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Abstract: Analyses based on quantum metrology have shown that the ability to localize the
positions of two incoherent point sources can be significantly enhanced over direct imaging
through the use of mode sorting. Here we theoretically and experimentally investigate the effect
of partial coherence on the sub-diffraction limit localization of two sources based on parity
sorting. With the prior information of a negative and real-valued degree of coherence, higher
Fisher information is obtained than that for the incoherent case. Our results pave the way to
clarifying the role of coherence in quantum-limited metrology.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

The resolution of imaging systems is limited by the size of the diffraction-limited point spread
function (PSF) [1]. To quantify this resolution, the Rayleigh criterion has been proposed
and widely used [2]. Recently, the analysis of optical resolution has been recast in terms of
Fisher Information (FI) [3–5], which quantifies the precision of measurements and is inversely
proportional to the parameter estimation error. Generally, the FI of the estimation of separation δ
between two spatially incoherent point sources depends on the type of measurement performed
on the image plane field. In the case of direct detection of image plane intensity, the FI goes
to zero as δ → 0, an effect termed as Rayleigh’s curse. In their seminal work [3], Tsang et al.
showed that Rayleigh’s curse can be overcome if the optical field is detected by an appropriate
spatial mode demultiplexer (SPADE), given prior knowledge of two equally bright and incoherent
point sources versus a single emitter. It has been verified experimentally, as a demonstration of
superresolution over direct imaging, that the FI for such a scheme is constant as δ → 0 [6–10].

The sources, however, can have a non-zero coherence between them [11]. In fact, spatial
coherence is a key parameter affecting the resolution of imaging systems [12]; coherent
illumination techniques can offer enhanced resolution in microscopy [13] and two-point direct
imaging [14,15]. Moreover, coherence imaging can offer significant practical advantages over
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conventional direct imaging systems, for example in the very long baseline radio interferometry
(VLBI) used for black hole imaging [16]. It is then natural to ask how spatial coherence between
the two sources affects the resolution obtained by SPADE. Recent theoretical works have extended
the scope of the two-point estimation problem to include the general case of partial coherence
among the two sources [17–22]. In particular, it was shown that Rayleigh’s curse can still be
avoided for a known degree of spatial coherence γ [18,19,22]. For the case of γ<0, an even
greater sensitivity for SPADE was predicted than the incoherent case. The increased sensitivity
needs to be carefully interpreted, taking into account photon budgeting considerations [21].
Experimental demonstration of SPADE with partial coherence, however, has been lacking. The
main result of our work is to experimentally demonstrate the breaking of Rayleigh’s curse for
partially coherent light sources using SPADE. In doing so, we also distill and connect the different
elements of previous theoretical works.

In Section 2, we derive the classical FI of our experimental setup for partially coherent
fields. Special attention is paid to a priori assumptions and how they affect the obtained FI. The
connection between previous works is also made clear in this section. Section 3 explains the
experimental setup, the generation of spatial coherence, and a discussion of estimation statistics.
Section 4 summarizes the results.

2. Theory

In this section we outline the calculation of the classical FI for parity sorting of partially coherent
fields. Note that parity sorting falls under the scheme of binary SPADE (BSPADE), which is
a family of measurements that simplifies SPADE at the cost of losing large-delta information
[3,23]. For the sub-Rayleigh regime, it has been shown that a measurement of the even and odd
projections of the input field has an FI that converges to the quantum optimal FI [7,9]. Here we
show explicitly how different a priori assumptions yield different FI curves. The physical problem
is the following: Two point sources separated by δ and having a degree of spatial coherence γ
are imaged by an imaging system with a finite-sized aperture and a characteristic PSF width σ.
The goal is to perform quantum-limited estimation of δ in the sub-Rayleigh regime (δ<σ) by
performing parity sorting on the image plane field.

A partially coherent field is described by its cross-spectral density (CSD) function W(x1, x2)
[11]. To proceed, we first note that W can be decomposed via the coherent mode decomposition
(CMD) [24]. For our problem, the simplest choice of modes is to decompose W in the symmetric
(in phase) and antisymmetric (out of phase) combinations of the two sources. In the image plane,
W(x1, x2) is given as

W(x1, x2) = N0κ

2∑︂
k=1

pkϕ
∗
k(x1)ϕk(x2), (1)

where N0 is the average object plane photon number emitted by each point source, κ is a
space-invariant efficiency factor dictated by the aperture loss, ϕk(x) = f+(x) − eikπ f−(x) are the
symmetric (k = 1) and antisymmetric (k = 2) coherent modes, f±(x) = f (x ± δ/2) are the two
point spread functions separated by δ - the parameter to be estimated, pk is a real number such
that 0 ≤ pk ≤ 1, and p1 + p2 = 1. In what follows, the terms even and odd modes are used
interchangeably with symmetric and antisymmetric modes. We assume Gaussian PSFs of width
σ such that f (x) = e−x2/4σ2

(2πσ2)1/4
is the field PSF. The total number of photons in the image plane is

given by

Nt =

∫
dxW(x, x) = 2N0κ(1 + γd), (2)

where d =
∫

dxf+(x)f−(x) = e−δ2/(8σ2) is the overlap integral of the two shifted PSFs, and
γ = p1 − p2 is an effective degree of spatial coherence between the two sources. It is here that



Research Article Vol. 29, No. 14 / 5 July 2021 / Optics Express 22036

we first encounter the departure from the incoherent estimation problem; for γ ≠ 0, Nt depends
on the parameter δ to be estimated. Hence, it is necessary to spend some time clarifying the
interpretation of the FI for partially coherent sources. For a parity sorter, the photon numbers in
the even and odd ports are, respectively,

N1 = N0κp1

∫
dx|ϕ1(x)|2 = N0κ(1 + γ)(1 + d)

N2 = N0κp2

∫
dx|ϕ2(x)|2 = N0κ(1 − γ)(1 − d).

