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Abstract

Quantum information science promises dramatic progress in a variety of fields

such as cryptography, computation, and metrology. Although the proof-of-

principle attempts for implementing quantum protocols have often relied on only

a few qubits, the utilization of more sophisticated quantum systems is required

for practical applications. In this thesis, we investigate the emerging role of

high-dimensional optical states as a resource for encoding quantum information.

We begin the first chapter with a review of orbital angular momentum (OAM)

as a prime candidate for realizing multilevel quantum states and follow with a

brief introduction to the quantum measurement theory. The second and the third

chapters are dedicated to the application of OAM modes in quantum cryptogra-

phy. In the second chapter, we discuss the challenges of projective measurement

of OAM at the single-photon level, a crucial task required for quantum informa-

tion processing. We then present our development of an efficient and accurate

mode-sorting device that is capable of projectively measuring the orbital angu-

lar momentum of single photons. In the third chapter, we discuss the role of

OAM modes in increasing the information capacity of quantum cryptography.

We start this chapter by establishing the merits of encoding information on the
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quantum index of OAM modes in a free-space link. We then generalizing the

BB-84 QKD protocol to the Hilbert space spanned by a finite number of OAM

modes and outline our experimental realization.

The last two chapters are dedicated to the tomography of structured light

fields. We start the fourth chapter by applying the recently found method of

direct measurement to the characterization of OAM superpositions. We find

the quantum state in the Hilbert space spanned by 27 OAM modes by per-

forming a weak measurement of orbital angular momentum (OAM) followed by

a strong measurement of azimuthal angle. We then introduce the concept of

compressive direct measurement (CDM). In this method, we combine the direct

measurement with an efficient computational technique known as compressive

sensing in determining the wave function of an a priori unknown state. Using

this combination, we demonstrate a 300-fold speed up in the measurement of a

19200-dimensional state. We demonstrate a technique for full characterization

of the orbital-angular-momentum content of a photon in the fifth chapter. We

achieve this task by directly measuring the elements of the density matrix in the

basis of azimuthal angle, and subsequently mapping the results to the conjugate

basis of OAM via a linear transformation. We provide data for experimental

characterization of pure OAM superpositions as well as mixed combinations of

OAM modes using this technique.
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Chapter 1

Key concepts

1.1 Orbital angular momentum of the light field

Spin angular momentum of light has been a topic of theoretical research since

the beginning of 20th century [12]. In 1936 it was experimentally verified that

circularly polarized optical beams carry angular momentum [13]. The orbital

angular momentum of light is perhaps a less familiar concept. In 1992 Allen et

al. showed that a set of solutions to the paraxial Helmholtz equation known as

Laguerre-Gaussian (LG) beams possess orbital angular momentum (OAM) [14].

This property is closely linked to the vortex phase structure of the LG beams,

much similar to the quantum mechanical wavefunction of material particles with

orbital angular momentum. The concept and theory of optical OAM as well as

the applications of it has been an area of active research in the last twenty years.

In the classical theory of electromagnetism, the Poynting vector is used to

calculate the energy and the linear momentum carried by optical fields. In this

framework, the exchange of momentum between the fields and the charged par-

ticles can described using Maxwell’s stress tensor. By extending the mechanical

analogy to material particles, one might guess that electromagnetic fields carry

angular momentum as well. This is in fact true, and that the total angular

momentum of the electromagnetic field in vacuum can be defined as [15]
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J =ε0

∫
r× [E(r, t)×B(r, t)]d3r

=

∫
r× Pd3r. (1.1.1)

Here, P is the linear momentum density, and J is the total angular momentum

of the electromagnetic fields. Note that we are treating the components of the

fields as complex numbers, as it is common in the classical theory of electromag-

netism. The transition to the quantum mechanical counterparts can be formally

achieved by replacing the complex numbers with operators and performing the

symmetrization procedure, wherever necessary [16].

In analogy to the non-relativistic quantum mechanics of material particles,

it is desirable to separate the total angular momentum into its orbital and spin

parts. Starting from the expression for J above, it is straightforward to show

that [17]

J = ε0

∫
d3r

{∑
a

Ea(r×∇)Aa + E×A

}
. (1.1.2)

Where A is the transverse vector potential, defined by the following relations

∇×A = B, (1.1.3)

∇ ·A = 0. (1.1.4)

The two terms in Eq. (1.1.2) can be identified as [17]

L = ε0

∫
d3r
∑
a

Ea(r×∇)Aa, (1.1.5)

S = ε0

∫
d3rE×A. (1.1.6)

Note that all the electromagnetic fields E and B are assumed to be transverse

fields to come up with this result (An arbitrary vector field F(r) can be decom-

posed to two transverse and longitudinal components where ∇.Ftrans.(r) = 0

and ∇ × Flongit.(r) = 0. For this reason, this decomposition is only valid for
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free-space electromagnetic fields in absence of sources of radiation [18, 17, 19].

The contribution of longitudinal fields in the linear and angular momentum is

usually taken into account by modifying the Hamiltonian of the charged parti-

cles [17, 19]. The difficulties associated with decomposing angular momentum

to orbital and spin parts can be understood considering the fact that the spin

of a particle represents its total angular momentum in the frame where it is at

rest, and such a frame cannot be defined for particles with zero rest mass such

as photons [17].

b)a)

Figure 1.1: a) The polarization vector of a circularly polarized beam carrying SAM. b)The
wavefront of a beam carrying OAM.

Nevertheless, it can be shown that within the paraxial approximation, the

spin angular momentum (SAM) can be associated with polarization, and the

orbital angular momentum (OAM) is related to the transverse spatial structure

of the optical field (See Fig. (1.1)) [14]. We consider a polarized, circularly

symmetric, paraxial beam represented by a vector potential of the form

A = (ax̂ + bŷ)u(ρ, z)e−i`φeikz. (1.1.7)

Here, (ax̂+bŷ) denotes the polarization state, u(ρ, z) describes the spatial profile

of the beam, and ρ =
√
x2 + y2. In this case, the cycle-averaged momentum
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density can be derived to be

〈P〉 =
ε0
2

(E∗ ×B + E×B∗)

=ωε0

([
iu
∂

∂ρ
u∗ + c.c.

]
ρ̂+

[
|u|2

ρ
`− σ

2

∂|u|2

∂ρ

]
φ̂+ k|u|2ẑ

)
. (1.1.8)

Here, σ = i(ab∗−ba∗) is a quantity that sets the helicity of polarization (σ = ±1

for circularly polarized light and σ = 0 for linearly polarized light). In deriving

the expression above we have dropped the terms that are proportional to ∂u
∂z

, in

accordance with the paraxial approximation. Using the expression for 〈P〉, the

cycle-averaged angular momentum density along the optical axis, 〈Jz〉 becomes

〈Jz〉 = 〈Lz〉+ 〈Sz〉 = ε0ω|u|2`−
ε0ω

2
ρ
∂|u|2

∂ρ
σ. (1.1.9)

The total value of angular momentum flux, 〈Jz〉, going through any plane nor-

mal to the optical axis can be calculated by integrating the angular momentum

flux density 〈Jz〉, and then multiplying it by c. To find the angular momentum

for a single photon, we initially evaluate the ratio of angular momentum flux

divided by the energy flux, 〈Φz〉, of a classical beam of light

〈Jz〉
〈Φz〉

=

∫ ∫
〈Jz〉 ρdρdφ∫ ∫
c 〈Pz〉 ρdρdφ

=
cε0ω

∫ ∫ (
|u|2`− ρ

2
∂|u|2
∂ρ
σ
)
ρdρdφ

cε0ω2
∫ ∫
|u|2ρdρdφ

=
`+ σ

ω
. (1.1.10)

The extension to the quantum mechanical case can be simply done consider-

ing the energy of a single photon prepared in the mode described by Eq. (1.1.7)

is equal to ~ω. Consequently the total angular momentum for a single photon

in this mode is found as

Jz = Lz + Sz = ~`+ ~σ. (1.1.11)

Thus, we have shown that any cylindrically symmetric beam with a helical phase
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structure of e−i`φ carries `~ units of OAM. The set of LG modes are a famous

example of such modes with that are often mentioned in optics literature[14]. In

addition to the LG modes, the set of vortex modes defined by top-hat intensity

structure and e−i`φ phase profile are often studied due to their simplicity of

experimental generation with a q-plate [20] or a phase plate [21].
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1.2 Quantum measurements

1.2.1 Projective measurements

Measurement lies at the heart of quantum mechanics. The significance of mea-

surement, as a theoretical concept, is reflected in a postulate of quantum me-

chanics, which is entirely devoted to defining the act of measurement. Besides

the fundamental significance, a better understanding of quantum measurements

has greatly contributed to progress in experimental physics. The best example

of such progress is, perhaps, manifested in the evolution of the field of weak

measurements since its introduction in 1988 by Aharonov, Albert, and Vaidman

(AAV) [22]. In this section we provide a brief review of the mathematical formal-

ism used to describe conventional measurements often encountered in quantum

mechanics (i.e. projective measurements). Subsequently, we will review a gener-

alization of this framework, which we will use for describing weak measurements.

A conventional quantum measurement can be described using a projection

operator. The von Neumann interaction is a mathematical model for describing

such measurements. In this model, the act of measurement is described as

a coupling between a measured system and another variable that represents

the measurement apparatus, often called as a pointer. The Hamiltonian for

the interaction of an observable Â of the quantum system coupled with the

momentum P̂ of the pointer can be written as

Ĥ = gÂ⊗ P̂ , (1.2.1)

where g is a coupling constant. For an interaction time of length T , the resulting

time evolution operator is

Û(T ) = exp

(
−igT Â⊗ P̂

~

)
. (1.2.2)

We choose to work in the basis spanned by the eigenstates of Â in order to

evaluate the effect of Û on the joint system-pointer quantum state. We note
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that Â is diagonal in this basis.

Â =
∑
a

|a〉 a 〈a| . (1.2.3)

We assume an unentangled initial system-pointer quantum state |ψ(0)〉 = |I〉 |φ〉.
Here, the initial state of the quantum system, |I〉, can be written as a superpo-

sition of Â eigenstates

|I〉 =
∑
a

αa |a〉 . (1.2.4)

The effect of the time evolution operator on the joint system-pointer quantum

system is thus found as

Û(T ) |ψ(0)〉 = Û(T )

(∑
a

αa |a〉 ⊗ |φ(x)〉

)
. (1.2.5)

Note that P̂ is the generator of translations for of the pointer, and hence

e−ix0P̂φ(x) = e−ix0
d
dxφ(x) = φ(x− x0). (1.2.6)

Subsequently, the state of the pointer and the system after the evolution be-

comes.

Û(T ) |ψ(0)〉 =
∑
a

αa |a〉 ⊗ |φ(x− gTa

~
)〉 . (1.2.7)

It is evident from Eq. (1.2.7) that the position of the pointer has been (co-

herently) shifted by a value that is proportional to the value of observable Â.

We assume a Gaussian pointer state at t = 0

〈x|φ〉 = φ(x) =

(
1

2πσ2

)1/4

exp

(
− x2

4σ2

)
. (1.2.8)

For such a pointer state, the initial position of the pointer is confined to within

a range of positions ∆x ∝ σ, as set by the uncertainty principle. After the

interaction time T , all values of a can be resolved provided that the strength of
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the measurement is sufficiently large, gTa >> ~σ. If this condition is satisfied,

the initial state of the quantum system |I〉 has been projected to |a〉 with a

probability of |〈a|I〉|2 = |αa|2.
A well known example of a projective measurement is the Stern-Gerlach

device. Such a device measures the z component of the spin of a spin-1/2

particle via interacting it with a magnetic field directed in the z direction. In

this case the measurement operator Â = σz and he interaction hamiltonian can

be written as

Ĥ = −gµzσz. (1.2.9)

Here, µ~σ is the magnetic moment of the particle, and g is the coupling constant

which is set by the strength of the magnetic field in the apparatus. Note that in

this case the observable Â = σz is coupled to the position of the pointer rather

to its momentum. Since z is the generator of translations for Pz, the pointer

will receive a “kick” in a direction set by its spin. The resulting change of the

momentum of the operator can be measured by allowing the beam of particle(s)

to freely propagate to the far field, where the centroid of the beam correlates

with the position of the particle(s) inside the Stern-Gerlach apparatus.

1.2.2 Weak measurements

We now review the case of weak measurement, closely following the original

treatment by AAV [22]. In a weak measurement, the strength of coupling is not

sufficient for resolving the different eigenvalues of Â due to the uncertainty in

the position of the pointer. In this situation, the joint system-pointer state after

the interaction can be approximated by using a Taylor series

|ψ(T )〉 = exp

(
−igT Â⊗ P̂

~

)
|I〉 |φ〉

= |I〉 |φ〉 − igT

~
Â |I〉 P̂ |φ〉+ . . . . (1.2.10)

We now consider a post-selection on a final state of the quantum system,

|F 〉, in order to generalize our measurement scheme further. Conceptually, this
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is equivalent to limiting our analysis to a sub-ensemble of particles that start

with an initial state |I〉, go through the interaction with the pointer for a period

of time T , and then end up in the final state |F 〉. After projecting the evolved

state we find

〈F | exp

(
−igT Â⊗ P̂

~

)
|I〉 |φ〉

= 〈F |I〉 |φ〉 − igT

~
〈F | Â |I〉 P̂ |φ〉+ . . . . (1.2.11)

Note that at this stage we have post-selected on the state of the quantum system

and we are left with an expression for the state of the pointer. This expression

can be simplified by dividing it to 〈F |I〉, to find

|φfi〉 = |φ〉 − igT

~
〈F | Â |I〉
〈F |I〉

P̂ |φ〉+ . . . . (1.2.12)

Recall that in the absence of interaction the post-selection procedure succeeds

with a probability of Probsuccess = |〈F |I〉|2. This statement remains approxi-

mately correct for weak measurements. It is evident from Eq (1.2.12) that the

state of the pointer is modified via the quantity Aw = 〈F |Â|I〉
〈F |I〉 . This quantity is

known as the weak value of the observable Â. Below, we show that the weak

value is observable through the characterization of the position and the momen-

tum of the pointer. Our analysis closely follows that of Lundeen and Resch

[23].

To proceed, we assume the pointer is initially prepared in a Gaussian state

described above in Eq (1.2.8). We can now calculate the expectation value of
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the position of the pointer to the first order in gT as

〈X̂〉fi = 〈φfi| X̂ |φfi〉

=− igT

~
Re

(
〈F | Â |I〉
〈F |I〉

)
〈φfi|

(
X̂P̂ − P̂ X̂

)
|φfi〉

+
gT

~
Im

(
〈F | Â |I〉
〈F |I〉

)
〈φfi|

(
X̂P̂ + P̂ X̂

)
|φfi〉

=gTRe

(
〈F | Â |I〉
〈F |I〉

)
. (1.2.13)

Recall that the symbol 〈〉fi signifies an expectation value that is calculated for

a state initially prepared as |I〉 and post-selected on |F 〉. Similarly, we find the

expectation value of the pointers’ momentum as

〈P̂ 〉fi = 〈φfi| X̂ |φfi〉

=− igT

~
Re

(
〈F | Â |I〉
〈F |I〉

)
〈φfi|

(
P̂ 2 − P̂ 2

)
|φfi〉

+
gT

~
Im

(
〈F | Â |I〉
〈F |I〉

)
〈φfi|

(
P̂ 2 + P̂ 2

)
|φfi〉

=
~gT
2σ2

Im

(
〈F | Â |I〉
〈F |I〉

)
. (1.2.14)

Thus, we have shown that the shift in the expectation values of X̂ and P̂ of

the pointer are proportional to the real and imaginary parts of the weak value,

which is defined as

Aw =
〈F | Â |I〉
〈F |I〉

. (1.2.15)

Unlike the result of a projective measurement, a weak value can be beyond

the range of eigenvalues of the measured operator [24]. This property, known

as weak-value amplification (WVA), has been used before to sensitively measure

a variety of effects, such as transverse beam deflections [25, 26, 27, 28], phase

differences [29], time delays [30], and nonlinear optical effects [31]. In addition
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to weak-value amplification, the weak values are recently used for directly mea-

suring the quantum wave function [10, 9, 8]. We will further discuss the role of

complex weak values in measuring the quantum wave function in a later chapter

in this thesis.
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Chapter 2

Measurement of orbital angular

momentum

2.1 Introduction

In the previous chapter, we introduced the orbital angular momentum modes of a

paraxial light beams. Recently, the OAM modes have been identified as a useful

tool in a variety of applications in classical and quantum optics [32, 33, 34, 35].

OAM modes with different ` values form a large Hilbert space that can be used for

encoding information[36]. OAM encoding has been used to increase the channel

capacity of a free-space optical link [37]. In addition, the use of a multi-level

encoding basis such as the OAM basis increases the tolerance of quantum key

distribution (QKD) protocols to eavesdropping [11, 38]. In the next chapter, we

will outline our implementation of a multilevel QKD system, which is based on

OAM encoding. Clearly, applications of this sort require a method of measuring

OAM of single photons [5].

Although the two eigenstates of polarization (i.e. spin angular momentum

eigenstates) can be separated easily by using a polarizing beam splitter, separa-

tion of OAM eigenstates has proven to be much more challenging. The OAM

content of an unknown photonic state can be found by performing a series of

projective measurements. A variety of experimental methods can achieve this
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goal by using phase plates [32], spatial light modulators (SLM) [39], and q-plates

[20]. In a projective measurement, the experimenter passes an unknown pho-

ton through a spatial filter designed for detection of a specific value of OAM.

This method is analogous to using a polarizer for detecting a certain state of

polarization.

Although projective measurements can be used to distinguish between differ-

ent OAM modes with high accuracy, such measurements are always limited by

a success rate of 1/N, where N is the total number of the OAM modes involved

in the experiment. In the previous chapter we established that the information

stored in an N -dimensional state scales as logN . Considering this, the use of

projective measurements results a channel capacity that scale as log (N)/N , a

quantity that drops for large values of N . To avoid the low success rate, it is

desirable to perform the projective measurements on all the N OAM modes si-

multaneously. This method of performing projections is known as mode sorting.

Taking the analogy to measurement of polarization, an OAM mode sorter is

analogous to a polarizing beam splitter.

Leach et al. have presented a technique for separating OAM modes at the

single photon levels based on using a Mach-Zehdner interferometer with a Dove

prism in each arm [40]. This setup allows separation of single photons based

on their parity. Although this method work in principle with a 100% efficiency,

separating N modes needs N − 1 cascaded interferometers. The challenge in

designing and aligning such a complicated system considerably limits its appli-

cations. In this section we discuss the optical transformation method for sorting

OAM modes, and outline its potential for application in a QKD system.
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2.2 Log-polar coordinate transformation

Berkhout et al. have recently developed a method for sorting OAM modes that

employs a Cartesian to log-polar transformation [3]. Under this transformation,

the azimuthal phase profile of an OAM mode is mapped to a planar wavefront.

