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Abstract

The spatial modes of photons provide a degree of freedom for boosting the chan-

nel capacity of both quantum and classical communication. Although high-speed

communication using spatial modes has been reported in proof-of-principle demon-

strations, the application of spatial modes in real-world communication links re-

mains challenging due to the low detection efficiency and the high modal crosstalk

induced by aberrating media. In this thesis, we discuss how to build an effi-

cient spatial mode sorter as well as how to use phase conjugation to overcome

the modal crosstalk induced by aberrating media. We begin the thesis with chap-

ter 1 introducing the background information for spatial modes. We also review

recent advances and challenges in optical communication using spatial modes. In

chapter 2 we propose and demonstrate a Laguerre-Gauss (LG) mode sorter based

on the fractional Fourier transform (FRFT) to efficiently decompose the optical

field according to its radial mode index. In chapter 3 we propose and present

the realization of an efficient, robust mode sorter that can sort a large number of

Hermite-Gauss (HG) modes based on the relation between HG modes and LG

modes.
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Based on the spatial mode sorter we develop, in chapter 4 we develop and

implement a generic mode sorter that is capable of sorting the superposition of

LG modes through the use of a mode converter. As a consequence, we demon-

strate an 8-dimensional quantum key distribution (QKD) experiment involving all

three transverse degrees of freedom: spin, azimuthal, and radial quantum numbers

of photons. In chapter 5 we show that digital phase conjugation is an effective

method for mitigating atmospheric turbulence. We experimentally characterize

seven orbital angular momentum (OAM) modes after propagation through a 340-

m outdoor free-space link and observe a suppression of average modal crosstalk

from 37.0% to 13.2% by implementing real-time digital phase conjugation. We

implement a classical mode-division multiplexing (MDM) system as a proof-of-

principle demonstration, and the bit error rate is reduced from 3.6 × 10−3 to be

less than 1.3×10−7 through the use of phase conjugation. We also propose a prac-

tical and scalable scheme for high-speed, spatial-mode-multiplexed QKD through

a turbulent link. In chapter 6 we show that high mode fidelity can also be achieved

for a large number of spatial modes propagating through a 1-km-long, standard,

graded-index, multimode fiber by using vectorial phase conjugation. Through the

use of vectorial phase conjugation, we show an average mode fidelity above 80%

for 210 modes over a fiber without thermal or mechanical stabilization, allowing

for a channel capacity of up to 13.8 bits per sifted photon for high-dimensional

QKD. We also propose a scalable spatial-mode-multiplexed QKD protocol that

cannot be achieved by alternative methods. In chapter 7 we summarize the thesis

and discuss the potential future work.
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Chapter 1

Background information

1.1 Introduction to spatial modes

The concept of spatial modes of electromagnetic waves was developed for mi-

crowave cavities as early as 1897 by Lord Rayleigh [6] and then extended to laser

cavities and optical waveguides, where spatial modes are also referred to as trans-

verse modes [7]. Spatial modes are typically described by a set of orthonormal

functions that are solutions of Maxwell’s equations given certain boundary con-

ditions. A few well-known examples of spatial modes include transverse electric

(TE) modes, linearly polarized (LP) modes [8], Hermite-Gauss (HG) modes, and

Laguerre-Gauss (LG) modes [9]. In the paraxial regime, the scalar Helmholtz

equation in free space can be written as [10]

∂2E

∂x2
+
∂2E

∂y2
+ 2ik

∂E

∂z
= 0, (1.1)
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m=0
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Figure 1.1: Intensity profile of (a) HG modes and (b) LG modes.

where E(x, y, z) is the electric field, k = 2π/λ, and λ is the wavelength. It can

be shown that HG modes are solutions to the paraxial wave equation in Cartesian

coordinates, which can be expressed as [7]

HGmn(x, y, z) =
w0

w(z)
Hm

(√
2x

w(z)

)
Hn

(√
2y

w(z)

)
exp

(
−x

2 + y2

w2(z)

)
· exp

(
−ik(x2 + y2)

2R(z)

)
exp(iφ(z)) exp(−ikz),

(1.2)

where w0 is the beam waist radius, zR = πw2
0/λ, w(z) = w0

√
1 + (z/zR)2,

Hm(·) and Hn(·) are Hermite polynomial of order m and n respectively [11],

R(z) = z+ (z2R/z), and φ(z) = (m+n+ 1) · arctan(z/zR). The intensity profile

of HG modes is presented in Fig. 1.1(a), and it can be seen that the HG modes are

separable in Cartesian coordinates. The paraxial wave equation Eq. (1.1) can also

be solved in cylindrical coordinates, and the corresponding solution becomes the

LG modes as
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LGp`(r, θ, z) =
w0

w(z)

(√
2r

w(z)

)|`|
exp

(
− r2

w2(z)

)
L|`|p

(
2r2

w2(z)

)
· exp

(
−ik(x2 + y2)

2R(z)

)
exp(i`θ) exp(iψ(z)) exp(−ikz),

(1.3)

where L|`|p (·) is the generalized Laguerre polynomial [12], p is the radial index, `

is the azimuthal index, and ψ(z) = (2p + |`| + 1) · arctan(z/zR). The intensity

profile of LG modes is presented in Fig. 1.1(b), and it can be seen that the LG

modes are separable in cylindrical coordinates.

1.2 Advances and challenges in optical communica-
tion with spatial modes

It was realized in 1992 that the helical phase structure exp(i`θ) in LG modes is as-

sociated with the OAM of photons [13], which triggers a number of theoretical and

experimental investigations for OAM modes [14–16]. Due to the orthogonality of

OAM modes, different co-propagating modes can in principle be demultiplexed

without modal crosstalk, and thus the data transfer rate of both quantum and clas-

sical communications can be enhanced by either MDM or high-dimensional spa-

tial mode encoding [17]. Spatial mode encoding uses N spatial modes to encode

each symbol and transmit one spatial mode at a time [18–20]. Therefore, each

symbol can carry log2N bits of information, and thus the information capacity

can be increased by a factor of log2N through the use of N spatial modes. Spa-
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tial mode encoding is often adopted in QKD because high-dimensional encoding

allows for a higher error rate threshold [21], which makes QKD protocols more

robust to noise and crosstalk. By contrast, MDM uses N spatial modes as N in-

dependent carriers to convey N different signal streams to the receiver through

the same channel simultaneously [22, 23]. The channel information capacity can

be increased by a factor of N by MDM, which is higher than log2N of spatial

mode encoding. Hence, MDM is more favorable to the classical communication

community.

A multitude of approaches have been proposed and demonstrated to generate

spatial modes for optical communication. A spatial light modulator (SLM) is a

re-programmable and versatile tool that can be used to generate arbitrary spatial

modes through the use of computer-generated hologram [24–30]. Liquid-crystal-

on-silicon (LCoS) device [31] is a commonly used type of SLM that features

phase-only modulation and high diffraction efficiency. Due to the slow response

of liquid crystal molecules, LCoS device typically has a refresh rate from 60 Hz

to sub kHz [32]. The LCoS SLM can also be placed inside a laser cavity to enable

efficient, high-power generation of spatial modes [33]. Digital micromirror device

(DMD) is another type of SLM that allows fast binary amplitude modulation. By

using binary computer-generated hologram, DMD can also be used to generate

arbitrary complex spatial modes [34]. The major advantage of DMD compared

to LCoS device is that DMD has a refresh rate up to 20 kHz [35]. Many alterna-

tive methods and devices have also been investigated to generate spatial modes,

such as q-plates [36], metasurfaces [37], photonic lanterns [38], and micro-ring
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resonators [39]. However, it should noted that these methods are typically non-

reconfigurable and can only generate pre-determined spatial modes.

The detection of spatial modes can be regarded as an inverse process of mode

generation. Therefore, a SLM can be used to detect a spatial mode by displaying

a conjugate hologram, which is referred to as projective measurement [40–42].

More specifically, for an incoming OAM mode of exp(i`1θ), if the SLM displays

a hologram that impresses a phase modulation of exp(−i`2θ) to the field, then the

output OAM mode becomes exp(i(`1 − `2)θ). If `1 = `2, then the helical phase

structure can be erased and thus the beam can be coupled into a single-mode

fiber (SMF) [22]. Despite the simplicity, the detection efficiency of projective

measurement is intrinsically bounded to 1/N for a N -dimensional Hilbert space.

By contrast, it is possible to perform projection to multiple spatial modes loss-

lessly and simultaneously, and such a device is referred to as a mode sorter. Take

the polarization degree of freedom as an example, a polarizer performs projective

measurement by passing photons of a particular polarization state while absorbing

photons of the other orthogonal polarization state. By contrast, a polarizing beam-

splitter (PBS) can sort photons of different polarization states to different output

ports losslessly. The spatial mode sorter can be realized by the optical geometrical

transformation [43–45], integrated photonic waveguides [46], and the multi-plane

light conversion (MPLC) [47]. Although a scalable, low-crosstalk mode sorter

has been realized for OAM modes [43], sorting the full-field HG modes and LG

modes with low crosstalk and high scalability remains a challenging task. It has

been reported that the MPLC can be used to sort up to 210 LG modes [48], but
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the average modal crosstalk remains as high as 19.1%, which can be a concern

particularly to quantum communication.

Despite the advances achieved in mode generation and detection, the modal

crosstalk inevitably induced by transmission through aberrating media has im-

peded the widespread adoption of classical and quantum communication with

spatial modes in practical applications. For free-space optical communication,

atmospheric turbulence inevitably leads to strong modal crosstalk between spatial

modes [49], which severely degrades the channel capacity of a free-space link.

We next summarize several previous works to show the typical level of crosstalk

between OAM modes in a turbulent, outdoor free-space channel. In a 150-m link

[50], the crosstalk fluctuates between 60% and 80% depending on time. In a 300-

m intra-city link [20], the crosstalk is 11% with a mode spacing ∆` of 4. In a

340-m cross-campus link [51], the crosstalk is measured to be in the range be-

tween 70% and 80%. In a 3-km link [52], a camera is used to measure the images

of bright OAM superposition modes, and an artificial neural network (ANN) is

applied for image recognition, resulting in a bit error rate of 1.7 × 10−2. Hence,

the turbulence can be a serious concern for crosstalk-sensitive applications such

as QKD.

Adaptive optics is the most common method for turbulence correction and

has been widely adopted for astronomical imaging [53]. A conventional adap-

tive optics system consists of a wavefront sensor and a deformable mirror at the

receiver. The wavefront sensor measures the aberrated phase of an incoming bea-

con beam (typically a Gaussian beam), and subsequently the deformable mirror
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corrects the phase aberration of the incoming beam based on the feedback from

wavefront sensor as post-turbulence compensation [54]. However, different OAM

modes exhibit mode-dependent amplitude and phase distortions after propagation

through the same turbulent link [51]. Therefore, a conventional post-turbulence

single-plane phase-only adaptive optics system is unable to correct both amplitude

and phase distortions for different OAM modes simultaneously, even in principle

[55, 56]. Furthermore, the effectiveness of adaptive optics for OAM communica-

tion has mostly been tested in numerical simulations [56–58] or in lab-scale links

with emulated, slowly varying, fully controllable turbulence [59–62]. To the best

of our knowledge, there is only one experimental demonstration using adaptive

optics for OAM communication through an outdoor link [51], and the crosstalk is

reduced from 80% to 77% by using both adaptive optics and a fast steering mirror

simultaneously. This level of crosstalk is too large to guarantee secure QKD [21].

Therefore, adaptive optics has achieved very limited performance enhancement

in outdoor free-space OAM communication links despite numerous simulations

and lab-scale experiments. Other methods for turbulence suppression, such as a

multiple-input multiple-output (MIMO) algorithm [63] and an ANN [52], cannot

be applied to QKD because these algorithms require a large number of photons

for digital signal processing and thus are inappropriate for quantum applications

that operate at a single-photon level.

Spatial modes have also been applied to enhance the channel capacity of fiber

communication. The large number of modes supported by a standard multimode

fiber (MMF) have long been recognized as an additional resource to further in-
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crease the communication rate [64–68]. It is compatible with other multiplexing

methods such as wavelength-division multiplexing and can be also used to en-

hance quantum teleportation [69] and entanglement distribution [70, 71]. How-

ever, the inevitable mode crosstalk in standard MMFs is a persistent obstacle to

practical applications of spatial modes for QKD. Tremendous efforts have been

devoted to attempts to mitigate the effects of spatial mode crosstalk during the past

decades. Transfer matrix inversion is a standard method that has been successfully

used to transmit spatial modes through MMFs [72–78]. However, standard MMFs

can support between tens and hundreds of modes depending on the wavelength,

and thus the number of complex-valued elements in the transfer matrix is typically

between 103 and 105. As a consequence, all transfer matrix inversion experiments

reported in the literature have used a short MMF (≈1 m) [72–78] because the fiber

has to be carefully stabilized during the slow characterization process. When ap-

plying this method to a long fiber, it is foreseeable that instability will severely

impede long-distance communication outside the laboratory. By contrast, mode-

group excitation [79–81] has been applied to long fibers due to the relatively low

inter-modal-group crosstalk. However, for a fiber supporting N spatial modes,

only approximately
√
N mode groups are supported. Thus the number of usable

mode groups is intrinsically limited in this method. MIMO algorithm is another

standard method for fiber crosstalk mitigation [82]. However, it require a high

signal-to-noise ratio for digital signal processing and thus is unsuitable for quan-

tum applications.

In brief, while many advances have been achieved, the detection and transmis-
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sion of spatial modes remain challenging for practical applications. To address

these challenges, we describe how to build an efficient mode sorter for radial LG

modes in chapter 2 through the use of fractional Fourier transform. In chapter 3 we

demonstrate how to sort HG modes by utilizing the conversion between HG modes

and LG modes through a pair of cylindrical lenses. In chapter 4 we show how to

implement QKD using high-dimensional encoding involving the entire transverse

degrees of freedom of light. we discuss digital phase conjugation in chapter 5 and

show that modal crosstalk induced by atmospheric turbulence can be effectively

suppressed by phase conjugation. In chapter 6 we develop the concept of vectorial

phase conjugation, which is an essential tool to enable high-fidelity spatial mode

transmission through a 1-km-long MMF.
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Chapter 2

Realization of a Laguerre-Gauss mode sorter

In the recent years, the transverse structure of optical photons has been established

as a resource for storing and communicating quantum information [83]. In con-

trast to the two-dimensional Hilbert space of polarization, it takes an unbounded

Hilbert space to provide a mathematical representation for the transverse structure

of the optical field. The large information capacity of structured photons has been

recently utilized to enhance QKD [84–86] and a multitude of other applications

[87–89]. The OAM modes have become increasingly popular for implementing

multi-dimensional quantum states due to the relative ease in generation [18], ma-

nipulation [90], and characterization of these modes [91, 92].

Although the OAM modes provide a basis set for representing the azimuthal

structure of photons, they cannot completely span the entire transverse state space,

which encompasses an extra (radial) degree of freedom. The LG mode func-

tions provide a basis to fully represent the spatial structure of the transverse field

[84, 93]. These modes are characterized by two numbers, the radial mode index

p ∈ {0, 1, 2, ...} and the azimuthal mode index ` ∈ {0,±1,±2, ...}. While the az-



CHAPTER 2. 11

imuthal number ` is well studied due to its association with the OAM of light [13],

the radial index p has so far remained relatively unexplored. In particular, it has

been shown that OAM modes only constitute a subspace of LG modes and cannot

be used to reach the channel capacity limit of a communication link [94]. The

quantum coherence of photons in a superposition of orthogonal radial modes has

been recently demonstrated in the context of quantum communication and high-

dimensional entanglement [84, 89, 95]. The radial LG modes also hold a number

of promising features, and have been studied in the contexts of self-healing [96],

optical tweezer trapping [97], super-resolution [98], and hyperbolic momentum

charge [99]. Despite the growing theoretical interests in utilizing the radial struc-

ture of photons, the experimental realizations have thus far been impeded because

of the difficulty of measuring these modes.

The initial step in characterization of the radial degree of freedom of light is

to find a radial mode spectrum, i.e. to find the probability P (p) of having the

state prepared in mode index p. This information can be, in principle, obtained by

performing a series of projective measurements. However, the most straightfor-

ward method for implementing the projective measurement of a radial LG mode

requires shaping the amplitude of the incoming light beam, and the resulting loss

makes this approach unsuitable for operation at the single-photon level [41]. In

addition to this technical difficulty, the projective measurement of a photon re-

sults in its absorption [89]. This inherently limits the success rate to 1/d in a d-

dimensional state space, a rate that does not scale well with the size of the Hilbert

space. An alternative approach for characterizing the radial mode structure is to
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sort an unknown incoming photon by its radial quantum number. A radial mode

sorter would route the photon to a distinct output that is indexed by the value of

its radial quantum number p, and is thus capable of performing parallel projective

measurements with a success rate of unity.

2.1 Fractional Fourier transform

Here, we propose and demonstrate a unitary mode sorter for the radial quantum

number p. Our approach relies on a key property of the LG modes: the depen-

dence of the effective phase velocity on the radial quantum number p. We use a

set of refractive optical elements to induce the fractional Gouy phase by realizing

a fractional Fourier transform (FRFT) module [100]. The FRFT module is then

combined with a Mach-Zehnder interferometer that can discriminate the modes

based on the magnitude of the induced phase. Our experiment can be understood

as an implementation of the theoretical recipe recently developed in [101]. We

provide experimental results demonstrating the ability to sort individual and su-

perposition states residing in the 4-dimensional state space of p ∈ {0, 1, 2, 3}.

