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ABSTRACT: Bianisotropy is a powerful concept enabling asym-
metric optical response, including asymmetric reflection, absorption,
optical forces, light trapping, and lasing. The physical origin of these
asymmetric effects can be understood from magnetoelectric coupling
and asymmetrical field enhancement. Here, we theoretically propose
highly asymmetric second-harmonic generation in bianisotropic
AlGaAs metasurfaces. We show that the ratio of second-harmonic
power for the forward and backward illuminations can be increased by
around four orders of magnitude. This effect is obtained by altering
geometrical parameters that coincide with quasi-bound states in the
continuum. Our study paves the way toward a directional generation
of higher-order waves and can be potentially useful for nonlinear
holograms.
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Among planar photonic devices, metasurfaces have experi-
enced a revolutionary path of development over the past

decade, enabled by state-of-art fabrication methods and rich
physics.1 The ability to control the amplitude, phase, and
polarization of reflected, transmitted, and absorbed light was
pioneered by plasmonic metasurfaces.2,3 However, the inherent
Ohmic loss of plasmonic metasurfaces is a limiting characteristic
for the linear and nonlinear functionalities. An inspiring idea to
overcome this challenge emerged by employing periodic
arrangements of lossless high-index dielectric meta-atoms.4−7

Due to the high confinement of light supported by the electric
and magnetic Mie resonances, dielectric metasurfaces found
their unique place in nonlinear optics.8−13 In addition, the
optically thin nature of the dielectric entities releases the device
from phase matching. In this context, the physics of dielectric
metasurfaces can be explained in terms of coupled-multipolar
interactions.14−18

A migrated quantum mechanical concept to the optics scope,
known as optical bound states in the continuum (BICs), has
been widely used as an efficient approach to enhance the
confinement of light inside the meta-atoms.19,20 Optical bound
states in the continuum are optical modes that are unable to
couple with the allowed continuum of radiative modes in the
surrounding medium.19 Although ideally BICs necessitate an
infinite Q-factor, one can observe a finite Q-factor by breaking
the symmetry of the meta-atoms, so-called quasi-BICs.21 To
date, thanks to this concept, enhancement of the conversion
efficiency of the second-,22−26 third-,27−29 and higher-order30,31

harmonics in dielectric metasurfaces has been demonstrated
theoretically and experimentally. The physical origin of these

large nonlinear conversion efficiencies can be understood by the
field enhancement.32 Controlling the direction and phase of the
generated higher-order waves, which is crucial for nonlinear
holography33,34 and nonlinear wavefront shaping,35,36 is another
significant relationship between dielectric metasurfaces and
nonlinear optics.
In terms of controlling the wave direction, bianisotropy is a

powerful concept enabling an asymmetric behavior of the
interacting light with the scatterer based on the magnetoelectric
coupling.37,38 A strong bianisotropic response can be achieved
by breaking the inversion symmetry.39,40 Up to now,
bianisotropic metasurfaces have demonstrated asymmetric
linear functionalities such as asymmetric reflection,41,42

asymmetric optical forces,39 self-isolated Raman lasing,43 light
trapping,44 asymmetric absorption,45−47 and nonreciproc-
ity,48,49 among other feats.37,38 However, the nonlinear
potentials of bianisotropic metasurfaces based on bound states
in the continuum have remained unexplored.
In this work, we demonstrate a highly asymmetric generation

of second harmonics assisted with quasi-BICs in nonlinear
metasurfaces composed of bianisotropic AlGaAs meta-atoms
(see Figures 1a and 2a). We show that the asymmetric nonlinear
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response is originated from the electric and magnetic multipole
moments with different strengths when the nonlinear metasur-
face is illuminated from the forward and backward directions.
Interestingly, we found a giant ratio of SHG for the forward and
backward excitation directions. Our results show that the ratio of
SHG for the forward and backward excitation directions can be
suitably controlled through the asymmetry parameter. In the
following, we provide a solid methodological framework to
explore the nonlinear features of the bianisotropic metasurfaces
composed of Al0.18Ga0.82As meta-atoms with high relative
permittivity50 and large second-order nonlinear susceptibility
(χ(2)), around 200 pm/V in the near-infrared spectral range.51,52

