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ABSTRACT: A time-dependent change in the refractive index of a material
leads to a change in the frequency of an optical beam passing through that
medium. Here, we experimentally demonstrate that this effectknown as
adiabatic frequency conversion (AFC)can be significantly enhanced by a
nonlinear epsilon-near-zero-based (ENZ-based) plasmonic metasurface. Specif-
ically, by using a 63-nm-thick metasurface, we demonstrate a large, tunable, and
broadband frequency shift of up to ∼11.2 THz with a pump intensity of 4 GW/
cm2. Our results represent a decrease of ∼10 times in device thickness and 120
times in pump peak intensity compared with the cases of bare, thicker ENZ
materials for the similar amount of frequency shift. Our findings might
potentially provide insights for designing efficient time-varying metasurfaces for the manipulation of ultrafast pulses.

KEYWORDS: epsilon-near-zero metasurface, nonlinear optical materials, indium−tin oxide, time-varying refractive index,
dynamic resonance, nonlinear frequency shift

■ INTRODUCTION

Optical frequency conversion techniques have potential
applications in optical communication, signal processing,
imaging, and quantum information processing.1−3 One
example of frequency conversion techniques is adiabatic
frequency conversion (AFC), which potentially enables
continuous shift of the carrier frequency of a beam without
phase-matching considerations.4−6 Generally, AFC can be
implemented by letting a light beam pass through a medium
that exhibits a time-varying refractive index (Figure 1a). The
sign and the magnitude of the carrier frequency shift depend
on the sign and the speed of the change in the refractive index,
i.e., the rate of the change in the phase shift.4,7−9

Previously, a number of different techniques have been
investigated to implement time-varying media to demonstrate
AFC.4−6,10−24 However, in many previous implementations,
the possible frequency shift is limited by the weaker nonlinear
response of a typical optical material. In recent years, epsilon-
near-zero (ENZ) materials have gained much interest because
of their potential unusual linear optical behaviors and large
nonlinearity.25−29 Particularly, a transparent conducting oxide-
based ENZ thin film is reported to exhibit optically induced
unity-order changes in the refractive index in subpicosecond
time scales.26 Because of the near-zero linear refractive index
and a large possible nonlinear change in refractive index, an
ENZ medium could potentially provide a natural platform for a
large AFC. For example, (i) an ∼8.8 THz redshift of the carrier

frequency was observed with a pump peak power intensity of
770 GW/cm2 using a 500-nm-thick aluminum-doped zinc
oxide-based ENZ film;30 (ii) in addition, by using a 620-nm-
thick indium−tin oxide-based (ITO-based) ENZ film, a
tunable redshift of up to ∼11.1 THz was achieved with a
483-GW/cm2 pump peak intensity.7

Although the nonlinear response of the ENZ material is
large, a significantly stronger nonlinear response can be
engineered by introducing nanostructures on an ENZ film.
One possible nanostructure is a gold plasmonic antenna
array.31 It was reported that an ENZ-based nanoantenna
metasurface exhibits a broadband and large nonlinear response
because of strong coupling between the plasmonic mode of the
antenna and the ENZ mode of the ITO thin film.31 Compared
with a bare ENZ film, such a device not only exhibits a larger
change in the refractive index but also significantly lowers the
operating power (i.e., pump peak intensity).
Recently, a self-phase-modulation-induced frequency shift

was demonstrated using a 92-nm-thick ENZ-based metasur-
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face.32 In that work, it was reported that a near-resonant high-
intensity input pulse propagating through an ENZ-based
metasurface experiences a frequency shift of ∼1.6 THz due to a
time-dependent change in the optical path length due to the
self-action nonlinear optical effect. However, a single-beam
operation might not fully exploit the time-dependent nature of
such a system. In contrast to this previous report, a pump−
probe scheme allows additional control of the frequency shift
of the probe beam as a function of pump intensity and the
pump−probe delay time and thus leads to a significantly larger
frequency shift compared to a single-beam operation.33 Here
we show a pump-induced change in the frequency of a probe
beam due to the dynamic variations of the effective refractive
index of the metasurface in the presence of the pump beam. As
a result, the probe experiences a time-dependent phase shift
(Δϕeff). The magnitude of the phase shift depends on both the
intensity of the pump beam and the relative time delay
between the pump and the probe, leading to a tunable
frequency shift of the probe (Figure 1a). Additionally, because
of weak-wave retardation effects, a pump can impart a larger
phase shift to a weak probe than to itself.1 Consequently, the
pump-induced change in the frequency can potentially be
larger compared to the single-beam study.32 Moreover, because
the refractive index change is induced by the pump, the
frequency shift of the probe pulse may now be independently
controlled by the pump intensity and the pump−probe delay
time.
Here we demonstrate a large, tunable, and broadband