(3)

Equations (2) and (3) are derived in Supplement 1, Section S1. We assume that γ, κ are known
a priori. If we know N0 and the only unknown in the experiment is δ, then assuming Poisson
statistics it can be shown [3] that the FI for parity sorting is given by

Fδ(δ, γ)
2N0κ

=
δ2d2

16σ4

(︃
1 − γd
1 − d2

)︃
, (4)

where the subscript δ denotes that δ is the unknown parameter. Note that Fδ(δ, γ) is normalized
by 2N0κ, the total object plane photons multiplied by the loss factor. Fδ(δ, γ) is plotted in
Fig. 1(a), and κ has been absorbed into N0 for the plot. These curves show that the highest FI
is achieved for γ = −1. The physical operation of parity sorting affords some intuition about
this FI behavior. For γ = −1, all photons are routed to the odd port, and we have N1 = 0
and N2 = 2N0κ(1 − d). Knowing the total emitted photon number 2N0 and the total detected
photon number N2 allows us to estimate δ directly. For δ ≪ σ, the power in the odd port is well
approximated as N0κ(1 − γ)δ2/8σ2. Thus for sub-Rayleigh separations, the odd port has the
most photons for γ = −1, and hence the highest FI.

Fig. 1. Expected FI for the parity sorter plotted versus δ/σ. A higher FI corresponds to a
lower estimation error. a: FI prediction for the case when δ is the only unknown parameter.
For this case, γ = −1 gives the highest FI (dashed blue line on top of the γ = −0.99 curve),
as predicted by the Tsang–Nair model [18]. b: FI prediction for the case of unknown input
photon number N0. For this case, the FI is zero for |γ | = 1. As γ → −1, the FI curve gets
concentrated near δ = 0, but is still bounded above by twice the FI for γ = 0. The curves in
(a,b) are normalized by the object plane photon numbers. c: FI prediction normalized by the
image plane photon number for the case of unknown N0. These curves are related to the
curves in (b) by the weight factor of (1+ γd) as explained in the text. As γ → −1, this image
plane FI diverges and gets concentrated around δ = 0, a result which was predicted using a
quantum calculation in [19,21]. As explained in the text, the information conveyed by curves
(b,c) is the same. Note that the γ = 0 curves (green line) are same in all the figures.

It is not uncommon, however, that an experimentalist only has access to image plane photons,
and does not have knowledge of N0. When both δ and N0 are unknown, the FI is found from the

https://doi.org/10.6084/m9.figshare.14743509
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multiparameter Cramer–Rao bound (CRB); this FI is given by

Fδ,N0 (δ, γ)
2N0κ

=
δ2d2

16σ4(1 + γd)

(︃
1 − γ2

1 − d2

)︃
, (5)

and is plotted in Fig. 1(b). Note that as γ → −1, Fδ,N0 (δ, γ) becomes concentrated near δ = 0.
While Rayleigh’s curse is avoided for γ<0, i.e., limδ→0 Fδ,N0 (δ, γ)/2N0κ = (1 − γ)/4σ2, the FI
is effectively zero for all δ ≠ 0 and γ = −1. Figures 1(a,b) clearly show how the knowledge or
ignorance of the object plane photon number affects the FI for δ estimation in the presence of
partial coherence. A derivation of Eqs. (4) and (5) is presented in Supplement 1, Section S2.

We can now ask the more practical question of how to estimate δ when we only detect the
image plane field, and have no knowledge of N0 ? In this case one can use the normalized modal
weights m1,2 = N1,2/Nt which are independent of N0. The statistics are described in this case by
a binomial likelihood function [25]. We can then calculate the image plane FI by the formula

Fimg(δ, γ) =
∑︂
k=1,2

1
mk(δ, γ)

(︃
∂mk(δ, γ)

∂δ

)︃2

=
δ2d2

16σ4(1 + γd)2

(︃
1 − γ2

1 − d2

)︃
,

(6)

where the subscript ‘img’ denotes image plane and the function is plotted in Fig. 1(c). We
emphasize that Fimg is normalized per image plane photon; physically, Eq. (6) quantifies the
information provided by a single photon in the image plane, and is agnostic to the number of
object plane photons. Figure 1(c) then shows that given equal number of photons in the image
plane, γ<0 can offer increased sensitivity in the regions δ ≪ σ. Note that Eq. (6) is related to
Eq. (5) by a simple ‘weight’ factor of (1 + γd), which also relates the image and object plane
photon number in Eq. (2). While the image plane FI might increase for γ<0, more object plane
photons are needed to maintain a constant image plane photon number, a ‘cost’ that is captured by
the factor of (1 + γd). The image plane FI is also zero for γ = −1, in which case all clicks occur
at the odd port for all δ. If the experimentalist does not know N0, they do not get any information
about δ from just measuring clicks at the odd port. In any case, Figs. 1(b) and 1(c) give the
same information, as there is a one-to-one correspondence between the two curves. Alternatively,
the lower bound on the variance of an unbiased estimator can equivalently be found from either
Eq. (5) or Eq. (6). As a specific example, suppose we have 2N0κ = 100, and (1 + γd) = 0.1 for a
specific δ and γ, which means that we have 10 photons in the image plane. Then the lower bound
on the variance of an unbiased estimator δ̂ satisfies Var[δ̂] ≥ 1/(10Fimg) = 1/(100Fδ,N0 ), where
Fδ,N0 = (1 + γd)Fimg.

Incidentally, the aforementioned discussion provides clarity to the debate between, among
others, the Tsang–Nair (TN) model [18] and the Larson–Saleh (LS) model [19]. Strictly
speaking, the TN model assumes knowledge of N0, while the LS model assumes an unknown
N0. Specifically, Fig. 1(a) agrees with the TN model, and Fig. 1(c) agrees with the LS model.
Figure 1(b) bridges the TN and LS models. We note that Hradil et. al. [21] also advocated
the use of the weighted version of image plane FI to take into account the image plane photon
number variation with γ, δ, and their results also imply the curves in Fig. 1(b). Depending on the
a priori assumptions afforded by the experimental setup, either TN or LS models will correctly
describe the estimation statistics. Note that a similar observation has been made for coherent
microscopy [26], which advocates the ‘mandatory inclusion of information about underlying a
priori assumptions’ when discussing resolution claims.