Furthermore, we show that our implementation can be combined with the existing

methods of sorting OAM to provide full characterization of the transverse struc-

ture of the light field.

To understand the specifics of our implementation, we examine sorting from

an operational point of view. Sorting is a unitary operation that bijectively maps

input photons of different modes onto different output modes. One approach to
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realize such an operation is by successive application of a discrete Fourier trans-

form (i.e., F -gate), a mode-dependent phase unit (i.e. Zd-gate), and an inverse

discrete Fourier transform element [101] (Note that we use the quantum gates and

the bracket notation in order to provide a concise mathematical description for

the evolution of spatial modes, and not for the purpose of describing the quantum

state of the electromagnetic field). The discrete Fourier transform can be realized

by a combination of beam-splitters and constant-phase elements (wave plates)

[102, 103]. The remaining unit required for sorting the LG modes according to

their radial index is a mode-dependent phase element i.e. a Zd-gate.

We next describe how the Zd-gates for the LG modes can be realized using

a natural property of these modes in propagation. The mathematical form of the

LG modes in cylindrical coordinates at the plane of the beam waist is given by

Eq. (1.3). Here we show that these modes are eigenmodes of the fractional Fourier

transforms (FRFTs) [1]. The characteristic equation can be attained by using the

relation between the LG function and the HG function. It is well known that the

LG function can be decomposed to the HG function as [104]

LGp`(r, θ) =
N=m+n∑
k=0

ikbn,m,kHGN−k,k(x, y) (2.1)

where bn,m,k is a constant determined by n,m and k, and its definition is

bn,m,k =

√
(N − k)!k!

2Nn!m!

1

k!

dk

dtk
[(1− t)n(1 + t)m]t=0 (2.2)
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where the relation between indices m, n and p, ` is given by p = min(m,n), ` =

m − n and 2p + |`| = m + n. Since the HG function is the eigenfunction of the

FRFT [105]

Fa[HGmn(x0, y0)] = exp[−i(m+ n)a]HGmn(x, y) (2.3)

where a denotes the order of the FRFT and for a normal Fourier transform we

have a = π/2. It is worth noting that a can be tuned in an experiment by using

appropriate lenses. We next use Eq. (2.1) to decompose the LG function to the HG

function, and then transform the resulting HG functions through Eq. (2.3). Then

we can derive the transformed LG function, which can be expressed as

Fa[LGp`(r0, θ0)]

= Fa
[
N=m+n∑
k=0

ikbn,m,kHGN−k,k(x0, y0)

]

=
N=m+n∑
k=0

ikbn,m,kFa[HGN−k,k(x0, y0)]

=
N=m+n∑
k=0

ikbn,m,k exp(−iNa) · HGN−k,k(x, y)

= exp[−i(2p+ |`|)a]LGp`(r, θ).

(2.4)

Therefore, the characteristic equation can be written as

Fa[LGp`(r0, θ0)] = exp[−i(2p+ |`|)a]LGp`(r, θ) (2.5)
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Figure 2.1: (a). Realization of the fractional Fourier transformation (FRFT) with a single lens.
The LG functions are the eigenmodes of the FRFT and thus maintain their shape under this trans-
formation. Here a p = 2 mode is shown as an example. (b). A d-dimensional quantum sorter
composed of discrete F -gates and a Zd-gate. The Zd-gate is implemented by the FRFT in our
experiment.

In the experiment we use spherical lenses and assume a symmetric two-dimensional

FRFT, which is equivalent to the fractional Hankel transform [106]. The phase

term here can be interpreted as a modification of the effective phase velocity of

the structured beam, and is reminiscent of the Gouy phase in laser physics [7].

A simple operational unit of our mode sorter, consisting of a single lens ac-

companied with free-space propagation, can realize the FRFT (see Fig. 2.1(a))

[107]. It should be noted that only the LG beam of a specific beam waist radius
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can remain invariant after the FRFT. The beam waist radius should satisfy the

condition λf̃/π = w2
0, where f̃ = f sin a, f is the lens focal length, a is the order

of FRFT, λ is the wavelength, and w0 is the LG mode beam waist radius. Assume

the optical field on the initial plane is u0(x0, y0) and the field on the final plane is

u(x, y). The field propagates a distance of z, goes through a lens of focal length

f , and propagates another z again. By Fresnel propagation, the relation between

u0(x0, y0) and u(x, y) is [108]

u(x, y) ∝ exp

[
iπ

λf̃ tan a

(
x2 + y2

)] ∫∫
dx0dy0u0(x0, y0)

× exp

[
iπ

λf̃ tan a

(
x20 + y20

)]
exp

[
− 2iπ

λf̃ sin a
(xx0 + yy0)

] (2.6)

where f = f̃/ sin a, z = f̃ tan(a/2) and we have omitted the normalization

factor. By defining the variables X = x
/√

λf̃/2π, Y = y
/√

λf̃/2π, X0 =

x0
/√

λf̃/2π and Y0 = y0
/√

λf̃/2π, we can rewrite the equation and express it

as

u(x, y) ∝ exp

[
i

2 tan a

(
X2 + Y 2

)] ∫∫
exp

[
i (X2

0 + Y 2
0 )

2 tan a

]

× u0

√λf̃

2π
X0,

√
λf̃

2π
Y0

 exp

[
−i(XX0 + Y Y0)

sin a

]
dX0dY0

(2.7)
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Comparing to definition of the two-dimensional FRFT [105]

Fa[u0(x0, y0)] =
1− i cot a

2π

∫∫
dx0dy0u0(x0, y0)

× exp

[
i

(
x2 + y2

2 tan a
− xx0 + yy0

sin a
+
x20 + y20
2 tan a

)] (2.8)

we could readily check that u(x, y) can be represented in the form of the FRFT as

u(x, y) ∝ FaX0→X,Y0→Y

u0
√λf̃

2π
X0,

√
λf̃

2π
Y0

 (2.9)

The subscript X0 → X, Y0 → Y means that the FRFT is mapping the new vari-

ables X0, Y0 to X and Y , respectively, not acting on the original x and y. Now

assume the incident beam is a LG beam of the beam waist radius w0. So we can

express it as

u0(x0, y0) = LGp`

(
r0

w0/
√

2
, θ

)
∝ 1

w0

(
r0

w0/
√

2

)|`|
× exp

[
−1

2

(
r0

w0/
√

2

)2
]
L|`|p

((
r0

w0/
√

2

)2
)

exp(i`θ)

(2.10)

Here we ignore the normalization factor. We can play the same trick to decompose
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the LG function to the HG function as

u0(x0, y0) = LGp`

(
r0

w0/
√

2
, θ

)
=

N=m+n∑
k=0

ikbn,m,kHGN−k,k

(
x0

w0/
√

2
,

y0

w0/
√

2

)

=
N=m+n∑
k=0

ikbn,m,kHGN−k,k


√
λf̃/2π

w0/
√

2
X0,

√
λf̃/2π

w0/
√

2
Y0


=

N=m+n∑
k=0

ikbn,m,kHGN−k,k


√
λf̃/π

w0

X0,

√
λf̃/π

w0

Y0



(2.11)

where p = min(m,n) and ` = m − n. Clearly, if we have
√
λf̃/πw2

0 = 1, or

equivalently λf̃/π = w2
0, then the field on the final plane can be simplified to

u(x, y) ∝
N=m+n∑
k=0

ikbn,m,kFaX0→X,Y0→Y [HGN−k,k(X0, Y0)]

=
N=m+n∑
k=0

ikbn,m,k exp(−iNa)HGN−k,k(X, Y )

= exp(−iNa)
N=m+n∑
k=0

ikbn,m,kHGN−k,k

(
x

w0/
√

2
,

y

w0/
√

2

)
= exp[−i(2p+ |`|)a]LGp`

(
r

w0/
√

2
, θ

)
(2.12)

We could readily see that the field on the final plane is a LG beam with the same

beam waist radius w0 as long as the condition λf̃/π = w2
0 is satisfied. Alterna-
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tively, the relation can be expressed as [1]:

z =
πw2

0

λ
tan

a

2
, f =

πw2
0

λ sin a
(2.13)

Upon propagation through this unit, radial modes will pick up a fractional Gouy

phase that depends on their respective indices. Note that the corresponding phase

depends on both the radial index as well as the OAM value. This dependence does

not present a problem as one can use a Dove prism to cancel the `-dependence and

thereby retain only the p-dependent phase [109].

2.2 Interferometric radial mode sorter

Having examined the two building blocks, i.e. the discrete Fourier transform (F -

gate) and the Zd-gate, we can design a radial index mode sorter. A schematic

representation of the concept is provided in Fig. 2.1(b). Let us assume that ` = 0

for all LG modes discussed in this chapter and denote the LG mode by |p〉. To pre-

pare the radial modes, we imprint the computer-generated hologram on an SLM

[34]. The binary phase grating will generate the mode at the first diffraction order,

which can be selected by using a Fourier-transforming lens. To verify the quality

of generated mode, it is necessary to check the mode on not only the Fourier plane

but also the image plane (which can accessed by performing a second successive

Fourier transformation). The generated mode on two planes by our setup are pre-

sented in Fig. 2.2. We note that the polarization state of the light beam on the
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Figure 2.2: Generated radial modes in the Fourier plane and the image plane.

SLM should be aligned according to the SLM requirement in order to minimize

interference with the strong zeroth-order light. We use a f = 1500 mm lens along

with an iris to separate the first order diffracted beam. In order to increase the

fidelity of the generated beam, we have applied an additional phase term to the

computer generated hologram to correct for spherical aberration, astigmatism and

the coma, which are typically caused by the imperfections in the system.

We suppose that the dimension of the state space is d, and that p takes on the

values 0, 1, ..., d − 1. The output port for each mode is represented by a different

ket |k〉, where k = 0, 1, ..., d− 1. Initially, all modes are present in the same input

port |kin〉, and the state vector is denoted by |p〉 ⊗ |kin〉. To sort different modes

according to their radial indices, we ensure that their output ports depend only on
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their radial indices. This operation can be expressed as |p〉⊗|kin〉 7→ |p〉⊗|k = p〉.

The successive application of a discrete Fourier transform (F -gate), aZd-gate, and

a F †-gate can realize this transformation. The explicit transformation that each

gate provides is given below:

F̂
[
|p〉 ⊗ |k〉

]
=

1√
d

d−1∑
m=0

exp

(
i2πmk

d

)
|p〉 ⊗ |m〉

Ẑj
d

[
|p〉 ⊗ |k〉

]
= exp

(
i2πpj

d

)
|p〉 ⊗ |k〉 .

(2.14)

where F̂ and Ẑd indicates the F - and Zd-gate respectively, and j is the order of

the corresponding Zd-gate. The F †-gate is the inverse F -gate. A Zd-gate of order

j is equivalent to j subsequent applications of the Z1
d -gate [105].

In the first part of our implementation, we realize a binary version of our pro-

posed radial sorter. By setting d = 2 in Eq. (2.14), the setup reduces to an inter-

ferometer with a FRFT in one of the arms. To have more control over the phase

we also include a tunable phase shifter in the other arm. The Zd-gate unit intro-

duces a fractional Gouy phase to each of the input modes and causes distinct input

modes to interfere constructively at different output ports. Thus photons of differ-

ent radial indices leave the interferometer at different output ports and the sorting

transformation is achieved. We note that [109] have previously demonstrated a

conceptually similar design for an OAM mode sorter.

The constant phase shifter used in our experiment is a combination of wave-

plates, which can provide a continuously adjustable control on the phase of the

travelling beam. In our setup the SLM only modulates the horizontally polarized
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light, thus the prepared state is horizontally polarized automatically, and the po-

larization state vector can be expressed as P = [1 0]T , where the superscript T

means the transpose of a vector. The geometrical phase shifter is composed of two

quarter-wave plates (QWPs) and a half-wave plate (HWP). The two QWPs are 45◦

oriented while the HWP between them has an angle of θ. The Jones matrix of the

geometrical phase shifter is calculated to be

M =

√
2

2

i 1

1 i

 ·
cos 2θ sin 2θ

sin 2θ − cos 2θ

 · √2

2

i 1

1 i


=

−e−i2θ 0

0 ei2θ


(2.15)

Going through the waveplates will lead the state vector to be P′ = M · [1 0]T =

−e−i2θ[1 0]T . Hence, by adjusting the angle of the HWP, we can induce an ar-

bitrary phase shift, which is equivalent to using a piezoelectric actuator. We em-

phasize that our proposed sorting method is intrinsically polarization-independent,

and the PBS and HWP can be replaced by the non-polarizing beam splitter (NPBS)

while the geometrical phase shifter can be replaced by a piezoelectric actuator for

a polarization-independent application.

The two-dimensional F -gate can be in principle realized by a NPBS. Hence,

the two-dimensional sorter which consists of two quantum F -gates and a quantum

Z-gate has a structure similar to the Mach-Zehnder interferometer. However, the

NPBS should possess a 50/50 splitting ratio, which is not always true for the
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Figure 2.3: (a) Schematics of the experimental setup. The radial mode is generated by a computer-
generated hologram (CGH) on the spatial light modulator (SLM). The quarter-wave plate (QWP),
half-wave plate (HWP) and QWP combination works as a geometrical phase shifter. (b, c) The
measured intensity profile of the generated p = 2 and the p = 3 modes.

commercially available broadband NPBS. Here we replace the first NPBS by a

HWP and a PBS. Remember that the incident beam is horizontally polarized due

to the polarization sensitivity of SLM, so we can rotate the polarization angle

to control the splitting ratio. After a HWP which can rotate the polarization by

45°, the two beams split by the first PBS are horizontally and vertically polarized,

respectively. The second PBS will recombine the two beams after the geometrical

phase shifter. However, they cannot interfere due to their orthogonal polarizations.

Then we can use a HWP to rotate two beams by 45° and then split the beam by

another PBS, which forms the second F -gate. Now the beam in each output port

will have the same polarization and can interfere effectively. By aligning the

rotation angle of the HWP, we can reach an arbitrary splitting ratio and can also

help compensate for the possible unequal loss in two paths.

In the next step, we increase the dimensionality of the system by cascading

two successive binary sorters of the type shown in Fig. 2.1(b). This configuration
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allows us to sort up to three radial modes. A schematic representation of our setup

is depicted in Fig. 2.3. A 633 nm He-Ne laser is coupled to a single-mode fiber

(SMF). The light emerging from the fiber is then collimated to illuminate an SLM.

A binary computer generated hologram is imprinted onto the SLM to generate the

desired field in the first diffraction order [24]. In the first stage, we use a lens with

a focal length of 30 cm and with a propagation distance of z = 8.79 cm to realize

a FRFT of the order a = π/4 for a beam waist radius of w0 = 207 µm. The

second stage of the sorter uses two lenses with the same configuration to provide

a FRFT with twice as much phase shift. We note that the interferometer shown in

the schematic is imbalanced because of the need to introduce the FRFT lenses in

one arm. We have taken care to keep the path imbalance much shorter than the

coherence length of our laser source and the Rayleigh ranges of our modes. If one

wants to sort more radial modes, more binary sorters need to be cascaded, and the

order of FRFT in each stage needs to be adjusted, which is conceptually similar

to the scheme shown in Fig. 4 in [109].

2.3 Results and discussions

In order to characterize the proposed scheme, we first generate radial modes and

detect the output of our setup using charge coupled devices (CCD). The images

from the three CCD cameras at the three output ports of the setup are shown

in Fig. 2.4(a,b). In Fig. 2.4(a) even-order modes (p = 0, 2) leave one of the

output ports of the first binary sorter to CCD1 and the odd-order modes leave the
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other output port. The odd-order modes are then fed into the second stage, and

are routed towards CCD2, and CCD3. By changing the phase in the first stage

one can send odd-order modes to CCD1 and send the even-order modes to the

second stage to be sorted to CCD2, and CCD3. The cascaded binary sorters allow

for sorting of up to three separate modes. As an additional test of the validity

of our scheme we produce linear superpositions of three radial modes and feed

it into the first stage. We then register the image of the three output ports on

the CCDs simultaneously. It is clear from Fig. 2.4(c) that although all the input

photons share a superposition of three radial indices, the output photons are sorted

according to their radial indices. We note that to sort different sets of modes one

has to choose appropriate phase differences for the two binary sorters. The value

of the induced phases are different for two different sets of modes, and can be

calculated using the formula for the fractional Gouy phase in Eq. (2.5). Indeed,

a priori knowledge about the input state is necessary for an appropriate sorting.

For any finite-dimensional sorter the input state should be restricted to a specific

range.

We have quantified the crosstalk of our setup by measuring the conditional

probability matrix. Each element of this matrix is defined as the probability of

detecting a photon at a given mode conditioned on the radial index of the input.