frequency shift of up to ∼11.2 THz with a 4-GW/cm2 pump
intensity using a 63-nm-thick ENZ-based metasurface. Our
results represent a decrease of ∼10 times in device thickness
and 120 times in pump peak intensity compared with the cases
of bare, thicker ENZ materials for the similar amount of
frequency shift.7,30 In addition, this also represents a ∼7 times
larger frequency shift with a thinner device and a similar pump
peak intensity, when compared to previous ENZ-based

metasurface work.32 Moreover, we see that the magnitude of
the frequency shift depends onand thus can be controlled
byboth the pump−probe delay time and the pump peak
intensity. Furthermore, the AFC was demonstrated in a
broadband wavelength range from 1257 to 1404 nm.

■ RESULTS AND DISCUSSION

Concept of AFC Using ENZ-Based Metasurface. A bare
ENZ film has been reported to exhibit a large Δn in
subpicosecond time scales in the ENZ region (i.e., ε ≈ 0).26

This is mainly due to two reasons: (i) the free-electron heat
capacity of the ENZ film is relatively low, leading to a large
change in the free-electron temperature and thus a large
change in its permittivity; (ii) on the basis of the formula Δn =

ε εΔ /2 , Δn is relatively larger at the ENZ region for a given
Δε. Therefore, a bare ENZ film can potentially be used as a
platform to achieve a large AFC (Figure 1b).7,30

However, the optical nonlinearity of the ENZ film can be
further enhanced by introducing a gold plasmonic antenna
array onto an ENZ film.31 In this ENZ-based metasurface, the
plasmonic antenna array plays three crucial roles: (i) It allows
for efficient coupling of the free-space radiation into the ITO
layer. (ii) The antenna array helps to concentrate the electric
field inside the ENZ layer, resulting in a field enhancement that
lowers the nonlinear intensity threshold. (iii) Because of the
strong coupling between the antenna array and the ENZ film,
the electric near field of each antenna is pulled into the thin
ENZ substrate. Consequently, the resonance condition of the
hybrid system has a strong dependence on the refractive index
of the subwavelength-thick ENZ substrate.31 When an optical
pulse passes through the metasurface, the ENZ film exhibits a
relatively higher change in refractive index due to its large
nonlinear response, which leads to a larger resonance shift for
this metasurface26,31 (Figure 1c). As a result, the overall change
in the effective refractive index (i.e., Δneff) is significantly
enhanced in a broadband range. Thus, the AFC effect resulting

Figure 1. Basic concept of AFC. (a) An optical pump pulse can induce a time-varying change in the refractive index of a medium. A probe pulse
traveling through the same medium experiences a time-dependent phase shift (Δϕeff), resulting in an adiabatic frequency shift of the probe pulse
that is proportional to the rate of the change in the refractive index (Δn). L is the thickness of the nonlinear sample in this figure. (b) A thick bare
ENZ (ε ≈ 0) film under pulsed optical excitation can be used for AFC by exploiting the unity-order change in the refractive index of the film. (c)
An engineered plasmonic metasurface incorporating an ENZ thin film exhibits a larger nonlinear optical response compared to that of a bare ENZ
film. Such a metasurface exhibits a large change in the effective refractive index (Δneff) due to the time-varying change in the resonance frequency.
In addition, the antenna array also helps to concentrate the incident electric field inside the ENZ layer, resulting in a field enhancement.
Consequently, a thinner ENZ-based metasurface can be utilized to achieve a large AFC with a low pump intensity. k = 2π/λ is the wavenumber.
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from a time-varying change in the resonance condition of the
strongly coupled system is enhanced. We note that Δneff of the
coupled system depends on the Q-factor of the resonator and
the coupling dynamics between the antennas and the ENZ
film, which can be computed using homogenization
techniques.31,34