As a result, the OAM modes with different quantum numbers ` are converted

to a set of truncated plane waves with wavefront tilts which are proportional to

`. These plane waves are then separated by a single lens.

To realize such a transformation, the input beam’s amplitude, a(x, y), is

multiplied by a phase-only transmittance function φ1(x, y). The amplitude of

the field in the conjugate Fourier plane can be written in the following form [41]

ã(u, v) =

∫∫
a(x, y) exp [iφ1(x, y)] exp [−ik(xu+ yv)/f ] dxdy

=

∫∫
a(x, y) exp [ikh(x, y)] dxdy. (2.2.1)

Here, f is the focal length of the lens which performs Fourier transformation, and

the quantity h(x, y) is defined via the above relation. For large k values, this

integral can be evaluated by using the stationary phase approximation. The

results are the same as the solutions of the familiar eikonal equation used in

geometrical optics [42]. Namely,

ã(u, v) = 2π
a(x, y)

k
√
hxxhyy − h2xy

exp i[kh(x, y) + π/2] (2.2.2)

for

u =
f

k

∂φ1(x, y)

∂x
, v =

f

k

∂φ1(x, y)

∂y
. (2.2.3)

Here hxx = ∂2h/∂x2, etc. For a slowly varying phase-profile, we can ignore the

variations of the denominator in Eq. (2.2.2). In this case the input filed distri-

bution will map to the output through the geometrical transformation described

in Eq. (2.2.3). If the geometrical map is conformal, the Cauchy-Riemann con-

ditions can be used along with Eq. (2.2.3) to calculate the phase transmitted

function φ1(x, y). As it can be seen in Eq. (2.2.2), the mapping is accompanied
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by an undesired varying phase term. This phase distortion arises from variations

in the optical path length and can be removed by placing a second phase plate

φ2(x, y) at the Fourier plane (u, v).

In the Ref. [3] the authors have demonstrated a coordinate mappings of v =

a arctan(y/x) and u = −a ln(
√
x2 + y2/b). It is easy to check that this map is

conformal. The phase elements are calculated to be [43, 3]

φ1(x, y) =
2πa

λf

[
y arctan(

y

x
)− x ln(

√
x2 + y2

b
) + x

]
, (2.2.4)

φ2(u, v) = −2πa

λf
exp(−u

a
) cos(

v

a
). (2.2.5)

In the calculations above we have assumed the (x, y) and (u, v) planes are

related via a Fourier transformation. Experimentally, a Fourier transformation

can be achieved by placing a a lens in between the two planes [44]. Alternatively,

two quadratic terms can be added to the phase elements above to eliminate the

need for a lens [4]. The resulting phase transmission functions can be realized

using SLMs or by creating custom refractive elements [3, 4]. As mentioned

earlier, an additional lens is needed in the (u, v) plane to separate the transformed

modes. An image of the phase elements placed in a cage system is shown in Fig.

(2.1).

The log-polar mapping is based on unitary transformations and hence it can

achieve a theoretical power efficiency of unity. In Ref. ([4]) the authors have

reported an experimental the power efficiency of 80%. However, the accuracy of

measurement is limited by the diffraction-limited size of the transformed modes.

In the analysis above we showed that it is possible is to convert OAM modes to

plane waves, with the assumption that the plane waves can be perfectly separated

using a lens. In reality, however, the OAM modes are converted to a plane wave

with finite widths, and thus they are focused onto diffraction-limited, partially

overlapping spots. The overlap between such spots leads to error in identifying

the neighboring OAM modes. In the next section, we quantify the amount of

error and introduce an enhanced mode-sorting technique that can overcome this
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Figure 2.1: The image of the OAM mode sorter device from Ref. [4]. (a) The optical transfor-
mation converts the OAM modes to plane waves as they go through the first refractive phase
element. The second refractive elements corrects the phase distortion. (b) An SLM is used to
realize an `-forked hologram. A 4f system is used along with a spatial filter to generate OAM
modes. The sorter elements reshape the mode and the lens focuses the separated OAM modes
onto a CCD camera.
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Figure 2.2: Simulated results demonstrating the transformation of the modes undergoing the
log-polar coordinate transformation.
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2.3 Enhanced sorting via refractive beam copy-

ing

In the previous section, we described how the optical transformation method is

inherently limited by diffraction. One could guess that, in order to overcome this

limitation, it might be possible to use a mapping which converts OAM modes to

plane waves with a larger width. It should be emphasized that although the with

of the plane waves can be increased by increasing parameter a in Eq. (2.2.4),

the tilt angle decreases at the same time proportionally, and as a result the

overlap between the neighboring modes remains constant. After going through

the sorter elements described by Eq. (2.2.4), the field profile of an unwrapped

OAM mode can be written as

U`(x) = ei`x/arect
( x

2πa

)
. (2.3.1)

Here, rect(x) = 1 for | x |≤ 1/2 and zero otherwise. Consequently, the field

distribution at the focal plane of the lens can expressed as

Ũ`(x
′) = (2πa)sinc

(
x−∆`

∆

)
, (2.3.2)

where sinc(x) ≡ sin(πx)/(πx), and ∆ = fλ/(2πa). It can be readily seen from

the Eq. (2.3.2) that the overlap between the modes is independent of the param-

eter a (See Fig. (2.3)). For a single-photon detector, the probability of detection

for each mode is proportional to the portion of the intensity that falls into the cor-

responding spatial bin for an OAM mode. To treat all the OAM modes equally,

the spatial bins have to be confined by the borders between the neighboring

modes. We define the separation efficiency as the probability of detecting an

OAM mode correctly. Consequently, the separation efficiency for the log-polar

mapping can be calculated as
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ηS =

∫ 1/2

−1/2

∣∣∣ sin(πx)πx

∣∣∣2dx∫∞
−∞

∣∣∣ sin(πx)πx

∣∣∣2dx = 0.774 = 77.4%. (2.3.3)

In order to achieve better separation, each OAM beam can be mapped to a

repeating structure consisting of multiple periods of the tilted wavefronts. This

allows increasing the width of the unwrapped beam while keeping the angle of the

tilt constant. As a result of the fixed tilt angle, such modes will be focused to a

series of spots that have the same spacing as before but are much narrower [2, 1].

One way to achieve this is to break the unwrapped beam to N coherent copies.

Ideally, such a field distribution can be expressed as U ′`(x) = ei`x/arect( x
2πaN

),

and when focused by the lens yields

Ũ ′`(x
′) =

2πa√
N

sinc

(
x−∆`

∆/N

)
. (2.3.4)

It can be checked from this result that the amount of overlap can be arbitrarily

reduced by increasing N (See Fig. (2.3)). We can use an analysis similar to above

to calculate the separation efficiency for the case where the log-polar mapping

is enhanced with beam copying. For the case of seven copies, the separation

efficiency is equal to

ηS =

∫ 1/2

−1/2

∣∣∣ sin(7πx)7πx

∣∣∣2dx∫∞
−∞

∣∣∣ sin(7πx)7πx

∣∣∣2dx = 0.974 = 97.4%. (2.3.5)

In addition to sorting the OAM modes, our technique can be used to separate

a set of modes known as the angular (ANG) modes. These modes are defined as

a superposition of OAM modes

θj(r, ϕ) =
1√

2L+ 1

L∑
`=−L

u`(r, ϕ)e−i2πj`/(2L+1). (2.3.6)

We will discuss the role of ANG modes in an OAM-based QKD protocol in the

next chapter. An efficient method of sorting both OAM and ANG modes is
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required for realizing such a QKD system. We consider the transformation of

the ANG modes undergoing a log-polar coordinate mapping. The coordinate

transformation acting on mode θj yields

Θj(x) =
1√

2L+ 1
rect

( x

2πa

)
δL

(
x−∆θj

a

)
(2.3.7)

where ∆θ = 2πa/(2L + 1) and δL(u) =
∑L

`=−L e
i`u is the Dirichlet kernel. The

intensity pattern has a peak at x = ∆θj and its first zero occurs at x = ∆θ(j ±
1). Thus, as with the OAM modes, ANG modes can be sorted using position

information. However, the spots corresponding to neighboring modes overlap

spatially, leading to crosstalk in detection. It is straightforward to show that a

detection scheme based on the intensity confinement of ANG mode has the rate

of error of 23%.

Analogous to the trick we used with the OAM modes, we can modify the

spatial bandwidth of these modes in such a way that the performance of the

sorting improves. That is, using a lens of focal length f , we focus the transformed

angular mode, yielding the field Θ̃′j (2πx′/λf). If we now coherently split this

field into an array of N orders spaced by (2L + 1)λf/(2πa) and refocus this

field using another lens of focal length f , the resulting field will be identical to

the field in Eq. (2.3.7) but instead the Dirichlet function will contain N(2L+ 1)

terms. When N = 2n+ 1 is odd, the field is written as

Θ′j(x) =
1√

N(2L+ 1)
rect

( x

2πa

)
δnL

(
x−∆θj

a

)
, (2.3.8)

which has a narrower width than the field in Eq. (2.3.7) by a factor of N .

Consequently, low crosstalk can be achieved in the sorting of ANG modes by

choosing a sufficiently large number of copies, N .

We have used a periodic phase-only hologram known as a fan-out element

to make multiple coherent copies of the unwrapped OAM modes. The phase
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structure of such a device can be described as [45]

Ψ2N+1(x) = tan−1


N∑

m=−N
γm sin[(2πs/λ)mx+ αm]

N∑
m=−N

γm cos[(2πs/λ)mx+ αm]

 . (2.3.9)

where 2N + 1 is the number of copies of the beam, s is the angular separation

between them, and x is the transverse dimension along which the copies are

made (See Fig. (2.4) panels (a) and (b)). Here, γm and αm are relative phase

and intensity parameters associated with different diffraction orders (See Table

(2.1)). These parameters can be optimized using numerical or analytical methods

to uniformly distribute more than 99 percent of the incident light between the

copies [45, 46].

Diffraction order m -3 -2 -1 0 1 2 3

γ7(m) 1.24 1.45 1.28 1 1.28 1.45 1.24

α7(m) (rad) 7.03 1.89 -0.99 0 -0.99 1.89 7.03

Diffraction order m -4 -3 -2 -1 0 1 2 3 4

γ9(m) 1.03 0.943 0.963 0.971 1 0.971 0.963 0.943 1.03

α9(m) (rad) 1.41 3.03 5.57 0.72 0 0.72 5.57 3.03 1.41

Table 2.1: Parameters for fan-out elements. (top) Grating for creating seven copies.
(bottom) Grating for creating nine copies.

Similar to the case of geometrical mapping discussed above, a second phase

plate is needed to compensate the introduced phase distortions in the Fourier

plane of the fan-out element. The fan-out element can be combined with the

first element of the log-polar sorter to directly convert an OAM beam to a plane

wave which is N times larger. The combination can be though of as a 1-to-N

extension of the log-polar map. Similarly, the secondary phase elements can be

combined to form a single phase element at the Fourier plane of the input beam.

For practical reasons however, it is easier to cascade the fan-out hologram rather

than adding it directly to the geometrical map. This is partially due to the fact
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that the repeating structure of the hologram asks for a set of different techniques

to implement as compared to the slowly varying shape of the reformatter.

Figure (2.5) shows the schematic diagram of our experimental realization

of the enhanced sorter [1]. In our experiment, we generate OAM modes using

a spatial light modulator (SLM) and a 4f system of lenses [47]. Figure (2.6)

demonstrates the intensity profiles of some of the modes along with the hologram

used for generating each mode. The OAM beam then propagates through the

refractive elements which perform the log-polar coordinate transformation [4].

A fan-out element realized on SLM1 generates multiple copies of this truncated

plane wave mode. For clarity Fig. 2.5 shows a fan-out element only creating 3

copies. However, we have used a fan-out design which creates 7 copies of the

beam [45]. SLM2 is used to correct the relative phase between these copies at

the Fourier plane of the fan-out element. The holograms for the fan-out element

and the corresponding phase corrector are shown in Fig. 2.4 (a). Finally, a lens is

used to focus the extended plane-wave to a spot, where a charge-coupled-device

(CCD) camera measures its intensity profile.

We have measured OAM modes with quantum numbers of ` =-12 to ` =12

using our method. We divide the area on the CCD into 25 non-overlapping

adjacent spatial bins. Each of the bins corresponds to the central position of

the spot resulting from the transformation of an OAM mode. Figure (2.7) shows

the experimental intensity profile for each transformed OAM mode captured by

the CCD camera. From the data, we have calculated the average probability

for correctly detecting an OAM mode to be 92.1 ± 0.7 percent. This is slightly

lower than the theoretical maximum of 97 percent which was calculated above.

We attribute the difference to the non-ideal behavior of a phase-only fan-out

element, undesired effects from pixelation of the SLMs, and small misalignments

in the system. However, this value is substantially higher than the maximum

separation efficiency of 77 percent achieved by just the log-polar mapping method

[?].

A variation of the sorting method described above can be used to sort ANG

modes. Since the unwrapped OAM and ANG modes are related via a Fourier

transform in the horizontal direction, we can sort ANG modes by removing the
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Fourier-transforming lens L1 after the second refractive element R2. Instead the

unwrapped mode is imaged directly into the fan-out element. We use a fan-

out element creating 9 copies (See Table (2.1)). The holograms for the fan-out

element and the corresponding phase corrector are shown in Fig. (2.4), panel

(b). The ANG modes are transformed to a series of separated spots at the

focal plane of the lens L2. Figure (2.8) shows the experimental intensity profile

for each transformed ANG mode captured by the CCD camera. The average

probability for correct detection of an ANG mode in this set is measured to be

92.7± 0.6 percent.
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l = -3 -2 -1 0 1 2 3 l = -3 -2 -1 0 1 2 3

(d) (e)

(a) (b) (c)

Figure 2.3: Effect of beam copying on mode overlap. (a) Two tilted plane waves resulting
from the transformation of two neighboring OAM modes are focused to overlapping spots by
a lens. (b) Magnified plane waves can be focused to narrower spots that are spaced closer to
each other albeit with no change in overlap. (c) Multiple coherent copies of the transformed
plane waves are placed next to each other resulting in focused spots with reduced overlap. (d)
Experimental data for OAM modes focused after the log-polar mapping. The data for seven
modes ` = −3 : 3 are super-imposed on top of each other. The ` = −2 mode is displayed in
false color to mark the overlap with the neighboring modes. (e) Experimental data for the
modes from part d when enhanced by making seven copies in the Fourier domain. Results are
from Ref. [1].
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Figure 2.4: Phase profiles for diffractive beam copying. (a) The phase grating for
creating seven copies (shown on the left) along with the corresponding phase profile of the
phase-correcting element (shown on the right). (b) The fan-out and phase corrector phase
profiles for creating nine copies.
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Figure 2.5: The schematic of the mode sorting set-up from Ref. [1]. The optical
transformation converts the OAM modes to plane waves as they go through the first and
second refractive phase elements. An SLM is used to create multiple copies of the unwrapped
beam. A lens focuses the resulting wide beam into a spot, after the phase distortions are
removed by the second SLM. (To simplify the demonstration, a fan-out element creating only
three copies has been displayed. For further simplification, we have also eliminated the Fourier
transform lens between the fan-out and the phase corrector element.)

Figure 2.6: Generation of OAM and ANG modes. Examples of holograms (top line)
for generating OAM and ANG modes along with the intensity profile (bottom line) of the
resulting spatial modes.
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Figure 2.8: Intensity profile of the transformed ANG modes. The total incident power
in each ANG mode as a function of the horizontal coordinate on the CCD camera. The center
of each mode is labelled with the corresponding ANG mode index. Sum of the total power in
each mode is normalized to unity.
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2.4 Characterization of the mode sorter for ap-

plication in QKD

A common measure to quantify the information capacity of a communication

link is the mutual information between the sent and received symbols. This

quantity is defined as

I(Y,X) =
∑
i,j

P (yj, xi) log2

[
P (yj, xi)

P (xi)P (yj)

]
. (2.4.1)

For the specific case of a QKD system, xi is the event of sending a photon with

the OAM value of `i and yj is the event of detecting a photon with the OAM

value of `j. We assume a uniform probability for sending N modes, that is, we

set Px equals 1/N for all x. The joint probability of detection P (yj, xi) can be

calculated from the conditional probability P (yj|xi) by using the Bayes’ rule

P (yj, xi) = P (yj|xi)P (xi) =
1

N
P (yj|xi). (2.4.2)

We use mutual information to characterize the performance of the sorter in

a QKD protocol. In our detection scheme we spatially bin the detector plane

in order to distinguish each mode. In this case, the conditional probability

P (yj|xi) is proportional to incident power from the input mode i on the bin

dedicated to detection of the mode j (For patterns of the detected modes, see

Fig. (2.7) and Fig. (2.8)). The proportionality constant can be simply found by

imposing the probability normalization condition
∑

j P (yj|xi) = P (xi) = 1
N

. We

have estimated the conditional probability matrix for detection of 25 OAM/ANG

modes by sending a known OAM/ANG mode through the system and measuring

the detected power in all 25 bins (See Fig. (2.9)).

We denote the conditional probabilities measured from this method as P (yj|xi) =

Sji. Using the values of Sji matrix, the mutual information between the trans-
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Figure 2.9: The conditional probability of detection. The horizontal axes indicate the
indices for the sent and received (a) OAM modes and (b) ANG modes.

mitted and the detected modes can be calculated as

I(bits per detected photon) =
1

N

N∑
i,j=1

Sji log2

[
NSji∑
i Sji

]
. (2.4.3)

We have used the conditional probability matrix Sji to calculate the mutual

information for OAM and ANG bases. For the OAM modes, the mutual infor-

mation is calculated to be 4.18 bits per detected photon, as compared with the

theoretical upper limit of 4.64 bits per detected photon for a set of 25 modes.

Similarly, the mutual information for the set of ANG modes equals 4.16 bits

per detected photon, demonstrating the capability of sorting ANG modes with

approximately the same separation efficiency as that of the OAM modes.

We have plotted the mutual information for OAM basis sets with with dif-

ferent dimensions on Fig. (2.10). For comparison, we have also plotted the theo-

retical upper bound for the mutual information of a system employing N OAM

modes, which equals log2(N). We provide the values of mutual information cal-

culated from theory for a perfect log-polar coordinate mapping as well as those

from perfect log-polar mapping combined by beam copying on the same plot.

Note that the normalization condition described above excludes the loss in

the channel. As a result, the mutual information calculated above only quantifies
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Figure 2.10: Mutual information as a function of the number of the modes. Mutual
information as calculated for a) ideally separated modes, b) data from this experiment, c)
perfect log-polar mapping, and d) perfect log-polar mapping combined with beam copying.
All values are in bits per detected photons

the degree of cross-talk and for this reason we have expressed it in units of bits

per detected photon. Since our method relies on phase-only optical elements,

in principle it can achieve a power transmission of unity. Thereby, the mutual

information expressed in units of bits per detected photon correspond to an ideal

realization of the mode sorter device with zero loss.