We mention that the parity sorter achieves a quantum limited performance. To see this, note
that our classical FI calculations coincide with the predictions of the quantum FI in [19,21] for a

https://doi.org/10.6084/m9.figshare.14743509
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known δ, γ and unknown N0. The notion of a quantum FI for a known N0 is still being actively
explored [27], and is beyond the scope of this work.

Having clarified the issue of the FI interpretation for partial coherence, we can now proceed to
discuss the experiment. Realistically, we will use the image plane model as it reflects a common
situation in imaging, microscopy, and astronomy. Note that realistic situations have more than
just δ and N0 as possible unknowns. For example, our analysis till now has assumed the presence
of only two sources, equal intensities of the two sources, a known centroid of the objects to
which the parity sorter is aligned, and, most importantly, a known γ. In practice, one needs a
combination of direct imaging, coherence interferometry, and parity sorting to estimate these
unknown parameters. The application of quantum metrology-inspired ideas such as SPADE to
practical situations is an active field of research [28–31]. These considerations, however, are
not relevant to our proof-of-principle experiment in which we consider only δ and N0 as the
unknown parameters.

3. Experiment

3.1. Generation of partial coherence

We use a parity sorter to perform SPADE on two spatially partially coherent sources. To generate
partial coherence, we use the CMD [24]. Physically, such a CMD means that the spatial coherence
at the input plane to the SPADE setup can be engineered by incoherently mixing appropriately
scaled symmetric and antisymmetric modes. This can be realized by adding a path difference
between coherent modes that is larger than the laser coherence length. Alternatively, we can
‘switch’ between the modes in time, with the switching time longer than the laser coherence
time, and add the recorded intensities digitally [32,33]. The CMD therefore allows us to generate
spatial coherence ‘offline’, by performing the intensity summation electronically. To generate
an intensity distribution corresponding to a specific γ in Eqs. (3), we can post-select from a set
of recorded intensities of ϕ1,2 modes. This allows a great simplification of the experiment with
respect to the precise control of γ. Nevertheless, the CMD technique has a physical drawback;
we are not looking at two real point sources, but at the image plane field generated as if the point
sources with a given δ and γ were actually present. Due to this characteristic of CMD, we cannot
access the object plane curves of Figs. 1(a) and 1(b), as is also explained at the end of Section 3.3.

Figure 2(a) shows the coherent mode generation portion of the setup, which contains an SLM
and a 4f spatial filter. The coherent modes for a particular δ are generated via a phase grating
implemented on a spatial light modulator (SLM). The SLM can be used to generate a field ψ(x, y)
with an arbitrary transverse amplitude and phase profile. To that end, we implement a phase
grating exp [i(Π(x, y))] on the SLM. The grating is constrained such that the first-order term in
its Fourier expansion equals ψ(x, y) = ϕk(x)f (y), where ϕk(x) is the kth coherent mode and f (y)
is the Gaussian PSF defined after Eq. (1). We add a linear phase grating and use a 4f spatial
filter to isolate the first diffraction order, which is proportional to ψ(x, y). The details on the
algorithm to ‘encode’ the field into the phase grating are given in [34]. Note that there are
limits set on the spatial frequency content of the beams that can be generated. These limits are
dictated primarily by the pixel pitch of the SLM, and the range of phase modulation that the liquid
crystals can impart. The SLM model used in our experiment is HAMAMATSU X10468-02,
which has a pixel pitch of 20µm and a phase modulation range of 2π. Due to the small pixel
pitch, any discretization effects are negligible in our experiment. The SLM only responds to a
horizontally polarized beam (polarization axis parallel to the optical table). The inset in Fig. 2(a)
shows the phase grating implemented on the SLM to generate the coherent modes. The high
spatial frequency fringes show the linear grating implemented to separate the desired mode on
the first diffraction order. Note that the phase mask is qualitatively very similar to the beam itself.
The beam is relayed to the parity sorter, shown in Fig. 2(b), with 4f systems. The symmetric
or antisymmetric modes generated via the SLM have σ = 327 ± 4µm. Note that we are not
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changing the temporal coherence properties; all the beams used are quasimonochromatic and
therefore temporally coherent.

Fig. 2. a: Generation of Coherent Modes: A 795 nm linearly polarized Gaussian beam
passes through a beam expander (BE) and is then transformed into either a symmetric
(ϕ1) or antisymmetric (ϕ2) mode via a mode converter consisting of a phase SLM and a
spatial filtering setup, which selects the m = 1 diffraction order. The beam is relayed to the
interferometer with 4f systems. The mode amplitudes are set to

√
Nk =

√
Ntmk, with mk

being the normalized modal weights and Nt being an arbitrary image plane photon number,
to generate the CSD given by Eq. (1). Polarization optics and attenuators, not shown in the
figure, are used to control the power of the beam. Inset shows the phase mask implemented
on the SLM to generate the antisymmetric mode with δ/σ = 0.2. The high spatial frequency
tilt fringes form the grating that routes the desired mode into the first diffraction order. b:
Parity sorter, a Michelson type image inversion interferometer which separates the even
and odd components of the input field. In one arm, the two SLMs form a 2f system with
SLM 2 having a focal length of 600 mm , SLM 3 having a focal length of 300 mm, and the
distance between the two SLMs equal to 600 mm. This arm implements the transformation
(x, y) → (−x,−y). The input 4f relays the beam from the coherent mode generation part
of the setup with unit magnification (fL1, fL2 = 200 mm). The 4f in the reference arm
has a magnification of 0.5 (fL3 = 200 mm, fL2 = 100 mm) (double pass magnification is
unity). The final 4f system in the output arm relays to the detector the field at SLM 2 and
the reference arm field with a 0.5 magnification factor (fL5 = 200 mm, fL6 = 100 mm).
The power in the even and odd modes can be measured by setting the phase difference θ,
implemented on SLM 3, to 0 and π respectively. In the experiment, all modes used are
symmetric about the y axis such that E(x,−y) = E(x, y). The interferometer then works as a
parity sorter in the x-direction. I1, I2 denote the intermediate image planes in the SLM and
reference arms respectively. BS: Beamsplitter, Ref. arm: Reference arm.