This quantity is equal to the power in a specific port divided by the total output

power. The resulting matrix is plotted in Fig. 2.5(a). To use a single figure of merit

we use the total crosstalk, which is sum of the power in the wrong ports divided

by the total output power. For our specific implementation the total crosstalk is
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Figure 2.4: Output port image for inputs in the form of individual LG modes and their superposi-
tion states. The position of each CCD is shown in Fig. 2.3. (a) The path lengths in the first stage
are adjusted so the even-order modes are sent to CCD1 whereas the odd-order modes are sent to
the second stage where they are further sorted so that p = 1 (p = 3) is directed to CCD2 (CCD3).
(b) The phase shifter in the first stage is readjusted to send odd-order modes to CCD1 and the
even-order modes to the second stage. (c) The images on CCDs when a superposition state is sent
to the sorter. p = 0, 1, 2 means that a superposition state composed of p = 0, p = 1 and p = 2
mode is generated and injected. All images in the same line are captured simultaneously.

measured to be 15%. In addition we wish to emphasize that this crosstalk is not

intrinsic to the protocol. We believe that using high-quality anti-reflection coated

optics, active stabilization, and more careful alignment can mitigate crosstalk sig-

nificantly and bring the sorter to its theoretical limit of 100% efficiency and no

crosstalk.

As mentioned above, our scheme can also be used for sorting of photons ac-

cording to their OAM number. To demonstrate this capability we use the first

stage of our setup to implement a binary sorting of LG10 and LG12. The images

of the output ports are plotted in Fig. 2.5(b), and confirm that photons of different

OAMs leave the interferometer at separate ports. We underscore the fact that here

we have separated two OAM modes of the same radial order whose OAM values
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Figure 2.5: (a) Experimentally measured probability of detection as a function of input and output
mode indices. (b) The measured output intensity profile for an input prepared as a superposition
of p = 1, ` = 0 and p = 1, ` = 2 modes.

are different by ∆` = 2. The spacing by two units results from the fact that the

phase shift from the FRFT is ∆φ = (2p + |`|)a. The extra factor 2 for p index

implies that the ` spacing has to be twice larger. Of course, by selecting the ap-

propriate order of the FRFT, our device can sort the LG beams with ∆` = 1 as

well.

Compared to the multi-channel interferometer proposed in [101], our cascad-

ing scheme is advantageous in terms of flexibility, complexity and practicality

[1]. In this section, we compare the cascading interferometer presented in the

manuscript and the multi-channel interferometer proposed in [101] in terms of

complexity, flexibility and practicality. An advantage of the cascaded scheme is

that it has a simpler structure for high dimensional system. In the multi-channel

interferometer shown in the Fig. 2.1, there are two quantum F -gates which can

be implemented by the 50/50 beam splitters. For a 2n-dimensional sorter, the first
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quantum F -gate is effectively a 1-to-2n splitter and it requires 2n − 1 beam split-

ters. The second quantum F -gate, however, needs (n+2) ·2n−1−1 beam splitters

and the calculation is as follows. Assume a d-dimensional F -gate requires N(Fd)

beam splitters. Then we will have the following recursive relation [103]

N(F2d) = 2 ·N(Fd) + d (2.16)

With the knowledge that N(F2) = 1, we can arrive at the following equation

N(Fd) = (d/2) · log2 d. Setting d = 2n, we will have N(Fd=2n) = n · 2n−1. So

the total number of beam splitters is n · 2n−1 + 2n − 1 = (n + 2) · 2n−1 − 1 for

the multi-channel interferometer. As for the cascading interferometer presented

in our work, we will need 2n − 1 Mach-Zenhder interferometer (MZI) to sort

2n modes, and each MZI requires two beam splitters. So the total number is

2 · (2n − 1) = 2n+1 − 2. It can be readily verified that 2n+1 − 2 < (n + 2) ·

2n−1 − 1 for n ≥ 2 . In addition, a multi-channel interferometer requires that

all paths remain in-phase simultaneously. This can cause a serious challenge for

experimental realization as any phase mismatch will compromise the functionality

of all output channels. In contrast, if one of the sorter paths in the cascading

scheme is not in-phase, the system continues to properly operate for the channels

that do not utilize the mismatched path. Furthermore, the conventional quantum

F -gate is usually composed of 50/50 beam splitters and phase shifters [103], and

thus it always has a dimensionality of d = 2n, where n is an integer. Thus it

would be difficult to realize a sorter with a dimensionality that is not a power
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of 2. Taking the first quantum F -gate as an example, one would need to use

33/67 beam splitters to build a d = 3 system, and 20/80 beam splitters for d = 5

system. Considering this, the cascaded approach is simpler to realize due to the

commercial availability of 50/50 beam splitters.

We note that our design can also be employed for sorting the HG modes. Co-

herent detection of LG and HG modes has been recently identified as an optimal

means of localizing closely spaced incoherent sources [98, 110–112]. It is thus

reasonable to expect that an efficient sorting mechanism can have further impli-

cations for microscopy, given the significance of super-resolution in that field. In

addition, a similar approach can be applied to sorting the family of Bessel-vortex

beams. Due to the non-diffracting property of these modes, free-space propa-

gation can serve as the Z-gate and there is no need for realization of the FRFT

module. Hence, a simplified version of our experiment with the the FRFT com-

ponents removed would be able to sort Bessel beams with different longitudinal

wavevectors.

In summary we have demonstrated a general framework for efficient measure-

ment (i.e., sorting) of the radial index of LG modes. Our protocol includes two

essential elements: the discrete Fourier transform (F -gate) and the Zd-gate. While

discrete Fourier transform can be realized using beam splitters and wave plates,

we have employed the fractional Gouy phase to realize the Zd-gate efficiently. As

a demonstration we have implemented a binary (d = 2) version of our protocol

and have cascaded two binary sorters to sort three different LG modes according

to their radial indices. We believe that implementation of our protocol can fa-
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cilitate fundamental studies of the spatial modes of light as well as a variety of

prevalent applications of such states in quantum communications, imaging, and

quantum metrology [113].
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Chapter 3

Realization of a Hermite-Gauss mode sorter

The transverse modes of electromagnetic waves have long been used in funda-

mental studies of beam propagation [9]. Spatial mode decomposition of optical

fields can facilitate the understanding and analyzing of optical beam in free space

[114, 115], graded-index MMFs [66, 116], and waveguides [117]. Beyond their

advantage for theoretical work, the transverse degrees of freedom of photons are

recognized as information resources for both classical and quantum information

technologies because of the unbounded Hilbert space spanned by these spatial

mode basis sets [22, 118]. The HG modes are the propagation-invariant modes in

parabolic-index MMFs [66, 119] and closely resemble the communication modes

of square apertures for free-space propagation [120], which suggests the potential

of HG modes in optical communications. In addition, very recently it has been

shown that the detection of HG modes can beat "Rayleigh’s curse" and realize

super-resolution imaging [98]. It is proposed that spatial mode decomposition in

the HG basis can reach the Cramér-Rao bound for resolving two closely located

point sources, while the classical Fisher information of traditional imaging in the
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position basis inherently drops to zero. There have been various experimental

investigations that propose alternative detection strategies to achieve a nonzero

Fisher information for a small separation [110–112]. However, because of the

lack of an efficient HG mode sorter, the Cramér-Rao bound remains to date inac-

cessible.

Despite the usefulness of HG modes in various areas, practical applications

have been so far impeded by the difficulty in efficient detection of these modes.

In contrast, the sorting of the LG modes, the rotationally-symmetric counterparts

of HG modes, have been experimentally demonstrated [43, 109, 121]. The az-

imuthal structure of LG modes is found to be directly related to the OAM of

photons [13], and it has been shown that a Cartesian to log-polar transforma-

tion can enable an OAM mode sorter to identify a large number of OAM modes

[43, 91, 121]. Nonetheless, this method is not directly applicable to the HG modes.

Several previous investigations on the sorting of HG modes are based on cascaded

Mach-Zenhder interferometers [122, 123], and the practicality of such approaches

greatly limits the number of HG modes that can be sorted. The multi-plane light

conversion method has also been proposed to sort the spatial modes [124]. While

this method is able to separate many modes simultaneously, the crosstalk between

neighboring modes is relatively high, and a large number of phase planes are usu-

ally needed to reduce the crosstalk. Therefore it remains highly desirable to build

a robust sorter that can efficiently separate many HG modes with low crosstalk.



CHAPTER 3. 33

3.1 Astigmatic mode conversion

Here we describe a method for efficiently sorting HG modes. This method entails

converting a HG mode to a unique LG mode and then sorting the LG mode with

known methods. This sorter operates by sequentially applying a fractional Fourier

transform (FRFT) module [1], an astigmatic mode converter [104, 125], and an

OAM mode sorter. Our scheme takes advantage of a useful relation between HG

modes and LG modes: the conversion between these two families of modes can

be realized by an astigmatic mode converter [104]. This mode converter can be

implemented by two cylindrical lenses, and it has been shown that such a converter

can transform HGmn to LGp` conditioned on p = min(m,n) and ` = m − n,

where m and n are the mode indices of a HG mode along x and y directions, and

p and ` are the radial and azimuthal indices of a LG mode. Therefore, when we

cascade an astigmatic mode converter and an LG mode sorter, we can realize a

HG mode sorter. In Fig. 3.1(a) the conversion relationship between HG modes

and LG modes is visualized, and the experimental results of two HG-LG mode

conversions are shown in Fig. 3.1(b). The HG modes in different columns in

Fig. 3.1(a) can be converted to LG modes of different OAM indices, and therefore

can be resolved by an OAM sorter. For example, we note that HGm0 (HG0n)

can be transformed to LG0m (LG0,−n), and therefore one can readily utilize an

OAM mode sorter to unambiguously sort HG modes with one zero index. This

result leads to significant consequences, such as for super-resolution imaging in

microscopy, as an efficient sorting of HG00, HG01, and HG10 modes can resolve
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Figure 3.1: (a) Conversion relation of HG modes and LG modes. Each dot represents a HGmn

mode and the number under the dot denotes the mode indices mn. The HG modes in the same
column are converted to LG modes of the same OAM index `, and the modes in the same row cor-
respond to the LG modes of the same radial index p. (b) Experimental results of mode conversion
from HG20 to LG02 and from HG42 to LG22.

sub-diffraction objects and attain the Cramér-Rao bound [98].

In order to determine both mode indices m and n simultaneously, however,

the knowledge of ` = m − n is not sufficient. In other words, another index

p = min(m,n) needs to be identified to completely characterize the LG mode

converted from a HG mode. Here we resort to the FRFT as a secondary sorting

mechanism, which has been recently used to sort the radial index of LG modes

[1, 3]. Since the HG modes are the eigenmodes of FRFT, they keep invariant under

such a transform except for a mode-dependent Gouy phase. This transformation

can be written as [105]

Fa[HGmn(x0, y0)] = exp[−i(m+ n)a] · HGmn(x, y), (3.1)

where Fa denotes an FRFT of order a, and HGmn(x, y) is the transverse field dis-

tribution at the beam waist plane. One can notice that the fractional Gouy phase



CHAPTER 3. 35

exp[−i(m+ n)a] contains information regarding the mode order m + n, and it

has been demonstrated that an interferometer can be built to sort beams of differ-

ent mode order m+ n to different output ports [122, 123]. In our experiment, we

implement a common-path interferometer by using polarization-dependent SLMs

to realize an inherently stable sorter [2, 3]. The horizontal and vertical polar-

izations are employed as two arms of a Mach-Zenhder interferometer, and two

polarization-sensitive SLMs are used to perform FRFT of different orders to the

two polarizations respectively. If the FRFT order difference is ∆a, then a mode-

dependent phase of ∆φ = −(m+n) ·∆a is introduced between the two polariza-

tions at the output of the FRFT module. By measuring the polarization state of the

output photons, one can determine the value of m + n. Due to the bounded two-

dimensional Hilbert space of polarization, our FRFT module and the following

OAM mode sorter can only resolve the HG modes located at the top two rows in

Fig. 3.2(a). However, the sorting capability can be readily extended by cascading

more FRFT modules as will be discussed later.

3.2 Experimental realization

The experimental schematic of our HG mode sorter is shown in Fig. 3.2 . A

633 nm He-Ne laser is spatially filtered by a SMF and then collimated to illumi-

nate SLM 1. A computer-generated hologram is imprinted on SLM 1 to generate

HG modes in the first diffraction order [34]. A polarizer sets the light to be diag-

onally polarized. The beam waist radius of HG modes is 462.3 µm. A quadratic
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Figure 3.2: Schematic of the HG mode sorter. A binary grating on SLM1 generates HG modes
in the first diffraction order that are then analyzed by the rest of the setup. The FRFT module
consists of two SLMs and two lenses. Two cylindrical lenses (CLs) form the π/2 mode converter.
The OAM sorter consists of an unwrapper and a phase corrector to perform Cartesian to log-polar
transformation.

phase equivalent to that of a 0.62 m lens is imprinted on SLM 2 and SLM 3. Each

SLM is attached with a lens of focal length 1.5 m, and in the experiment we realize

this by relaying each lens to the corresponding SLM via a 4-f system respectively.

Both SLMs are only effective to horizontal polarization and do not modulate the

vertical polarization. The free-space propagation distance between SLM 2 and

SLM 3 is chosen to be 2z, where z = 0.44 m. It can be verified that SLM 2,

SLM 3, and two spherical lenses implements an FRFT of a = π/2 to vertical

polarization [3]. For horizontal polarization, these elements act as a 4-f system of

a = π. According to Eq. (2.5), the diagonally polarized input HG modes become

diagonally (anti-diagonally) polarized at the output when the value (m + n)/2 is
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even (odd). After this module, two relay lenses resize the beam waist radius to

match an astigmatic mode converter constituted by a pair of 45-degree oriented

cylindrical lenses. The focal length of each cylindrical lens fCL, the beam waist

radius w0, and the separation between two cylindrical lenses sCL are related by

the following equations [104]:

w0 =

√
(1 + 1/

√
2)λfCL

π
, sCL =

√
2fCL, (3.2)

where λ = 633 nm is the laser wavelength. In our experiment we use fCL = 10

cm and sCL = 14.1 cm, and the consequent beam waist radius is w0 = 185.5

µm. The transformed HG modes, which have become LG modes at this point, are

sent to a polarization-independent OAM mode sorter [121]. A HWP and a PBS

directs photons to different output ports according to their orthogonal polarization

assigned by the FRFT module.

3.3 Results and discussions

The experimental results of our HG mode sorter are shown in Fig. 3.3. In Fig. 3.3(a-

d) we present the images on two cameras when HG modes are injected into the

sorter individually. In Fig. 3.3(e) we combine the sorting result of HG0n with

n = 0, 2, · · · , 8 as well as HGm0 with m = 0, 2, · · · , 8. The lowest index of

these modes is 0, which is represented by the first row in Fig. 3.1(a). We choose

the index spacing to be 2 to reduce the overlap between neighboring modes for
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Figure 3.3: Experimental results of the HG mode sorter. (a)-(d) Intensity profile on two cameras
when individual HG modes are injected. The mode indices mn are labelled beside each sorted
mode. (e) Combined intensity profile on two cameras when incident modes include HG0n of
n = 0, 2, · · · , 8 and HGm0 of m = 0, 2, · · · , 8. (f) Combined intensity profile at two output ports
when incident modes include HG1n of n = 1, 3, 5, 7 and HGm1 of m = 1, 3, 5, 7.

the purpose of better visualization. We emphasize that there is no fundamental

restriction on the index spacing provided that the OAM mode sorter can have a

sufficient mode resolution [43]. One can notice that the HG modes for which

(m+n)/2 is even (odd) are routed to camera 1 (camera 2) as a result of the FRFT

module. As mentioned earlier, one FRFT module and one OAM mode sorter can

resolve the modes in the top two rows in Fig. 3.1(a), and the experimental evi-

dence is presented in Fig. 3.3(f). We generate HG1n with n = 1, 3, 5, 7 and HGm1
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with m = 1, 3, 5, 7, and combine the corresponding images from two cameras.

The lowest index of these modes is 1, which are represented by the second row

in Fig. 3.1(a). Notably, one can see that these two sets of modes occupy different

positions on cameras and in principle can be fully identified by a high-resolution

OAM sorter [43]. However, we also note that our setup cannot separate HG modes

whose mode order m+n is odd. For example, one can verify that HG10 and HG21

cannot be separated by either FRFT module or the subsequent OAM mode sorter.

This problem can be addressed by cascading a Dove prism and a Sagnac inter-

ferometer to the FRFT module [126]. Here we provide a conceptual design and

demonstrate how to extend the dimension of a HG mode sorter. As shown in

Fig. 3.4(a), the input linearly polarized HGmn is converted to LGp` and sent to the

subsequent LG mode sorter. Compared to Fig. 3.2, we place the astigmatic mode

converter before the FRFT module due to the consideration of simplicity. The

input HGmn mode and the converted LGp` mode is related by m + n = 2p + |`|,

and the phase induced by FRFT is a function of m+n for HG modes and 2p+ |`|

for LG modes. Therefore swapping the mode converter and the FRFT module

does not influence the sorting mechanism. Each FRFT module is followed by a

Dove prism inside a Sagnac interferometer. The FRFT module induces a phase

difference ∆ψ1 = −(m + n) · ∆a to horizontal and vertical polarizations [1],

and the Dove prism can rotate horizontally and vertically polarized LG modes

by an angle of 2β and −2β respectively, where β is the orientation angle of the

Dove prism. This polarization-dependent rotation leads to a phase difference of

∆ψ2 = −4β(m − n) between horizontal and vertical polarizations [109], where
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m− n = ` represents the OAM index of the converted LG modes. Therefore the

total phase difference is ∆ψ = −[(∆a+4β)m+(∆a−4β)n] and one can realize

an unambiguous sorting with appropriately selected ∆a and β. These parameters

used in each stage are provided in Fig. 3.4(a). It can be verified that all HG modes

will now be guided towards a unique, mode-dependent output port [126], and the

output port of each mode can be predicted by Eq. (2.5). We numerically simu-

late the output image of this extended sorter, and the combined simulation result

for 20 HG modes is presented in Fig. 3.4(b). These 20 HG modes are the modes

listed in Fig. 3.1(a) with a mode index spacing of 1. In the simulation we use a

beam-copying grating in an OAM sorter, which can create 7 copies of a beam to

improve the mode resolution [43]. It can be noticed that these 20 HG modes can

be well separated to distinct positions unambiguously with negligible crosstalk.