To achieve a more realistic characterization of the performance of the sorter,

we should take into account the loss as well as the cross-talk in the calculation

of the mutual information. Due to the presence of loss in a realistic channel,

sometimes the transmitted photons lead to no detection event in the receiver’s

side. In this situation, the failure to detect any mode should be treated as an

alternative possible event for the receiver [48]. However, it is easy to check that

if the value of the loss is equal for all the modes, the no-detection event contains

no information about the transmitted mode and hence it can be discarded from

the calculation of the mutual information. In this case, the only effect of loss is

in reducing the probability of successfully detecting each mode.

If the transmitted photon is lost in the communication channel by a prob-
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ability of PL, a successful transmission will have a probability of PT , where

PT = 1 − PL. In this case, the joint probability of detection P (yj, xi) for each

mode is calculated as

P (yj, xi) = P (yj|xi)P (xi) =
1

N
PTSji, (2.4.4)

where Sji are measured as before. Substituting the joint probability values in

Eq. (S8) we have

I(bits per launched photon) =
1

N

N∑
i,j=1

PTSji log2

[
NPTSji∑
i PTSji

]
. (S12)

This can be further simplified as

I(bits per launched photon) = PT × I(bits per detected photon). (S13)

This relation has a simple interpretation. It states that the mutual information

between the transmitted and the detected modes is scaled down by the the overall

power transmission efficiency (i.e., the optical throughput) of the communication

link.

We have measured the overall power efficiency of our sorter system to be

about 15 percent. Using this number, our system transfers 4.18 bits per de-

tected photon and 4.18× 0.15 = 0.63 bits per launched photon for OAM modes.

Similarly, the ANG modes are transferred and separated with a mutual informa-

tion of 4.16 bits per detected photon and 4.16 × 0.15 = 0.62 bits per launched

photon. We emphasize once more that the loss in our system is a consequence

of the specific experimental realization we have utilized, and is not inherent to

our sorting method. Straightforward technological improvements could lead to

a significant increase in the number of bits per launched photon. Manufactur-

ing of the fan-out and its phase corrector in the form of refractive elements can

achieve power transmission efficiencies close to unity. In fact, fan-out elements

with efficiencies of more than 95% are commercially available. Alternatively,
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the required elements can be realized using new generation of SLMs which can

achieve diffraction efficiencies of more than 90%.
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2.5 Summary

In this chapter, we briefly reviewed different methods of sorting OAM modes

and compared their performances. We then provided an in-depth study of the

coordinate mapping technique as the primary method for separation of OAM

modes at the single-photon level. We quantitatively analyzed the limitations of

the coordinate mapping method, and subsequently proposed a modified sorting

technique that uses coherent beam copying for reducing the overlap among the

transformed modes. We presented experimental data that demonstrates a mode

separation efficiency of 92.4% for our enhanced technique. This value is evidently

superior to the 77% separation efficiency of the coordinate mapping method.

Additionally, we reported on a variant of our technique that can separate the

angular position (ANG) modes. We quantified the performance of the enhanced

mode sorter for a set of 25 OAM and ANG modes. From experimental data, we

calculated a channel capacity of 4.16 (bits per photon) for the OAM and 4.18

(bits per photon) for the ANG modes. These results establish the possibility

of performing accurate projections on the OAM and ANG modes, which is a

crucial stage of an OAM-based QKD protocol. In the next chapter, we outline

our experimental implementation of a multilevel QKD system that is based on

the sorting method described in this chapter.
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Chapter 3

Quantum cryptography with

twisted photons

3.1 Introduction

First introduced in 1984 by Bennett and Brassard, quantum key distribution

(QKD) is a method for distributing a secret key between two parties [49, 50].

Due to a fundamental property of quantum physics known as the no-cloning the-

orem, any attempt made by a third party to eavesdrop inevitably leads to errors

that can be detected by the sender and receiver [51, 52]. QKD schemes conven-

tionally use qubits for encoding information, often realized with the polarization

of single photons. Such systems are easily implemented because technology for

encoding and decoding information in a qubit state-space is readily available

today, enabling system clock rates in the GHz regime [53, 54, 55]. Recently, the

spatial degree of freedom of photons has been identified as an extremely useful

resource for transferring information [34, 39]. The information transfer capacity

of classical communication links has been increased to more than one terabit per

second using spatial-mode multiplexing [37]. In addition, it has been theoreti-

cally shown that employing multilevel quantum states (qudits) can increase the

robustness of a QKD system against eavesdropping [56, 57, 11, 58]. Although

the majority of high-dimensional QKD schemes so far have employed time-bin
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encoding for increasing the alphabet size [59, 60, 61, 62], it is expected that

spatial-mode encoding can be alternatively used to enhance the performance of

a QKD system considering the recent advances in free-space OAM communica-

tion.

Similarly, a number of studies have investigated the benefits of employing

OAM modes in quantum cryptography [63, 64, 65]. Recently, rotation-invariant

OAM vector modes have been used for performing QKD in a two-dimensional

state space [66]. Although this method offers an advantage in terms of optical

alignment, it fails to utilize the large information capacity of the OAM basis. The

complete realization of a high-dimensional QKD system with OAM has remained

impractical up until now mostly due to the difficulty in efficiently sorting single

photons in the OAM basis. Additionally, any realistic application requires a fast

key-generation rate that cannot be achieved with most of the common methods

for generating OAM modes.

In the previous chapter, we discussed different methods of measuring the

OAM of light, and we introduced a method of sorting the OAM of single photons.

In this chapter, we report on our implementation of a QKD system that is based

on OAM-encoding. We start with a brief study of free-space communication

with spatial modes of light. We then review the BB-84 protocol and generalize

it for multilevel quantum states. We describe a proof-of-principle experiment

that demonstrates the feasibility of performing high-dimensional quantum cryp-

tography with OAM modes. Finally, we discuss the limitations of our approach

and explore possibilities for further development of this avenue of research.
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3.2 Free-space communication with spatial modes

The feasibility of high-dimensional QKD in the spatial domain has been previ-

ously demonstrated by encoding information in the transverse linear momentum

and position bases [67, 68]. While such encoding schemes provide a simple solu-

tion for increasing the information capacity, they are not suitable for operation

in long-haul optical links. Upon propagation over long distances, diffraction cre-

ates a varying transmission loss for different spatial frequencies that results in

mixing of spatial modes [69, 70]. Cross-talk increases the quantum symbol error

rate (SER) and fundamentally limits the secure key rate of a QKD system. As

we show below, the adverse effects of diffraction can be alleviated by employing

spatial modes that carry OAM.

Consider a typical free-space communication link as depicted in Fig. (3.6).

Due to diffraction, a spatially confined beam generated in the transmitting aper-

ture spreads upon propagation. The area of the beam over which most of its

energy is confined can be calculated at any plane using diffraction theory. How-

ever, after propagating beyond the near field, the beam has long (transverse)

tails that continue toward infinity [44]. Since the receiving aperture has a fi-

nite size, a portion of energy of the beam will be lost in the detection process.

Additionally, the strength of the induced loss is dependent on the form of the

transmitted field. As a result, a set of initially orthogonal fields in the transmit-

ting aperture will no longer form an orthogonal set at the receiving aperture,

and hence it is impossible to perfectly discriminate among them.

The input-output characteristics of a free-space optical link can be described

using the Rayleigh-Sommerfeld diffraction formula, which describes the free-

space propagation of an arbitrary scalar field as

Ψout(rR) =

∫
Ψin(rT )K(rT , rR)d2rT , (3.2.1)

in which Ψin(rT ) and Ψout(rR) are the electric fields in the transmitting and the
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Figure 3.1: Schematic diagram of a free-space communication link.

receiving apertures. The propagation kernel K(rT , rR) can be written as [44]

K(rT , rR) = − 1

2π

∂

∂z

exp(ik | rT − rR |)
| rT − rR |

. (3.2.2)

Eq. (3.2.1) related the fields in the two apertures via a linear transformation.

Using Dirac notation, this relation can be written simply as |Ψout〉 = P̂ |Ψin〉,
where P̂ is the propagation operator. Note that the propagation kernel as defined

above represents a unitary transformation. In order to calculate the detected

field, however, we must take into account the finite size of the apertures. This

imposes the condition K(rT , rR) = 0 for rR > R1 and rT > R0, where R0 and R1

are the radii of the transmitter’s and the receiver’s apertures, respectively. As a

result of imposing this constraint, the propagator is no longer a unitary operator.

A non-unitary transformation does not preserve inner products. Hence, a set of

orthogonal modes generated in the transmitting aperture are not necessarily

orthogonal within the receiving aperture, that is,

〈Ψm−out | Ψn−out〉 = 〈P̂Ψm−in | P̂Ψn−in〉

= 〈Ψm−in | P̂ †P̂ | Ψn−in〉 6= 0. (3.2.3)
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Note that since P̂ is not unitary, P̂ †P̂ need not constitute the identity matrix.

The problem of finding the optimum set of modes for transmitting energy

and information from one finite aperture to another has long been investigated in

the context of apodization theory [71] and the theory of communication modes

[72, 70]. The communication modes of an optical link can be found by per-

forming a singular value decomposition (SVD) of the propagation operator. The

communication modes, |Φn〉, can be formally defined using the realtion

P̂ †P̂ |Φn〉 =| λn|2|Φn〉. (3.2.4)

Here, | λ2n | is a coupling coefficient designating the portion of the energy of n-th

mode that falls within the receiving aperture [70, 73].

The SVD procedure guarantees that the communication modes form a com-

plete orthonormal set in the receiving aperture. More over, the orthogonality of

communication modes are preserved in the receiving aperture in spite of experi-

encing diffraction loss

〈Φm−out | Φn−out〉 = 〈Φm−in | P̂ †P̂ | Φn−in〉

=| λn |2 〈Φm−in | Φn−in〉

=| λn |2 δmn. (3.2.5)

The orthogonality in the receiving aperture guarantees that the communication

modes can be perfectly discriminated from each other. In terms of designing a

QKD system, this property translates to the possibility of building a loss-less

mode-sorting device for communication modes. Once the modes are separated,

it is straight-forward to channel them to multiple single photon detectors where

individual detection events can be registered.

As an example, we review the special case of an optical link with asymp-

totically large apertures. For such a system, the communication modes in the

transmitter can be approximated as spherical waves that are focused onto the re-

ceiver’s aperture, where they are transformed to diffraction-limited spots [73]. In

the receiver, two spots are barely resolvable if they are separated by an amount
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Figure 3.2: Information encoding by the location of distinct spots focused within the receiver’s
aperture.

δ, which is set by the Rayleigh criterion

δ ' λL/D. (3.2.6)

Here, λ is the wavelength of the laser beam, D is the diameter of the transmitting

(and the receiving) aperture, and L is the propagation distance (See Fig. (3.2)).

The area of each spot can be consequently approximated as

δ2 ' (λL)2/A (3.2.7)

where A is the area of the transmitting aperture. The total number of spots

distinguishable in the receiver aperture is therefore equal to the number of spots

that fit within an area of the receiver A

NF ' A/δ2 =
A2

(λL)2
. (3.2.8)

Here, NF , is the product of the Fresnel numbers of the two apertures in the

system and for this reason it is often called as the Fresnel number product of the

optical link. In the case of a system with arbitrary aperture sizes, calculating

the optimum modes for communication and their coupling efficiency has to be

done by solving the eigenvalue problem in Eq. (3.2.4). However, the general
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result found above remains valid; that is the number of communication modes

that can be efficiently transmitted over a free-space link scales with NF = ARAT

(λL)2
,

[69, 73]. Therefore, spatial-mode encoding becomes advantageous in an optical

link with a large Fresnel number product.

A real-world communication link usually consist of circular components such

as lenses, apertures, and mirrors. In this situation, the rotational symmetry

of the system can be used to simplify Eq. (3.2.4). Assuming paraxial Fresnel

diffraction, it can be shown that the solutions have the form

Φn,`(ρ, φ) =
Rn,`(ρ)
√
ρ

ei`φ, (3.2.9)

where the radial parts Rn,l(ρ) are known as the circular prolate spheroidal wave-

functions (CPSW) [74, 71]. It is evident that the solutions above have a separable

dependence on the radial and the azimuthal coordinates. It is straightforward

to show that the these modes are eigenstates of the orbital angular momentum

operator as suggested by the eilφ factor above [14]. In general, any two func-

tions with different OAM values maintain their orthogonality upon propagation,

regardless of their radial form [71].

Although the CPSWs are the exact communication modes for optical links

with round apertures, their calculation requires a complicated numerical proce-

dure. For this reason, the CPSW modes are often approximated as another set

of modes known as the Laguerre-Gaussian (LG) modes. Fortunately, the LG

modes can be calculated analytically and they provide a very good approxima-

tion for the CPSW modes when Fresnel number of the system is moderately

larger than unity [75]. In this case the modes at the transmitter aperture can

be written as

Ψl,p(ρ, φ) =
4(1 + 4NF )1/4√

πD
LG`

p

(
4(1 + 4NF )1/4

D
ρ, φ

)
e−i

k
2L
ρ2 , (3.2.10)
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Figure 3.3: Numerical results for the required aperture diameter as a function of the maximum
OAM index

where LG`
p are the Laguerre-Gaussian functions defined as

LG`
p(ρ, φ) =

√
p!

(p+ | ` |)!
e−ρ

2/2ρ|`|L|`|n (ρ2)ei`φ. (3.2.11)

The L
|`|
n (z) are the generalized Laguerre polynomials, which can be written as

L|`|n (z) =
ezz−|`|

n!

dn

dzn
(
e−zzn+|`|

)
. (3.2.12)

We have numerically calculated the transmission efficiency (also known as

the coupling efficiency) of the LG modes as a function of the distance between

the apertures and the diameter of the transmitting and the reciting apertures.

Figure. (3.2) displays the required aperture diameter as a function of the maxi-

mum OAM index for different values of propagation distance, L. We have found

the maximum value of OAM index by requiring the transmission efficiency to be

above 95% for all the transmitted modes. Note that the transmission efficiency

is a function of | ` |, and so for a maximum value of ` one could transmit 2`+ 1
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modes with an efficiency higher than 95%.

It is evident from Fig. (3.2) that a large number of OAM modes (of the order

of 20) can be transmitted in an optical link with moderate aperture sizes (of the

order of 30 cm) over a long distance (of the order 10 km). Thus, it is reasonable

to investigate the idea of a line-of-sight quantum communication system that is

based on encoding information on the OAM modes, given the recent advances in

the technology for generation, switching, and the measurement of these modes.

In a recent experiment, OAM modes were used for performing classical commu-

nication over a 3-km-long free-space optical link [76]. Additionally, the effects

of turbulence on propagation of OAM modes, and methods of mitigating it has

been a topic of extensive study lately [77, 78, 75, 7, 79, 80, 81, 82]. In the next

part, we outline our implementation of a high-dimensional QKD system based

on using OAM modes.
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3.3 BB-84 QKD with OAM modes

The goal of encryption is to establish secure communication between two parties,

often called as Alice and Bob. The exchange of a secret key is a crucial part of

any encryption protocol. In the conventional cryptography schemes, the secu-

rity of key exchange is based on computational complexity [50]. Quantum key

distribution (QKD) provides a radically different means of securely distributing

a key whose secrecy is guaranteed by the laws of quantum physics. We explain

the underlying principles of QKD by going through different stages of the BB-84

protocol, the first QKD protocol proposed by Bennet and Brassard in 1984.

BB-84 is based on encoding information on two-level quantum systems, also

called as qubits. Physically, a qubit is often realized by using the polarization

of a single photon. Here, we have the two legitimate parties Alice and Bob, and

a third party Eve, who intends to eavesdrop on Alice and Bob’s communication

channel. To convey a bit of information, Alice prepares the state of a single

photon and sends it to Bob. For each bit value of 1 or 0, Alice can send a

photon whose polarization is randomly selected from two bases and each basis

is consisted of two quantum states (See Fig. (3.4)). We use the notation |H〉
and |V 〉 to refer to the horizontal and vertical polarization states of a photon,

respectively. The H/V basis is made from the quantum states |H〉 and |V 〉.
Similarly, the D/A basis is constructed from the states |D〉 and |A〉, which are

defined as

|D〉 = 1√
2

[|H〉+ |V 〉] ,

|A〉 = 1√
2

[|H〉 − |V 〉] . (3.3.1)

Upon receiving each photon, Bob randomly chooses the orientation of a po-

larization filter, such as a polarizing beam splitter, to make a projective measure-

ment of polarization in a basis of his choice (H/V or D/A). While registering the

result of his projective measurements, Bob also records his choice of basis (set

by the orientation of the polarization filter). Figure. (3.4) illustrate an example
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Figure 3.4: Left panel: Table shows the MUBs used by Alice for encoding information. Each
basis is made from two orthogonal quantum states. Right panel: Table demonstrates a se-
quence of random numbers sent by Alice and measured by Bob. Notice the perfect correlation
of Alice and Bob’s sequences when they have used the identical bases. Bob’s sequence is
statistically independent of that of Alice on the instances when the bases are different.

of a sequence of qubits exchanged between Alice ad Bob. It is evident from the

table that Alice and Bob’s results are perfectly correlated whenever they choose

the same basis. On the contrary, their measurement results are statistically in-

dependent from the whenever Alice and Bob choose different bases. Therefore,

all Alice and Bob need to do is to publicly announce their choice of basis for

each bit in the sequence in order to create a key. Once they have done this, they

can only keep the results wherever they have used the same bases and discard

the rest. This procedure is called sifting and ideally at this stage Alice and Bob

will have two identical copies of a sequence that the can use as a key.

We now consider eavesdropping by Eve. A common eavesdropping strategy

is the intercept-resend attack, where Eve initially measures the state of a photon

in the channel and then sends a photon prepared in the state set by her mea-

surement’s result to Bob. For performing projective measurements, Eve has to

randomly choose a basis just like Bob. Since Eve guesses the wrong basis half

of the time, she modifies the state of the photons in the channel with a chance

of 25% and will thus introduce errors in the key shared by Alice and Bob. It

is thus sufficient for Alice and Bob to monitor the rate of errors in their shared

key sequence, by sacrificing a portion of their bit sequences and comparing them

together. If the estimated error rate is below 25%, Alice and Bob can safely

assume their protocol is secure. There exists more sophisticated eavesdropping
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strategies, but the quantum no-cloning theorem guarantees that it is impossible

for Eve to gain information without disturbing the state of photons in the chan-

nel [51]. A more complete analysis provides an upper bound of 14.6% for the

maximum tolerable error rate of the BB-84 protocol [11].

The BB-84 protocol uses a two-level system such as polarization of a photon

for encoding information. This limits the information capacity of the quantum

channel to a one bit photon and also imposes a tight (14.6%) bound on the

maximum rate of error that can be tolerated without compromising the security

of the transmission. Recently, multi-level QKD has been proposed as a gener-

alization of the BB-84 that allows for achieving higher key rates and enhanced

security. In this approach, Alice send a number different symbols as opposed

to just sending zero and one. This is achieved by encoding the information on

a multi-level quantum state, also known as a qudit. This strategy has the ad-

vantage that she can encode more information on a single photon. For example

an 8-level system can be used to encode 8 symbols on which is equivalent to 3

bits of information. More generally, the maximum amount of information that

such a channel can carry (per photon) can be calculated by using the Shannon

entropy formula

I(X) = −
∑
n

pn log2(pn) = log2(d). (3.3.2)

Here, d is the dimensionality of the Hilbert space used for encoding information.