3.2. SPADE using parity sorting

After generating partially coherent fields, the next step is to perform parity sorting on the field
described by Eq. (1). The beam flux can be adjusted using polarization optics. The parity sorter
consists of a Michelson type image inversion interferometer that sorts the input field based on
its parity, as shown in Fig. 2(b). Figure 2(b) shows the top arm having 2 SLMs separated by a
distance of 600mm. SLM 2 has a focal length of 600 mm and SLM 3 a focal length of 300 mm.
The optical power on SLM 2 cancels the quadratic phase at the image plane of SLM 3, which
coincides with the SLM 2 plane. The top arm is then effectively equivalent to a 2f imaging
system, with an extra quadratic phase to cancel the defocus due to diffraction, and implements
the transformation (x) → (−x). The reference arm with the 4f system images the field with unity
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magnification, after two reflections. The global phase difference θ between the two arms for
the signal beam is also implemented on SLM 3. Experimental details of the interferometer are
described in Ref. [35] (For parity sorting, we set α = π in Eqs. (1–3) of Ref. [35]). The field at
the output of the interferometer is

Eout(x) =
√

Nk

2
(ϕk(x) + eiθϕk(−x)), (7)

where k = 1, 2, and Nk is the photon number in the input mode ϕk. We remind the reader that ϕk
is spatially coherent in Eq. (7). Note that the coherent modes used are symmetric in y, so the
1D analysis is valid for the experiment. The interferometer is path stabilized using a PID loop
connected to a piezo on the reference arm mirror. To monitor the phase fluctuations for the PID
loop, a separate vertically polarized beam (not shown in Fig. 2(b)) is sent to the interferometer,
separated before the detector via a polarizing beam splitter, and its measured power is fed to the
PID loop. Note that the SLMs do not respond to the vertically polarized beam.

To project onto the even and odd components of the field, we can choose θ = 0, π in Eq. (7).
As explained in Section 3.1, we send only one of the coherent modes ϕk at a given time. To
generate CSD for a given γ, we add the measured intensities offline. Details of the offline
coherence generation are given in Supplement 1, Section S3. For θ = 0(π), all of the symmetric
(antisymmetric) mode power will be directed to the detector, while the antisymmetric (symmetric)
mode will destructively interfere at the detector. For θ = 0(π) the output is called as the even
(odd) port.

3.3. Estimation Statistics

The goal of superresolution is to estimate δ for regions of δ<σ. To estimate δ, we use
maximum likelihood estimation (MLE) on the measured normalized modal weights m1,2. Sample
measurements of the modal weights are shown in Supplement 1, Section S3. Because we
normalize the modal weights by the image plane photons, we use a binomial likelihood function
for the parity sorter [25]. The estimated δ̂ is shown in Fig. 3(a). Note that all the estimated
δ’s are below the Rayleigh limit (δ = σ), which demonstrates the ability of the parity sorter
to perform superresolution. For δ in the interval [0.2, 1]σ (in increments of 0.1σ), we take
100 images each of the symmetric and antisymmetric modes, thus getting 100 ML estimates
and the corresponding variance. We have not observed any bias in the estimates, as evident in
Fig. 3(a), where the mean of the estimates are equal to the true value of δ/σ. The variance in the
MLE estimates, which is related to the inverse of the FI, is too small to be noticed in Fig. 3(a).
Nevertheless, the variance of an unbiased estimator is lowerbound by the Cramer–Rao bound
(CRB), which is related to the inverse of the FI. Formally, Var[δ̂] ≥ (NtFimg)

−1, where Var[δ̂]
is the variance in the MLE estimator δ̂, and Fimg is the image plane FI as given by Eq. (6) and
shown in Fig. 1(c). Figure 3(b) shows the normalized Mean Square Error (MSE) = NtVar[δ̂]
as a function of δ and two values of γ = 0,−0.75. More importantly, Fig. 3(b) shows that the
MSE for γ = −0.75 is below the CRB for the γ = 0 case. In other words, not only is Rayleigh’s
curse avoided for γ = −0.75, the estimation is more precise than the incoherent case of γ = 0.
Note that the MSE are still offset from the CRB. To truly saturate the CRB, the system must
be shot noise limited, and any other noise source will raise the MSE. Apart from shot noise,
another source of noise in our system are the phase fluctuations in the interferometer when it
is biased at θ = 0 or π (See Fig. 2(b)). Furthermore, the MSE for γ = 0,−0.75 might appear
correlated, for example at δ = 0.2, 0.3. This is because the same set of images are used for CMD
of both γ = 0,−0.75, and hence both γ = 0,−0.75 MSE’s will be affected by the same phase
fluctuations; if the γ = 0 MSE is higher, so will be the γ = −0.75 MSE. Finally, the CRB curves
in Fig. 3(b) are nearly equivalent to the quantum CRB predicted for δ<σ [19], and therefore our
measurements represent near quantum-limited localization of partially coherent sources [36].

https://doi.org/10.6084/m9.figshare.14743509
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Fig. 3. a: Estimated shift δ̂/σ for γ = 0,−0.75 using MLE on the measured modal weights.
The estimated shifts are all below the Rayleigh limit (δ = σ). Each point represents the
mean MLE of 100 measurements. The error bars are too small to be noticed on the graph but
are still bounded by the CRB, as shown in (b). Note that the γ = 0 estimates are not biased;
to distinguish the two data sets, we introduce a vertical offset between the γ = 0 and the
γ = −0.75 estimates. Both γ = 0 and γ = −0.75 estimates are in good agreement with the
expected shifts. b: Measured MSE for γ = 0 (green triangles) and γ = −0.75 (red crosses).
For each data point, ML estimates from 100 trials were used to calculate the variance. Note
that for a given δ/σ, the MSE for γ = −0.75 is consistently less than the MSE for γ = 0.
The dashed green and solid red lines indicate the CRB for γ = 0,−0.75 respectively. The
CRB is given by the inverse of Eq. (6). Technical noise factors causing the discrepancy
between theory and experiment are explained in the main text.

