. This work thus
shows that, even at a fixed value of the nonlinear susceptibility,
one can obtain a larger overall nonlinear response, such as an in-
creased conversion efficiency for low-order harmonic generation,
by choosing situations such that one or more of the interacting
frequencies lies in an ENZ region of the nonlinear material. Fi-
nally, we note that under most laboratory conditions the laser in-
tensity has a fixed value, and thus the electric field strength scales
as |E|2 ∝ √

𝜇∕𝜖I, which provides an additional mechanism for
increasing the efficiency of nonlinear interactions for materials
with a large impedance

√
𝜇∕𝜖.

Acknowledgements
This work is supported in part by the Defense Advanced Research Projects
Agency (DARPA) Defense Sciences Office (DSO) Nascent Light–Matter
Interaction program under Grant Number W911NF-18-0369. In addition,
R.W.B. acknowledges support from the US Army Research Office through
Grant W911NF-18-1-0337.

Conflict of Interest
The authors declare no conflict of interest.

Data Availability Statement
Data sharing is not applicable to this article as no new data were created
or analyzed in this study.

Keywords
epsilon-near-zero materials, harmonic generation, indium tin oxide, Kerr
effect, nonlinear optics

Received: January 22, 2021
Revised: June 21, 2021

Published online:

[1] D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset,
I. D. Phillips, A. J. Poustie, D. C. Rogers, Science 1999, 286, 1523.

[2] T. D. Vo, H. Hu, M. Galili, E. Palushani, J. Xu, L. K. Oxenløwe, S. J.
Madden, D.-Y. Choi, D. A. P. Bulla,M. D. Pelusi, J. Schröder, B. Luther-
Davies, B. J. Eggleton, Opt. Exp. 2010, 18, 17252.

[3] P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, Y.
Shih, Phys. Rev. Lett. 1995, 75, 4337.

[4] J. Leach, B. Jack, J. Romero, A. K. Jha, A. M. Yao, S. Franke-Arnold, D.
G. Ireland, R. W. Boyd, S. M. Barnett, M. J. Padgett, Science 2010, 329,
662.

[5] J. Bravo-Abad, A. Rodriguez, P. Bermel, S. G. Johnson, J. D.
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