The variable pn is the probability of n-th outcome of the variable X, which is

choosing any of the d possible outcomes. Just like the BB-84 protocol, we have

assumed all the symbols are used equally frequently. The table if Fig (3.5) shows

the information capacity calculated for multiple values of d.

In addition to the increase in channel capacity, a multilevel encoding can

increase the tolerance of QKD to eavesdropping. Heuristically, this happens

since Eve has a higher probability of disturbing a photon while probing a large-

dimensional quantum state. It is straight-forward to derive the error bound for
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an intercept-resend attack in a d-dimensional protocol with M bases as [57]

eB(d,M) = (1− 1

M
)(1− 1

d
). (3.3.3)

Note that Alice can use a larger number of bases (M) in a multilevel protocol.

The crucial property in the BB-84 was that choosing the wrong basis would pro-

vide a completely random outcome. This idea can be formulated more precisely

in terms of mutually unbiased bases (MUBs). Two bases are mutually unbiased

if each state in one basis can be written as a superposition of all the states in the

other basis with equal weights. In general, the maximum number of MUBs in a

d-dimensional Hilbert space is equal to d + 1, where d is a prime number [83].

Equation (3.3.3) shows that increasing the number of symbols d, and the number

of bases M results in increasing the error bound. Note that although increasing

the number of MUBs, M , is beneficial in terms of the error bounds, it results in

a linear reduction in the efficiency of the sifting procedure. Moreover, increasing

the number of MUBs requires the ability for generation and measurement of

photons in multiple bases. Considering these factors, we limit our analysis to

the simplest case of M = 2 for the remainder of this chapter. The security of

multilevel QKD for the general case of optimal individual attacks (for M = 2

MUBs) is treated in [11]. We have listed the error bounds for different values of

d in the bottom row of the table in Fig (3.5). It is evident that the maximum

tolerable error rates increases with d, even for the case where only M = 2 bases

are used.

d
Error
(%)

I
(bits)

2

14.64 21.13

1 1.58

25

2

27.64

2.32

32.31

3

3 4 5 8

Figure 3.5: Channel capacity and error bound calculated for multiple values of d, for the case
of M = 2. The error bound values are quoted from [11].

The increased tolerance to eavesdropping, along with the enhanced channel
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capacity motivates the implementation of a multilevel QKD system. We now

consider the specific case of QKD with OAM modes. The infinite, multidimen-

sional Hilbert space of OAM modes provides a large basis for encoding infor-

mation. We choose our primary encoding basis as a set of OAM vortex modes.

These modes have a top-hat intensity structure and a helical phase profile char-

acterized by Ψ`
OAM = ei`ϕ, where ` ∈ {−3 : 3} (See Fig. 5.1). We construct a

mutually unbiased basis set using a linear combination of OAM modes of index

| ` |≤ N with equal amplitudes

Ψn
ANG =

1√
d

N∑
`=−N

Ψ`
OAM exp

(
i2πn`

d

)
(3.3.4)

Figure 3.6: The experimentally measured intensity profile of OAM and ANG modes for the
case of d = 7.

where the Hilbert space dimension is set as d = 2N + 1. We refer to these

modes as the angular (ANG) modes due to their localized intensity patterns (See

Fig. 5.1). The ANG modes form a mutually unbiased basis with respect to the

OAM basis [84, 85, 82]

∣∣〈Ψn
ANG

∣∣Ψ`
OAM

〉∣∣2 = 1/d ∀{n, `}. (3.3.5)

Consequently, the measurement of a photon in the ANG basis provides no in-

formation about its OAM state and vice versa. Moreover, the ANG and the

OAM bases remain mutually unbiased upon propagation (See Appendix A). In



CHAPTER 3 47

our protocol, Alice and Bob randomly choose between the OAM and the ANG

modes. In each basis, there exists d independent modes representing different

symbols, and hence it is theoretically possible to encode log2 (d) bits of informa-

tion per each sifted photon. We go over the details of our protocol along with

the experimental implementation in the remainder of this chapter.
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3.4 Generation of OAM and ANG modes

An OAM mode can be created by simply imposing an ei`φ phase structure onto

a laser beam. This task can be achieved by using computer generated holograms

[39], q-plates [20], or spiral phase plates [21]. Generation of a secure keys in a

QKD system, however, requires two or more mutually unbiased bases (MUBs)

[49]. Construction of a MUB for the basis of OAM modes requires shaping both

the phase and the amplitude of a laser beam [82, 2]. Phase-only spatial light

modulators (SLMs) are widely used for creating such modes [86]. Nevertheless,

the vast majority of commercially available SLMs are limited by a frame refresh-

rate of about 60 Hz which considerably limits the speed of operation of any

system based on this technology.

A Digital Micro-mirror Device (DMD) is an amplitude-only spatial light mod-

ulator. The high speed, wide range of operational spectral band-width, and high

power threshold of a DMD make it a very useful tool for a variety of applications–

from 3D computational imaging [87] to optical control of neuronal activity [88].

Further, variations of DMDs are commercially available for a fraction of the cost

of a phase-only SLM. Recently, a DMD was used to encode a varying phase

structure onto a beam [89, 90]. The amplitude shaping of spatial modes has

been previously achieved by switching the micro-mirrors on and off rapidly [91].

However, the spatial coherence of the generated optical fields is compromised

in this process and the created modes have the desired intensity profile only

when averaged by a slow detector. In this section, we introduce a method for

encoding both phase and amplitude information onto a single binary amplitude

mask. By realizing such holograms on a DMD, we have successfully created LG

modes, OAM vortex modes, and angular (ANG) modes which form a MUB for

the OAM basis. Furthermore, we have directly demonstrated active switching

of the generated modes at a speed as high as 4 kHz.

To introduce our technique, we consider a one-dimensional binary amplitude

grating. The transmission function for this grating can be written as

T (x) =
∞∑

m=−∞

rect

[
x− (m+ p)x0

w(x0/2)

]
, (3.4.1)
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(a) (b) (c) (d)

Figure 3.7: Binary hologram for generating (a) ` = 2 vortex OAM mode, (b) ` = −5 vortex
OAM mode, (c) LG22 and (d) LG21 .

where

rect(u) =

{
1 if |u| ≤ 1/2,

0 else.
(3.4.2)

This function can be pictured as a pulse train with a period of x0. The param-

eters p and w are unitless quantities that set the position and the width of each

pulse and are equal to constant values for a uniform grating. Here we show that

it is possible to locally change the value of these parameters to achieve phase

and amplitude modulation of the optical field.

The transmittance function T (x) is a periodic function and can be expanded

as a Fourier series as

T (x) =
∞∑

m=−∞

Tm exp

[
i2πm

(
x

x0

)]
. (3.4.3)

The coefficients Tm are a functions of parameters w and p and are given by

Tm =
sin(πmw

2
)

πm
ei2πmp. (3.4.4)

where we have assumed that both w and p are bounded between zero and one.

Now, we consider a case where p(x) and w(x) are functions of x and the binary

grating is illuminated by a monochromatic plane wave. The first-order diffracted

light can be written as

T1(x) =
1

π
sin[

πw(x)

2
]ei2πp(x). (3.4.5)
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Figure 3.8: Schematic diagram of the experimental setup for a) measuring intensity profile
and phase interferograms. b) switching among three OAM modes and detecting them in real
time.

It can be seen that w(x) is related to the amplitude of the diffracted light while

p(x) sets its phase. Therefore, the phase and the amplitude of the diffracted light

can be controlled by setting the parameters p(x) and w(x). In the language of

communication theory, these methods are sometime referred to as pulse position

modulation (PPM) and pulse width modulation (PWM) [92, 93]. Eq. 3.4.5

provides an accurate approximation for slowly varying p(x) and w(x) functions

[94, 95], when a mixed Fourier-Taylor analysis can be used to derive this formula

[96].

The analysis above treats a one-dimensional case. To encode phase and am-

plitude in two dimensions, we have generated the pulse sequence by thresholding

a rapidly varying modulated carrier

T (x, y) = 1/2 + 1/2 sgn (cos [2πx/x0 + πp(x, y)]− cos[πw(x, y)]). (3.4.6)

Here, sgn(x, y) is the sign function. It is easy to check that in in the limit where

w(x, y) and p(x, y) are slowly varying, this formula reproduces the pulse train

described above. We can find the corresponding w(x, y) and p(x, y) functions

for a general complex scalar field A(x, y)eiϕ(x,y) according to the relations

w(x, y) =
1

π
arcsin[A(x, y)], (3.4.7)
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Intensity

Interferogram

Figure 3.9: Intensity and interferograms of three vortex modes (to the left) and LG modes (to
the right). The interferograms demonstrate the phase structure of the beams and have been
obtained by interfering the generated modes with a plane wave.

p(x, y) =
1

2π
ϕ(x, y). (3.4.8)

We have assumed the amplitude contains no singularity and thus its maximum

can be normalized to the value of unity.

We have designed two-dimensional binary amplitude holograms to generate

Laguerre-Gaussian (LG) modes. Fig. (3.7) shows sample holograms designed for

generation of vortex OAM and LG modes. It can be seen that in both cases, the

holograms have the familiar forked structure. The gratings designed for vortex

modes have a fairly uniform width across the aperture whereas for the case of

LG modes the gratings gradually disappear where the amplitude gets negligibly

small.

A digital micro-mirror device (DMD) is an amplitude-only spatial light mod-

ulator. The device consists of a series of micro-mirrors that can be controlled

in a binary fashion by setting the deflection angle of each individual mirror to

either +12 or −12 degrees. This enables the on-demand realization of binary

gratings that can be switched at very high speeds using an external digital signal

[97].

In our experiment, we generate spatial modes by loading computer generated

holograms described in the previous section onto a DMD. We have used a Texas

Instrument DLP3000 DMD for this task. As shown in Fig. (5.1), a 4f imaging

system along with an aperture separates the first order diffracted light. We

use a charge-coupled-device (CCD) camera for measuring the intensity profile of
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Figure 3.10: Intensity patterns for ANG modes constructed from superposition of vortex OAM
modes from the set ` ∈ [−2 : 2].

the generated modes. In addition, we have used a Mach-Zehnder interferometer

for verifying the phase patterns of the created beams. A collimated plane-wave

reference from the same laser is interfered with the modes generated by the DMD

to obtains interferograms.

We have created OAM modes and LG modes using the setup. Fig. (3.9) shows

the intensity pattern along with the interferogram for a few of these modes. The

structure of the interferograms is in agreement with the helical phase pattern

of OAM modes, with the number of azimuthal dark lines equating to the OAM

quantum number in each case. The LG modes have the same azimuthal phase

structure as the vortex modes. In addition, these modes contain p+1 rings in the

radial direction where p is the radial quantum number [14]. The change of sign

of the optical field between each two consecutive rings is an intrinsic property of

the LG modes and it can be clearly noticed in the interferograms.

The examples above demonstrate the possibility of using binary holograms

to coherently control both phase and amplitude of a beam. Although the OAM

modes can be generated by only shaping the phase, creating the ANG modes

requires the ability to shape both the intensity and the phase. We have generated

ANG modes using our technique. The amplitude profile of a number of these

modes is presented in Fig. (3.10).

Using a DMD for generating OAM modes gives us the ability to switch

between different modes at very high speeds. This method involves a much

smaller number of optical elements as compared to the conventional techniques

where OAM modes are generated using a series of separated forked holograms

and are multiplexed using beam splitters [37]. As a direct test of the high-

speed capability of our mode-generation system, we have implemented dynamic

switching among vortex OAM modes with quantum number ` = 5,−5 and
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.pdf
Figure 3.11: Detected power as function of time for three vortex OAM modes of ` = 5, ` = −5
and ` = 0. It is seen that the generated mode can be changed on a time-scale of 0.25 ms
(measured at FWHM) corresponding to a switching rate of 4 kHz.

0. The computer generated holograms for these modes were loaded onto the

memory of the DMD and the switching was achieved by using a clock signal.

We have used the mode sorter described in [4] to map the input modes to a

series of separated spots. We then measured the intensity corresponding to each

mode using a high bandwidth PIN detector at the positions corresponding to

each mode. Fig. (3.9) demonstrates the measured values. It can be seen that the

generated OAM quantum number can be controlled with a speed of 4 kHz. This

is a clear demonstration of the capability to rapidly switch among such modes.

It should be noted that the speed reported above is a limitation imposed by the

DMD we have used and it is not inherent to this technique. In fact, commercially

available DMDs can achieve a speed of as high as 32 kHz (TI DLP7000). Further,

these devices are available for a fraction of the cost of a phase-only spatial light

modulator.
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3.5 Experimental realization

In this section we describe a proof-of-principle experiment that demonstrates

the feasibility of performing high-dimensional quantum cryptography with OAM

modes. We encode information in a 7-dimensional set of OAM modes along with

modes in the mutually unbiased basis of azimuthal angle (ANG). Our scheme

uses a digital micro-mirror device (DMD) for fast generation, and an efficient

technique for unambiguous sorting of both OAM and ANG modes. By combining

these techniques, we selectively generate the set of 14 spatial modes at a rate

of 4 kHz and correspondingly detect them with a separation efficiency of 93%.

We measure a channel capacity of 2.05 bits per sifted photon with an average

symbol error rate of 10.5% that is well below the error bounds that are required

for security against intercept-resend eavesdropping attacks. Of our symbol error

rate, 4% is due to detector dark counts and ambient light, and 6.5% is due to

errors due to intermodal crosstalk.

Our experimental setup is depicted in Fig. 5.1. A collimated beam from a

helium-neon laser illuminates a binary hologram realized on a DMD to generate

spatial modes [6]. We use a prepare-and-measure scheme similar to the BB84

protocol [49]. Alice initially picks a random sequence of desired OAM and ANG

modes and loads the binary holograms for generating each of the modes in the

sequence to the DMD’s internal memory. To transmit each symbol, Alice then

triggers the DMD and modulates the beam using an acousto-optic modulator to

create rectangular pulses of 125 ns width. The beam power is attenuated such

that each pulse contains on average µ = 0.1 photons. The prepared states are

then imaged to Bob’s receiving aperture via a 4f telescope that forms a lossless

2-m-long communication link.

Bob’s mode sorter consists of two refractive elements for performing a log-

polar to cartesian transformation [4]. Going through these elements, an OAM

mode is converted to a plane wave with a tilt that is proportional to the OAM

mode index `. A single lens focuses such a plane wave into a spot that is shifted

by an amount proportional to `. Similarly, an ANG mode transforms to a

localized spot shifted by an amount proportional to the angular index n after
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Figure 3.12: a) The experimental setup. Alice prepares the modes by carving out pulses
from a highly attenuated He-Ne laser using an AOM. The spatial mode information is im-
pressed on these pulses with a DMD. Bob’s mode sorter and fan-out elements map the OAM
modes and the ANG modes into separated spots that are collected by an array of fibers. b)
The alphabet. CCD images of produced light field profiles in two complementary spatial
bases of OAM and ANG (d = 7). The intensity profile of the modes are shown on the right.
An example of binary holograms used for the generation of modes in each basis is shown on
the left.

the transformation. A beam splitter is used to randomly choose between the

OAM and ANG bases. In order to reduce the overlap between the neighboring

transformed modes, we use a coherent beam combination technique described in

the previous chapter [1]. A fan-out element is realized on a phase-only spatial

light modulator (SLM) to divide the incident light into multiple copies. The

copies are phase corrected using a second SLM and are recombined by a lens to

a series of much narrower spots with the same initial spacing between them. In

addition, two cylindrical lenses are realized on the SLMs to adjust the aspect

ratio of the transformed modes.
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Figure 3.13: Key generation a) An example of a random sifted key from the experiment. The
spatial modes are mapped to number between 0 to 6 (errors are marked in red and underlined).
Each symbol is converted into a 3 digit binary number first and the binary key is randomized
before the error-correction. Privacy amplification minimizes Eve’s information by shortening
the key length. b) Alice encrypts the secret message (a picture [?]) using the shared secure key
and Bob decrypts it. In this case a short key is repeated many times to match the bit length
of the image. In practice, multiple use of a short key cannot provide security and a long key
needs to be used.

The sorted modes are coupled to an array of fibers that are connected to

avalanche photodiodes (APDs). Due to the limited number of available APDs

(four), Bob’s data for each group of the the symbols is taken separately and is

combined later. The signal from the APDs is processed by a field-programmable

gate array (FPGA) to produce photon counts using a gating signal shared with

Alice. The photon detection events are finally saved in Bob’s computer. Alice

and Bob are also connected via a classical link realized by an ethernet cable
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running a TCP/IP protocol. After Alice and Bob collect a sufficiently large

number of symbols, they stop the measurement. At this point, they publicly

broadcast the bases used for preparation and measurement of each photon via

the classical link. Alice and Bob then discard the measurements that were done

in different bases. The key generated at this stage is referred to as the sifted

key.

Figure 3.13 shows a portion of the sifted key generated in the experiment. At

this stage, the two copies of the key owned by Alice and Bob are almost identical

but they contain some discrepancies. The discrepancies are due to the imperfec-

tions in our system, namely imperfect mode-sorting, detector dark counts, and

ambient light. However, any errors in the key must be attributed to an eaves-

dropper in the security analysis. The keys are transformed to a binary form

on a symbol-by-symbol basis and randomized by means of a random-number

generator shared by Alice and Bob. The cascade error-correction protocol is run

by Alice and Bob to fix the discrepancies by comparing the two keys in a block-

by-block fashion and performing parity checks [98]. After error-correction, Alice

and Bob share two identical copies of the key. However, a portion of the key

can still be known to Eve from eavesdropping on the quantum channel or from

accessing the publicly available information transmitted in the classical chan-

nel during the error correction. Alice and Bob perform privacy amplification to

minimize Eve’s information. This is done by using a universal hash function for

mapping the (error-corrected) key to a shorter, more secure random key [99].

The amount by which the key is shortened at this stage is set by the estimated

amount of information that can be owned by Eve. Finally, the secure key is

used to securely transmit information (a picture in this case) over the classical

channel (See Fig. 3.13).

Characterization of the transmission and detection efficiencies

The power transmission efficiency of the mode sorter’s refractive elements is mea-

sured to be 85%. Two Holoeye PLUTO phase-only SLMs are used for realizing

the holograms for the fan-out element and its corresponding phase-correcting

element. In addition, two cylindrical lenses are realized on the SLMs to adjust
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Figure 3.14: Conditional probability of detection. a) Theoretical predictions for an
ideal system. The bases chosen by Alice and Bob are marked on the horizontal axis. b)The
experimental results. To construct the matrix a total number of 14 million pulses with µ = 0.1
photon per each are sent by Alice. The signals from APDs and the gate are collected using a
300 MHz oscilloscope on the fast acquisition mode and processed on a computer. c) 3D view
of the experimental data.

the aspect ratio of the transformed beams. The diffraction efficiency of each

SLM is measured to be approximately 45%.