The reader might observe that no statistics for |γ | = 1 are shown in Fig. 3. As discussed
in Section (2), the FI for |γ | = 1 is zero for all δ if N0 is unknown. The likelihood function
in this case is independent of δ for |γ | = 1, and hence δ cannot be estimated in principle.
N0 is unknown in our experiment because we generate the image plane field directly through
unitary transformations and not through a Gaussian aperture that scales the coherent modes
according to the (1± d) factor in Eqs. (3). While our system has an effective ‘aperture’ loss factor
that connects the source photon number to the image plane photon number, this loss factor is
independent of δ for the coherent modes generated by the SLM, as is also reported in Supplement
1, Section S4. The experiment is the generalization of previous localization experiments on
incoherent beams [7,9]. This technique allows 1) a great experimental simplification with regard
to avoiding the need to perform precise fabrication of point sources with different separations
and 2) to circumvent issues of low photon budget and spurious diffraction effects from the source
geometries. However, this technique fails to provide access to an effective object plane photon
number which is related to the image plane photon number by the factor of (1 + γd), and hence
does not allow us to reconstruct results of Figs. 1(a) and 1(b). Barring these technical difficulties,
our theoretical and experimental results are easily generalized to the case of a known N0. We
note that having access to only the image plane photon number is however a common situation in
optical physics, where one does not have an independent probe on the object plane photons. Our
results are therefore valid for a large variety of microscopy and imaging experiments. The details
of image processing and the photon number in Fig. 3 versus δ are given in Supplement 1, Section
S4.

https://doi.org/10.6084/m9.figshare.14743509
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4. Conclusion and outlook

We have carried out a theoretical analysis of superresolution of partially coherent light sources
using parity sorting. For partially coherent sources, the object plane photon number was identified
as a relevant parameter that affects the obtainable FI, and that connects the different results
of previous works [18,19,21]. We also performed parity sorting on two Gaussian PSFs with
varying degrees of spatial coherence. Our results show that partial anticorrelation of the two
sources increases the FI of δ estimation. Therefore, Rayleigh’s curse can be avoided for partially
coherent sources. The proof-of-principle experiment paves the way to using coherence as a
resource in quantum-limited metrology. Our analysis assumes a real, known value of γ. Further
studies could include concurrent estimation of δ and γ, for which a vanishing FI with δ → 0 is
predicted [17,22]. The natural extension of the current work is to consider the more realistic
case of multiparameter estimation of a complex γ, the centroid and intensity ratio of the two
sources [22], and the effects of cross-talk in the SPADE setup [28–30,37]. While we have been
primarily concerned with the two-point problem, the technique of SPADE can also tackle the
more general problem of imaging an extended object scene. There the problem reduces to
estimation of moments of the object in the sub-diffraction limit, a case which was treated for
incoherent objects [4,38–40]. It is an open question as to how these theoretical works generalize
to the case of partially coherent object distributions.
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S1. Derivation of Eqs. (2-3) of the main text

In this section, we derive Eqs. (2-3) of the main text. In the object plane, consider two
monochromatic point source emitters separated by X, each emitting #0 photons. The degree of
(spatial) coherence between the two sources is W. In the Coherent Mode Decomposition (CMD),
the cross-spectral density (CSD),$ (G1, G2) at the object plane is given by

,$ (G1, G2) = #0

2∑
:=1

?:q
∗
: (G1)q: (G2), (S1)

where ?1+?2 = 1, ?1−?2 = W, ?1,2 = (1±W)/2, and q: (G) = 5+ (G)−48: c 5− (G) are the symmetric
(k=1) and antisymmetric (k=2) coherent modes. In the object plane, 5± (G) = [(G ± X/2), where
[(G) are localized functions describing the point sources, and can be considered as regularized
delta functions with a unit intensity integral, such that each source individually emits #0 photons.
Equation (S1) shows that total object plane photon number

∫
3G,$ (G, G) = 2#0 (?1 + ?2) = 2#0

is given by sum of intensities of the symmetric and antisymmetric modes. At the object plane,
these coherent modes are orthogonal. In fact unitary propagation of the field preserves their
orthogonal nature. However, the modes do not remain orthogonal after passing through the
aperture of the imaging system, which is the fundamental cause of the loss of resolution.
Recall that the finite width of the point spread function (PSF) arises due to the nonunitary

nature of the imaging system; the aperture behaves as a low pass filter, blocking photons of spatial
frequencies higher than those determined by the system’s numerical aperture [1]. Consider the
canonical 4 5 imaging system with a Gaussian aperture of width f0? at the Fourier plane. For



simplicity, consider the lenses to be of infinite extent. Since the propagation up to the aperture
is unitary, the number of photons hitting the aperture is 2#0. There are 2#0?1 = #0 (1 + W)
photons in the symmetric and 2#0?2 = #0 (1 − W) photons in the antisymmetric mode hitting
the aperture. At the aperture/Fourier plane, these modes behave like a cosine and sine, each
with spatial frequency 6 = :X/2 5 , where : is the wavenumber and 5 is the focal length [1].
For a large X such that f0?6 � 1, the aperture samples many periods of the coherent modes.
The aperture transmission is then a radiometric factor equal to the ratio f0?/f1, where f1 is
the beam width at the aperture. This factor is same for both the coherent modes in the limit
f0?6 � 1. As X becomes smaller such that f0?6 � 1, the aperture samples less than a fringe
period of the coherent modes. This is the sub-Rayleigh regime of our interest. For the cosine
modes, the aperture samples the peak of the fringe. For the sine modes, the aperture samples
the fringe minimum. The smaller X gets, the transmission for the sine mode decreases, and the
transmission for the cosine mode increases. The transmitted photons �1,2 for each mode are then
given by

#1 = 2#0?1

∫
3G

(
1

8cf2
1

)1/2

4 cos2 (6G) 4
− G2

2f2
1 4
− G2

2f2
0? = 2#0?1

f0?

f1

(
1 + 4−262f2

0?