■ NONLINEAR BIANISOTROPIC METASURFACES

Let us start with an AlGaAs bianisotropic metasurface composed
of cylindrical meta-atoms with a coaxial cylindrical hole with
height h, see Figure 1a. The metasurface is illuminated by a
linearly polarized light in ±z directions (kFW/BW = ±k0ez, where
+ and − indicate forward and backward illuminations,
respectively). Such a meta-atom design with magnetoelectric
coupling shows an asymmetric linear response for the forward
and backward illuminations.39,40 In particular, this asymmetry
for lossless reciprocal meta-atoms, manifests itself as different
phases of the reflection coefficients for the forward and
backward illuminations,39,40,53 while the reflection amplitudes
are identical for the forward and backward illuminations. The
reflection coefficient in terms of the induced multipoles up to
quadrupole orders is given by54
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where k0, ε0, and E0 denote the wave vector in free space,
permittivity of the vacuum, and the amplitude of the incident
electric field, respectively. Λ is the periodicity in x and y
direction. px (Q xz

e ), my (Q yz
m) represent the effective electric and

magnetic dipole (quadrupole) moments, respectively.17

Figure 1b,c show the reflection for the forward and backward
illumination direction, respectively, obtained through the
numerical simulation and semianalytic method. The semi-
analytic approach is based on multipolar decomposition of the
polarization current, using eq 1 (see Supporting Information for
details). Figures 1b,c show a good agreement between the
simulation and semi-analytic method. Although forward and
backward reflections are identical, the multipolar contributions
are quite different for opposite illumination directions (i.e.,
kFW/BW). In particular, the magnetic dipole contribution
becomes comparable to the electric dipole contribution in the
case of backward illumination. In fact, different field
distributions in the meta-atom (or different polarization
currents) give rise to various induced multipoles (see the insets
of Figure 1b,c).
To obtain the second-harmonic generation, we performed

numerical simulations in two consecutive steps using COMSOL
Multiphysics based on the finite element methods. First,
Maxwell’s equations are solved to calculate the field distributions

Figure 1. Linear and nonlinear responses of the bianisotropic metasurface. (a) Schematic of the bianisotropic metasurface with a coaxial cylindrical
hole and its cross-sectional view with the geometrical dimensions. Themetasurface is illuminated by a linearly polarized light with wavevector kFW/BW =
±k0ez, where + and − indicate forward and backward illuminations, respectively. (b, c) The reflection spectrum and multipolar contributions for the
forward and backward illumination directions, respectively. The semi-analytic reflection is obtained using eq 1. The insets show the normalized electric
field E E/ 0| | | | in the middle of the meta-atom (xy-plane), where E0| | is the amplitude of the incident field. The gray shaded bar shows the frequency at
which the SH conversion efficiency is investigated. ED (MD) and EQ (MQ) indicate contributions of electric (magnetic) dipole and quadrupole
moments, respectively. (d) The second harmonic conversion efficiencies η = PSHG/Ppump for the forward and backward illumination directions. The
geometrical parameters of the bianisotropic metasurface are d = 420 nm,D = 760 nm, h = 360 nm, H = 720 nm, and Λ = 1260 nm, where Λ is the
periodicity in x and y directions.
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and linear response of the bianisotropic structure. Second, the
nonlinear polarization current obtained through the previous
step is employed as a source of 2ω in a scattering problem in
order to generate second harmonics. All three components of
the nonlinear polarization vector for the AlGaAs crystal,
possessing a zinc-blende structure with symmetry m43 , can be
obtained as55
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where d14 = d25 = d36 = d are associated with the second-order
susceptibility tensor elements through the relation 2d(−2ω; ω,
ω) = χ(2)(−2ω; ω, ω), and the only nonvanishing elements are

xyz yzx zxy
(2) (2) (2) (2)χ χ χ χ= = = . The second-harmonic radiation

generated by the bianisotropic metasurface is governed by the
diffraction orders because the periodicity of the latticeΛ is larger
than the radiated wavelength at 2ω. In the frequency domain the
vectorial components of the nonlinear polarization current can
be calculated as Jx = −i(2ω)ε0χ(2)Ey(ω)Ez(ω), Jy = −i(2ω)-
ε0χ

(2)Ez(ω)Ex(ω), and Jz = −i(2ω)ε0χ(2)Ex(ω)Ey(ω).
The insets of Figure 1b and c show that the generated electric

fields inside the bianisotropic meta-atoms for the backward and
forward illumination directions are different, leading to different
nonlinear polarization currents. Therefore, we expect to achieve

different conversion efficiencies of second harmonics η = PSHG/
Ppump, where PSHG and Ppump are the radiated power at 2ω and
the pump power at ω, respectively. It can be seen in Figure 1d
that the calculated conversion efficiency for the backward
illumination is almost two times greater than that for the forward
illumination. Note that we assumed a pump intensity of 1 MW/
cm2.