The fiber array consists of 7 multi-mode fibers with 62.5 µm/125 µm core/cladding

diameters and NA = 0.275. We have measured the efficiency of coupling the

transformed modes to the fiber array to be approximately 18%. The detection is

performed with Perkin-Elmer SPCM-AQRH-14 APDs. The quantum efficiency

of the APDs is η = 0.65. The transmission efficiency of the optical link can be
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calculated as

Tlink = 0.85× (0.45)2 × 0.18 = 0.031. (3.5.1)

Each detectors has a typical dark-count rate of 50 c/s and an after-pulsing

probability of 0.3%

Calculation of the classical Information capacity

Figure 3.14 shows the conditional probability of Bob detecting each mode as a

function of the mode sent by Alice. Theoretical values for the case of a system

with no errors is shown on the left for comparison. In order to measure the

symbol error rate more precisely, each row of the matrix is constructed by sending

the same symbol many times and detecting all possible outcomes. This scheme

eliminates the time consuming procedure of switching among different spatial

modes and permits a much more accurate measurement of the error-rate using

a large set of sent and received symbols.

The mutual information between the sent and received symbols is defined as

IAB =
∑
i,j

P (yj, xi) log2

[
P (yj, xi)

P (xi)P (yj)

]
. (3.5.2)

Here, xi is the event of sending symbol i and yj is the event of detecting symbol j.

Assuming a uniform probability for sending N modes and a uniform probability

of an error occurring in the detection, the Eq. 3.5.2 can be simplified to [11]

IAB = log2(d) + F log2(F ) + (1− F ) log2

(
1− F
d− 1

)
. (3.5.3)

Here, F = 1− δ− ε is the probability of correctly detecting each mode. The

symbol error rate caused by imperfect sorting is denoted by δ and the symbol

error rate due to the dark counts is shown by ε. For the case of our experiment,

δ = 0.065 and ε = 0.04. The total symbol error rate 1− F is directly measured

from data as 10.5%. We have identified the error from the imperfect sorting, δ,

by repeating the experiment in the high-light level and analyzing the results after

background subtraction. The error probability ε can be divided to 2% from stray
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light, 1.9% from thermally-induced dark counts, and 0.15% from after-pulsing.

Using these numbers, we calculate IAB as 2.05 bits per photon. For com-

parison, the ideal value of IAB for d = 7 modes is equal to log2(d) = 2.8 bits

per photon. Further, the sorting mechanism by itself would result in a value

of 2.29 bits per photon in the absence of any background or dark counts. The

probability of correctly detecting each mode in the absence of dark counts, also

known as the separation efficiency of the mode sorter, is calculated to be slightly

more than 93%.

Note that the calculation of mutual information only requires the knowledge

of the cross-talk and dark count values. The loss in the optical system reduces the

key generation rate of the protocol. However, a uniform loss in the transmission

and detection does not change the mutual information between Alice and Bob’s

sifted keys since the time frames with no photon-detection event are removed in

the basis reconciliation procedure.

Calculation of the secure key rate

We consider a cloning-based individual attack. In this situation, the mutual

information between the symbols owned by Alice and Eve can be written as [11]

IAE = log2(d) + F log2(FE) + (1− FE) log2

(
1− FE
d− 1

)
. (3.5.4)

Here, FE is the fidelity of Eve’s cloning machine. The value of Eve’s fidelity

can be optimized to gain maximum information for any given symbol error rate

detected by Bob. This quantity is shown to be [11]

FE =
F

d
+

(d− 1)(1− F )

d
+

2

d

√
(d− 1)F (1− F ). (3.5.5)

For our experiment, FE = 0.43, resulting in IAE = 0.35 bits. For a sufficiently

long ensemble of symbols owned by Alice, Bob, and Eve the secure key R is

found to be [100, 50]

Rnet = Rsift[IAB −max(IAE, IBE)], (3.5.6)
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where Rsift is the sifted key rate. This rate can be written as a function of the

pulse repetition rate frep

Rsift =
1

2
frepµTlinkη (3.5.7)

For our experiment we have µ = 0.1. The DMD used in our system (Texas

Instrument DLP3000) is capable of switching between the computer holograms

stored in its memory at the speed of 4kHz. We refer to this mode of operation

as burst mode. Burst mode can be used to transmit a short key at frep = 4

kHz. The internal memory can only store up to 100 patterns, which limits the

applicability of the burst mode for a long key. To generate a long random key,

we instead load each hologram onto the DMD using a computer. This task along

with the time needed for synchronizing the two computers reduces the raw key

generation rate to approximately frep = 1 Hz. Using frep = 4 kHz for the burst

mode, we calculate Rsift = 4 (photons/sec) and Rnet = 6.8 (secure bits/sec).

Note that this calculation characterizes the operation of the optical system in

the presence of 14 detectors for collecting data.

The calculation above can be recast to the alternative form

Rnet = frepIpulse. (3.5.8)

Here, Ipulse is the amount of secure information transmitted per each pulse. For

our experiment we can infer Ipulse = 1.7× 10−3 secure bits per pulse.

To quantitatively assess the security of our system, we plot the values for

the error bound of an intercept-resend eavesdropping attack, a coherent attack,

as well as the symbol error rate from our experimental data in Fig. 3.15. In

an intercept-resend attack, the eavesdropper (Eve) measures the state of the

intercepted photon in an arbitrarily selected basis and then resends a photon

prepared to be in this same state. In a coherent attack, Eve coherently probes

a finite number of qudits in order to gain information about the key [11]. It is

evident from this graph that our experimental symbol error rate is well below the

required bounds for security against both intercept-resend and coherent attacks

(Fig 3.15). Unlike intercept-resend attacks, the symbol error rate for coherent

attacks only depends on system dimension d and is independent of the number
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Figure 3.15: Error-bound for security. Bob’s error bound calculated from theory as a func-
tion of the dimension of the Hilbert space for intercept-resend attacks with two MUBs (M=2)
and coherent attacks is plotted along with symbol error rate measured from our experimental
data (the error bar shows one standard deviation). It is seen that the symbol error rate from
our experiment lies well below the theoretical bounds and hence it is sufficient for proof of
security.

of MUBs M [11]. Hence, increasing the number of MUBs beyond 2 results in

a drop in the key rate without any gain in security against coherent attacks.

Nevertheless, there is a clear increase in the allowed symbol error rate for larger

system dimensions, demonstrating an advantage for using a high-dimensional

encoding scheme for QKD such as that of OAM.

Using the symbol error rate, we estimate the information gained by Eve to

be 0.35 bits per sifted photon for cloning-based individual attacks. It has been

argued that cloning-based eavesdropping is the optimal strategy for an individual

attack on systems based on qudits [11]. The portion of the key obtained by Eve

is removed in the privacy amplification process, leading to a mutual information

of 1.7 secure bits per sifted photon in the final key. It should be emphasized

that our secure key rate analysis assumes an infinite key, while our experimental

realization produces only a finite key [101]. We are working toward a finite key

analysis of the security, which will be reported in the future.

In contrast to phase-only spatial light modulators (SLMs) that are limited to

a frame rate of 60 Hz, the DMD used in our setup has the ability to rapidly switch
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between modes at a speed of 4 kHz. This is especially important considering

the fact that the speed of generation of spatial modes limits the key generation

rate of the system. We measure our raw key generation rate to be 16.4 bits per

second (for operation in burst mode). After performing basis reconciliation and

privacy amplification for a sufficiently long key, we estimate the secure key rate

to be 6.5 bits per second, which is more than 3 orders of magnitude larger than

that achieved in previous spatial-mode based protocols [68].

Photon number splitting attacks

The analysis above considers intercept-resend and cloning based attacks. The

photon-number-splitting (PNS) attack is yet another possibility when the proto-

col uses imperfect single-photon sources. In our protocol, weak coherent pulses

(WCPs) are used for realizing approximate single photon pulses. For small values

of photon-number expectation values, a WCP contains either zero or one photon

most of the times. However, the pulse may still contain multiple photons with

a non-zero probability. In this situation, Eve can split one photon off a multi-

photon signal, without disturbing the polarization or the spatial structure of the

signal [102, 103, 104]. Eve can measure her photon after basis reconciliation and

obtain complete information without causing any error in the signal.

The PNS attacks pose a more serious threat in the presence of loss. In this

situation, Eve can, in principle, replace the lossy channel with a perfect quantum

channel and only transmit to Bob the signals of her choice. An inequality has

been developed in [105] that serves as a necessary condition for security

pdetection > pmulti. (3.5.9)

Here, pdetection is the total probability of detection events for Bob, and pmulti is

the probability of having a pulse with multi-photons. For a coherent state with

an average photon number o f µ, we have P (n, µ) = µn

n!
e−µ, and consequently

pmulti =
∞∑
n=2

P (n, µ) ≈ µ2

2
. (3.5.10)
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The total probability of detection events can be calculated by considering

the signal detection events and the detector dark counts

pdetection = psignal + pdark − psignalpdark ≈ psignal + pdark. (3.5.11)

Using the parameters for our experiments we have pmulti = 5×10−3 and pdetection =

µTlinkη+pdark ' 2×10−3. It can be see that pdetection < pmulti and hence security

against PNS attacks cannot be guaranteed in our current implementation. We

discuss the possible approaches for providing security against PNS attacks in the

following section.

Effect of imperfect MUBs

The unbiased relation between the two bases, as defined in Eq. 3.3.5, guaran-

tees that detecting a photon in the wrong basis results in a completely random

outcome and hence it reveals zero information about the key. In practice, how-

ever, the imperfect generation and sorting of the OAM and ANG modes results

in variations in the degree of overlap between a pair of modes chosen from the

two different bases. Such variations can be noticed in the off-diagonal blocks in

the matrix for conditional probability of detection (Fig. 3.14). In this situation,

the measurement of a photon in the wrong basis can, in principle, reveal some

information about the transmitted symbol.

The mutual information between the symbols sent in the OAM basis and

detected in the ANG basis can be calculated using Eq. 4. For our experiment,

we have calculated IOAM/ANG = 0.036 bits per photon. Similarly, the mutual

information for the case of sending a photon in the ANG basis and detecting it

in the OAM basis is calculated to be IANG/OAM = 0.058 bits per photon. Note

that these values are much smaller than IAB which is equal to 2.05 bits per

photon. We have assumed an unbiased relation between the OAM and ANG

modes in our security analysis.The small number the quantities IANG/OAM and

IOAM/ANG calculated above justifies the validity of this approximation. A more

complete security analysis needs to take these numbers into account in estimating

the information owned by Alice (IAE). Such an analysis, however, is beyond the
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scope of current article and should be the subject of future studies.
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3.6 Steps towards practical QKD with OAM

modes

The secure key rate of a QKD system is considered as the ultimate metric for

quantifying its performance. In the above sections we described how a high-

dimensional encoding scheme such as that of OAM can potentially benefit the

secure key rate of QKD protocols. While our experiment provides significant

improvements in realizing OAM-based QKD, several challenges need to be ad-

dressed before such a protocol can be employed for practical applications. In ad-

dition to a high secure key rate, a free-space QKD link needs to provide reliable

long distance operation, efficient classical post-processing, ease of alignment, and

a rigorous security analysis considering the finite size of practical keys. While

some of these requirements can be achieved by increasing the degree of sophis-

tication of the system or through the use of state-of-the-art technology, there is

still need for theoretical and experimental research before a full demonstration

can be performed. Below, we address some of the current limitations.

Fast key generation. The secure key rate scales proportionally with the raw

key generation rate. A fast rate can be achieved by using an array of static

holograms for generating multiple modes and then multiplexing the modes us-

ing a series of beam splitters. A cheaper and much simpler alternative to this

approach is to modulate the intensity and the phase of a laser beam in real time.

Although holography techniques can achieve kHz mode switching rates using

DMDs [6], practical QKD would require key rates in the GHz regime. OAM

modes can be generated and switched at MHz rates using on-chip resonators

[106] and potentially at GHz rates using Q-plates [107]. However, to generate

the states in the ANG basis one would need to modulate both the amplitude

and phase of the beam, a task that best suits free-space holography. Recently, a

method involving static holograms realized on an SLM and an AOM for switch-

ing between them achieved a MHz mode-switching rate [108]. Unfortunately,

the change in the wavelength caused by the AOM forbids applying this method

for QKS since side-channel attacks could be performed based on spectrum.

Alternatively, generation of OAM and ANG modes at a rate of 1 GHz or
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more can be achieved by illuminating a series of static holograms with beams

from multiple lasers. The shaped beams after the holograms can be passively

combined using a series of beam splitters. The intensity of each laser beam

can then be modulated either by using electro-optic modulators or by switching

diode lasers on and off [37].

High throughput. The key generation rate drops as loss increases. More-

over, high loss in the communication link makes the protocol vulnerable to PNS

attacks. The throughput of our detection system can be readily increased by em-

ploying high efficiency spatial light modulators, or AR-coated custom refractive

elements. This would translate to a six-fold increase in the transmission effi-

ciency in our experiment. Additionally, the amount of loss due to the scattering

in the air can be minimized by operating in the near-infrared regime.

Turbulence mitigation. Atmospheric Turbulence results in degradation of

the spatial profile of the modes upon propagation. This results in mixing of

the neighboring OAM and ANG modes. The effects of turbulence on OAM

modes has been a topic of extensive studies [82, 78, 77]. Common solutions for

mitigating the adverse effects of atmospheric turbulence include the use of every

other mode for encoding [80] and utilization of adaptive optics systems [79].

Recently, long-haul free-space propagation of OAM modes has been realized

using novel detection schemes [76].

Larger dimensionality. Increasing the number of the modes increases the

information carried by each single photon and results in a higher secure bit rate.

Previously, we have shown that our mode sorter is capable of sorting 25 OAM

and ANG modes with an average mutual information of 4.17 bits per detected

photons [1]. Consequently, the encoded information per photon can be readily

increased by increasing the number of APDs in the experiment. Ultimately, the

number of modes supported by the optical link is limited by the sizes of the

transmitting and receiving apertures.

Universal security proof. A comprehensive security proof for a QKD system

should include both the fundamental and practical properties of the physical sys-

tem. The security analysis presented in this work assumes an infinitely long key.

For a finite key, the efficiency of classical post-processing need to be measured
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and used for a more rigorous calculation of the secure key rate [109]. In addition,

our analysis assumes a uniform error-rate and transmission efficiency for all the

modes. While our data demonstrates the rationale for this approximation, a

more comprehensive analysis needs to include the effects of non-uniform symbol

error rate and loss in a multi-level QKD system. More research is needed to

establish the theoretical framework for security analysis of such systems.

Finally, we have demonstrated security against intercept-resend and cloning-

based attacks, while our implementation remains vulnerable to photon-number-

splitting attacks. This limitation can be avoided by either reducing the loss in

the system or by employing the decoy-state protocol [110]
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3.7 Summary

In this chapter we have demonstrated that a functional QKD system based

on spatial-mode encoding is realizable with current technology. We have pro-

vided a brief review of the BB-84 quantum cryptography and then generalized

it to multidimensional systems. Our analysis of free-space communication with

spatial modes justifies the choice of OAM modes for information encoding in

multilevel line-of-sight QKD scheme. We have reported a proof-of-principle ex-

periment that uses a 7-dimensional alphabet encoded in OAM and in the mutual

unbiased basis of ANG modes. We have implemented a fast mode-generation

technique that uses a DMD to generate spatial modes at a speed of 4 kHz and

a mode-transformation technique that is able to measure the OAM and ANG

content of a photon with an accuracy of 93%. Using these two methods, we have

achieved a mutual information of 2.05 bits per sifted photon, which is more than

twice the maximum allowable capacity of a two-dimensional QKD system. The

symbol error rate of our scheme is measured to be 10.5%, which is sufficient for

proving security against coherent and individual eavesdropping attacks for an in-

finite key. In addition, we have layed out a clear path for how our system can be

enhanced to perform practical, high-dimensional QKD using current technology.

For example, our symbol error rate can be significantly reduced through the use

of better detectors and a more sophisticated mode-transformation technique.
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Chapter 4

Direct measurement of the wave

function

4.1 Introduction

The no-cloning theorem prohibits exact determination of the quantum wave

function from a single measurement [51, 52, 111]. In contrast, a large ensemble

of identically prepared quanta can be used to estimate the wave function through

quantum state tomography (QST) [112, 113, 114, 115, 116, 117, 118, 119, 120].

QST requires the measurement of d2−1 independent real numbers for character-

izing a d-dimensional system. The rapid growth in the number of the requited

measurements along with the time-consuming post-processing make QST in-

creasingly more challenging as d grows [117, 121].

Recently, there has been considerable interest in determining the wave func-

tion of a pure quantum state through the use of weak values [10, 122, 9, 123,

124, 125]. This method, known as the direct measurement, provides a conve-

nient procedure for estimation of a wave function. It has been suggested that di-

rect measurement (DM) is an efficient means of characterizing high-dimensional

states due to the simplicity of its realization and absence of time-consuming post

processing [10]. Direct measurement is based on the idea that weak value is a

complex quantity, and hence the real and imaginary parts of the wave function
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can be retrieved at once if the wave function can be linked to a weak value. This

is achieved by a sequence of weak and strong measurements, performed in the

position and momentum bases respectively. We begin this chapter by providing

a brief review of the theory of direct measurement.

We have applied direct measurement to the the problem of characterization of

a superposition of OAM modes. By performing a weak measurement of orbital

angular momentum (OAM), followed by a strong measurement of azimuthal

angle, we find the quantum state in the Hilbert space spanned by 27 OAM

modes. In addition, we use this method to visualize the act of rotation on a

photon, by measuring the relative phase between the different OAM components

of the quantum state. The details of our experiment is presented in the second

section of this chapter.

Direct measurement provides a simple technique for characterizing multidi-

mensional states. Yet, the measurement of highdimensional states remains a

challenging task. Even for DM the number of measurements that are needed

to characterize the state vectors grows linearly with the dimension of the state.

Further, a much larger ensemble of identically prepared particles is required

for reliable measurement of elements of the state vector in a high-dimensional

Hilbert space [126]. The final section of this chapter is allocated to compres-

sive direct measurements (CDM). The CDM method exploits the experimenter’s

prior knowledge for reducing the number of required measurements. This is

achieved by imposing the property of sparsity under the transverse gradient

transformation.
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4.2 Theory and background

In the first chapter, we overviewed the concept of a weak measurement. A

weak measurement is a weak interaction between a quantum system with a

pointer state that represents the measurement apparatus. The result of a weak

measurement, known as the weak value, was found as

Aw =
〈ψf | Â |ψ〉
〈ψf |ψ〉

. (4.2.1)

Here, |ψ〉 is the initial state of a system and |ψf〉 is the state of the system after

post-selection. It is evident that the weak value can be a complex quantity under

general conditions. We showed earlier and that the real and imaginary parts of

the weak value are proportional to the expectation values of the position and

the momentum of the pointer, respectively.