)
, (S2)

#2 = 2#0?2

∫
3G

(
1

8cf2
1

)1/2

4 sin2 (6G) 4
− G2

2f2
1 4
− G2

2f2
0? = 2#0?2

f0?

f1

(
1 − 4−262f2

0?

)
. (S3)

In deriving Eqs. (S2, S3), we have assumed the beam at the aperture is a cosine or sine times a
broad Gaussian of width f1 such that f1 � f0? . Using ?1 + ?2 = 1, we find the total photons
transmitted by the aperture is given by

#C = #1 + #2 = 2#0
f0?

f1

(
1 + W4−262f2

0?

)
. (S4)

Eq. (S4) does not contradict energy conservation. The transmitted photon number �1 + �2 is not a
strictly conserved quantity since it is the photon number in a local (Gaussian-apodized) portion
of a fringe pattern. In essence, Eq. (S4) simply shows that the aperture transmission depends on
the spatial coherence among two partially coherent emitters.

The propagation from the aperture to the image plane is also unitary, and hence Eqs. (S2-S4)
also give the number of symmetric, antisymmetric, and total image plane photons. At the image
plane, the Gaussian PSF’s width f is related to f0? by :2f2

0?/ 5 2 = 1/4f2. We then have,
using 6 = :X/2 5 , exp[−262f2

0?] = exp[−X2/8f2] = 3, where 3 is the overlap integral of the
Gaussian PSFs. The overlap is generated due to the nonunitary nature of the aperture, as is
evident from our analysis. Moreover, the image plane CSD given in Eq. (1) of the main text
is found by substituting 5 ± (G) = 4−(G±X/2)

2/4f2

(2cf2)1/4 , and ^ = f0?/f1 in Eq. (S1). Formally, the
image and object plane CSDs can be connected by propagating the coherent modes through the
nonunitary imaging system. Finally, by substituting ^ = f0?/f1 and using ?1,2 = (1 ± W)/2,
Eqs. (S2-S4) reduce to Eqs. (2,3) of the main text.



S2. Derivation of Eqs. (4,5) of the main text

Assuming Poisson statistics and using Eqs. (S2, S3), we derive the FI matrix as

� =
∑
8=1,2


1
#8
( m#8

mX
)2 1

#8
( m#8

mX
) ( m#8

m#0
)

1
#8
( m#8

m#0
) ( m#8

mX
) 1

#8
( m#8

m#0
)2

 ,
=


#0

X232

8f4

(
1−W3
1−32

)
− WX3

2f2

− WX3

2f2
2
#0
(1 + W3)

 . (S5)

If only X is unknown, the FI normalized by the object plane photon number 2#0 is described by
� (1, 1)/2#0, which is equivalent to Eq. (4) of the main text and is plotted in Fig. (1a) of the
main text.

If both X and #0 are unknown, the FI for estimating X is found by (� (1, 1))−1, where � = �−1,
and � (1, 1) gives the multiparameter CRB. The matrix � is given as

� =
1

X232

4f4

(
1−W2

1−32

) 
2
#0
(1 + W3) WX3

2f2

WX3

2f2 #0
X232

8f4

(
1−W3
1−32

) . (S6)

The quantity (� (1, 1))−1 /2#0 is given by Eq. (5) of the main text and plotted in Fig. (1b) of the
main text.

S3. Offline Coherence Synthesis and Modal Weights vs. W

In this section, we describe the offline coherence synthesis and measurements of the normalized
image plane modal weights <1,2 = #1,2/#C , where #C , #1,2 are given by Eqs. (2,3) of the main
text.

Since we are working in the image plane model, we do not know #0 as explained in the Theory
section of the main text. For this section, we therefore denote the symmetric and antisymmetric
experimental photon numbers as #BH<,0BH< instead of #1,2 as used in Eq. (3) of the manuscript.
For a fixed X, we prepare an antisymmetric mode and record its photon number #0BH< at the output
of the parity sorter. #0BH< can be arbitrary but is dictated by experimental limitations such as
phase noise of the interferometer, electronic noise and dynamic range of the detector etc. We then
prepare a symmetric mode for the given X, and record its flux at the output of the parity sorter over
a wide range of input powers. For a particular W and X, the corresponding photon number #BH<

of the symmetric mode is given as #BH< =  #0BH<, where  = (1 + W) (1 + 3)/(1 − W) (1 − 3).
The modal weights are normalized by #C = #BH< + #0BH< such that <1,2 = #BH<,0BH</(#C ).
We then post-select values for the desired W. For example, assume X = 0.5f, and 1 photon in the
antisymmetric mode, i.e., #0BH< = 1. For #BH< = {0, 10, 64, 100} photons in the symmetric
mode, the W would correspond to {−1,−0.72, 0, 0.2} respectively. Note that the post-selected
#BH< and #0BH< are random variables which include both the quantum shot noise and the
classical electronic and optical noise of the system. The post-selection is only applied to the
‘mean’ values of #0BH< and #BH< satisfying 〈#BH<〉 =  〈#0BH<〉, as explained in the Image
processing section. We emphasize that experimentally, in the image plane model and offline
coherence synthesis afforded by the CMD, #C is defined as equal to #BH< + #0BH< (the total
photons in the interferometer) and does not depend on X or W as in the object plane model of Eq.
(2) of the main text.