As demonstrated in [43], with a beam-copying grating the separation efficiency

can be improved to theoretically 97%, and experimentally achieved efficiency can

be larger than 92%. We also emphasize that by removing the astigmatic LG-HG

mode converter, this sorter becomes a LG mode sorter and can unambiguously

separate LG modes of p ∈ {0, 1, 2, 3} and arbitrary `.

In our experiment the loss mainly comes from the SLMs due to the limited

light utilization efficiency, which might impede the scaling shown in Fig. 3.4.

However, we note that the SLMs can be readily replaced by other low-loss de-

vices, such as the commercially available polarization directed flat lenses [126].

In addition, since all devices employed in our scheme are essentially phase-only

elements, the loss can in principle be reduced to zero if appropriate anti-reflection
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Figure 3.4: (a) Conceptual schematic of HG mode sorter of an extended dimension. A HGmn is
first transformed to LGp`, and then FRFT modules cascaded by a Dove prism inside a Sagnac inter-
ferometer are applied to sort the LG mode. Relay lenses to prevent spatial modes from diffraction
are omitted for simplicity. (b) Simulated sorting result for entire 20 HG modes which are listed
in Fig. 3.1(a). Each mode is normalized to have the same maximum intensity. It can be noticed
that each mode is mapped to distinct position on cameras unambiguously. The mode index mn is
labeled around the corresponding sorted mode.

coating is applied on all elements. However, given that the polarization has been

used in our scheme to realize a robust FRFT module, our sorter cannot work di-

rectly for an arbitrary polarization. This limitation can be lifted e.g., by using a

polarization-independent FRFT module [1] or by inserting a PBS to separate po-

larizations before the sorter. Moreover, the sorting scheme presented here can

in principle be used to HG modes of different wavelengths. As can be seen

in Eq. (3.2), the parameters fCL and sCL remains the same as long as w2
0/λ
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keeps constant, which is also true for the parameters of the FRFT module [see

Eq. (2.13)]. We also note that the material dispersion is the only factor that limits

the spectral bandwidth of OAM mode sorter [121]. Therefore, our sorter in prin-

ciple can have a relatively broad bandwidth provided that w2
0/λ is constant and

material dispersion is small.

In this work, we use a spatially coherent laser as the light source to test the

performance of our HG mode sorter. It should be noted that a mode sorter can

also be used to measure the HG mode spectrum of spatially incoherent beams.

It has been shown that a HG mode sorter can be used to efficiently resolve the

separation between two incoherent point sources [98]. However, the coherences

(i.e., off-diagonal elements in a density matrix) between different modes cannot

be directly measured by a HG mode sorter. Quantum state tomography is the

conventional method used to characterize density matrices for general quantum

states. However, the data acquisition time generally scales linearly with the di-

mension of the Hilbert space, hindering the possibility of dynamic monitoring of

a high-dimensional quantum system. Recently, a direct tomography protocol has

been demonstrated to measure density matrices in the spatial domain [127], which

has been applied to characterize the density matrix of an incoherent mixture of HG

modes.

In conclusion, we have proposed and experimentally realized a scalable scheme

that can efficiently sort a large number of HG modes. Our scheme is based on

an astigmatic mode converter to transform HG modes to LG modes and takes

advantage of a LG mode sorter to realize a mode sorter for a large number of
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HG modes. Further increasing the dimension is straightforward and a conceptual

schematic has been presented and numerically simulated. Taking into account the

broad use of HG modes, we expect that our demonstration can facilitate funda-

mental studies of beam analysis in free space and graded-index multi-mode fiber,

and can enhance a variety of applications such as QKD, super-resolution imaging,

and classical communications.
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Chapter 4

Quantum key distribution with high-dimensional
spatial mode encoding

Within the past few decades the OAM modes have received extensive attention

[37, 64, 83, 128, 129] and are widely applied in various information technologies,

including quantum teleportation [130], optical communications [22], and QKD

[19, 20, 131]. Compared to the intrinsically bounded polarization state space, the

OAM modes offer an infinite-dimensional Hilbert space for information encoding

and therefore can be used to increase the transmission rate of a communication

link. However, the finite size of apertures in a realistic system usually constrains

the dimension of OAM state space that can be accessed. On the other hand, the

OAM modes only account for azimuthal variations in the transverse plane, and

it has been shown that these modes cannot reach the capacity limit of a com-

munications link without including the radial degree of freedom [94]. It is thus

highly desirable to multiplex the remaining radial degree of freedom to increase

the transmission rate for both classical and quantum communications.



CHAPTER 4. 45

A complete and orthonormal basis that incorporates both radial and azimuthal

variations can be constituted by LG modes. The LG modes are characterized by a

radial quantum number p and an OAM quantum number `, and arbitrary paraxial

field can be described by these modes [13]. Notably, LG modes have been shown

to be good approximations to the eigen propagation modes of circular apertures

[120], and their small divergence angle and intrinsic rotational symmetry make

these modes preferable in free-space optical communications. Moreover, it is

apparent that the transmission rate of a communications system can be further in-

creased by using both azimuthal and radial degrees of freedom, and it has been

shown that the radial index p can potentially mitigate the power loss when the

receiver has a limited aperture size [132]. In addition, different from the vortex

phase structure related to the OAM index, the radial index corresponds to a radial,

amplitude-only distribution. While the phase structure can be strongly distorted

by atmospheric turbulence [133], the intensity pattern of the transmitted beam can

remain recognizable for a 1.6-km free-space link [128], and an intensity pattern

recognition accuracy can be higher than 98% for a 3-km link [52] and 80% for

a 143-km link [134], which suggests that the amplitude structure associated with

a nonzero radial index may be helpful to turbulence mitigation [118]. Recent

advances have shown how to efficiently measure and use p and ` in optical com-

munications [86, 91, 126, 135], but the mode sorting in mutually unbiased basis of

LG modes required by a QKD protocol has not previously been reported. While

a deterministic detection scheme for mutually unbiased bases of polarization and

OAM degrees of freedom has been developed [136], the same strategy cannot be
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directly applied to spatial modes due to the lack of efficient manipulation devices

such as HWPs for spatial modes. Besides the usefulness in QKD, the capability of

sorting superposition modes can be helpful to other quantum applications such as

certifying high-dimensional entanglement [137] as well as super-resolution imag-

ing [138]. In the following we present how to build a superposition mode sorter

and provide the experimental demonstration of a QKD protocol employing all

three transverse degrees of freedom.

4.1 Construction of mutually unbiased bases

To develop a BB84 protocol one needs at least two sets of bases that are mutually

unbiased: Every element in each basis is a uniform superposition of elements in

another basis, which guarantees that measurement in the wrong basis reveals no

information of the measured state. Here we first examine each transverse degree

of freedom individually and then demonstrate how to construct two mutually un-

biased bases for QKD. The first degree of freedom employed in QKD protocol is

the polarization of photons [139], which provides a two-dimensional state space

spanned by horizontal |H〉 and vertical |V 〉 polarizations. While polarization is

the most widely used degree of freedom in QKD, the azimuthal structures of light

have recently seen increasing usage due to their direct relation with the OAM of

photons [19]. Each photon can carry an OAM of lh̄ [13] and the corresponding

OAM state can be written as |l〉`, where l is an arbitrary integer and the subscript

` denotes an OAM state. In this work we restrict ourselves to an OAM subspace
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Figure 4.1: Intensity profiles of elements in the main and conjugate bases. The normalized in-
tensity distribution of each spatial mode is presented. The upper right image is the corresponding
experimental (Exp.) record of the simulated (Sim.) image for comparison. Each mode can have
the two different polarizations as shown at the upper left corner. Scale bar, 1 mm.

that is spanned by |±2〉`. Finally we use the radial quantum number p of LG func-

tions as another independent resource for information encoding [95, 140]. Again

we restrict ourselves to a subspace that is spanned by the two lowest radial indices

p = 0, 1. The direct product of these three subspaces constitutes an 8-dimensional

Hilbert space that is used as our first basis for QKD. The elements in this basis

are {|H, 0p,−2`〉 , |H, 0p, 2`〉 , · · · , |V, 1p, 2`〉}. We refer to this basis as the main

basis. The above-specified choices of bases for azimuthal and radial degrees of

freedom allows us to employ recent advances in sorting LG modes according to

both OAM and radial indices [1, 43, 91, 141].

To implement secure QKD we need an additional capability of measuring pho-
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tons in at least one conjugate basis. The conjugate basis is mutually unbiased with

respect to the main basis, and can be constructed through a direct product of re-

spective complementary bases of polarization, azimuthal, and radial subspaces

[142]. The complementary basis of polarization subspace can be built as

|D〉 =
|H〉+ |V 〉√

2
, |A〉 =

|H〉 − |V 〉√
2

, (4.1)

where |D〉 and |A〉 denote the diagonal and anti-diagonal polarizations respec-

tively. We use a similar choice for OAM states and define

|`D〉 =
|−2〉` + |2〉`√

2
, |`A〉 =

|−2〉` − |2〉`√
2

, (4.2)

The complementary basis for radial modes is taken to be

|pL〉 =
|0〉p + i |1〉p√

2
, |pR〉 =

|0〉p − i |1〉p√
2

, (4.3)

where the subscript L and R follow the notation of left- and right-handed circular

polarization. We choose this definition because such states are easier to generate

experimentally, but we stress that this will not make any fundamental change to the

QKD protocol. With all these definitions, the elements in the complementary ba-

sis, referred to as conjugate basis, are {|D, pL, `D〉, |D, pL, `A〉, · · · , |A, pR, `A〉}.

Spatial intensity profiles of all these modes are given in Fig. 4.1.

Having established the two mutually unbiased bases, we need to perform co-

herent detection in each of these bases. For the main basis, devising a coherent de-
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tection strategy is straightforward. A sequence of a polarizing beamsplitter (PBS),

a radial mode sorter [1], and an OAM sorter [91] can losslessly project input pho-

tons onto elements in the main basis. However, each state in the conjugate basis

is a superposition of different LG modes and cannot be efficiently measured by

using radial and OAM sorter only. To address this problem, we develop a generic,

scalable scheme for sorting such superposition states and experimentally realize it

as a part of the QKD protocol. For simplicity we only focus on the radial degree of

freedom thereafter, and the same scheme can be directly applied to other degrees

of freedom.

A conceptual schematic for a radial superposition mode sorter is shown in

Fig. 4.2. For a d-dimensional Hilbert space spanned by radial modes |m〉p, where

m ∈ {0, 1, · · · , d− 1}, the corresponding complementary basis can be defined as

|n̄〉p =
1√
d

d−1∑
m=0

exp

(
−i2πmn̄

d

)
|m〉p , (4.4)

where n̄ ∈ {0, 1, · · · , d − 1} is the superposition mode index, and a bar above

the number indicates that this is an element in the complementary basis. The port

of each state is labelled by another distinct ket |k〉, where k ∈ {0, 1, · · · , d −

1}. Initially, all superposition modes are located at the same port, which can

be expressed as |n̄〉p |0〉. We first apply a radial mode sorter to direct different

radial mode components towards distinct, non-overlapping ports [1], which can
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Figure 4.2: Schematic of the generic radial superposition mode sorter. (a) Conceptual schematic
of a d-dimensional radial superposition mode sorter. (b) Two-dimensional (d = 2) realization to
sort |pL〉 and |pR〉. The unitary transformation Û1→0 is realized by two SLMs. The modes |pL〉
and |pR〉 are directed to different output ports as indicated at the last beamsplitter.

be expressed as

|n̄〉p |0〉 =
1√
d

d−1∑
m=0

exp

(
−i2πmn̄

d

)
|m〉p |0〉 →

1√
d

d−1∑
m=0

exp

(
−i2πmn̄

d

)
|m〉p |m〉 .

(4.5)

Then a mode converter performs a unitary transformation Ûm→0 to convert

individual radial modes |m〉p to the same state |0〉p, which enables effective in-

terference between these otherwise orthogonal modes and the consequent state
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becomes

1√
d

d−1∑
m=0

exp

(
−i2πmn̄

d

)
|m〉p |m〉 →

1√
d

d−1∑
m=0

exp

(
−i2πmn̄

d

)
|0〉p |m〉 .

(4.6)

Finally a discrete Fourier transform performed by a quantum F -gate can direct

photons to different output port indexed by the superposition mode index n̄ as

[101]

F̂
[ 1√

d

d−1∑
m=0

exp

(
−i2πmn̄

d

)
|0〉p |m〉

]
=

1√
d

d−1∑
m=0

exp

(
−i2πmn̄

d

)
F̂
[
|0〉p |m〉

]
=

1

d

d−1∑
j=0

d−1∑
m=0

exp

(
i2πm(j − n̄)

d

)
|0〉p |j〉 =

d−1∑
j=0

δ(j − n̄) |0〉p |j〉 = |0〉p |n̄〉 ,

(4.7)

where the operation of quantum F -gate is defined as

F̂
[
|m〉p |k〉

]
=

1√
d

d−1∑
j=0

exp
(
i2πjk

d

)
|m〉p |j〉 . (4.8)

Therefore, through the use of a mode converter, the superposition mode |n̄〉p can

be efficiently sorted to n̄-th output port with in principle unity efficiency and zero

crosstalk.

A two-dimensional conceptual realization of this scheme to sort |pL〉 and |pR〉

is shown in Fig. 4.2(b) as an intuitive example, where the binary radial mode sorter

follows the scheme in [1] and is realized by a Mach-Zenhder interferometer with

extra lenses in one arm to perform the Fourier transform. After the radial mode

sorter, the radial modes |0〉p and |1〉p are sorted to different paths, but the relative
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phase determined by the definition of |pL〉 and |pR〉 as in Eq. (4.3) persists. The

relative phase is represented by the factor±i in Fig. 4.2(b). The subsequent mode

converter realized by SLM transforms the LG mode |1〉p to |0〉p [40, 143], and

the phase imparted to the SLMs can be calculated by a nonlinear fitting algorithm

[144]. Then a beamsplitter recombines the modes and acts as a binary quantum

F -gate [101]. Before the final beamsplitter, the incident modes at the input ports

can be written as |0〉p and ±i |0〉p respectively, where the factor ±i represents

the relative phase between the initial |0〉p and |1〉p states. Due to the interference

at the beamsplitter, the sign of the phase term ±i determines the port that the

photon will be directed into. Therefore, through the use of a radial mode sorter, a

mode converter realized by the SLMs, and a binary quantum F -gate realized by

a beamsplitter, |pL〉 and |pR〉 can be efficiently separated to different output ports.

We note that this scheme should also be applicable to other spatial modes such as

HG modes given the existence of a corresponding mode sorter [145] and converter

[143], which can be useful to realize super-resolution imaging [138].

4.2 High-dimensional spatial mode encoding and de-
tection based on a generic mode sorter

In our experiment, we use polarization-sensitive SLMs to develop a stabilized,

common-path radial mode sorter and converter as shown in Figs. 4.3 and Fig. 4.4,

respectively. The common-path radial mode sorter is composed of two polarization-

sensitive SLMs, each with a spherical lenses attached respectively. Each spherical
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Figure 4.3: Experimental realization of the common-path radial mode sorter.

lens is imaged onto the respective SLM by a 4-f system in the experiment. A

quadratic phase pattern which is equivalent to a lens of focal length 0.62 m is im-

printed on both SLMs. Both spherical lenses have a focal length of f1 = 1.5 m.

The distance between the injected mode beam waist plane and the first SLM is

z = 0.44 m, and the separation between two SLMs is 2z. The output plane of the

radial mode sorter is of distance z after the last SLM. The Fourier transforming

lens in radial mode converter has a focal length of 1 m. In this setup two polar-

izations are employed as two arms of a Mach-Zenhder interferometer, and the in-

jected mode is 45 degree polarized. Since vertically polarized light is not affected

by SLMs, one can check that two spherical lenses perform a Fourier transform to

it [1]. Horizontal polarization, however, is modulated by both SLMs. Each SLM

with the attached lens becomes a lens of focal length 0.44 m, exactly equal to

the propagation distance z. Hence, horizontally polarized light experiences two

consecutive Fourier transforms. If we treat vertically polarized beam as the ref-
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Figure 4.4: Experimental realization of a radial mode converter which transforms |1p, 2`〉 to
|0p, 2`〉.

erence arm, then horizontally polarized beam will gain a mode-dependent Gouy

phase of exp(−ipπ) due to its extra Fourier transform. One can check that this

phase is 0 for |0〉p and −π for |1〉p [1], and thus |0〉p remains 45 degree polarized,

but the polarization of |1〉p is rotated to 135 degrees. In the experiment we use

a half-wave plate (HWP) so that |0〉p is vertically polarized while |1〉p becomes

horizontally polarized at the output port. Compared to the sorter based on Mach-

Zenhder interferometer, this common-path interferometer is robust to vibration

and air turbulence. The beam waist radius of LG modes used in our experiment

is w0 = 462.3 µm, and we note that the parameters of the radial mode sorter

mentioned above are specific to this beam waist radius and cannot be directly ap-

plied to LG modes of different beam size [1]. However, one can always use a

4-f system with appropriate lateral magnification to adjust the beam waist radius.