We now go over the direct measurement formalism, following the treatment

by Lundeen and co-workers [10]. We consider a weak measurement of the posi-

tion projector at point x, which can be described via the operator Â = |x〉 〈x|,
followed by post-selection on an eigenstate of position, |p〉. The weak value for

this measurement can be written as

〈πx〉w =
〈p |x〉 〈x|ψ〉
〈p|ψ〉

. (4.2.2)

Substituting the Fourier transform relation between x and p, 〈p |x〉 = eipx/~, we

get

〈πx〉w =
eipx/~ψ(x)

φ(p)
. (4.2.3)

Here, ψ(x) and φ(p) are the wave function representations in the position and

momentum bases, respectively. This expression can be further simplified by

considering the special case of post-selection on |p = 0〉

〈πx〉w = kψ(x). (4.2.4)

It is evident that the weak value is directly proportional to the quantum wave
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function. The proportionality constant, k = 1
φ(0)

can be eliminated by imposing

the normalization condition of the wave function.

Figure 4.2 shows a schematic of the experimental setup used in [10]. In this

realization, the polarization of the photons is used as a two-dimensional pointer,

and the wave function is the transverse structure of the optical field. Initially,

the beam of photons is filtered to be prepared in the vertical polarization. To

perform a weak measurement, the polarization of the optical field is rotated by a

small angle, α, at the point x by placing a small half wave plate at that location.

The strong measurement of momentum is performed by a pinhole located after

a Fourier-transforming lens. It is straightforward to show that the weak value is

given by [10]

〈πx〉w =
1

sinα
(〈s|σx |s〉 − i 〈s|σy |s〉) . (4.2.5)

Here, |s〉 denotes the polarization state of the light passing through the pinhole

and σx and σy are the x and y Pauli matrices. Classically, the expectation values

of σx and σy are equivalent to the S2 and S3 polarization Stokes parameters.

Figure 4.1: Left panel: Experimental setup for direct measurement. Right panel: a small
polarization rotation can be pictured as the superposition of the original polarization plus a
weak orthogonally polarized component.

Reference [10] proposes and demonstrates the concept of direct measure-

ments. The authors have used direct measurement to characterize the transverse

structure of single photons going through a single mode fiber. By scanning the

small half wave plate sliver, it is possible to measure the real and imaginary parts
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of the field at each points and then convert the results to amplitude and phase.

The authors have repeated the experiment with a classical beam of light and

have verified that the results remain identical to those from the experiment with

single photons [127]. While a complete comparison of the direct measurement

with quantum tomography remains to be drawn, the simplicity of its imple-

mentation has provided ample motivation for different experimental realizations

[122, 9, 8, 128].
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4.3 Direct measurement of the OAM state vec-

tor

In this section we use weak measurements of OAM followed by a strong measure-

ment of angular position to directly measure the complex probability amplitudes

of a 27-dimensional state in the OAM basis. In this manner, we are able to ob-

tain both the amplitude and the phase of each OAM component within our

state?space. We begin by expressing the state of a photon as a superposition of

states in the OAM basis as

|Ψ〉 =
∑
`

a` |`〉 , (4.3.1)

where a` are complex probability amplitudes. In direct analogy to a photon’s

position and linear momentum, the angular position and OAM of a photon form

a discrete Fourier conjugate pair [129, 130]. Consequently, any OAM basis state

|`〉 is mutually unbiased with respect to any angular position basis state |θ〉, i.e.

their inner product always has the same magnitude. This property allows us to

define a strategic quantity c = 〈θ0〉 `/ 〈θ0〉Ψ, which is constant with respect to

|`〉 for θ0 = 0. By multiplying our state above by this constant and inserting the

identity, we can expand it as

c |Ψ〉 = c
∑
`

|`〉 〈`|Ψ =
∑
`

|`〉 〈θ0| `〉 〈`|Ψ〉
〈θ0|Ψ〉

=
∑
`

〈π`〉w |`〉 . (4.3.2)

Notice here that we have introduced the quantity 〈π`〉w, which is proportional

to the probability amplitude a` from Eq. (4.3.1). This is known as the OAM

weak value [22], and is equal to the average result obtained by making a weak

projection in the OAM basis (π̂` = |`〉 〈`|) followed by a strong measurement in

the conjugate basis of angular position (θ). In this manner, the scaled complex

probability amplitudes ca` can be directly obtained by measuring the OAM weak

value 〈π`〉w for a finite set of `. Following this procedure, the constant c can be

eliminated by renormalizing the state |Ψ〉. In order to measure such weak values,
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we utilize a two-system Hamiltonian where the OAM of a photon is coupled to

its polarization, which serves as a measurement pointer [10]. We perform a weak

projection of OAM by rotating by a small angle the polarization of the OAM

mode to be measured. Following this, a strong measurement of angular position

is performed via a post-selection of states with θ = θ0. The OAM weak value

is read out by measuring the average change in the photon’s linear and circular

polarization.

Experimental procedure for measuring the OAM weak value. Perform-

ing a weak measurement of OAM at the single photon level is an experimental

challenge. In order to do so, we first use our enhanced OAM mode sorter for effi-

ciently separating the OAM components of the incoming photons [1, 4, 3]. This

process is depicted in Fig. 4.2 for a single OAM mode. R1 and R2 are custom

refractive elements that transform an OAM mode with azimuthal phase varia-

tion ei`θ to a momentum mode with position phase variation ei`x/a. Following

a Fourier transform lens (L1), a fan-out hologram implemented on a phase-only

spatial light modulator (SLM2) creates three adjacent copies of this momentum

mode . Following another Fourier transform lens (not shown in Fig. 4.2), SLM3

is used to remove a relative phase difference introduced in the beam-copying

process between the three copies. The resultant momentum mode is three times

the size of the original, while also having three times the phase gradient of the

original. A second lens (L2) Fourier transforms this larger momentum mode into

a position mode at SLM4. This results in well separated OAM modes (`) having

less than 10% overlap on average with neighboring modes (`± 1).

The weak projection of an OAM mode is performed by rotating its polariza-

tion by an angle α = π/9 (a strong projection would correspond to α = π/2).

We use SLM4 and a quarter-wave plate (QWP0) in double pass to carry out

this polarization rotation [131]. QWP1 and HWP1 are used to remove any el-

lipticity introduced by transmission and reflection through the non-polarizing

beamsplitter (NPBS). A strong measurement of angular position is performed

by a 10 µm slit placed in the Fourier plane of lens L3. Since the plane of the slit

is conjugate to the plane where the OAM modes are spatially separated (SLM4),
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Figure 4.2: Experimental setup for direct measurement of a high-dimensional state vec-
tor. State Preparation: A quantum state in an arbitrary superposition of orbital-angular-
momentum (OAM) modes is prepared by impressing phase information with a spatial light
modulator (SLM1) onto spatially-filtered (SMF) photons from an attenuated HeNe laser. Weak
Measurement: A particular OAM mode is weakly projected by rotating its polarization. In
order to do so, the OAM modes are first transformed into finite-sized momentum modes by two
refractive optical elements made out of PMMA (R1 and R2). Then, a Fourier transform lens
(L1) and a fan-out hologram implemented on SLM2 are used to generate three adjacent copies
of each momentum mode. The phase between these copies is corrected by SLM3. Another lens
(L2) converts these larger momentum modes into well separated position modes at its focus.
Finally, a quarter-wave plate (QWP0) used in double-pass with SLM4 are used to rotate the
polarization of the OAM mode to be weakly projected. Another quarter-wave and half-wave
plate (QWP1 and HWP1) are used to remove any ellipticity introduced by transmission and
reflection through the non-polarizing beam splitter (NPBS). Strong measurement: A strong
measurement of angular position is performed by Fourier transforming with a lens (L3) and
post-selecting state p = 0 with a 10 µm slit. Readout: The OAM weak value 〈π`〉w is obtained
by measuring the change in the photon polarization in the linear and circular polarization
bases. QWP2, HWP2, a polarizing beam splitter (PBS), and two single-photon avalanche
detectors (SPADs) are used for this purpose.
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a measurement of linear position by the slit is equivalent to a measurement of

angular position.

The average change in the photon’s linear and circular polarization is pro-

portional to Re〈π`〉w and Im〈π`〉w respectively [23, 10]. If the initial polarization

of the photon is vertical, the OAM weak value is given by

〈π`〉w =
1

sinα

(
〈sf| σ̂1 |sf〉 − i 〈sf| σ̂2 |sf〉

)
, (4.3.3)

where α is the rotation angle, σ̂1 and σ̂2 are the first and second Pauli operators,

and |sf〉 is the final polarization state of the photon. In order to measure the ex-

pectation values of σ̂1 and σ̂2, we transform to the linear and circular polarization

bases with QWP2 and HWP2, and measure the difference between orthogonal

polarization components with a polarizing beamsplitter (PBS) and two single-

photon avalanche detectors (SPADs). In this manner, we directly obtain the

scaled complex probability amplitudes ca` by scanning the weak measurement

through ` values of ±13. While the size of the OAM state space is unbounded,

we are limited to a dimensionality of d = 27 by our mode transformation tech-

nique.

Direct measurement of a 27-dimensional OAM state. The authors of the

first work on direct measurement showed this technique to give identical results

for heralded single photons and attenuated coherent states [10]. Therefore, in

our experiment, photons from a highly attenuated HeNe laser are tailored into

a high-dimensional quantum state by impressing a specific OAM distribution on

them with SLM1 and a 4f system of lenses (Fig. 4.2) [47]. The laser power is

reduced such that probabilistically only one photon is present in our apparatus

at any given time. First, we create a sinc-distribution of OAM using a wedge-

shaped mask on the SLM. Just as a rectangular aperture diffracts light into

a sinc-distribution of linear momenta, photons diffracting through an angular

aperture of width ∆θ result in a state vector with a sinc-distribution of OAM

probability amplitudes [129]
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Figure 4.3: Experimental data showing direct measurement of a 27-dimensional state vector
in the OAM basis. The state is created by sending photons through an angular aperture
of width ∆θ = 2π/9 rad (inset of (b)). (a) The measured real (blue circles) and imaginary

parts (red triangles) of the state vector, (b) the calculated probability density |Ψ(`)|2, and
(c) the calculated phase φ(`) are plotted as functions of the OAM quantum number ` up to a
dimensionality of ` = ±13. The probability density has a sinc-squared shape. The phase has an
asymmetric quadratic shape due to small misalignments in our optical system. Additionally,
π-phase jumps are seen in the phase when the probability amplitude changes sign (not seen
in the probability density). Theoretical fits to the probability density and phase are plotted
as blue lines. Error bars are calculated by propagating the detector error (due to background
light and dark counts) through to all measured quantities. Error bars larger than the symbols
are shown. The data shown is the average result obtained from 50 experimental runs.

a` = k sinc

(
∆θ`

2

)
. (4.3.4)
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This distribution has a width given by ∆` = 2π/∆θ, which refers to the mode

index of its first null. Using an angular aperture of width ∆θ = 2π/9 rad (inset

of Fig. 4.3(b)), we create such an ensemble of identical photons and perform

the direct measurement procedure on them. The measured real and imaginary

parts of the state vector are plotted in Fig. 4.3(a) as a function of `. Using

these quantities, we calculate the probability density |Ψ(`)|2 and the phase φ(`),

which are plotted in Figs. 4.3(b) and (c). The width of the sinc-squared fit to

the probability density is measured to be ∆` = 9.26± 0.21, which is very close

to the value of ∆` = 9 predicted from theory.

The measured phase plotted in Fig. 4.3(c) has a quadratic form with π-phase

jumps at OAM mode numbers ` = ±9. These mode numbers correspond to the

probability density minima in Fig. 4.3(b), which is where the sinc-shaped am-

plitude crosses the x-axis and changes sign. The asymmetric quadratic feature

in the phase appears due to small misalignments in our optical system. A 4f

imaging system (not shown in Fig. 4.2) is used to magnify the Fourier plane

of lens L2 onto SLM4. A misalignment in the z-axis of this imaging system

appears as a quadratic phase. Further, the asymmetry in the phase is due to a

first-order tilt aberration in our optical system, which is simply a result of the

plane of SLM2 not being perfectly parallel to the plane of SLM4. Taking these

two alignment imperfections into account, we use a quadratic model of the form

ax2 + bx+ c in order to calculate a fit to the phase using a least-squares fitting

algorithm in Matlab. Theoretical fits are plotted as blue lines in Fig. 4.3(c). As

can be seen, the phase error is unavoidably large when the amplitude approaches

zero.

Direct measurement of rotations in the OAM basis. We now use this

technique to analyze the effect of rotation on a photon carrying a broad range

of angular momenta. Rotation of a state vector by an angle θ0 can be expressed

by the unitary operator Û = exp(iL̂zθ0), where L̂z is the angular momentum

operator. Operating on our quantum state |Ψ〉 with Û , we get
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|Ψ′〉 = Û |Ψ〉 =
∑
`

k sinc

(
∆θ`

2

)
ei`θ0 |`〉 . (4.3.5)
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Figure 4.4: Experimental data showing the direct measurement of a rotated high-dimensional
state vector. The created state is rotated by angles θ± = ±π/9 rad (insets of (b) and (e)). (a)
and (d) The measured real (blue circles) and imaginary parts (red triangles) of the rotated

state vectors. (b) and (e) The calculated probability densities |Ψ(`)±|2. (c) and (f) The phase
difference ∆φ±(`) between the calculated phase and the phase of the unrotated case from Fig.
4.3(c). Theoretical fits to the probability densities and phases are plotted as blue lines. The
linear fits in (c) and (f) are calculated via the process of chi-square minimization, which takes
into account the error at each point. Error bars are calculated by propagating the detector
error (due to background light and dark counts) through to all measured quantities. Error
bars larger than the symbols are shown. The data shown is the average result obtained from
50 experimental runs.

Thus, rotation by an angle θ0 manifests as an `-dependent phase ei`θ0 in the OAM

basis. For this reason, the angular momentum operator is called the generator

of rotations under the paraxial approximation [132]. To measure this phase,

we create a rotated state vector by rotating our angular aperture by an angle

θ+ = π/9 rad (inset of Fig. 4.4(b)). Then, we perform the direct measurement
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procedure as before and measure the real and imaginary parts of the rotated state

vector as a function of ` (Fig. 4.4(a)). The probability density and phase of the

state vector are calculated and plotted in Figs. 4.4(b) and (c). For clarity, we

subtract the phase of the zero rotation case (Fig. 4.3(c)) from our phase reading,

so the effect of rotation is clear. Barring experimental error, the amplitude does

not change significantly from the unrotated case (Fig. 4.3(b)). However, the

phase of the OAM distribution exhibits a distinct `-dependent phase ramp with

a slope of 0.373±0.007 rad/mode. This is in close agreement with theory, which

predicts the phase to have a form φ(`) = ±π`/9, corresponding to a phase ramp

with a slope of ±0.35 rad/mode. A linear fit to the phase is calculated by the

process of chi-square minimization, which takes into account the phase error at

each point. This process is repeated for a negative rotation angle θ− = −π/9
rad, which results in a mostly unchanged probability density, but an `-dependent

phase ramp as expected with a negative slope of −0.404±0.007 rad/mode (Figs.

4.4 (d)-(f)).

These results clearly illustrate the relationship between phase and rotation in

the OAM basis in that every `-component acquires a phase proportional to the

azimuthal quantum number `. The measured slopes in both cases are slightly

larger than those expected from theory possibly due to errors introduced in the

geometrical transformation that is used to spatially separate the OAM modes.

The mode sorting process is extremely sensitive to choice of axis, and a very

small displacement of the transforming elements R1 and R2 can propagate as a

phase error.
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4.4 Compressive direct measurement

In this section, we introduce a method which combines the benefits of direct

measurement with a novel computational technique known as compressive sens-

ing [133, 134, 135, 136, 137, 138]. Utilizing our approach, the wave function of

a high-dimensional state can be estimated with a high fidelity using much fewer

number of measurements than the standard direct measurement approach. We

begin by establishing the theory of a compressive direct measurement (CDM).

We then describe our experimental implementation of CDM, which serves as

a direct test for this method. In our experiment, we are able to reconstruct

a wave function with only a fraction of the required measurements for a DM

measurement with a more than 90 percent fidelity.

As discussed earlier, weak value is the expectation value of a weak measure-

ment followed by a post-selection [22]. Consider a weak measurement of the

position operator π̂j = |xj〉 〈xj| at point xj followed by a post-selection on the

zero momentum eigenstate |o〉. The weak value for the above measurement is

given by

πw =
〈o|xj〉 〈xj|ψ〉
〈o|ψ〉

=
ψ(xj)

φ0

√
N
. (4.4.1)

In deriving this formula we have used the Fourier transform property φ0 = 〈o|ψ〉,
where N is the dimension of the Hilbert space. We also treat φ0 as a real number

as this can always be accounted for by adding a constant phase to the wave

function. The above relation indicates that the wave function can be extracted

from the weak value, whose real and imaginary parts can be read from the

expectation values of two conjugate variable of the pointer (see below) [139].

Note that the transition from the continuous spatial domain to a discrete state

vector has been achieved by dividing the continuous coordinate to a finite number

of pixels of sufficiently small area.

We now generalize the formalism to a form suitable for compressive sensing.

Quantum measurement can be mathematically described by the coupling be-

tween the measured system and the measurement pointer. We utilize a two-level
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pointer such as the polarization of photons. Let the initial system-pointer state

be

|Ω〉 = |ψ〉 ⊗ |V 〉 =
N∑
i=1

ψi |xi〉 ⊗ |V 〉 . (4.4.2)

Here, |ψ〉 is the wave function of interest. We have assumed that the pointer is

initially prepared in the vertical eigenstate |V 〉. Consider a weak measurement

of the sensing operator Q̂m =
∑

j Qm,jπ̂j which is a linear combination of the

position projectors π̂j weighted with coefficients Qm,j ∈ R. The effect of this

measurement can be described by making a Taylor series approximation to the

measurement’s evolution operator

eiαQ̂m⊗σ̂y |Ω〉 ' |Ω〉+ α
∑
j

Qm,j ψj |xj〉 ⊗ |H〉 . (4.4.3)

Here, σ̂y = −i |H〉 〈V |+i |V 〉 〈H| is a Pauli matrix and α is a constant parameter

quantifying the weakness of the measurement. Note that, the polarization at

each point xj is rotated around the optical axis by the value Qm,jα.