■ NONLINEAR BIANISOTROPIC METASURFACES
BASED ON BOUND STATES IN THE CONTINUUM

In the following, we propose a robust approach to enhance and
control the conversion efficiency of second harmonics for
opposite illuminations in bianisotropic metasurfaces. Optical
BICs tightly connected with sharp resonances are a powerful
concept to fortify asymmetric features of bianisotropic
metasurfaces in the nonlinear regime. In the same vein, we
apply in-plane asymmetry to the bianisotropic meta-atom to
obtain quasi-BIC modes, and we calculate corresponding
second-harmonic conversion efficiencies. Let us consider a
bianisotropic meta-atom with geometrical dimensions d = 270
nm,D = 900 nm, h = 360 nm,H = 720 nm, andΛ = 1260 nm, see
Figure 2a. The asymmetry parameter is defined as α = 2L/D,
where L is the shift distance between the axis of the cylinder and
the hole. We have optimized the structure such that it shows
maximum bianisotropic response along with the BIC effect.
Figure 2b,c depict the reflection coefficients corresponding to

three different values of the asymmetry parameter and two
polarizations of the illuminating light. It can be seen from the
figure that the resonance line width increases as the asymmetry
parameter increases, and this facilitates the coupling channel of
light to the free space. Further, through the eigenmode analysis
of the metasurface, the Q-factor can be obtained as

Figure 2. Linear response of the bianisotropic metasurface based on bound states in the continuum. (a) Schematic of the bianisotrapic metasurface
(and its cross-sectional view) with a broken symmetry characterized by the asymmetry parameter α = 2L/D, where L is the shift distance between the
axis of the cylinder and the hole. (b, c) The reflection spectrum with the x- and y-polarization of the illuminating light for three different values of the
asymmetry parameter α = 0, 0.1, and 0.2. (d) TheQ-factor as a function of the asymmetry parameter α for the x- and y-polarization of the illuminating
light obtained from the eigenmode analysis and eq 3. The inverse quadratic dependence of the Q-factor on the asymmetry parameter Q ∝ α−2 shows
that our proposed metasurface in (a) exhibits the symmetry-protected quasi-BICs.21
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Figure 3. Second harmonic (SH) conversion efficiencies of the bianisotropic metasurface based on bound states in the continuum. (a, b) The
calculated SH conversion efficiencies for two different values of the asymmetry parameter, that is, α = 0.05 and 0.1 and x-polarization of illuminating
light. The blue and red curves denote forward and backward conversion efficiencies, respectively. The insets show the k-vector and the polarization
vector for different cases of illumination. (c, d) Same as (a) and (b) for y-polarization.

Figure 4. (a) The factor J J/FW BW| | | | obtained from eq 4 as a function of frequency for x-polarization and three different values of the asymmetry
parameter, where the bar over the current (JFW/BW) indicates the average in the volume [see eq 4]. (b) Maximum ratio of /FW BWη η{ } as a function of
the factor J J/FW BW| | | |. Each black square is associated with a specific value of α; the black squares are corresponding to α = 0.2, 0.1, 0.07, 0.05, from left
to right, respectively. (c) The normalized electric field in the middle of the meta-atom in xy-plane (shown in Figure 2a) for two different values of the
asymmetry parameter, that is, α = 0.05 and 0.1 for x-polarization. The normalized electric field distributions in the middle of the meta-atom are
illustrated for forward and backward illumination direction at the resonance frequency. (d−f) Same as (a)−(c) for y-polarization.
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where ωr is the complex eigenvalue. Figure 2d illustrates the Q-
factor versus the asymmetry parameter for both x- and y-
polarizations, where the inverse quadratic dependence of the Q-
factor on the asymmetry parameter Q ∝ α−2 identifies the
prominent resonances as symmetry-protected quasi-BICs.21 By
the way, based on the multipolar decomposition, the BICmodes
for the forward- and backward-illuminating light are due to the
interference of electric and magnetic dipole and quadrupole
moments (see the Supporting Information).
To explore the asymmetric nonlinear response of our

metasurface with quasi BICs, we calculated second-harmonic
conversion efficiencies for opposite illumination directions, two
different values of the asymmetry parameter (i.e., α = 0.05 and
0.1) and polarizations (see Figure 3). Our results demonstrate a
high conversion efficiency and a giant ratio of imbalanced
second harmonics for the opposite directions of illumination at
the frequency of quasi-BIC modes.
The second-harmonic conversion efficiency reduces as the

asymmetry parameter increases for both polarizations, occurring
due to some increase in the resonance line width (e.g., compare
Figure 3a and b). We obtain a giant ratio of the forward to
backward second-harmonic conversion efficiencies (see the
Supporting Information, ηFW/ηBW ≈ 104 for x-polarization).
This ratio drops almost 2 orders of magnitude for the
illuminating light with y-polarization. Interestingly, being dual
quasi-BICs with respect to the polarization of the illuminating
light adds one more degree of freedom to the proposed design of
the meta-atom for manipulation and control of the ratio ηFW/
ηBW.
To understand the underlying physical mechanism of the

asymmetric second-harmonic generation in our bianisotropic
metasurface, we explore the nonlinear polarization current as the
source of second harmonics for opposite illumination directions.
The relation between the average nonlinear polarization current
at frequency 2ω with the electric field components at the
fundamental frequency can be expressed as