In addition, the OAM index ` of the incident LG mode can also affect the radial
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Figure 4.5: (a) The phase profile as a function of radius r on the two SLMs in the radial mode
converter. (b) The input and output spatial mode intensity profile of the radial mode converter. The
upper right image is the corresponding experimental (Exp.) record of the simulated (Sim.) image
for comparison.

mode sorter because the Gouy phase is also a function of |`|. In this experiment

we use ` = −2 and ` = 2, so the value of |`| is a constant and thus its effect can be

ignored. To remove the `-dependence of radial mode sorter, one can use a Dove

prism to cancel the `-dependent phase as demonstrated in [126].

The common-path radial mode converter is implemented by two SLMs con-

nected by a Fourier transforming lens to realize mode conversion from |1p,±2`〉

to |0p,±2`〉. Taking into account the fact that the converter only reshapes the ra-

dial structure of the mode, the phase written on SLMs should be a function of

radius r only. So the phase on first SLM can be decomposed to the polynomials
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of radius and we use nonlinear fitting algorithm [144] to improve the conversion

efficiency by adjusting coefficients of these polynomials. The second SLM is used

to cancel the residue phase of the converted mode because |0p,±2`〉 possesses a

flat phase structure in the radial direction. We choose three polynomials {r2, r3,

r4} in the algorithm. We tested that more polynomials (up to r7) can provide neg-

ligible conversion efficiency improvement while costing much more time to run

the code. The phase distributions on two SLMs are shown in Fig. 4.5(a). The

intensity distributions of the input and output fields are shown in Fig. 4.5(b). It

can be seen that the converted mode is similar but not identical to |0〉p due to the

non-unity conversion efficiency. The conversion efficiency in our simulation is

| 〈0p〉 0′p|2 = 82.7% where |0′p〉 denotes the converted mode by SLMs. Due to this

non-unity conversion efficiency, the minimum crosstalk of the superposition mode

converter can be readily calculated to be 4.5%. In general, a mode conversion re-

quires multi-plane iterations [47], and therefore our implementation to transform

|1〉p to |0〉p is not sufficient to achieve a unity conversion efficiency. However, it is

straightforward to cascade more SLMs to reduce the crosstalk of the superposition

mode sorter [143].

The radial superposition mode sorter we experimentally implemented is de-

picted in Fig. 4.6(a), and its performance is evaluated by measuring the crosstalk

matrix. We first remove the radial mode converter such that the set-up becomes a

common-path radial mode sorter. We characterize the performance of this common-

path radial mode sorter by measuring output power of two output ports of the PBS

and the result is presented in Fig. 4.6(b). The crosstalk of the radial mode sorter is
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Figure 4.6: (a) Experimental realization of a common-path radial superposition mode sorter. By
removing the radial mode converter in the dashed box it becomes a common-path radial mode
sorter. (b) The measured crosstalk matrix of the common-path radial mode sorter. (c) The mea-
sured crosstalk matrix of the common-path radial superposition mode sorter.

around 2.6%, which is defined as the power in the wrong port divided by the total

output power when a radial mode is injected. We note that this sorter can also be

applied to HG modes because both LG modes and HG modes are the eigenmodes

of the fractional Fourier transform. We then cascade the radial mode converter

and inject |pL〉 and |pR〉 mode to the superposition mode sorter. The measured

crosstalk is shown in Fig. 4.6(c), which is around 7.4%. As mentioned above, the

crosstalk of the superposition mode sorter can in principle be further decreased by

cascading mode SLMs to perform the mode conversion.
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4.3 Results and discussions

Having constructed the sorters for both mutually unbiased bases, we next demon-

strate the implementation of an 8-dimensional QKD protocol involving all three

degrees of freedom. A schematic diagram of the setup is presented in Fig. 4.7.

A He-Ne laser is modulated by an acousto-optic modulator (AOM) to generate

200 ns optical pulses. The average photon number in each pulse is attenuated

by neutral density filters and crossed polarizers to µ = 0.1. Computer-generated

holograms imparted on SLM are used to generate LG modes of beam waist size

w0 = 462.3 µm at the first diffraction order [34]. A combination of PBS and HWP

is used to measure the polarization states in both mutually unbiased bases. Then

an OAM mode sorter consisting of an un-wrapper and a phase corrector [121] is

used to sort the two OAM modes |−2〉` and |2〉` [91]. An additional beamsplitter

(BS) is needed to recombine the separated modes so as to sort OAM superposition
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states |`D〉 and |`A〉. We note that the sorting mechanism of OAM superposition

states is the same as that of the superposition of radial modes. However, the

mode converter is not needed because the log-polar transformation induced by

the OAM mode sorter already converts the OAM modes to have the same spa-

tial shape, and therefore simply injecting the sorted OAM modes to a beamsplitter

(i.e., a two-dimensional quantum F -gate) can efficiently separate the OAM super-

position states. The sorting mechanism for the radial degree of freedom follows

the scheme presented in Fig. 4.2. After the polarization state is determined, the

common-path radial mode sorter is be used to map different radial modes to dif-

ferent polarizations, therefore one can use a PBS to detect the radial quantum

number. A radial mode converter needs to be inserted to sort the radial superpo-

sition modes |pL〉 and |pR〉 as discussed above. All sorted photons are collected

by multi-mode fibers (MMFs) and detected by single-photon avalanche photodi-

odes (APDs, Perkin Elmer SPCM-AQRH-14-FC). We note that since only four

APDs are available at the time of performing experiment, at Bob’s side the data

is collected for elements in each basis separately and combined later. Since the

output of the OAM mode sorter has a small size, we use a 10X beam expander

(GBE10-A, Thorlabs) to expand the beam before the MMFs.

To evaluate the performance of the superposition mode sorter, we measure the

crosstalk matrix with highly attenuated coherent states and the result is presented

in Fig. 4.8. The crosstalk ranges from 6.0% to 16.7%, with an average of 11.7%

well below the 8-D QKD error threshold 24.7% [21]. Here the crosstalk is the

probability that the photon triggers the wrong APDs when Bob is detecting in
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Figure 4.8: Conditional probability matrix measured with µ = 0.1 pulses. Each element in this
matrix represents the probability that Bob detects the corresponding symbol conditioned on the
symbol sent by Alice.

the correct basis. To calculate the mutual information, we assume a uniform er-

ror rate for detecting each mode by using the averaged crosstalk, and the mutual

information can be expressed as [21]

IAB = log2 d+ F log2 F + (1− F ) log2

(
1− F
d− 1

)
, (4.9)

where d = 8, the average error rate δ = 11.7%, and F is the probability of correct

measurement F = 1 − δ = 88.3%. With these numbers we can immediately get

IAB = 2.15 bits per sifted photon. We also note that the SLM used in our ex-
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periment can be readily replaced by passive, polarization-dependent liquid crystal

retarder to realize a scalable, low-cost sorter.

Compared to a QKD protocol with OAM encoding only [19], our protocol em-

ploys the slowly divergent LG modes and are thus practical for free-space links

with finite-sized apertures [120]. In a realistic free-space channel, atmospheric

turbulence can lead to modal crosstalk and reduce the transmission rate. A re-

cent experiment [128] has suggested the potential of LG modes in a free-space

channel in an urban environment. The intensity pattern of the transmitted beam

can remain recognizable after a 1.6-km free-space link, and thus adaptive op-

tics can be potentially used to mitigate turbulence [128], which can be subject

to future study. In a realistic free-space link, in addition to the spatial distortion

induced by turbulence which can be corrected by adaptive optics, different LG

modes accumulate different amount of Gouy phase which can affect the sorting

of superposition modes [131]. The Gouy phase for a LG mode can be written as

φ = (2p+ |`|+1) arctan(z/zR), where zR is the Rayleigh range and z is the prop-

agation distance. As proposed in [131], pre-compensation can be used in mode

preparation at the transmitter’s side to guarantee that the mode-dependent phase

is cancelled at the receiver’s side. Furthermore, the phase-dependent phase can

also be removed at the receiver’s side. Here we take the scheme in Fig. 4.2(a) as

an example to show how this mode-dependent phase can be removed. Since a ra-

dial mode sorter is used in the superposition mode sorter, individual radial modes

are separated to different paths. By simply adjusting the path lengths for each

radial mode, a mode-dependent phase can be added to cancel the Gouy phase. In
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our experiment, the radial modes are sorted to horizontal and vertical polariza-

tions respectively, and by adding a constant phase on the subsequent polarization-

sensitive SLM, we are able to compensate the relative phase between different

radial modes. And the same method can be applied to the OAM index. On the

other hand, the large communication bandwidth offered by LG modes [146] can

be obtained with less difficulty for a smaller distance and thus provides benefits

to short-range optical interconnects [147].

In conclusion, we provide an experimental demonstration of a QKD protocol

which encodes information using all possible transverse degrees of freedom, i.e.

polarization, radial, and OAM modes, with a resulting transmission of 2.15 bits

per sifted photon. A sorting scheme for superposition spatial modes is imple-

mented to enable this 8-D protocol and can find direct application in other fields

such as super-resolution imaging and high-dimensional entanglement certifica-

tion. We believe our demonstration opens up a way to fully exhaust the informa-

tion resources of finite-sized apertures and therefore reach the capacity limit of a

communication channel. The slowly divergent LG beams also make this protocol

promising for a free-space communication network.
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Chapter 5

Digital phase conjugation for free-space com-
munication

In recent decades, QKD has attracted increasing interest because it can guarantee

communication security based on fundamental laws of quantum mechanics [148].

Free-space QKD [149–156] can guarantee communication security between mo-

bile nodes such as aircraft and satellites. In addition, free space presents lower

loss than fibers and thus is favorable to loss-sensitive applications such as quan-

tum teleportation [157] and entanglement distribution [158]. Due to the intrinsi-

cally low brightness of quantum light sources, the secure key rate of QKD is sig-

nificantly lower than the data transfer rate of classical communication protocols.

Thus, it remains highly desirable to enhance the secure key rate of QKD. The spa-

tial degree of freedom is a promising candidate for boosting capacity of both quan-

tum and classical communication through MDM [22, 159] or high-dimensional

encoding [3, 19, 20, 50–52, 128, 160] and is compatible with polarization- and

wavelength-division multiplexing. In particular, slowly diverging spatial modes

such as OAM modes are commonly used as a basis set in free-space communica-
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tion compared to alternative basis sets such as discrete spot arrays [85] which are

unsuitable for a long-distance link. However, atmospheric turbulence inevitably

leads to strong modal crosstalk between spatial modes [49, 114], which severely

degrades the channel capacity of a free-space link. We next summarize several

previous works to show the typical level of crosstalk between OAM modes in a

turbulent, outdoor free-space channel. In a 150-m link [50], the crosstalk fluctu-

ates between 60% and 80% depending on time. In a 300-m intra-city link [20], the

crosstalk is 11% with a mode spacing ∆` of 4. In a 340-m cross-campus link [51],

the crosstalk is measured to be in the range between 70% and 80%. In a 3-km link

[52], a camera is used to measure the images of bright OAM superposition modes,

and an artificial neural network (ANN) is applied for image recognition, resulting

in a bit error rate (BER) of 1.7 × 10−2. Hence, the turbulence can be a serious

concern for crosstalk-sensitive applications such as QKD. A more comprehensive

summary is listed in Table 5.1.

Adaptive optics is the most common method for turbulence correction and

has been widely adopted for astronomical imaging [53]. A conventional adap-

tive optics system consists of a wavefront sensor and a deformable mirror at the

receiver. The wavefront sensor measures the aberrated phase of an incoming bea-

con beam (typically a Gaussian beam), and subsequently the deformable mirror

corrects the phase aberration of the incoming beam based on the feedback from

wavefront sensor as post-turbulence compensation [54]. However, as shown in

Fig. 5.1(a), different OAM modes (LG modes with radial index p = 0 and OAM

index ` = −1, 0, 1) exhibit mode-dependent amplitude and phase distortions af-
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No. Link length Parameters Results Compensation method

1 100 m [161]
λ=1550 nm,

large Nf

Crosstalk≈20% with
a mode spacing ∆` of 2 Fast steering mirror

2 120 m [159]
λ=1550 nm
Nf=20.8

Crosstalk=4.8% with
a mode spacing ∆` of 2 None

3 150 m [50]
λ=532 nm
Nf=97.0

Crosstalk≈60%
during the daytime and
≈80% during the nighttime

with a mode spacing ∆` of 1

None

4 300 m [20]
λ=850 nm
Nf=22.1

Crosstalk=11% with
a mode spacing ∆` of 4

Post-selecting lucky
beams

5 340 m [51]
λ=633 nm
Nf=4.89

Crosstalk can be reduced
from 80% to 77%

by using compensation
with a mode spacing ∆` of 1

Adaptive optics
and fast steering mirror

6 1.6 km [128]
λ=809 nm
Nf=8.7

Crosstalk≈90%
with a mode spacing ∆` of 1 None

7 3 km [52] λ=532 nm Bit error rate=1.7× 10−2 Artificial neural network
8 143 km [134] λ=532 nm Bit error rate=8.3× 10−2 Artificial neural network

9
340 m [4]
(our work)

λ=780 nm
Nf=9.4

Crosstalk reduced from
37.0% to 13.2% with

a mode spacing ∆` of 1, and
from 10.0% to 3.4% with
a mode spacing ∆` of 2

Phase conjugation

Table 5.1: A summary of previous works for free-space OAM communications. λ: wavelength.
Nf : Fresnel number product.

ter propagation through the same turbulent link [51]. Therefore, a conventional

post-turbulence single-plane phase-only adaptive optics system is unable to cor-

rect both amplitude and phase distortions for different OAM modes simultane-

ously, even in principle [55, 56]. Furthermore, the effectiveness of adaptive optics

for OAM communication has mostly been tested in numerical simulations [56–58]

or in lab-scale links with emulated, slowly varying, fully controllable turbulence

[59–62]. To the best of our knowledge, there is only one experimental demon-

stration using adaptive optics for OAM communication through an outdoor link
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Figure 5.1: (a) Simulation of OAM mode propagation through turbulence. Amplitude and phase
distortion of different modes cannot be corrected by post-compensation adaptive optics simul-
taneously. (b) The spatial modes received by Bob are further distorted if Alice uses a standard
mirror to reflect the light. (c) High-fidelity OAM modes can be received by Bob if Alice uses a
phase-conjugating mirror to reflect the beams.

[51], and the crosstalk is reduced from 80% to 77% by using both adaptive optics

and a fast steering mirror simultaneously. This level of crosstalk is too large to

guarantee secure QKD [21]. Therefore, adaptive optics has achieved very lim-

ited performance enhancement in outdoor free-space OAM communication links

despite numerous simulations and lab-scale experiments. Other methods for tur-

bulence suppression, such as a multiple-input multiple-output (MIMO) algorithm

[63] and an ANN [52], cannot be applied to QKD because these algorithms require

a large number of photons for digital signal processing and thus are inappropriate

for quantum applications that operate at a single-photon level.
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5.1 Concept of phase conjugation

Here we propose and demonstrate that digital phase conjugation [5, 162–166]

can be used to effectively suppress atmospheric turbulence for OAM communi-

cation through a 340-m free-space link. Phase conjugation is also referred to as

time reversal, and Fig. 5.1 illustrates how to transmit high-fidelity spatial modes

from Alice to Bob by using phase conjugation. As shown in Fig 5.1(a), Bob

first transmits standard OAM modes to Alice, and the modes received by Al-

ice are distorted both in amplitude and phase. By contrast, perfect OAM modes

can be transmitted to Bob if Alice uses a phase-conjugating mirror as shown in

Fig 5.1(b). For an arbitrary incident spatial mode A(x, y)eiφ(x,y), the mode re-

flected by a phase-conjugating mirror becomes A(x, y)e−iφ(x,y). After propaga-

tion through the same turbulent link, the OAM modes received by Bob become

the phase conjugate of the originally transmitted OAM modes and can in principle

have a perfect spatial mode quality [167], assuming a link without beam clipping.

The phase-conjugating mirror can be digitally implemented by a phase-only spa-

tial light modulator (SLM) [162], because spatial amplitude and phase modulation

can be simultaneously realized by a diffractive hologram [25]. In order to compen-

sate for time-varying turbulence, the hologram needs to be updated dynamically

in real time. From a technical point of view, the spatial modes transmitted from

Bob to Alice can be regarded as probe beams that enable fast characterization of

turbulence and thus allow Alice to perform pre-turbulence mode generation for

each spatial mode. Although digital phase conjugation has been employed for
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Figure 5.2: Schematic of the experiment. The upper left image shows the aerial view of the free-
space link and is courtesy of Map data ©2020 Google. The retroreflector is installed on a building
rooftop. Digital phase conjugation is realized by displaying a computer-generated hologram on
SLM 2 based on the feedback from Cam 1. AWG: arbitrary waveform generator. BS: beamsplitter.
PBS: polarizing beamsplitter. FC: fiber coupler. Ch. 1: Channel 1. Ch. 2: Channel 2.

aberration correction in biological tissues [162, 163] and MMFs [5, 164–166], it

has not been experimentally applied to free-space optical OAM communication.