Figure (S1) shows the measured modal weights for different W values. The solid red and blue
lines in Fig. (S1a-c) are theoretically expected plots of even and odd modal weights respectively.
The dashed lines are the theoretically expected plots incorporating effects of cross-talk. The



Fig. S1. Measured modal weights for the parity sorter. a-c: Modal weights for W =
−1, 1,−0.75. Blue and red color indicates the odd and even modal weights respectively.
Solid lines indicate the theoretically expected modal weights with zero cross-talk. The
dashed lines indicate the expected modal weights for 8% cross-talk. The circles indicate the
measured values. All the modal weights are normalized by #C , the total number of photons
in the interferometer. Each point on the graphs represents a mean of 10 measurements, while
the error bars are too small to be noticed on the graph. Note that for |W | = 1, the modal
weights are constant versus X.

circles indicate the mean values of data recorded for 10 measurements. For |W | = 1, all the optical
power is directed into a single port; %1 = 1 (solid red line) and %2 = 0 (solid blue line) for W = 1.
Similarly %1 = 0 and %2 = 1 for W = −1. If the optical power in either port does not change as a
function of X, which is the parameter to be estimated, one would expect no information to be
gained by parity sorting. The error bars on all figures are too small to be visible on the graph.
Finally, Fig. (S1 b) shows the modal weights measured for W = −0.75. The modal weights change
rapidly with X, and therefore one would expect a higher FI for W = −0.75 than for W = 1,−1.

When processing the measured optical powers for the maximum likelihood estimation (MLE),
we have subtracted any cross-talk, which was 8% on average, between the two ports. The
cross-talk could be attributed to intensity mismatch of the two beams, finite coherence time, and
fluctuations of path length and polarization in the two arms. This background subtraction is
allowed because we are generating coherence offline by adding post-selected intensities, and
only one of the coherent modes is present at a given time. Better alignment of the system
can reduce the cross-talk. However, this experimental complexity is irrelevant to the analysis
of partial coherence and thus is avoided in our proof-of-principle experiment by using offline
coherence generation. Figure (S2) shows the cross-talk subtracted modal weights measured for
W = 0,±, 0.25,±0.5 . Note that for a given X, the power in the symmetric (antisymmetric) mode
increases (decreases) as W becomes more positive.

S4. Experimental Details

S4.1. Mode Intensity vs. X

In our superresolution experiment we directly prepare the image plane CSD, represented by Eq.
(1) of the main text, through the SLM and subsequent offline addition of modes. Specifically, this
technique allows us to avoid the more complicated procedure of preparing two actual emitters
with varying W and X, with a CSD given by Eq. (S1), and a physical Gaussian aperture whose



Fig. S2. Measured and expected modal weights for the parity sorter for W = 0,±0.25,±0.5.
Blue and red solid lines respectively indicate the theoretically expected modal weights for
antisymmetric and symmetric mode. The circles indicate the measured modal weights. Each
point on the graphs represents a mean of 10 measurements, while the error bars are too small
to be noticed on the graph. Note that cross-talk has been subtracted for this data.

transmission varies according to Eq. (S2-S4). To this end, the power in the coherent modes does
not depend on X. This is because the SLM is fundamentally a phase grating whose first diffraction
order contains the desired coherent mode. Ideally, the efficiency of the grating is independent
of X, except for the zero-photon case of W = −1 and X = 0 in which case no grating phase is
implemented. As long as the SLM pixel pitch and phase modulation range are not the bottleneck
for a given phase grating, the grating efficiency and hence the power in a mode will not change
with X. Figure (S3) shows the power in the symmetric and antisymmetric modes measured
for a fixed input power incident on the SLM. We see that the mode power is independent of X.
The grating efficiency for the symmetric mode is actually lower than the antisymmetric mode,
which causes the lower power in the symmetric mode. We can control the power going to the
interferometer with polarization optics, and can control the powers of the mode after the SLM.



Fig. S3. Power in the Coherent modes versus X for fixed input laser power impinging on the
SLM. The power has been normalized to the power in the Symmetric mode for X = 0.1f.
Note that the power in the antisymmetric mode is consistently higher because of the higher
diffraction efficiency of the SLM phase grating required to generate the antisymmetric mode.
Ten images were taken for each data point.

S4.2. Image Processing

The basic idea of coherent mode decomposition (CMD) is to add the symmetric and antisymmetric
modes on an intensity basis. For a specific X and W , the relative intensity of the symmetric
and antisymmetric mode is <1/<2 =  = (1 + W) (1 + 3)/(1 − W) (1 − 3) as evident from Eq.
(3) in the main text. For example, if W = 0 and 3 = exp (−X2/8f2) = 0.5 (which implies that
(X/f)2 = −8ln[0.5]), then <1/<2 = 3. To ‘prepare’ the W = 0 intensity offline for this X, one
then needs to have a symmetric mode with thrice the power of the antisymmetric mode. As will
be explained below, we post-select the required powers for each coherent mode from an array of
recorded powers. These post-selected powers are then used to obtain the ML estimate X̂. This
process is repeated 100 times and the variance Var[X̂] is then compared with the CRB.

We measure Var[X̂] for W = 0 and W = −0.75. For these W values and X/f < 1, the power in the
symmetric mode is always larger than the power in the antisymmetric modes, as is evident from
Figs. (S1,S2). Therefore, a large dynammic range is required to accurately measure these modal
weights. To increase the dynamic range of our measured powers, we use the fact that our problem
is 1D (G dimension), while the coherent mode is 2D; the coherent modes are a symmetric zeroth
order Gaussian in H. The integrated power in each row of the coherent mode then corresponds to
an independent parity sorting measurement. # rows in the mode then correspond to # bucket
detectors performing parity sorting measurements. Figure (S4) shows an image of the coherent
modes and the marginals for X = 0.4f. Specifically, each point on the Y marginal is used as an
independent realization of a parity sorting measurement. This is allowed because we are using
an approximately single-mode laser source, for which the pixels on the CCD are uncorrelated in
intensity [2]. It is from these Y marginals of the symmetric and antisymmetric modes that we
choose the photon numbers #BH<,0BH< such that #BH< =  #0BH<.