The state of the pointer after post-selection on |o〉 is given by

|sm〉 = |V 〉+
α

φ0

√
N

∑
j

Qm,jψj |H〉 . (4.4.4)

At this stage the information about the state-vector ψj is encoded in the polar-

ization of the post-selected photons. The expected values of the polarization of

the post-selected state can be obtained as

σ̄x,m ≡ 〈sm| σ̂x |sm〉 = κ
∑
j

Qm,j<[ψj], (4.4.5)

σ̄y,m ≡ 〈sm| σ̂y |sm〉 = −κ
∑
j

Qm,j=[ψj], (4.4.6)

where σ̂x = |H〉 〈V | + |V 〉 〈H| and κ = 2α
φ0
√
N

. In the above relations, <[ψj] and

=[ψj] are the real and the imaginary parts of ψj respectively. Combining the
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results σ̄x,m and σ̄y,m to a complex value φm = 1
κ
[σ̄x,m − iσ̄y,m] and repeating

the measurement several times we obtain φ = Q ψ. The extended form of this

equation reads 
φ1

φ2

...

φM

 =


Q1,1 Q1,2 · · · Q1,N

Q2,1 Q2,2 · · · Q2,N

...
...

. . .
...

QM,1 QM,2 · · · QM,N



ψ1

ψ2

...

ψN

 . (4.4.7)

Here, m ∈ {1 : M} and n ∈ {1 : N} where M is the total number of sensing

operators and N is the dimension of the Hilbert state of the unknown wave

function. To find the wave function ψ we need to solve the above linear system

of equations. For the special case M = N the set of equations can be exactly

solved for a non-singular matrix Q. However, we are interested in the case where

M ≤ N . The pseudo-inverse of Q can be used as an optimal linear recovery

strategy to find a solution that minimizes the least square error [140, 141]

ψ = Q†(QQ†)−1φ. (4.4.8)

Nevertheless, a nonlinear strategy can be used to recover ψ with a far superior

quality using the idea of compressive sensing (CS). Consider a linear transfor-

mation represented by matrix T. If the wave function under the experiment φ

is known to have very few non-zero coefficients under this transformation, ψ can

be recovered by solving the convex optimization problem [140]

min
ψ′
||Tψ′||`1 , subject to Qψ′ = φ. (4.4.9)

where || · ||`1 represents the 1-norm. For this approach to work, it is critical

that the two bases, defined by Q and T , are incoherent [140]. The coherence

of the two bases is defined by the square root of the dimension of the bases

times the highest fidelity between any pairs of states from the two bases [142].

According to CS theory if the coherence of the two bases is much smaller than

unity (dimensionless), by an overwhelming probability, the target wave function
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Figure 4.5: A schematic illustration of the experimental setup. Collimated Gaussian beam
from the single mode fiber is passed through a polarizer to prepare a vertical polarization. The
SLM is used along with two quarter wave plates (WP1 and WP2) to rotate the polarization
at each pixel. An f = 50 cm lens focuses the beam onto a pinhole with a diameter of 10 µm.
The polarization measurement is performed on the light collected from the pinhole using a
QWP/HWP (WP3) and a polarizing beam splitter.

ψ can be recovered with M ≥ O[K log(N)] measurements, where K is the

number of nonzero components of Tψ [142]. Functions with spatial correlations

are shown to be extremely likely to have sparse coefficients in discrete cosine

transform or wavelet transform domains [140, 143]. However, a much simpler

variant of Eq. (4.4.9) can be used in practice to achieve results of comparable

quality [140, 144]. In this method the target wave function can be found by

minimizing the quantity

min
ψ′

∑
j

||∇ψ′
j ||`1 +

µ

2
||Qψ′ − φ||2`2 . (4.4.10)

Here, ∇ψ′
j is the discrete gradient of ψ′ at position xj and µ is a penalty factor.

Heuristically, the minimization of the first term results in a smooth function

while the second factor minimizes deviations from the experimental results φ.

The optimal value of µ should be chosen considering the specifics of the target

wave function and the signal-to-noise ratio of the experimental data. At the end
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Figure 4.6: The amplitude, real, and imaginary parts of an aberrated Gaussian state from
experimental data. The left column presents data from a pixel-by-pixel scan of the state
for N=192. The middle column shows the reconstructed wavefront for for N=192, and
M/N = 20% of total measurements from the CDM method. The right column demonstrates
reconstruction N=19200, and M/N = 20% of total measurements. The transverse dimensions
of the state are shown in millimeters.

we retrieve the wave function from the solution of the optimization problem as

|ψ′〉 =
∑N

i=1 ψ
′
i |xi〉.

Fig. 4.5 shows the schematics of the experiment. A vertically polarized Gaus-

sian mode is prepared by spatially filtering a He-Ne laser beam with a single mode

fiber and passing it through a polarizer. The polarization rotation is performed

using a spatial light modulator (SLM) in combination with two quarter wave

plates (WP1 and WP2) [145, 146]. The SLM provides the ability to rotate the

polarization of the incident beam at every single pixel in a controlled fashion.

The post-selection in the momentum basis is done using a Fourier-transforming

lens and a single mode pinhole. We retrieve the real part of the weak value using

a combination of a half wave plate (WP3) and a polarizing beam splitter (PBS).
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The beams from the output ports of the beam splitter are coupled to single

mode fibers that are connected to avalanche photo-diodes (APDs). Similarly,

the imaginary part of the weak value is measured by replacing the half wave

plate with a quarter wave plate (WP3).

We perform a random polarization rotation of either 20◦ or zero at each

pixel. The rotated polarization state is given by cos θ |V 〉 + sin(θ) |H〉 where

sin θ = Qm,jα. This corresponds to Qm,j values of 1 and 0 and α = 0.349. For

different values of m, we load different pre-generated sensing vectors Qm onto

the SLM and repeat the experiment. The wave function is then retrieved via

post processing on a computer. We use the algorithm known as Total Variation

Minimization by Augmented Lagrangian and Alternating Direction (TVAL3)

[147] to solve Eq. (4.4.10). In our experiment, we have used values of µ ranged

from 24 to 213 (a larger value of µ results in a closer agreement between the

reconstructed state and the experimental data). Our target wave function is a

collimated Gaussian beam from a single-mode fiber. The lens after the fiber is

slightly displaced to create an aberrated wavefront. This create a complex wave

function made from both real and imaginary parts. We reconstruct the wave

function from the conventional direct measurement method using Eq. (4.4.1).

The real and imaginary parts from a pixel-by-pixel raster scan are shown on the

left column of Fig. 4.6 for a N = 12× 16 = 192 dimensional Hilbert space. The

real and imaginary parts of the wave function reconstructed from CDM using

N = 192 and M/N = 20% are shown on the middle column. It can be seen

that the main features of the state are retrieved with as few as 20% of the total

number of measurements used in the left column. It should be emphasized that

the minimum number of required measurement for an accurate reconstruction

is proportional to the sparsity of the signal. Our algorithm uses sparsity with

respect to the gradient transformation, according to Eq. (4.4.10). In order to

achieve a more sparse signal, we have done a fine grain measurement of the

same state at the resolution of N = 120 × 160 = 19200. The wave function

reconstructed from CDM using M/N = 20% is shown on the right column of

Fig. 4.6. Due to increased sparsity of the state in the larger Hilbert space, a

very detailed reconstruction can be achieved with 20% of the total number of
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Figure 4.7: The fidelity of the reconstructed state with the target wave function as a function
of the percentage of the total measurements. The fidelity of the state reconstructed with CDM
is shown in blue. The fidelity of the state reconstructed from a partial pixel-by-pixel scan with
the same number of measurements is shown in red for comparison. The error-bars represent
standard deviation calculated from 100 repetitions of the experiment (error-bars are shown at
every second data point for visual clarity).

measurements.

To provide a quantitive comparison of the two methods we calculate the

fidelity between the retrieved state |ψ′〉 and the target state |ψ〉 from a full

pixel-by-pixel scan as

F (|ψ′〉 , |ψ〉) = | 〈ψ′|ψ〉 |. (4.4.11)

The results are shown in Fig. 4.7. The horizontal axis corresponds to the per-

centage of the measurements (100 × M
N

). The blue curve shows the fidelity of

the state reconstructed with the CDM method. The red curve represents the

average fidelity of state reconstructed with Eq. (4.4.8) using the data from a par-

tial pixel-by-pixel measurement of M randomly chosen points. It is seen from

the figure that the compressive method results in a drastic increase of fidelity

for the first few measurement and gradually settles to a value close to 1. As an

example of the usefulness of the compressive method, a fidelity as high as 90% is

achieved by performing only 25% of measurements, while the conventional direct
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measurement needs approximately 80% of all the measurements to achieve the

same fidelity.

To further demonstrate the accuracy of our method we have used it to mea-

sure a custom state prepared using a phase mask depicting letters U and R with

a phase jump of π/2. The phase mask is prepared via an additional spatial light

modulator illuminated with the Gaussian beam from the laser and the state is

imaged onto the second SLM which is used for polarization rotation. Figure 4.8

shows the amplitude and the phase of the reconstructed state with M/N = 20%

of the total measurements. Notice that while the amplitude is relatively uniform,

the phase shows the letters U and R with a remarkable accuracy. It should be

emphasized that the measurement of a state of such high dimensions is extremely

time consuming via a pixel-by-pixel scanning. In our approach, we perform a

weak measurement on approximately half of all the pixels at each time. Due to

this, the change in the state of the pointer (i.e. the polarization of the beam

after the pinhole) is much more pronounced as compared to the conventional

DM where only one pixel would be weakly measured. The speed-up factor can

be estimated considering that the strength of the signal measured in the labo-

ratory is proportional to the value of the second term in Eq. 4.4.4. It is easy

to check that the magnitude of this term is on average
√
N/2 times larger in

the case when half of Qm,j are set to one. For the case of our experiment with

N = 19200, and M/N = 20%, our approach provides a ∼ 350-fold speed-up in

the measurement procedure.

It should be emphasized that our specific experimental realization of the

CDM method can be described using classical physics. The measured wave

function in this case is the spatial mode of photons which is equivalent to the

electric field of paraxial light beams in the classical limit [148]. Since the exper-

iment is designed to measure the spatial mode, it is insensitive to the number of

excitations of the field (i.e. the number of photons). Subsequently, the results

of the experiment would be the same for a source of single photons, heralded

single photons or a strong laser beam provided that they are prepared in the

same spatial and polarization modes. However, the language of quantum me-

chanics provides a simpler description, with a broader range of applicability that



CHAPTER 4 91

 

 

20 40 60 80 100 120 140 160

−3

−2

−1

0

1

2

3

 

 

20 40 60 80 100 120 140 160

20

40

60

80

100

120

0.5

1

0

Amplitude Phase

Figure 4.8: The amplitude and phase of a Gaussian mode illuminating a custom phase mask
(the initials of the University of Rochester). The data is reconstructed by the CDM method
with N=19200, and M/N = 20% of total measurements.

includes fundamentally quantum mechanical states such as electron beams.

Recently, compressive sensing has been used to simultaneously measure the

position and momentum distributions of photons with the aid of partially pro-

jective measurements [149]. This method requires parallel simultaneous mea-

surements performed by a camera for characterizing probability distributions of

conjugate variables. In contrast, the exclusive use of single-pixel detectors in our

technique provides an alternative to inefficient and costly arrayed detectors for

quantum optics [150] and terahertz applications [151]. Additionally, the use of

a single-pixel detector is advantageous to parallel multi-pixel measurements in

terms of signal-to-noise ratio. Last but not least, we emphasize that the mea-

surement of position and momentum probability distributions is not identical

to the full measurement of the wave function. The measurement results from

the method in Ref. [149] need to be processed using recursive numerical algo-

rithms to retrieve the phase information, which is crucial for determination of

the wave function. Such algorithms are proved to provide a unique solution only

for restrictive sets of conditions [152].
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4.5 Summary

Determining an unknown wave function is of fundamental importance in quan-

tum mechanics. Despite many seminal contributions, in practice this task re-

mains challenging, especially for high-dimensional states. In the first section

of this chapter, we have overviewed the direct measurement approach, intro-

duced by Lundeen et. al. This method provides a ground for meeting the

high-dimensionality challenge [10]. We have presented our implementation of

direct measurements for the azimuthal degree of freedom in the second section

of this chapter. By performing a series of weak and strong measurements of

orbital angular momentum and the azimuthal angle we have been able to re-

trieve the complex OAM state in a 27-dimensional Hilbert space. We have used

this method to characterize a superposition of the OAM modes. Further, our

method provides the relative phase between the OAM components of the states,

making it possible to directly sense angular rotations. In the third section of

this chapter, we have introduced the idea of compressive direct measurement

(CDM). In this method, we combine the computational efficiency of compressive

sensing with the experimental simplicity of the direct measurement in determin-

ing the wave function of an a priori unknown state. Our experimental results

demonstrate that a compressive variation of the direct measurement allows an

accurate determination of a 192-dimensional state with a fidelity of 90% using

only 25 percent of measurements that are needed for the conventional direct

measurement approach. This method provides an easy means of characterizing

high-dimensional systems in the labs. In addition, the technique can be used for

applications which involve a classical beam of light such as wavefront sensing of

Terahertz waves.
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Chapter 5

Characterization of mixed OAM

states

5.1 Introduction

In the previous chapters, we discussed the concept of photonic orbital angular

momentum and its potential applications in quantum information. We also

overviewed methods of efficient generation, projective measurement, and direct

measurement of the wave function for the orbital angular momentum of light.

The focus of this chapter will be the characterization of a mixed quantum state

in the basis of OAM.

Quantum mechanically, a discrete pure state can be described with a com-

plex state vector. A projective measurement provides the OAM spectrum of an

optical state, which is proportional to the modulus of the wave vector. A va-

riety of experimental methods can achieve projective measurement of OAM by

using phase plates [32], spatial light modulators (SLM) [39], q-plates [107] and

custom designed OAM mode sorters, like the one previously described in this

thesis [40, 3, 1]. However, determination of the OAM state vector also requires

measurement of the relative phase among different basis vectors. This task was

recently achieved by using weak measurements, as described in an earlier chapter

of this thesis [9].
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The state vector adequately describes a pure quantum system. However,

pure states are only a restricted set of physical states in the Hilbert space,

because the vast majority of conceivable states are mixed states [153]. The

most general description of a quantum state requires knowledge of its density

matrix, or an equivalent phase-space quasi-probability distribution, such as the

Wigner distribution [154]. Moreover, the post-selection loss from weak-value-

based techniques has been shown to result in a suboptimal estimation strategy

[155]. This issue has been a topic of heated debate lately [156, 157, 158].

In principle, it is possible to determine the density matrix with quantum

state tomography (QST) [118, 117]. However, QST in the OAM basis requires

the capability to perform projective measurements on arbitrary superpositions of

two or more OAM eigenstates, a task that remains challenging due to technical

limitations. For the restricted case of two OAM eigenstates, this task can be

realized with a q-plate [20, 107]. Projection on an arbitrary superposition state

can be achieved with an SLM. Nonetheless, the variations in the efficiency of

measuring different OAM modes and the cross-talk between neighboring modes

critically limits the accuracy of this approach [159].

In this chapter, we propose and demonstrate a method for obtaining the

quantum density matrix in the basis of OAM. We achieve this goal by directly

finding the density matrix elements in the basis of azimuthal angle and then

mapping it onto the OAM basis. As we show, one can make use of the periodicity

of the state in the basis of azimuthal angle to establish a simple approach for

directly measuring the elements of density matrix. Our scheme is entirely based

on strong measurements and is realized with a photon efficiency of unity. We

provide results for the experimental characterization of pure and mixed OAM

states imposed on the transverse structure of classical and quantum sources of

light
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5.2 Measurement of the density matrix

We begin our analysis by considering a quantum system with an unknown den-

sity matrix in the basis of azimuthal angle, ρ. Next, we introduce an ancil-

lary qubit state used as a pointer, that is prepared in the known initial state

|+〉 = (|H〉 + |V 〉)/
√

2. For the optical implementation of our technique we

utilize the polarization of photons as the pointer. For this reason, we refer to

two qubit eigenstates as the vertical and horizontal polarization states, |V 〉 and

|H〉. The joint state of our unknown quantum system and the pointer is given

by

Ω̂ = ρ̂⊗ |+〉 〈+| . (5.2.1)

In the next step, we consider the evolution of the joint system-pointer state

under the unitary evolution characterized by the operator Û = exp(−iτ L̂⊗ σ̂z).
Here, L̂ is the orbital angular momentum operator of the quantum state and

σ̂z = |H〉 〈H| − |V 〉 〈V |, which is one of the Pauli operators for the pointer.

Heuristically, the operator Û describes a polarization-sensitive rotation by the

angle τ . After this transformation, the system-pointer state can be written as

Λ̂ = Û †Ω̂Û . (5.2.2)

It is straightforward to verify that the unitary interaction Û results in an entan-

gled system-pointer state. Post-selection on a specific angular state θ leads to a

reduced density matrix in the Hilbert space of the pointer:

σ̂ =
〈θ| Λ̂ |θ〉

Tr
[
〈θ| Λ̂ |θ〉

] . (5.2.3)

We can directly find the unknown density matrix of the quantum system, ρ̂,

by measuring the expectation values of the Pauli operators for the pointer. This

calculation can be performed by using the well-known property of the angular

eigenstates, exp(−iτ L̂) |θ〉 = |θ + τ〉. Here, we have θ− = [θ−τ ] and θ+ = [θ+τ ].
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Using this notation we find that

〈σ̂x(θ, τ)〉 = Tr [σ̂xσ̂] =
2

N(θ, τ)
Re [〈θ+| ρ̂ |θ−〉] ,

〈σ̂y(θ, τ)〉 = Tr [σ̂yσ̂] =
2

N(θ, τ)
Im [〈θ+| ρ̂ |θ−〉] . (5.2.4)

Here, we have N(θ, τ) = Tr
[
〈θ| Λ̂ |θ〉

]
= 〈θ−| ρ̂ |θ−〉+ 〈θ+| ρ̂ |θ+〉.

We can simplify this result by working in a (2N + 1)−dimensional state space

spanned by the L̂ eigenvectors |`〉 with {|`| ≤ N}. In this subspace, an angular

eigenstate can be constructed with the discrete Fourier transformation

|θ0〉 =
1√

(2N + 1)

`=+N∑
`=−N

e−iθ0` |`〉 . (5.2.5)

Here, |θ0〉 is the zero-angle state. Subsequently, any other eigenstate of angle

can be found using the shift property under rotation

exp (−iθL̂) |θ0〉 = |θ + θ0〉 . (5.2.6)

The angular states defined above have previously been introduced in the litera-

ture for development of a Hermitian operator for rotation angle [132] and also

for generalization of the BB-84 QKD protocol for OAM basis [5, 84].

We simplify Eq. (5.2.4) by taking the rotation angles and the post-selection

angles to possess discrete values. Doing so, we find that the elements of density

matrix in a discrete basis of angular states take the following form

〈θm| ρ̂ |θn〉 =
N(αmn, βmn)

2
× (5.2.7)[

〈σ̂x(αmn, βmn)〉+ i〈σ̂y(αmn, βmn)〉
]
.

Here, we have θm = 2πm/(2N + 1), αmn = (θm + θn)/2, and βmn = (θm − θn)/2.