5.2 Realization of digital phase conjugation

Our phase conjugation experimental schematic is presented in Fig. 5.2. We first

characterize the modal crosstalk matrix of the phase conjugation system, and then

use the setup to realize a two-channel OAM communication system. In the exper-

iment, Bob uses a 780 nm laser (DL pro, Toptica) as light source and a phase-only

SLM (Pluto 2, Holoeye) as SLM 1. A static diffractive hologram is displayed on

SLM 1 (Pluto 2, Holoeye) to generate two 780 nm OAM probe beams of hori-

zontal and vertical polarization, respectively. The beam waist radius of the OAM
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modes before Bob’s telescope is w0 = 0.7 mm. These two OAM probe beams

are combined by a PBS, expanded by a telescope, and then transmitted to Al-

ice through a retroreflector. These two orthogonally polarized probe beams allow

simultaneous phase conjugate generation for two different OAM modes, which

facilitates the realization of two-channel OAM communication system discussed

later. The telescope at Bob’s side consists of a f = 35 mm lens (LA1027-B,

Thorlabs) and a f = 500 mm lens (LA1380-AB, Thorlabs). The retroreflector

(#49-672, Edmund Optics, 127 mm diameter) is installed on a building rooftop

that is 170 m away, resulting in a round trip distance of 340 m. The telescope

at Alice’s side consists of a f = 11 mm lens (C220TMD-B, Thorlabs) and a

f = 400 mm lens (LA1725-A, Thorlabs). At Alice’s side, a PBS is used to

separate the two aberrated OAM modes, and a coherent reference plane wave is

combined with two separated OAM probe beams by a beamsplitter (BS). A cam-

era (Cam 1, BFS-U3-04S2M-CS, FLIR) is used to record the interference fringes,

and a 45◦ polarizer is inserted before Cam 1 to enhance the interference pattern

visibility. Through the standard off-axis holography analysis [168], the amplitude

and phase of the received modes can be retrieved with a single-shot measurement

from Cam 1. Hence, Cam 1 is used as a wavefront sensor in our setup. Alice

uses Cuda C++ language on a desktop computer (CPU: Intel i7-9700K, GPU:

Nvidia RTX 2070 Super) to perform off-axis holography analysis, compute the

hologram, and display the hologram on SLM 2 (HSP-1920-488-800, Meadowlark

Optics). To provide the coherent reference plane wave for off-axis holography, a

single-mode fiber is used to guide the continuous-wave 780 nm light source from
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Figure 5.3: Procedure for digital phase conjugation. (a) The interference fringe pattern recorded
by Cam 1. (b) The fast Fourier transform (fft) of interference fringe. (c) The first order is selected
by a window and shifted to the center. (d) The inverse fast Fourier transform (ifft) gives the
amplitude and phase of the received probe beam. (e) The digital phase conjugation is implemented
by flipping the sign of the phase. (f) The computer-generated phase-only diffractive hologram that
can generate the phase-conjugated OAM mode at the first diffraction order.

Bob to Alice. We emphasize that this single-mode fiber can be avoided by using

alternative wavefront sensors such as a Shack-Hartmann sensor [169] or complex

field direct measurement [170].

The computational procedure for off-axis holography and digital phase conju-

gation is presented in Fig. 5.3. One example of the interference fringes recorded

by Alice is shown in Fig. 5.3(a). We perform fast Fourier transform of the inter-

ference fringe, select the first order and shift it to the image center. By performing

an inverse fast Fourier transform, the amplitude and phase of the received probe

beam can be obtained. Digital phase conjugation is implemented by flipping the

sign of the phase. Then we use the type-2 method in [25] to generate the phase-

only diffractive hologram, which can be used to generate the phase conjugate of

the probe beam at the first diffraction order with desired amplitude and phase.

Based on the measured amplitude and phase of the aberrated OAM modes, Al-
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ice computes the corresponding diffractive hologram and displays it on SLM 2 to

generate the phase conjugates of the received OAM modes with desired amplitude

and phase. Alice uses a 785 nm laser diode (LP785-SF20, Thorlabs) as the light

source and transmits the phase-conjugated modes to Bob. Due to the negligible

dispersion of free space, the difference in wavefront distortion between 780 nm

and 785 nm wavelength can be ignored [51]. Bob uses Cam 2 (BFS-U3-16S2M-

CS, FLIR) to record images of the received modes. In the experiment we use

seven LG modes of ` = −3,−2, · · · , 3 to test the performance of the phase con-

jugation system. The aperture diameter of both telescopes is 5 cm, resulting in a

Fresnel number product of Nf = D2/λz = 9.4, where D = 5 cm, λ = 780 nm,

and z = 340 m. The beam waist radius of the OAM modes is w0 = 10 mm after

beam expansion of the telescope. The turbulence structure constant [115] C2
n is

measured to be in the range of 2.2× 10−15 m−2/3 to 8.6× 10−15 m−2/3, the Fried

parameter r0 ranges from 0.16 m to 0.07 m, and thus D/r0 is between 0.31 and

0.70.

Bob uses a separate active area on SLM 2 as the independent SLM 3 to im-

plement spatial mode demultiplexing. Mode-multiplexed holograms [50, 160] are

used to project an optical beam onto three different OAM modes simultaneously.

We use Cam 3 (BFS-U3-16S2M-CS, FLIR) to measure the diffraction orders at

the Fourier plane of SLM 3, and a few experimentally recorded images are shown

in Fig. 5.4 for a phase-conjugated ` = −2 mode. We show the first-order diffrac-

tions and other irrelevant diffraction orders are blocked. For each diffraction order,

we use a window of 7×7 pixel size at the beam center as depicted by the red boxes
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Figure 5.4: Experimentally recorded images for crosstalk matrix measurement using mode-
multiplexed computer-generated holograms. The input beam is a phase-conjugated ` = −2 mode.
The hologram performs OAM projection measurements onto (a) ` = −2,−1,−3, (b) ` = −2, 1, 0,
and (c) ` = −2, 3, 2, respectively. The red boxes denote the windows used for crosstalk matrix
measurement. Scale bar: 0.5 mm.

in Fig. 5.4 and calculate the total power inside the window. We capture 500 images

for each hologram to get the statistical average of the relative power ratio between

different modes. For each transmitted mode, three mode-multiplexed holograms

are used to measure the crosstalk spectrum for ` = −3,−2, · · · , 3. We repeat

this procedure for seven OAM modes to get a 7× 7 crosstalk matrix. The optical

signals with on-off-keying modulation are converted to voltage waveforms by us-

ing a photodetector (APD130A, Thorlabs) connected to an oscilloscope. For each

received voltage waveform, we specify a voltage threshold and convert the sig-

nals to binary bit streams by comparing the signals to the threshold. The voltage

threshold is tuned independently for each signal stream to reach the minimized

the BER.

Due to atmospheric turbulence and aberration of the telescope system, the

OAM probe beams received by Cam 1 at Alice’s side exhibit clear distortions

as shown in the top row of Fig. 5.5(a). Alice generates the phase conjugates of
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these aberrated modes and transmits them to Bob. The phase-conjugated modes

received by Cam 2 at Bob’s side are shown in the bottom row of Fig. 5.5, which

exhibit improved mode fidelity compared to those received by Alice. To quantify

the modal crosstalk of the phase-conjugated modes, we display a densely encoded

diffractive hologram on SLM 3 as a mode demultiplexer [160], and a camera

(Cam 3) is placed at the Fourier plane of SLM 3 to measure the crosstalk matrix

[50]. When Alice transmits standard OAM modes, the crosstalk matrix of the

modes received by Bob is shown in Fig. 5.6(a). The average value of the diagonal

elements is 63.0%, and thus the average crosstalk is 37.0%. Therefore, this link

cannot support secure QKD with OAM encoding in the absence of phase con-

jugation since the crosstalk is higher than the security error threshold of 23.7%

for a seven-dimensional system [21]. By contrast, when Alice transmits phase-

conjugated OAM modes to Bob, the average crosstalk is reduced to 13.2% as

shown in Fig. 5.6(b), which allows for secure QKD operating at a single-photon

level. In addition, it is well known that the modal crosstalk can be reduced by in-
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Figure 5.6: (a) Experimentally measured crosstalk matrix without phase conjugation. The average
crosstalk is 37.0%. (b) Crosstalk matrix with phase conjugation. The average crosstalk is 13.2%.

creasing the mode spacing ∆` [49]. We calculate the crosstalk matrix with a mode

spacing ∆` of 2 by post-selecting the data of ` = −3,−1, 1, 3, and the average

crosstalk can be further reduced from 10.0% to 3.4% by using phase conjugation

as shown in Fig. 5.7. These results are the lowest crosstalk ever achieved in an

outdoor free-space link to the best of our knowledge. It can be seen in Table 5.1

that only our phase conjugation method presents significant modal crosstalk sup-

pression, and our experiment has the lowest modal crosstalk. It should be noted

that the works in No. 7 and No. 8 report their results in terms of bit error rate

rather than crosstalk. In addition, the artificial neural network used in these works

requires data acquisition using a camera. Therefore, the communication speed

is fundamentally limited by the camera image acquisition rate, which is on the

order of kHz. Furthermore, since high signal-to-noise ratio is needed for image

processing, this method cannot be directly used in quantum communications op-
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erating at a single-photon level. Although we use classical light to characterize the

crosstalk matrix, we emphasize that our method can be readily applied to quantum

applications that operate at a single-photon level.

5.3 Results and discussions

Ideally, a realization of phase conjugation can completely eliminate the aberra-

tion and achieve zero crosstalk. Here we attribute the nonzero crosstalk observed

in our experiment to the following reasons. First, the operational bandwidth of

our digital phase conjugation system is limited. The image transfer time from

Cam 1 to computer memory is 4 ms, the computation time for diffractive holo-

gram generation is 1 ms, and the refresh time of SLM 2 is 5 ms, resulting in a

total response time of ≈ 10 ms and hence an operational bandwidth of 100 Hz.
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Figure 5.8: Eye diagrams of different realizations when transmitting the ` = 2 and ` = 3 modes
and receiving the ` = 2 mode. The diagrams with phase conjugation are displayed in the top row,
and those without phase conjugation are shown in the bottom row.

By contrast, the characteristic frequency of turbulence can be tens of to hundreds

of hertz [53]. We believe that the operational bandwidth can be improved to ex-

ceed 1 kHz with faster devices such as a 100 kHz wavefront sensor [169] and

22 kHz SLM [35]. Second, the mode fidelity of our phase conjugate generation

is not perfect. The phase conjugate generation fidelity can be further improved

by calibrating and correcting the residual aberration of the SLM. Third, beam

clipping should be avoided in a free-space link in order to enable a perfect real-

ization of phase conjugation. In our experiment, beam clipping can occur at the

telescope aperture as well as at the retroreflector, and the link transmittance for

` = ±3 is ≈ 10% lower than that of ` = 0 as shown in Fig. 5.9. It should be
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Figure 5.9: The transmittance of the free-space link for different OAM modes. The average trans-
mittance for ` = 0 is normalized to unity. The error bar represents one standard deviation.

noted that the retroreflector is unnecessary and can be removed in a realistic free-

space link. In addition, low-cost and large-diameter Fresnel lenses (1 m diameter

lens is commercially available [171]) can be used in a long-distance link to avoid

beam clipping. The static aberration of the Fresnel lens should not be a concern

because it can be corrected by phase conjugation as part of the overall channel

aberration. These limitations impose constraints on the link length in real-world

applications. A long free-space link suffers stronger and faster turbulence, and the

Fresnel number product is typically smaller for long links due to the limited lens

size. Therefore, more technical efforts are needed to enable free-space optical

MDM through a long-distance link.

It should be noted that the data transfer rate of OAM communication is not

limited by the SLM refresh rate but is decided by the modulation speed of the
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Figure 5.10: Time-resolved BER measurement without phase conjugation. The average BER is
3.6×10−3 without phase conjugation. The inset shows the eye diagrams acquired by oscilloscope.

transmitter [62]. To clarify this point, we demonstrate a proof-of-principle clas-

sical communication system with two-channel OAM multiplexing. We choose

` = 2 for channel 1 and ` = 3 for channel 2. Bob generates horizontally polarized

` = 3 mode and vertically polarized ` = 2 mode and transmits them to Alice. It

should be noted that the polarization has negligible effect on beam propagation

due to the small birefringence of turbulent free space. Hence, Alice can mea-

sure two aberrated OAM modes simultaneously with a single-shot measurement.

We emphasize even though we are using orthogonally polarized OAM modes to

facilitate turbulence characterization, this is unnecessary and can be avoided by

transmitting different OAM modes in different time slots to Alice using a spatial

mode switch [172]. The intensity of the 785 nm laser diode at Alice’s side is mod-



CHAPTER 5. 79

Time (s)
0 50 100 150 200 250 300 350 400

B
it 

er
ro

r r
at

e

100

Transmit:  = 2 and  = 3. Receive: = 2 
With phase conjugation, average BER<1.3×10-7

10-1

10-2

10-3

10-4

10-5

0

Figure 5.11: Time-resolved BER measurement with phase conjugation. We detected 0 bit errors
within 8 × 106 received bits with phase conjugation, and therefore the average BER is less than
1.3× 10−7. The inset shows the eye diagrams acquired by oscilloscope.

ulated at the rate of 20 Mbps with on-off keying format. The modulation rate is

solely limited by our modulator bandwidth and can be readily improved to Gbps

level by using commercially available high-speed modulators. A fiber coupler is

used to split the beam, and a 10 m fiber delay line is used to de-correlate the sig-

nal streams. The two beams illuminate separate areas of SLM 2 to generate the

corresponding phase conjugate of the two OAM modes transmitted by Bob. The

two phase-conjugated OAM modes are combined by BS 1 and then transmitted to

Bob. It should be noted that both phase-conjugated modes are vertically polarized,

and the horizontal polarization is an unused degree of freedom that can be further

adopted for polarization encoding or multiplexing if needed. In the schematic
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Figure 5.12: Time-resolved BER measurement without phase conjugation. The average BER is
2.7×10−3 without phase conjugation. The inset shows the eye diagrams acquired by oscilloscope.

shown in Fig. 5.2, we use BS 4 at the receiver to split the beam and subsequently

use SLM 3 to perform projection onto two OAM modes. In the experiment we

omit BS 4 and perform different OAM projections by switching the hologram for

simplicity. The projection measurement realized by SLM 3 can be replaced by

a low-loss OAM mode sorter [43] for loss-sensitive applications such as QKD.

Within every 4 s we collect 8 × 104 bits from the oscilloscope, and we collect a

total of 8 × 106 bits over 400 s. The eye diagrams at different times for ` = 2 is

shown in Fig. 5.8. It can be seen that the data transfer rate is determined by the

intensity modulator we use and is not limited by the refresh rate of SLM. Slight

power fluctuation can be observed in the eye diagrams between different realiza-

tions, and we attribute it to the laser diode power instability as well as the SLM
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Figure 5.13: Time-resolved BER measurement with phase conjugation. We detected 0 bit errors
within 8 × 106 received bits with phase conjugation, and therefore the average BER is less than
1.3× 10−7. The inset shows the eye diagrams acquired by oscilloscope.

phase flickering. In addition, we can see that the signal streams with phase con-

jugation exhibits lower crosstalk than those without phase conjugation. Off-line

digital signal processing is performed to analyze the signal, and the average BER

is 3.6 × 10−3 without phase conjugation. By contrast, we detected 0 bit errors

when phase conjugation is performed, implying a BER lower than 1.3 × 10−7.

The minimum measurable BER is restricted by the memory capacity of the oscil-

loscope in our experiment. We measure the time-resolved BER, and the BER for

` = 2 channel without and with phase conjugation are presented in Fig. 5.10 and

Fig. 5.11, respectively. In the absence of phase conjugation, the BER can be as

high as 3.6×10−3, while it can be reduced to be less than 1.3×10−7 in the presence
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of phase conjugation. Similar results can be obtained for ` = 3 channel as shown

in Fig. 5.12 and Fig. 5.13. It can be seen that phase conjugation can significantly

reduce the BER. Moreover, we believe that GHz and higher modulation speed

can be achieved simply by using faster modulators and detectors [22]. Finally,

we wish to emphasize that the previously demonstrated lab-scale adaptive optics

system with pre-turbulence compensation by Ren et al. [60] is fundamentally dif-

ferent from our scheme for two reasons. First, we transmit different OAM modes

as probe beams, allowing for mode-dependent pre-turbulence compensations for

individual modes. By contrast, Ren et al. always use a Gaussian mode with ` = 0

as the probe beam. Second, we use diffractive holograms on an SLM to control

both the amplitude and phase of each phase-conjugated mode, while Ren at al. use

an SLM to apply a phase-only compensation to all different OAM modes simulta-

neously. Due to these limitations, the pre-turbulence compensation demonstrated

in [60] is essentially equivalent to the conventional post-turbulence compensation

with back-propagating beams and thus does not exhibit a better performance than

the conventional adaptive optics.