Linear Optical Response of the Metasurface. ITO is a
transparent conducting oxide, and it generally exhibits zero real
permittivity in the near-IR spectral range. Figure 2a shows the

complex permittivity values of the ITO film we used for this
work, which is obtained using spectroscopic ellipsometry. It is
observed that the 23-nm-thick ITO film has zero real
permittivity at 1420 nm. Generally, a thin ITO-based ENZ
film exhibits a nonpropagating surface mode known as the
ENZ mode.31,35,36 The dispersion of the ENZ mode depends
on the thickness of the ITO layer and affects the field
enhancement.35 Typically the field enhancement, due to the
excitation of the ENZ mode, is maximized for a deeply
subwavelength thin film. In this study we choose a
commercially available 23-nm-thick ITO film as the ENZ
substrate. A similar substrate was previously used to

demonstrate a broadband and large nonlinear response.31

When a plasmonic antenna array with a fundamental resonance
wavelength close to the zero-permittivity wavelength is placed
on the ITO layer, the plasmonic mode of the antenna and the
ENZ mode of the ITO layer interact with each other.31,35−37

This results in a strong-coupling-induced spectral splitting of
the plasmonic resonance of the antenna array. Figures 2b
presents the finite-difference-time-domain (FDTD) simulation
of transmittance for the ENZ-based metasurface with various
antenna lengths. We find that the positions of the two
resonance dips are dependent on the antenna length. The
existence of a spectral anticrossing is a signature of the strong
coupling regime between the antennas and the ITO film.
Typically, the low-frequency hybrid resonance is the symmetric
mode, and the high-frequency one is antisymmetric. We note
that the linear responses of such metasurfaces have been
discussed in a number of references.36,38−40 Panels c and d of
Figure 2 show the 3D schematic and the SEM image of
metasurface we used in this study, respectively. We measure
the linear transmission spectrum of the metasurface using a
white light source (Figure 2e). The experimentally measured
linear transmission spectrum of the metasurface exhibits two
distinct dipscentered at ∼1200 nm and at ∼1550 nm
confirming the strong coupling effects. We note that the
simulation and experimental results of the linear transmission
are close, and the disagreements might be caused by various
fabrication and alignment imperfections. We also note that in
the absence of the ITO layer between gold antenna array and
the substrate, the resonance dip of the transmission spectrum
is at ∼1290 nm. Figure 2f shows FDTD simulation results of
the electric field distribution of the coupled structure. A large
field enhancement is observed which is caused by the near-field
interactions between the ITO film and the antenna array. We
perform a series of degenerate pump−probe measurements for
this metasurface as functions of pump intensities, pump−probe
delay, and carrier central frequency to investigate the AFC
effect.

AFC Measurement at 1304 nm. First, we experimentally
measured the probe spectra for various pump−probe delay
times and different pump peak intensities when both pump
and probe wavelengths are at ∼1304 nm (Figure 3a−c). We
first choose this wavelength as an example to show the
transmission spectra because this is nearly equidistant from the
two main resonances of the metasurface based on the linear
measurement in Figure 2e. Two other wavelengths will be also
explored in the next section. We observe that the probe’s
transmitted spectra exhibit red-shifted peaks. This is because
the probe beam mainly experiences a rise of the refractive
index in the metasurface when the sign of n2 is positive. In
addition, we see that the probe’s spectral redshift increases
with a decreasing pump−probe delay for a given pump
intensity. Here, the measured blueshift of the probe beam is
not apparent, when the pump peak intensity is relatively low.
This observation is different from reported red- and blue-
shifted peaks, based on the different pump−probe delay, in
previous ENZ-based AFC experiments.7 We attribute this to
the relatively slow decay time (∼500 fs) of the refractive index
of such a metasurface compared to the probe’s temporal
duration (∼50 fs).31 Compared with the bare ITO film, the
decay time of the ENZ-based metasurface is relatively longer.
This might be attributed to the low-Q resonance of the
coupled system, modified electron−electron and electron−
phonon scattering rate, and electron−phonon coupling