Hence, the expression above provides a procedure for measuring each element of

the density matrix ρmn = 〈θm| ρ̂ |θn〉 by performing a rotation of βmn, followed by

a post-selection on an an angle state at the angular position αmn. Our approach
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separates the real and imaginary parts of the density matrix, and each part can

be found directly by characterizing the two conjugate variables σ̂x and σ̂y of

the pointer. Note that the entire procedure is based on strong measurements

and, as we outline in the experimental section, we can realize in parallel the

post-selection on the angle states |αmn〉 with an array of detectors and therefore

avoid the post-selection loss.

The approach detailed above provides the density matrix in the (2N + 1)−dimensional

basis of |θn〉. Once we find the density matrix in the angular basis, we can use

the relation 〈θn|`〉 = exp (−iθn`)/(2N + 1) to find the elements of the density

matrix in the basis of OAM as

ρ`,`′ =
N∑

{m,n}=−N

〈`′|θm〉 〈θm| ρ̂ |θn〉 〈θn|`〉 . (5.2.8)

5.3 Experimental realization

The left panel of Fig. 5.1 illustrates our experimental setup. We use the light

beam from a 3 mW He-Ne laser (633 nm), that is coupled to a single-mode fiber

(SMF) and then expanded to a spot size of 1.8 cm. The laser beam homoge-

neously illuminates the display of the SLM, which has an active area of (9.3 × 7

mm2 ). The SLM is used to realize computer generated holograms for creating

arbitrary spatial structures [47]. We use a Dove prism inside a Sagnac interfer-

ometer for realizing the transformation in Eq. (5.2.2). The beam is set to the 45◦

polarization state before the interferometer. We use a quarter- and a half-wave

plate along with a polarizing beam splitter (PBS) for realizing the measurement

of 〈σ̂x〉 and 〈σ̂y〉.
It is possible to experimentally realize a projection onto an angular states

defined in Eq. (5.2.5) with a series of custom optical elements [1, 2]. However,

post-selection on an angular wedge with sharp boundaries is a much simpler

task that provides all necessary information for finding the density matrix in

the OAM basis. We achieve this task by recording the intensity of the beam at

the two output ports of the PBS with a charge-coupled device (CCD) camera.
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Figure 5.1: Characterization of the transverse structure of classical light. Top panel:
The light beam from a HeNe laser illuminates a phase-only spatial light modulator. The
polarization state of the beam is prepared by a polarizer. A Dove prism located inside a Sagnac
interferometer causes a rotation in opposite directions of each of the counter-propagating
beams. Two quarter wave plates along with a half wave is used along with a polarizing beam
splitter for characterizing the polarization of the output beam. Bottom panel: Experimental
results for characterization of an OAM mode with ` = 1. The top plot shows the density matrix
in the (discretized) basis of azimuthal angle and the plot in the bottom is the measured density
matrix in the OAM basis.
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Once we record the intensity in form of an image, it can be binned to a sequence

of numbers that correspond to post-selection on multiple angular states. To

approximate the (2N + 1) angular states, we define the angular wedges as

|Θn〉 =

√
2π

2N + 1

∞∑
`=−∞

sinc

(
`π

2N + 1

)
e−iαn` |`〉 . (5.3.1)

Here, we have n = 1, 2, ..., 2N + 1, and sinc(x) = sin(x)/x. It is easy to check

that the angular wedge modes defined above possess the same mean angular

positions as the angular states previously defined in Eq. (5.2.5).

The shift property of the angular modes Eq. (5.2.6) is the crucial property

in our theoretical analysis above. It is straightforward to show that the angular

wedge states |Wn〉 satisfy this property. Hence, we can directly find the density

matrix elements 〈Wm| ρ̂ |Wn〉. We subsequently convert our measurement results

to the OAM basis using Eq. (5.2.8) by substituting 〈θn|`〉 with 〈Wn|`〉. Note that

the states |Wn〉 reside in a larger Hilbert states than the one spanned by |`〉 with

|`| ≤ N . Nevertheless, a measurement in the basis |Wn〉 provides sufficient

information to provide the density matrix, provided the prior information that

the state under characterization resides in the subspace spanned by |`〉 with

|`| ≤ N .

To confirm our characterization method, we test it on a series of different

states. The bottom panel of Fig. 5.1 shows experimental results for the charac-

terization of an |` = 1〉 OAM mode generated by the SLM. The top plot shows

the density matrix in the angular wedge basis, whereas the bottom plot demon-

strates the density matrix transformed into the OAM basis. We calculate the

fidelity of the characterized state with |` = 1〉 as 90%, testifying to the high

quality of the generation and the characterization procedure. We have used

the standard method of maximum-likelihood estimation to find positive-definite

density matrices from the experimental data [160].

As another test, we generate and characterize an equal superposition of the

OAM states |` = 1〉 and |` = −1〉. A pure superposition state is generated di-

rectly through the use of a computer generated hologram. To create a mixed
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Figure 5.2: Characterization of pure and mixed superposition states. Top panel: The
intensity pattern of a pure (left) and mixed (right) superposition of ` = 1 and ` = −1 OAM
modes with equal weights. Bottom panel: The real and imaginary parts of the OAM density
matrix from experiment.

state, we use a computer program to randomly switch the SLM between two

holograms designed for generating ` = 1 and ` = −1 modes. The mode switch-

ing occurs at a rate of 60 Hz, and we use a long (10 s) exposure time on the

CCD to guarantee uniform averaging over the changing beam structure. Fig-

ure 5.2 shows the intensity patterns and the measured density matrix for the two

states. The degree of coherence between the OAM states |` = 1〉 and |` = −1〉
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can be calculated as

γ =
|ρ{−1,1}|√

|ρ{1,1}||ρ{−1,−1}|
. (5.3.2)

We calculate the degree of coherence for the two states as γpure = 0.80 and

γmixed = 0.06. For the pure superposition state, we attribute the slight reduction

from unity of the degree of coherence to the imperfections in the generation of

the state and the averaging over the non-uniform radial structure of the laser

beam. In addition to the results presented above, we have tested our method on

a number of different states in the angular and OAM bases (see Appendix B for

more information).

The high photon efficiency of our method makes it suitable for characteri-

zation of quantum sources of light, which are often limited in the photon flux.

We test our method by characterizing the transverse structure of heralded single

photons using the setup depicted in Fig. 5.3. We generate pairs of photons by

pumping a poled potassium titanyl phosphate crystal (PPKTP) with the beam

from a 405 nm laser diode [161]. The parametric down-conversion process con-

verts a photon of the pump beam to a pair of signal and an idler photons at the

wavelength of 790 nm and 830 nm respectively. We separate the two photons of

each pair by using a dichroic mirror. The idler photons are then collected with a

lens and detected using an an avalanche photo-diode (APD). The signal photons

are sent through a q-plate that is sandwiched between two crossed polarizers.

We use a q-plate with a charge of 1/2 to shape the transverse structure of the

photon to a superposition of |` = 1〉 and |` = −1〉 states [20]. The structured

photons are sent through the Sagnac interferometer described above. We use an

Andor iStar intensified charge coupled device (ICCD) camera for detecting the

heralded single photons [162]. Each detection event is triggered by the electronic

signal from the APD in a 5 ns time window. Figure 5.3 displays the structure of

the shaped signal beam from a 1200 sec exposure. We combine our measurement

results for the different rotation angles of the dove prism to find the density ma-

trix (see the bottom panel of Fig. 5.3). It can be verified that the density matrix

closely resembles the one from measurement of a |` = 1〉 and |` = −1〉 previously
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Figure 5.3: Characterization of the transverse structure of single photons. Top left:
A PPKTP crystal is pumped with a 405 nm continuous wave laser beam. Single photons
from non-degenerate parametric down-conversion are separated with a dichroic mirror. The
idler photons (830 nm) are detected by an avalanche photo-diode (APD), which heralds the
detection of signal photons (790 nm) with an intensified charge coupled device (ICCD). A
q-plate (q = 1/2) is placed between two crossed polarizer to prepare an equal superposition of
` = 1 and ` = −1 OAM modes. Top right: The transverse structure of single photons captured
with an accumulation of 5-ns-coincidence events over a 1200 sec exposure time. Bottom panel:
The real and imaginary parts of the OAM density matrix from experiment.

performed with a classical beam of light (for comparison refer to Fig. 5.1).

We conclude our remarks by analyzing the scaling of our characterization

technique. For the full characterization of the density matrix in a Hilbert space
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of dimension d = 2N + 1, one needs to measure d2 − 1 uknown quantities [117].

The quadratic scaling of the number of required measurement has posed a long-

standing challenge for measuring states with large dimensions [163, 8]. Through

the use of a camera for post-selection, we are able to sequence individual images

to find d elements of the density matrix simultaneously. This is a crucial practical

advantage since our measurement time scales linearly with the dimensionality

of the state. Considering the values of exposure times and the resolution of the

CCD camera used in this work, we anticipate that our technique can used for

characterization of state with a dimensionality, d, as large as 100.

5.4 Summary

In summary, we have demonstrated a technique for full characterization of the

orbital-angular-momentum content of a beam of light. We have achieved this

task by directly measuring the elements of the density matrix in the basis of

azimuthal angle, and mapping the results to the conjugate basis of OAM via

a linear transformation. We have tested our technique by applying it to char-

acterization of both classical beams of light and heralded single photons. Our

approach readily scales to very large dimensions, involves no photon loss from

post-selection, and is capable of characterizing partially coherent OAM states.

To our knowledge, this technique is the only approach that is capable of si-

multaneously achieving these task. We anticipate that the presented method

for characterization of the OAM density matrix will constitute an essential part

of quantum information protocols that are based on using the the azimuthal

structure of the light field.



CHAPTER 5 104

Conclusions

In this thesis, we have investigated the role of structured light fields as resource

for encoding quantum information. The recent progress in the technology of

spatial light modulators has enabled precise control of the transverse mode of

the optical field. The transverse structure of the light field is in principle an

unbounded space, and hence it is an ideal degree of freedom for encoding infor-

mation. In the first half of this thesis, we have discussed our implementation of

a multi-dimensional quantum key distribution system that is based on encoding

information on the orbital angular momentum of single photons.

The feasibility of high-dimensional QKD in the spatial domain has been

previously demonstrated by encoding information in the transverse linear mo-

mentum and position bases. We have shown that the utilization of OAM modes

in a long-haul free-space link has the advantage of reducing diffraction-induced

loss and cross-talk. Moreover, the inherently discrete nature of orbital angular

momentum lends itself to implementation of a generalized version of the BB-84

protocol. Nonetheless, the precise measurement of the OAM of a single photon

has been a major roadblock for the implementation of such a protocol. We have

overcome this limitation by developing a photon-efficient mode sorting device

that can achieve a mode discrimination of greater than 92%. This task has been

achieved with advancing the design of a mode-sorter device, originally devel-

oped by Miles Padgett’s group, through the use of a diffractive beam-splitting

element. Chapters two and three of this thesis outline the implementation of our

QKD protocol, which is based on a 7-dimensional alphabet encoded in OAM and

in the mutually unbiased basis of angular (ANG) modes. In our experimental

implementation, we have achieved a mutual information of 2.05 bits per sifted
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photon, which is more than twice the maximum allowable capacity of a two-

dimensional QKD system. The symbol error rate of our scheme is measured to

be 10.5%, which is sufficient for proving security against coherent and individual

eavesdropping attacks for an infinite key. While our experiment demonstrates

the feasibility of using OAM modes for QKD, several challenges need to be ad-

dressed before such a protocol can be employed for practical applications. We

have laid out a clear path for how our system can be enhanced to perform practi-

cal, high-dimensional QKD using current technology. Professor Boyd’s research

group is currently pursuing this avenue of research with the ultimate goal of

implementing a 10-km long free-space QKD system, with a rate of at least 100

Mb/s.

While an increased dimensionality is beneficial for a number of the quantum

information processing tasks such as QDK, it poses a challenge for the experi-

mentalist who desires to generate and manipulate such states with full control. In

the second half of this thesis, we have tackled the problem of characterization of

structured light fields. The method of direct measurement, devised by Jeff Lun-

deen’s group, provides a simple means of characterizing large-dimensional states

with the aid of complex weak values. We have applied this method to characteri-

zation of OAM modes and their superpositions. Through the use of this method,

we have been able to measure the probability amplitudes and the relative phase of

the OAM components of an arbitrary light field in a 27-dimensional state space.

We have then improved the direct measurement technique by combining it with

a computational technique known as compressive sensing. Although the direct

measurement approach provides an easy-to-implement approach to the problem

of state characterization, it does not scale favorably as the dimensionality of

the state under investigation increases. We have found that compressive direct

measurements (CDMs), can be used to drastically reduce the number of exper-

iments required for the characterization of a wave function. Our experimental

results demonstrate an accurate determination of a 192-dimensional state with

a fidelity of 90% using only 25 percent of measurements that are needed for the

conventional direct measurement approach. Taking this method to the extremes,

we have demonstrated a 350-fold speed up in the process of characterization of
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a 19200-dimensional state.

In the last chapter, we have demonstrated a technique for full characteriza-

tion of the orbital-angular-momentum content of the light field. This method

goes beyond the conventional direct measurement technique by providing the

ability to characterize mixed (i.e. incoherent or partially coherent) states while

relying exclusively on projective measurements. We have shown that the ele-

ments of density matrix in the basis of azimuthal angle can be directly found

by registering the interference between a quantum state and its rotated replica.

We then convert the measured angular density matrix to basis of orbital angular

momentum by using a linear transformation. We have tested our method by ap-

plying it to characterization of both classical beams of light and heralded single

photons. We have shown that the number of required measurements in this ap-

proach scales favorably to large dimensions, while the absence of post-selection

loss makes it ideal for characterizing the transverse structure of quantum sources

of radiation. We are currently investigating this avenue of research with the ul-

timate goal of characterizing single-photon and two-photon states, in a Hilbert

state spanned by 100 OAM modes.
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Appendix A: Diffraction and

radial modes

It is known that OAM modes with larger mode index ` have a larger rms (root

mean squared) radius in the far field [164]. Given the different radial profiles of

different OAM modes, one might be concerned that the security of the protocol is

compromised. More specifically, we are interested to know whether Eve can gain

information by using the photons that fall outside Bob’s aperture? The details

of the diffraction behavior depends on the radial profile of the OAM modes as

defined in the transmitter’s aperture. We consider OAM modes with a top-hat

intensity profile such as the ones used in our experiment. Since diffraction plays

no role once the Fresnel number is sufficiently large, this issue does not directly

apply to our experiment. However, the answer to the question for a low-Fresnel-

number system is not trivial. Below, we show that it is impossible for Eve to

gain any information by performing this attack regardless of the Fresnel number

of the system.

Intercept and intercept attack

In an intercept and intercept attack (also known as denial of service) Eve detects

a photon without retransmitting it. Since Alice and Bob disregards the frames

with no photons in basis reconciliation, Eve will not have any mutual information

with the sifted key and hence there is no loss of security.
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Eve
Bob

R B

R E 1

R E 2

Figure 4: Bob’s and Eve’s receiving apertures

Intercept and resend attack

In this type of attack Eve detects a photon that falls outside of Bob’s apertures

in a random basis. She then resends a photon in a state determined by the result

of her measurement into the Bob’s aperture. The geometry for Bob’s and Eve’s

apertures are shown in Fig. 4. Note that the RB, RE1 and RE2 are all bound

between zero and infinity and so we are considering the most general case.

We demonstrate an OAM mode’s optical field at any plane z by Ψ`
OAM(z).

The probability for detecting each of the OAM modes by Eve can be written as

P `
OAM(z) =

∫ RE2

RE1

∣∣Ψ`
OAM(z)

∣∣2 rdr. (A.1)

Assuming Alice chooses to send OAM modes randomly with a probability of

1/d (where d = 2N + 1 is the total number of modes used), the probability for

detecting any OAM mode will be

POAM(z) =
1

d

N∑
`=−N

∫ RE2

RE1

∣∣Ψ`
OAM(z)

∣∣2 rdr, (A.2)
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Similarly, the probability for detecting each of the ANG modes can be written

as

P n
ANG(z) =

∫ RE2

RE1

|Ψn
ANG(z)|2 rdr, (A.3)

and the probability for detecting any ANG mode will be

PANG(z) =
1

d

N∑
n=−N

∫ RE2

RE1

|Ψn
ANG(z)|2 rdr, (A.4)

We can simplify Eq. A.4 using the definition of the ANG modes

Ψn
ANG =

1√
d

N∑
`=−N

Ψ`
OAM exp

(
i2πn`

d

)
. (A.5)

Substituting Ψn
ANG we get

PANG(z) =
1

d

N∑
n=−N

∫ RE2

RE1

∣∣∣∣∣ 1√
d

N∑
`=−N

Ψ`
OAM exp

(
i2πn`

d

)∣∣∣∣∣
2

rdr

=
1

d

∫ RE2

RE1

N∑
n=−N

N∑
`=−N

N∑
`′=−N

1

d
Ψ`

OAMΨ∗`
′

OAM exp

[
i2πn(`− `′)

d

]
rdr

=
1

d

∫ RE2

RE1

N∑
`=−N

N∑
`′=−N

Ψ`
OAMΨ∗`

′

OAM

N∑
n=−N

1

d
exp

[
i2πn(`− `′)

d

]
rdr

=
1

d

∫ RE2

RE1

N∑
`=−N

N∑
`′=−N

Ψ`
OAMΨ∗`

′

OAMδ`,`′rdr

=
1

d

∫ RE2

RE1

N∑
`=−N

∣∣Ψ`
OAM

∣∣2 rdr
= POAM(z). (A.6)

The above result shows that it is equally probable for Eve to detect a photon

from either the OAM basis or the ANG basis using the beam from any range

of radii. Consequently, it is impossible for Eve to gain information by detecting

a photon from outside of Bob’s aperture. Moreover, the result remains valid at



APPENDIX A 110

any plane z from near field to far field.
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Appendix B: Data for

characterization of mixed OAM

states

Figure 5: Characterization of a coherent superposition and a mixture of angular
wedges. Top panel: Elements of the density matrix for a coherent superposition of three
angular wedges (|Ψ〉 = |Θ1〉+ |Θ3〉+ |Θ5〉). Bottom panel: Elements of the density matrix for
an incoherent mixture of the same angular wedge states.
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Figure 6: Characterization of OAM eigenstates. Top panel: Elements of the density
matrix for ` = 0. Middle panel: Elements of the density matrix for ` = 1. Bottom panel:
Elements of the density matrix for ` = 2.

Figure 7: Characterization of a coherent superposition and a mixture of OAM
eigenstates. Top panel: Elements of the density matrix for a coherent superposition of two
OAM states (|Ψ〉 = |`〉 + |−`〉, where ` = 1). Bottom panel: Elements of the density matrix
for an incoherent mixture of two OAM states (ρ = |`〉 〈`|+ |−`〉 〈−`|, where ` = 1).
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Figure 8: Characterization of a coherent superposition of OAM eigenstates imposed
on the transverse structure of single photons.
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