Based on the low crosstalk and high communication bandwidth of the system,

here we propose a practical, scalable free-space QKD system with N -channel

OAM multiplexing using phase conjugation for turbulence suppression. The schematic

of the proposed QKD system is shown in Fig. 5.14. At Bob’s side, an SLM is used

to generate and switch sequentially among N OAM modes. High-speed OAM

mode switching can be readily achieved by using a digital micromirror device

at 22 kHz [35] or an acousto-optic modulator at 500 kHz [172]. Alice uses a
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Figure 5.14: Proposed free-space QKD system with N -channel OAM multiplexing using phase
conjugation for turbulence suppression. WFS: wavefront sensor.

wavefront sensor to measure the amplitude and phase of each OAM mode in real

time. A densely encoded diffractive hologram [160] can be computed and dis-

played on an SLM to generate and multiplex N phase-conjugated modes simul-

taneously. The hologram needs to be updated dynamically at a speed faster than

the turbulence characteristic frequency as discussed earlier. Although the densely

encoded hologram typically has a low diffraction efficiency, this is not a problem

for coherent-state-based QKD protocols, because strong loss is inherently needed

to attenuate a classical, high-brightness laser to a single-photon level. The stan-

dard polarization-encoded decoy-state QKD protocol [152] can be used to enable

secure communication, and the secure key rate of each channel is not limited by

the SLM refresh rate but determined by the polarization modulation rate which

can readily reach GHz level [173]. In fact, by adding a high-speed polarization

switch and attenuating the laser diode to a single-photon level, our classical MDM

system can be immediately turned to a polarization-encoded OAM-multiplexed
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QKD system. Alternative coherent-state-based protocols such as time-bin en-

coding [174] and continuous-variable encoding [175] are also applicable to our

scheme. Furthermore, wavelength-division multiplexing is compatible with our

scheme because of the non-dispersive, broadband spectral response of free space.

The major advantage of this phase conjugation QKD protocol is the low crosstalk

as demonstrated in our experiment, which has not been achieved by any adaptive

optics system in an outdoor turbulent link and there is still room for improvement.

Moreover, this protocol cannot be replaced by classical turbulence suppression

methods such as MIMO and ANN for quantum applications operating at a single-

photon level as discussed earlier.

In conclusion, we experimentally demonstrate turbulence suppression in a

340-m free-space OAM communication link through the use of digital phase con-

jugation. The crosstalk induced by turbulence can be reduced from 37.0% to

13.2% with phase conjugation, and further down to 3.4% by using a mode spac-

ing ∆` of 2. We believe that lower crosstalk can be reasonably achieved by us-

ing faster equipment in a straightforward manner. A proof-of-principle classical

communication system is realized to show the feasibility of high-speed commu-

nication with OAM multiplexing. In addition, a practical and scalable scheme for

free-space QKD with OAM multiplexing is also proposed and analyzed. Based

upon the scalability of the experimental implementation and low crosstalk of the

data, we anticipate that digital phase conjugation can be useful to numerous free-

space quantum and classical applications that require turbulence suppression.
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Chapter 6

Vectorial phase conjugation for fiber-optic com-
munication

6.1 Concept of vectorial phase conjugation

As discussed in chapter 5, optical phase conjugation [167] is an effective method

for modal crosstalk suppression. Nonetheless, optical phase conjugation is in-

vestigated mainly for optical imaging [176–183] but only rarely for optical com-

munication until recently [165, 166]. In addition, a perfect realization of phase

conjugation should account for not only the spatial degree of freedom but also the

polarization. However, all experimental demonstrations in MMFs [164–166, 181–

183] to date have been solely based upon scalar phase conjugation which only

accounts for the spatial degree of freedom, while ignoring polarization. As we

will show later, the polarization mixing is severe in a long fiber and thus scalar

phase conjugation can only succeed in a short MMF (≈1 m) [164, 165, 181–183]

or a few-mode fiber [166]. It should be noted that while many demonstrations

of transfer matrix inversion have taken into account the polarization [72–76], this
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j 0 1 2 3 4 5
N 0 1 1 2 2 2
p 0 0 0 0 1 0
` 0 -1 1 -2 0 2
m 0 0 1 0 1 2
n 0 1 0 2 1 0

Table 6.1: Examples of relation between the single mode index j, mode group number N , LG
mode indices (p, `), and HG mode indices (m,n).

method cannot be used in a long, unstabilized fiber as discussed in chapter 1.

Since a MMF typically supports up to hundreds of modes, here we introduce

a single mode index j = 0, 1, 2, · · · to simplify the notation of the LG and HG

modes for later use. Here we refer to the convention of Zernike polynomials [184]

and adopt the following definitions. For a specific mode index j, the mode group

number N can be calculated as N = ceil((−3 +
√

9 + 8j)/2). Then we have

` = 2j −N(N + 2) and p = (N − |`|)/2 for the LG mode. Given the one-to-one

correspondence between the HG mode and the LG mode [104], we can define

m = p + max(`, 0) and n = p −min(`, 0) for the HG mode. On the other hand,

for a given (p,`) or (m,n), we can calculate j as j = [N(N + 2) + `]/2 with

N = 2p+ |`| for LG modes and j = [N(N + 2) +m−n]/2 with N = m+n for

HG modes. A few examples of conversion relation between j, N , (p,`) and (m,n)

are given in Table. 6.1.

Figure 6.1 presents the the conceptual schematic of our experiment. Bob first

transmits a probe beam of interest to Alice. Alice uses a polarizing beam displacer

to separate the horizontal and vertical polarizations of the scrambled probe beam,

and subsequently performs vectorial off-axis holography to measure the ampli-
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Figure 6.1: Conceptual illustration of vectorial phase conjugation. Bob transmits a probe beam
(denoted by red beams) to Alice. Alice then performs vectorial off-axis holography on her scram-
bled probe beam and digitally generates the phase conjugate of the scrambled probe beam as the
signal beam (denoted by blue beams). |H〉 and |V〉 stand for the horizontal and vertical polariza-
tion state, respectively. PBD: polarizing beam displacer. BS: beamsplitter. HWP: half-wave plate.
MMF: multimode fiber.

tude, phase, and polarization of the scrambled probe beam via a single-shot mea-

surement. Hence, Alice can imprint a corresponding computer-generated holo-

gram on her SLM to generate the signal beams, which are the phase conjugate of

the displaced, scrambled probe beams. The back-propagating signal beams are

transmitted to Bob through the same MMF. Bob also performs vectorial off-axis

holography to characterize the unscrambled signal beam. Compared to the scalar

phase conjugation presented in chapter 5, the major difference of vectorial phase
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conjugation is that the polarization of light needs to be taken into account for

phase conjugation. This is because the polarization mixing is negligible in free

space but can be strong in MMFs.

6.2 Implementation of vectorial phase conjugation

We next experimentally demonstrate that digital vectorial phase conjugation can

be applied to transmit 210 high-fidelity spatial modes (up to mode group 13)

through a 1-km-long, standard, graded-index MMF with the number of used modes

limited by the active area size of our SLM. The detailed experimental setup is

shown in Fig. 6.2. A 780 nm laser (DL pro, Toptica) is used as the light source,

and the light is spatially filtered by a 10-m-long SMF and then collimated to illu-

minate the SLM. A single SLM (Pluto 2 VIS-020, Holoeye) is used to generate

both the probe beam for Bob and the signal beam for Alice with the choice being

made by switching the overall phase grating written onto the SLM. A binary phase

grating is used to generate complex-amplitude spatial modes in the first diffraction

order [34]. We choose the commonly used LG and HG modes for demonstration

because they are the eigenmodes of a graded-index MMF [185], which exhibit bet-

ter robustness and minimized loss during propagation [66] compared to other basis

sets and thus enable phase conjugation to a full extent. It has also been shown that

secure QKD can be implemented by using HG modes and LG modes as mutually

partially unbiased bases [118]. In the experiment, Bob prepares a spatial mode

of interest (i.e., a probe beam) such as a standard LG or HG mode and transmits
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Figure 6.2: The full schematic of the experimental setup. The same SLM is used to generate the
probe beam for Bob (denoted by red lines) and the signal beam for Alice (denoted by blue lines)
by switching the phase grating. The multimode fiber spool is shown at the upper right corner
and is resting on the optical table without any specialized thermal or mechanical stabilization.
The optical table used in the experiment is not floated. The customized PBD is made of a PBS
and two mirrors as illustrated by the inset. HWP: half-wave plate. PBS: polarizing beamsplitter.
SMF: single-mode fiber. SLM: spatial light modulator. BS: beamsplitter. PBD: polarizing beam
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it to Alice through a 1-km-long, standard, graded-index MMF (Clearcurve OM3,

Corning). The fiber is comprised of two 500-m-long bare fibers that are spliced

together and are free of any specialized thermal or mechanical isolation. The fiber

has a core diameter of 50 µm and NA = 0.2, therefore supporting ≈ 400 modes

per polarization at 780 nm.

Bob uses a polarizing beam displacer (MBDA10, Karl Lambrecht) to gener-

ate a horizontally polarized probe beam, and the polarization can be adjusted by

a subsequent HWP. The generated probe beam is then coupled into a 1-km-long
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MMF by an aspheric lens L1 (C110TMD-B, Thorlabs). The spatial mode beam

waist size in the MMF used in our experiment is w0 = 5.06 µm [116]. After

transmission through the fiber, the probe beam received by Alice has a scrambled

spatial and polarization profile. The scrambled probe beam is collimated by an

aspheric lens L2 (C230TMD-B, Thorlabs), and a subsequent Sagnac interferom-

eter is used as a customized polarizing beam displacer to coherently separate the

horizontal and vertical polarization components of the scrambled probe beam to

two beams that propagate along the same direction but are transversely displaced

with respect to each other [186]. This customized polarizing beam displacer pro-

vides more flexibility than the commercially available polarizing beam displacer

because the transverse separation between the two displaced beams can be tuned

by adjusting the position of mirrors in the Sagnac interferometer. Alice then per-

forms vectorial off-axis holography to measure the spatial and polarization pro-

file of the scrambled probe beams. These two beams are then combined with

a coherent, 45° polarized reference plane wave at a beamsplitter, and the resul-

tant interference pattern is recorded by a camera (Camera 1, BFS-U3-16S2M-CS,

FLIR). A 1-km-long SMF is used to provide a coherent reference light source

to interfere with the scramble probe beams. It should be noted that the SMF

providing coherent reference light can be avoided by using a commercial Shack-

Hartmann wavefront sensor [169] or vectorial complex field direct measurement

[187]. Through off-axis holography [168], the amplitude, phase, and polarization

of the scrambled probe beam can be simultaneously determined via a single-shot

measurement [187]. Alice then uses a SLM to generate the back-propagating sig-
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nal beams, which are the phase conjugate of the two displaced, scrambled probe

beams. The two back-propagating signal beams are combined coherently by the

same polarizing beam displacer. After passing through the same MMF, the signal

beam has an unscrambled profile and becomes the phase conjugate of the probe

beam originally transmitted by Bob. Vectorial off-axis holography is then per-

formed by Bob to quantitatively characterize the spatial and polarization profile

of the unscrambled signal beam. Additional details about the detection and gener-

ation of vector beam can be found in [187], and the alignment procedure for phase

conjugation can be found in [188]. Bob measures the unscrambled signal beam

by another camera (Camera 2, BFS-U3-31S4M-C, FLIR) and performs the digital

spatial mode decomposition to obtain the crosstalk matrix.

In our experiment, both Alice and Bob perform data processing for off-axis

holography in MATLAB on a desktop computer (CPU: Intel i7-9700K, GPU:

Nvidia RTX 2070 Super). The digital data processing for off-axis holography

involves several fast Fourier transforms (FFTs), which can be significantly sped

up by using a dedicated digital signal processor. The procedure of vectorial off-

axis holography is shown in Fig. 6.3. The horizontally polarized component and

the vertically polarized component interfere with a 45° polarized plane wave, and

the interference pattern is recorded by a camera. Then a Fourier transform is

performed, and the first-order component in the Fourier domain is selected and

shifted to the center. Finally an inverse Fourier transform is performed, and thus

the amplitude and phase of the vectorial speckle pattern are obtained. Ideally,

the digital data processing for Alice can even be avoided if the camera for off-
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Figure 6.3: Procedure for vectorial off-axis holography. The horizontally polarized beam and the
vertically polarized beam are displaced by a polarizing beam displacer and then interfered with
a 45° polarized beam. The interference pattern is recorded by a camera. A Fourier transform is
performed and the first-order component is selected in the Fourier domain and shifted to the center.
Then an inverse Fourier transform is performed to retrieve the polarization, amplitude, and phase
of the scrambled probe beam.

axis holography and the SLM for generating phase-conjugated speckles are ex-

actly placed at positions that are imaging planes with respect to each other [188].

When the positions of camera and SLM are perfectly aligned, we can directly im-

print the digital interference pattern recorded by the camera onto the SLM without

performing any digital signal processing. Instead of carefully aligning the posi-

tion of the camera, Alice digitally compensates the misalignments such as tip and

tilt, transverse and axial displacement, and defocus (see [188]). At Bob’s side, we

are using a second digital off-axis holography to measure the full received field,

which allows us to obtain the crosstalk matrix with reduced experimental com-
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Figure 6.4: The measured amplitude, phase, and polarization of the vectorial speckle pattern and
phase-conjugated mode for horizontally polarized (a) LG32 and (b) HG44 mode respectively.

plexity. It should be noted that the off-axis holography can be readily replaced

by a spatial mode sorter [1, 2, 189] to analyze the crosstalk matrix and enable

high-speed spatial mode detection.
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6.3 Characterization of spatial mode fidelity

6.3.1 Crosstalk matrix measurement

Figure 6.4(a,b) shows two examples of experimentally measured scrambled probe

beams received by Alice and the unscrambled signal beams received by Bob for

horizontally polarized LG32 and HG44 modes. For each unscrambled signal beam

received by Bob, we digitally project the mode to an orthonormal spatial mode

basis set to calculate the crosstalk matrix. We measure the crosstalk matrix for

105 LG modes with 2p+ |`| ≤ 13 in both horizontal and vertical polarization ba-



CHAPTER 6. 95

a

b

0 104 0 104
LG mode index

60
70
80
90

100

Fi
de

lit
y 

(%
)

0 104 0 104
60
70
80
90

100

HG mode index

Fi
de

lit
y 

(%
)

Mode group number
Odd

Outside the crosstalk matrix with orthogonal polarization 
Outside the crosstalk matrix with degenerate polarization 
Inside the crosstalk matrix with orthogonal polarization 
Inside the crosstalk matrix with degenerate polarization 
Unnormalized mode fidelity

Even

|H⟩ |V⟩

|H⟩ |V⟩
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sis sets, resulting in a 210×210 crosstalk matrix. The same measurement is also

performed for HG modes with m + n ≤ 13. The unnormalized mode fidelity for

individual spatial modes (i.e., the diagonal elements of crosstalk matrix) is shown

in Fig. 6.5(a) with an average of 85.6% for LG modes and Fig. 6.5(b) with an av-

erage of 82.6% for HG modes. Here the crosstalk matrix element is calculated as

Mk′,k = | 〈φideal
k′ |φ

exp
k 〉 |2 and the unnormalized mode fidelity is Fk = Mk,k, where

|φideal
k′ 〉 is the ideal spatial mode with mode index k′, |φexp

k 〉 is the experimentally

measured unscrambled signal beam with mode index k, 〈φideal
k′ |φideal

k′ 〉 = 1 and

〈φexp
k |φ

exp
k 〉 = 1. The normalized mode fidelity within the 210-mode subspace has

an average of 91.5% for LG modes and 89.3% for HG modes, where the normal-
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Figure 6.7: Unnormalized 210×210 crosstalk matrix on a logarithmic scale for vectorial speckle
pattern received by Alice when Bob transmits LG modes in the absence of vectorial phase conju-
gation.

ized mode fidelity is defined as F norm
k = Mk,k/

∑209
k′=0Mk′,k.

To aid readers for analyzing the crosstalk, we also present the crosstalk distri-

butions in the following four categories. Here we assume the mode of interest is

a horizontally polarized LG mode |LGj,H〉 and the received unscrambled signal

beam is |φ〉 = |ψ1,H〉+ |ψ2,V〉 as an example. The four crosstalk categories are

(1) crosstalk from coupling to modes inside the crosstalk matrix with degenerate

polarization, which can be expressed asC1 =
∑

k | 〈φ|LGk,H〉 |2 for 0 ≤ k ≤ 104

and k 6= j. (2) crosstalk from coupling to modes inside the crosstalk matrix with
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Figure 6.8: Unnormalized 210×210 crosstalk matrix on a logarithmic scale for vectorial speckle
pattern received by Alice when Bob transmits HG modes in the absence of vectorial phase conju-
gation.

orthogonal polarization, which can be expressed as C2 =
∑

k | 〈φ|LGk,V〉 |2 for

0 ≤ k ≤ 104. (3) crosstalk from coupling to modes outside the crosstalk matrix

with degenerate polarization, which can be expressed as C3 =
∑

k | 〈φ|LGk,H〉 |2

for k ≥ 105 or equivalently C3 = | 〈ψ1|ψ1〉 |2 − C1 − | 〈ψ1|LGj〉 |2. (4) crosstalk

from coupling to modes outside the crosstalk matrix with orthogonal polarization,

which can be expressed as C4 =
∑

k | 〈φ|LGk,V〉 |2 for k ≥ 105 or equivalently

C4 = | 〈ψ2|ψ2〉 |2 − C2. These results are shown in Fig. 6.6.