Figure 2. (a) Measured real and imaginary parts of the permittivity of
an ITO film. (b) FDTD simulation results of the transmittance of the
ENZ-based metasurface with various antenna lengths. (c) Basic
structure of the ENZ-based metasurface device. The ITO thickness is
23 nm, and the gold antenna thickness is 40 nm. (d) Scanning
electron micrograph of the fabricated gold antenna array. (e)
Simulated and experimental results for the linear response of the
metasurface exhibiting strong coupling-induced resonance splitting
larger than the line width of the antenna resonances in the presence of
the ENZ substrate. (f) FDTD simulation results of the enhanced
electric field distribution of the coupled structure at an input
wavelength of 1304 nm with the light polarized along the horizontal
(x) axis of the antenna.
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coefficient due to the presence of the gold nano structures.31

Moreover, we find that for a given pump−probe delay, the
spectral shift’s magnitude increases with the increase in the
pump intensity. This is because a higher-intensity pump
induces a larger refractive index change, leading to a larger
spectral shift. Furthermore, we see that as the pump intensity
increases, another peak occurs at the left side of the probe
spectra near zero delay time. Because the optical thickness of
the metasurface is smaller than the longitudinal length of the
probe, a part of the probe’s energy might not reside inside the
metasurface at a given instant of time. Consequently, not all
energy of the probe is frequency shifted by the same amount.

This leads to an observation of the blueshifted peaks with
increasing pump intensity for a given pump−probe delay.7

To investigate the underlying mechanisms numerically, we
perform a series of FDTD simulations. We model the
nonlinear optical response of ITO with an effective delayed
third-order nonlinearity. Here, we make a number of
assumptions: (i) We attribute the nonlinearity only to the
ITO layer, and we consider the gold to be a linear material.
Generally, the nonlinearity of gold is primarily caused by
intraband effects for the wavelengths of interest in this study.41

The third-order susceptibility χ(3) of gold induced by intraband
effects at these wavelengths are on the order of 10−19 m2/V2,
which is a few orders of magnitude smaller than the effective

Figure 3. Experimental and simulated probe spectra at λ0 = 1304 nm. (a−c) Normalized experimental probe spectra as a function of pump−probe
delay times with various pump peak intensities. (d−f) Corresponding numerically simulated probe spectra by FDTD models.

Figure 4. Frequency shifts at different central wavelengths. (a−c) Experimentally measured frequency shifts with various pump peak intensities for
different central wavelengths (1257, 1304, and 1404 nm).
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χ(3) of ITO used in the simulation (10−16m2/V2).41 (ii) We
take the effective values of χ(3) of ITO to be purely real,
because we are interested in the frequency shift here. (iii) We
take the saturation due to higher-order nonlinear effects into
account implicitly by choosing effective χ(3) values that
decrease with increasing pump intensities. We find that the
effective χ(3) value for the case of the highest pump intensity is
approximately a factor of 2 smaller than that for the lowest
intensity. Our simulation reproduces the main experimental
observations, namely that the magnitude of the probe
frequency shift is a function of pump intensity and the
temporal pump−probe delay.
Broadband Response. To investigate the bandwidth of

the observed effect, we repeated the above measurements for
two other wavelengths, 1257 and 1404 nm. Figure 4
summarizes our observations for all measurements. We observe
a similar trend for all three wavelengths: the frequency redshift
increases with increasing pump intensities for a given pump−
probe delay. Moreover, the probe’s frequency shift for a given
pump intensity and delay decreases with an increase of the
pump’s wavelength. This observation is consistent with
previous reports that the nonlinear response of an ITO-
antenna coupled metasurface decreases with increasing
detuning from the resonance.31 Furthermore, we observe a
change in the probe frequency of 11.2 THz when both pump
and probe are at 1257 nm with a pump peak intensity of 4
GW/cm2, which is similar to that of previous reports.7,30