V

E E E E E E V

J
2

( ) ( ) ( ) ( ) ( ) ( ) d

j

V
x y z x y z

0
(2)

2 2 2
j j j j j j∫

ωε χ

ω ω ω ω ω ω

| | =

× | | + | | + | |

(4)

where j BW, FW= { } and the average in the volume of the
meta-atom (V) is indicated by the bar above the current.
Although the right-hand side of eq 4 can be fully characterized in
terms of electric field components obtained through the linear
simulation, it provides an insight into the nonlinear optical
response of the structure, through its relationship to the
nonlinear polarization current components (i.e., Jx, Jy, Jz). Figure
4a,d show the factor J J/FW BW| | | | for three different values of the
asymmetry parameter and x- and y-polarizations, respectively. It
can be seen that the factor J J/FW BW| | | | resonates at the frequency
of the quasi-BIC modes for different polarizations. These
resonances become weaker with the increase of the asymmetry
parameter. Furthermore, through the calculations above for
certain moderate values of the asymmetry parameter, that is, α, it
can be realized that the ratio of second-harmonic power for the
forward and backward directions rises when the factor
J J/FW BW| | | | increases (or equivalently when the asymmetry

parameter decreases; see Figure 4b,e). Note that the depend-
ence of the maximum ratio of the conversion efficiencies, that is,
max (ηFW/ηBW), on the ratio of the nonlinear polarization
currents for the forward and backward directions cannot be
fitted to J J( / )FW BW

2| | | | . This occurs due to the fact that the
conversion efficiency also depends on the spatial and spectral
features of the second-harmonic mode.56 Importantly, we
observe the maximum-induced nonlinear polarization currents
inside themeta-atoms at the quasi-BIC resonances coincide with
the maximum asymmetry of the second-harmonic generation.
Basically, it indicates the presence of great contrast between the
field strength inside the meta-atoms for the forward and
backward illuminations. To explore this, the normalized field
distributions in the xy-plane (in the middle of the meta-atom)
are shown in Figure 4c,f, with significantly different field
enhancement factors for two opposite illumination directions.
For the x-polarization (y-polarization), the field enhancement of
140 (60) and 70 (35) can be obtained with α = 0.05 and 0.1,
respectively, for the forward illuminating light. These values
drop to 13 (14) and 8 (7) for the backward-illuminating light
(compare Figure 4c and f). Fundamentally, it corroborates the
collaborative role of bianisotropy and the quasi-BIC modes in
the highly asymmetric generation of second harmonics in the
proposed metasurface.

■ CONCLUSIONS
We theoretically proposed a giant asymmetric second harmonic
generation through the combination of bianisotropy and quasi-
BIC modes, originated by broken in-plane symmetry in
nonlinear metasurfaces. We analyzed our results based on the
induced multipole moments and nonlinear polarization currents
as the source of nonlinearity. We found that the sharp
resonances of the quasi-BICmodes can be employed to enhance
nonlinear polarization currents, coinciding with a very
asymmetric field enhancement inside the meta-atoms caused
by bianisotropy. Our approach to achieving asymmetric
nonlinear response is not restricted to second-harmonic
generation and can also be extended to the third, higher-order
harmonic generations and parametric nonlinear processes.55,57

Our study has the potential to be used in nonlinear holography.

■ NUMERICAL SIMULATIONS
For simulating the reflection spectrum, the ratio of nonlinear
polarization currents and the induced multipoles, we solve a full
field problem in the frequency domain by COMSOL Multi-
physics through using PML boundaries, periodic boundary
conditions, and two exciting ports. Next, for the calculation of
the conversion efficiencies, we solve a scattering problem by
considering the nonlinear polarization current as the source of
second harmonics at frequency of 2ω. Finally, the nonlinear
simulation is followed by calculating the second-harmonic
power through the integration of the Poynting vector on two
virtual planes placed at the top and the bottom of the unit cell,
surrounding the meta-atom.
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*sı Supporting Information
The Supporting Information is available free of charge at
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We briefly explain how the formula in eq 1 in themain text
can be obtained based on the multipole decomposition of
the scattered field. Next, we provide analytical formula for
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the exact induced multipole moments in Cartesian
coordinates. Moreover, we calculate the multipole
decomposition of the reflection coefficient for the
bianisotropic metasurface with the asymmetry parameter
equal to 0.05. Finally, we demonstrate the effect of
bianisotropy on the directional SH generation (PDF)
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