The 210×210 unnormalized crosstalk matrix for vectorial speckle patterns re-
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Figure 6.9: Unnormalized 210×210 crosstalk matrix on a logarithmic scale for LG modes received
by Bob when performing vectorial phase conjugation.

ceived by Alice when Bob transmits standard LG and HG modes (i.e. in the

absence of vectorial phase conjugation) are shown in Fig. 6.7 and Fig. 6.8. Due

to the strong spatial mode scrambling, the average unnormalized mode fidelity in

this case is≈1% for both LG modes and HG modes. The 210×210 unnormalized

crosstalk matrix in the presence of vectorial phase conjugation are presented in

Fig. 6.9 and Fig. 6.10. The crosstalk matrix is calculated as follows. The received

vectorial mode is denoted as |φ〉 = |ψ1,H〉 + |ψ2,V〉, where H and V represent

the horizontal and vertical polarization state, ψ1 and ψ2 represent the correspond-

ing spatial mode, and |φ〉 is normalized such that 〈φ|φ〉 = 1. Each element in
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Figure 6.10: Unnormalized 210×210 crosstalk matrix on a logarithmic scale for HG modes re-
ceived by Bob when performing vectorial phase conjugation.

the crosstalk matrix is the squared inner product between the received mode |φ〉

and a particular LG or HG mode. As an example, for a horizontally polarized

LG mode |LGj,H〉, the squared inner product can be expressed as | 〈φ|LGj,H〉 |2,

where 0 ≤ j ≤ 104 is the single mode index. For a LG mode, it is normalized

such that 〈LGj,H|LGj,H〉 = 1 and 〈LGj,V|LGj,V〉 = 1. Similar normaliza-

tion is also applied to HG modes. It should be noted that since the spatial modes

with 0 ≤ j ≤ 104 do not form a complete basis set, the sum of each row in the

crosstalk matrix is less than unity, i.e.
∑104

j=0 | 〈φ|LGj,H〉 |2 + | 〈φ|LGj,V〉 |2 < 1.

After normalizing the sum of each row of the crosstalk matrix to unity, the mode
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Figure 6.11: Normalized mode fidelity for (a) LG and (b) HG modes. The normalized mode
fidelity is calculated by dividing the corresponding diagonal element (i.e. the unnormalized mode
fidelity) of the crosstalk matrices (shown in Fig. 6.9 for LG modes and Fig. 6.10 for HG modes)
by the sum of elements in each column.

fidelity can be higher as shown in Fig. 6.11. It can be seen that the average of

normalized mode fidelity is 91.5% for LG modes and 89.3% for HG modes. This

is because the crosstalk due to coupling to higher-order modes (j ≥ 105) is dis-

carded. This is permissible in an experiment because the higher-order modes can

in principle be separated by a mode sorter in practical applications and thus does

not contribute to the crosstalk.

Although the performance is characterized using a classical light source, our

method is readily applicable to QKD by simply attenuating the light intensity to a
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single-photon level [190]. Based on the measured crosstalk matrices, the mutual

information between Alice and Bob in QKD can be calculated as [21]

IAB = log2 d+ F log2 F + (1− F ) log2

(
1− F
d− 1

)
. (6.1)

For LG modes, we have d = 210, F = 91.5% and thus IAB = 13.8 bits per

sifted photon. For HG modes, we have F = 89.3% and thus IAB = 13.4 bits per

sifted photon. Hence, we can achieve a channel capacity of 13.8 bits per sifted

photon with LG modes and 13.4 bits per sifted photon with HG modes for high-

dimensional QKD with spatial mode encoding.

6.3.2 Experimental generation fidelity of SLM

Here we show that the average mode fidelity without normalization is 85.6% for

LG modes and 82.6% for HG modes. The main reason for imperfect mode fidelity

is attributed to the imperfect spatial mode generation fidelity of the SLM. To test

this hypothesis, we experimentally characterize the fidelity of the probe beam

generated by Bob and that of the signal beam by Alice. The product of these two

fidelities is referred to as experimental generation fidelity, which is presented as

solid lines in Fig. 6.5 for individual spatial modes. In the experiment, Alice uses

a SLM to generate the signal beams, and Bob uses the same SLM to generate the

probe beams. We characterize the fidelity of the generated probe beams and hor-

izontal polarization component of signal beams using off-axis holography, with

the results shown in Fig. 6.12. We take the product of the probe beam fidelity and
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Figure 6.12: (a-d) The mode generation fidelity for HG(2,5) and LG(1,4) modes. The HG(2,5) and
LG(1,4) modes generated by SLM are shown at the right panel of (a) and (v), and the correspond-
ing ideal modes are shown at the left panel for comparison. The corresponding phase conjugates
of the scrambled probe beams measured by off-axis holography are shown at the left panel of (b)
and (d), and the generated signal beams are shown at the right panel. The calculated fidelity (F) is
listed below the generated modes.

the signal beam fidelity as the experimental generation fidelity, which is a simple

estimate of the fidelity of unscrambled signal beams. In Fig. 6.12(a-d) we show

the ideal and generated probe beam and signal beam for HG(2,5) and LG(1,4)

modes. In general, the mode fidelity for LG modes is slightly higher than that of

HG modes, and the LG modes with ` 6= 0 mode have a higher fidelity than those

with ` = 0. In addition, the signal beam generation has a slightly lower fidelity

than the well-defined LG and HG modes. The maximum experimental generation

fidelity we measured is 90.8% for LG modes and 88.4% for HG modes, and the
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Figure 6.13: The measured mode fidelity for (a) LG and (b) HG modes received by Bob when
Alice performs scalar phase conjugation (i.e. using one polarization only).

average experimental generation fidelity is 85.8% for LG modes and 83.7% for

HG modes. It can be seen that the fidelity of unscrambled signal beams is close

to the experimental generation fidelity, and thus we believe that the fidelity of un-

scrambled signal beams can be further increased by using a well-calibrated SLM.

Nonetheless, there exists a deviation between phase-conjugated mode fidelity and

experimental generation fidelity for high-order modes, and we attribute this dif-

ference to the fact that high-order modes are susceptible to mode-dependent loss

induced by fiber bending and splicing.
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6.3.3 Limitations of scalar phase conjugation

We also emphasize that the high mode fidelity is exclusively enabled by vectorial

phase conjugation, while scalar phase conjugation can only achieve an average

unnormalized mode fidelity of 41.2% for LG modes and 39.7% for HG modes as

shown in Fig. 6.13. Here we show the results for scalar phase conjugation. Bob

transmits horizontally polarized spatial modes to Alice. While Alice can measure

both the horizontal and vertical polarization components of the fiber speckle pat-

tern, she only generates the phase conjugation of the horizontal polarization and

ignores the vertical polarization. The unscrambled images via scalar phase con-

jugation are shown in Fig. 6.14. It can be seen that the mode fidelity of scalar

phase conjugation is significantly worse than that of vectorial phase conjugation.
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modes.

The average mode fidelity is 41.2% for LG modes and 39.7% for HG modes. The

results here confirm the necessity of vectorial phase conjugation.

6.3.4 Polarization crosstalk matrix

To evaluate the performance of our system for polarization-based QKD, we mea-

sure the 4×4 polarization crosstalk matrix for each mode within the corresponding

spatial mode subspace. The resultant normalized polarization crosstalk matrices

for LG02, LG12, LG22, and LG32 are shown in Fig. 6.15. The average polarization

crosstalk is 0.04% for LG modes and 0.05% for HG modes, which suggests that

both the spatial mode and polarization scrambling can be well suppressed through

vectorial phase conjugation. These high-fidelity results directly indicate that the

polarization-based QKD protocol can be performed through MMFs, and the se-

cure key rate can be significantly boosted by MDM. Furthermore, because these

high-fidelity results are obtained in a spliced fiber, we expect that the vectorial

phase conjugation would also be realized in a much longer fiber.
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Here we continue to use LGj to show how the calculation is performed. For the

received phase-conjugated mode |φ〉, we first calculate the unnormalized squared

inner product for horizontally (H), vertically (V), diagonally (D), and anti-diagonally

(A) polarized LGj mode as F u
H = | 〈φ|LGj,H〉 |2, F u

V = | 〈φ|LGj,V〉 |2, F u
D =

| 〈φ|LGj,D〉 |2, and F u
A = | 〈φ|LGj,A〉 |2, where |D〉 = (|H〉 + |V〉)/

√
2 and

|A〉 = (|H〉 − |V〉)/
√

2. Then the normalized fidelity can be calculated as FH =

F u
H/(F

u
H +F u

V), FV = F u
V/(F

u
H +F u

V), FD = F u
D/(F

u
D +F u

A), and FA = F u
A/(F

u
D +

F u
A). These four numbers form one row of the crosstalk matrix, and the rest of the

matrix can be similarly calculated. The normalized polarization crosstalk matrix

for HG modes is also calculated in this way. Since the calculation is performed for

a 4×4-dimensional state space, the crosstalk is small. It should be noted that such

calculation is permissible because in an experiment one can use a polarization-

independent spatial mode sorter and a polarizing beamsplitter to access the 4×4-

dimensional state space, and polarization crosstalk that couples to other spatial

modes can be discarded.

6.3.5 Stability test for vectorial phase conjugation

To overcome environmental instability, which is an inevitable concern for long

fibers in a real-world environment, vectorial off-axis holography needs to be per-

formed repeatedly in real time, and the phase pattern on Alice’s SLM should be

updated accordingly to compensate for instability. In the following, we evaluate

the response time of our vectorial phase conjugation system. To perform off-axis

holography, we need to retrieve a single-shot image from the camera (which takes
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Figure 6.16: Stability test for vectorial phase conjugation. The unnormalized mode fidelity is
measured as a function of time. The shaded area corresponds to mode fidelity between 80% and
90%. The solid lines represent the results when the SLM is under active control and the dashed
lines represent the results without active control.

2.6 ms) and execute fast Fourier transforms and interpolations as digital data pro-

cessing (which takes 18 ms on a desktop computer). It should be noted that the

data processing time can be significantly reduced by using a dedicated digital sig-

nal processor or even eliminated by careful experimental design and alignment

as earlier. The response time of our system is therefore only constrained by the

refresh rate of SLM, which is 4 Hz in our experiment. However, this constraint

can be readily removed by using a commercially available fast digital micromirror

device (above 10 kHz refresh rate [191]) or a high-speed SLM (sub kHz refresh

rate [32]). In addition, we emphasize that the data transfer rate using each spatial

mode is not limited by the refresh rate of SLM or the response time of the time-

reversal system [166], and the system response time only needs to be faster than

the environmental fluctuation rate in order to overcome instability. In this proof-

of-principle experiment, we implement digital vectorial phase conjugation for one
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spatial mode at a time, but we emphasize that our method can be readily used to

enable MDM [166]: by separately pre-shaping individual wavefronts of multiple

high-speed-modulated signal beams, high-fidelity spatial modes can be recovered

at the receiver, and thus the data streams can be demultiplexed with low crosstalk.

To test the operation stability of our system, we also measure the unnormalized

mode fidelity as a function of time while the SLM is actively updated every ≈ 30

seconds for each mode, which is depicted by the solid lines in Fig. 6.16; here the

dashed lines represent the mode fidelity in the absence of active control of the

SLM. The autocorrelation R(∆t) = 〈| 〈φ(t)|φ(t+ ∆t)〉 |2〉 is calculated accord-

ing to these data, where |φ(t)〉 is the phase-conjugated mode at time t, 〈·〉 is the

time average, and |φ(t)〉 is normalized such that 〈φ(t)|φ(t)〉 = 1. The time for

R(∆t) to drop to 1/e is approximately 120 s for LG(0,2) and 100 s for LG(3,2).

These results clearly show that our system is able to overcome environmental in-

stability even though the 1-km-long bare fiber is placed on an optical table that has

not been floated and is free of any thermal or mechanical isolation. We believe

that by using a fast SLM, real-time crosstalk suppression can be achieved even in

a harsh environment through a much longer fiber.

6.4 Proposed spatial-mode-multiplexed communica-
tion protocol

Figure 6.17 presents a practical QKD protocol with MDM. Each spatial mode can

be used as an independent channel, with time-bin encoding [174, 192, 193] or
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Figure 6.17: Proposed spatial-mode-multiplexed QKD protocol. A densely encoded computer-
generated hologram imprinted on a single SLM can be used to simultaneously generate and mul-
tiplex a large number of spatial modes.

continuous-variable encoding [194–196] used to guarantee communication secu-

rity within each channel. In particular, it has been previously demonstrated that

a single SLM can be used to simultaneously generate and multiplex up to 105

spatial modes by using a densely encoded computer-generated hologram [160].

To implement the N -spatial-mode-multiplexed QKD protocol, Bob first sequen-

tially transmits N spatial modes of interest to Alice through the fiber. Alice mea-

sures the corresponding vectorial speckles using a wavefront sensor (WFS), com-

putes the densely encoded hologram, and then imprints the hologram onto her

SLM. The WFS can be realized by either the off-axis holography presented in this

work or alternative methods such as the commercial Shack-Hartmann WFS. Al-

ice then prepares N attenuated laser sources with high-speed time-bin encoding

or continuous-variable encoding and illuminates the SLM with these N beams

incident at different angles. The horizontally polarized light and the vertically po-
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larized light are split by a polarizing beamsplitter (PBS) and are incident at two

separation locations on the SLM, which allows for generation of vectorial phase

conjugation. Alice’s SLM converts each of the N incident beams into the phase

conjugation of its corresponding measured vectorial speckle pattern, in addition

to multiplexing all the modes to propagate in the same direction. The horizontal

and vertical polarization components are recombined by another PBS and finally

transmitted to Bob through the MMF. As a consequence, all channels can have

a high-fidelity spatial profile at Bob’s side, and Bob can use the well-developed

LG or HG mode sorter [1, 2, 189] to demultiplex the signals. To overcome envi-

ronmental instability, Bob needs to periodically send spatial modes of interest to

Alice, who updates the phase pattern on the SLM accordingly. The polarization

degree of freedom can also be included to further increase the channel capacity. It

should be noted that the signal transfer speed is determined by the QKD encoder,

not the SLM refresh rate. We emphasize that an analogous protocol, to the best of

our knowledge, cannot be realized in a straightforward manner by any alternative

methods. Since a complete knowledge of the complex-valued transfer matrix is

not needed, our method can be applied to unstabilized, long MMFs outside the

laboratory, which is not possible by slow, conventional transfer matrix inversion.

MIMO is not applicable to QKD because it requires a large number of photons for

digital signal processing. Mode-group excitation only allows for a small number

(≈ 10) of mode groups and is thus unable to fully utilize the channel capacity of

the link. Thus, vectorial phase conjugation offers a uniquely practical approach

towards spatial-mode-multiplexed quantum communication over realistic, unsta-
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ble links.

6.5 Summary

In summary, we have demonstrated that, through the use of vectorial phase conju-

gation, we can establish a high-fidelity, 1-km-long communication link that sup-

ports 210 spatial modes of a standard MMF. Both spatial mode crosstalk and po-

larization scrambling in MMF can be well suppressed, which demonstrates the

possibility of boosting the communication rate of both classical communication

and QKD by either MDM or high-dimensional encoding. In particular, we pro-

pose a spatial-mode-multiplexed QKD protocol and show how our method can be

used to boost the channel capacity in a straightforward manner. Given the scala-

bility of the experimental implementation and high fidelity of the data, our tech-

nique presents a practical approach to a multitude of long-distance quantum and

classical applications ranging from MDM to entanglement distribution [70, 71].
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Chapter 7

Conclusion and future work

In this thesis, we have presented an interferometric method to build a radial mode

sorter in chapter 2. We next employ the polarization sensitivity of SLM to de-

velop a common-path sorter to enhance the stability, and we have successfully

constructed a radial mode sorter as well as a HG mode sorter in chapter 3. We fur-

ther propose and present how to sort the superpositions of LG modes, and conse-

quently we demonstrate an 8-D QKD protocol using all transverse degrees of free-

dom in chapter 4. However, the secure key rate in our demonstration is severely

limited by the spatial mode switching rate. Here we propose a high-dimensional,

high-speed spatial mode switch as shown in Fig. 7.1. The commercial intensity

modulators can be synchronized to produce one pulse at a time and thus realizes

switching. The SLMs can display a static hologram to generate a spatial mode

for each channel. Although this spatial mode switch has a low efficiency, this is

not a problem to QKD since strong loss is needed to attenuate a classical laser

to a single-photon level. We leave the realization of this high-speed spatial mode

switch to future study.
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Figure 7.1: Proposed high-speed spatial mode switch. Mod: intensity modulator. SLM: spatial
light modulator.

In chapter 5 we show that digital phase conjugation can effectively mitigate

the modal crosstalk induced by atmospheric turbulence. A classical MDM sys-

tem is also reported as a proof-of-principle demonstration, and the bit error rate is

reduced from 3.6× 10−3 to be less than 1.3× 10−7 through the use of phase con-

jugation. In chapter 6 we take into account the polarization degree of freedom in

phase conjugation and develop the concept of digital vectorial phase conjugation.

High mode fidelity is achieved for a large number of spatial modes propagating

through a 1-km-long MMF via vectorial phase conjugation. In Fig. 5.14 we pro-

pose a practical and scalable scheme for high-speed, spatial-mode-multiplexed

QKD through a turbulent link, and a similar scheme for a MMF link is proposed

in Fig. 6.17. We leave these proposals to future study.
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