■ CONCLUSION
In summary, we have experimentally demonstrated a large,
tunable, and broadband AFC using a 63-nm-thick ENZ-based
metasurface. Previous work has shown that large nonlinear
optical responses can be engineered and enhanced by
incorporating nanoantenna with the ENZ material.31 In
addition, it has also been demonstrated the AFC effect in a
620-nm-thick ENZ material.7 Considering the understanding
developed in two previous contributions, we demonstrate here
that the AFC effect in a 63-nm-thick ENZ-based metasurface
can be as large as what can be achieved in a 620-nm-thick ENZ
material using more than 2 orders of magnitude lower pump
intensity. Moreover, in comparison to recent work on self-
induced frequency conversion,32 we (a) show seven times
larger frequency shifts, (b) provide evidence of the broadband
nature of the process, and (c) demonstrate an additional route
to tunability using pump−probe delay. Our findings might
potentially provide insights into designing time-varying
metasurfaces for the manipulation of ultrafast pulses. We
note that a time-varying metasurface that can change the
frequency of a probe beam might be used, in conjunction with
an optical filter, to implement a pump-induced nonreciprocal
device. In addition, AFC effects may also find applications in
signal processing for optical communications.42−44

It is worth mentioning the following points: (i) The
frequency shift saturates when the pump peak intensity is
around 4 GW/cm2 because of the saturation of Δn. This might
be induced by a large damping of the thin ITO, which limits
the achievable temperature of the free electrons. In addition,
the increased electron temperature spectrally widens the
resonance of the coupled structure, limiting the achievable
phase shift.31 In order to further increase the frequency shift,
one may consider cascading multiple ENZ-metasurfaces or
placing such a metasurface inside a cavity. However, a higher
power loss would be induced when using multiple

metasurfaces. Potential methods to reduce the power loss
might include the use of dielectric nanoantennas and an ENZ
material with less absorption. (ii) The antenna array geometry
is chosen to be cross-shaped in both the simulation and the
experiments such that there is little polarization dependence on
the linear or nonlinear response.32 In this work, we present
experimental results only when both the pump and the probe
are aligned with one of the principal axes of the metasurface. It
should be noted that the nonlinear response of the cross-
shaped antenna coupled to the ENZ medium is rotation-
invariant as long as both the pump and the probe have the
same polarization. However, if their polarization states are not
the same, the resulting frequency shift might be lower, because
the pump beam will induce a smaller refractive index change in
the direction of the probe polarization. (iii) The frequency-
dependent nonlinear properties of the ENZ-based metasurface
can be potentially tailored by engineering the shapes and
various geometric parameters of the antenna and by
controlling the free-electron density and thickness of the
ENZ layer. Therefore, the platform presented in this work
might be potentially tailored to achieve AFC or some other
applications in another central frequency.

■ METHODS
Fabrication. The 500 μm × 500 μm antenna array was

fabricated on commercially available ITO on glass substrates
(PGO GmbH). The antenna patterns were defined in a bilayer
poly (methyl-methacrylate) resist using electron beam
lithography (Raith Pioneer 30 kV), followed by Au deposition
and a liftoff step. Intraparticle proximity error correction was
used to ensure sharp corners and a good cross shape of the
antennas.

Experimental Setup. An optical parametric amplifier
pumped by a Ti:sapphire laser is used to generate optical
pulses of ∼50 fs duration. The output beam is split into a
pump and a probe using a pellicle beam splitter. In each arm, a
half waveplate and a polarizer are used to control the power
incident on the sample. The probe peak intensity is kept to 0.1
GW cm−2 to avoid inducing significant nonlinear effects. We
use a mechanical delay stage to tune the delay time between
pump and probe. Two lenses are then used to focus the pump
and probe on the same spot of the metasurface with spot sizes
of 65 and 25 μm, respectively. Because of the probe’s smaller
beam waist compared to the pump, the probe experiences
nearly uniform pump intensity, i.e., uniform refractive index
change in the transverse plane.
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