To saturate the Cramer–Rao bound (CRB), the system should be shot-noise limited. This means
that the photon numbers used from the Y marginals should have Poisson statistics. We use a low
noise Gigajot CCD with a dark current of less than 0.5 4 − /B/pixel at room temperature [3]. The
photoelectron statistics of each arm of the interferometer are shot noise limited, as can be found by
blocking the other arm. We show the noise statistics of the interferometer output in Fig. (S5). For



Fig. S4. Sample Image of Coherent Modes and their marginals for X = 0.4f. Each
pixel value on the Y marginal is counted as a bucket detector output in the parity sorter.
The colorbar on the mode images and the y-axis on the marginals represent the detected
photoelectron number.

every pixel on the Y marginal, we have three numbers: (i) the mean intensity 〈� (H)〉 (circles and
solid blue line), where � (H) =

∫
3G |q(G, H) |2 is the integrated intensity across G and the ensemble

average is taken across the 100 acquired images. (ii) The variance 〈Δ �2 (H)〉 = 〈�2 (H)〉 − 〈� (H)〉2
(solid orange line), and (iii) the noise metric " (H) = (〈Δ �2 (H)〉 − 〈� (H)〉)/〈� (H)〉 (cross and
solid purple line). " ≈ 0 corresponds to shot noise statistics, while any classical (electronic or
optical) fluctuations will increase the value of " . In Fig. (S5), the reference arm statistics shows
that the centre portion of the Y marginal Gaussian is close to being shot noise limited because of
the high intensity, as opposed to the tails of the Gaussian. In contrast, the interference images, for
which both arms are unblocked, have high " values in the centre of the Gaussian. Note that the
classical noise is more pronounced in the antisymmetric mode compared to the symmetric mode.
The major noise source in our interferometer is phase noise due to path length fluctuations

in the interferometer. Moreover, the phase noise fluctuations do not affect the coherent modes
globally. This is due to the mode inhomogeneities introduced due to phase jumps in the SLM arm
of the interferometer [4] that implements the 2 5 system. The peaks in the noise of the interference
images in Fig. (S5) are due to the mode inhomogeneities caused mainly due to phase rings of
the SLM coupled with the path length fluctuations. However, there is a significant number of
rows that are are relatively less affected by phase fluctuations such that " (H) < 1. These are the
rows we use in the ML estimator. We sort the rows in ascending order according to the metric
" (H), and use these sorted rows in the CMD; rows with the lowest absolute " (H) value is picked
first for CMD. Note that " (H) < 0 is possible because of the finite size of our ensemble of 100
images, and we therefore sort based on |" (H) | rather than " (H). A consequence of our CMD
algorithm is that data for a higher W will have a higher photon number. This is because for a
higher W on the real line, the ratio <1/<2 increases as 1/(1− W), and hence we require more rows
of the symmetric mode to generate the required coherent mode power. Another effect of this



Fig. S5. Noise statistics of the parity sorter. All figures show the statistics of the Y marginal.
Top row shows the statistics of the reference arm, with the 2 5 imaging SLM arm blocked.
Bottom row shows the statistics of the interference images, with both arms unblocked. Solid
blue lines and circles represent the mean value 〈� (H)〉 over 100 images (blue y-axis on left).
Solid orange line represents the variance 〈Δ �2 (H)〉. Solid purple line and crosses represent
the noise metric " (H) (purple y-axis on right). The dashed purple line represents the shot
noise limit " = 0. Note that the two reference and interference images were taken separately
with different laser powers, so the reference image power is not exactly half that of the
interference image power. The text discusses details of the figure.



Fig. S6. Left: Mean total image plane photon number #C per iteration used in estimation of
X. Note that the photon number for W = 0 (green triangles) is consistently higher than the
photon number for W = −0.75. Right: The MSE for W = 0,−0.75. The MSE for W = −0.75
is less than the MSE for the W = 0 case for all but the X = 0.9f case.

algorithm is that data for a higher W will have higher (classical) noise, since more rows are added.
The difference in the noise due to the different number of rows is observed to be not significant,
however, in our experiment. One way to mitigate this noise difference is to take more images and
add them to get a set of 100 images. This will decrease phase fluctuations due to averaging. For
X = 0.2 − 0.5, we took [500 − 200] images and added them together to prepare 100 images each
for processing. In Fig. (3) of the manuscript, we compare W = 0 and W = −0.75, for which the
number of rows do not differ significantly and hence the phase noise is approximately the same
for both W cases.

S4.3. Photon number in Fig. (3) of Main text

Figure (3b) of the main text compares the product of the mean squared error (MSE/4f2) and
the mean total image plane photon number (#C ) used for each iteration in the 100 estimates.
This was done because the CRB lowerbounds the product #CVar[X̂] and not just Var[X̂]. It is
still instructive to look at the actual photon number and the mean squared error separately. As
explained in the Image Processing section, the mean photon number is not the same for W = 0 and
W = −0.75. In Fig. (S6) we show the actual values of the photon number and the mean squared
error, i.e., Var[X̂] for both W = 0,−0.75. Note that the photon number for W = 0 is consistently
higher than the photon number for W = −0.75. Despite that, because the FI for W = −0.75 is
higher than the FI for W = 0 case, the variance for partially anticorrelated case is lower than the
variance for the incoherent case for all but the X = 0.9f case. Had the photon number in the
W = −0.75 case been increased to match the W = 0 photon number, the variance in the W = −0.75
case would have dropped even further. This shows unambiguously that for the same number of
photons, partial anticorrelation among the sources leads to a lower variance than the incoherent
scenario.
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