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Quantum-state tomography is the conventional method used to characterize density matrices for general
quantum states. However, the data acquisition time generally scales linearly with the dimension of the
Hilbert space, hindering the possibility of dynamic monitoring of a high-dimensional quantum system.
Here, we demonstrate a direct tomography protocol to measure density matrices of photons in the position
basis through the use of a polarization-resolving camera, where the dimension of density matrices can be as
large as 580 x 580 in our experiment. The use of the polarization-resolving camera enables parallel
measurements in the position and polarization basis and as a result, the data acquisition time of our protocol
does not increase with the dimension of the Hilbert space and is solely determined by the camera exposure
time (on the order of 10 ms). Our method is potentially useful for the real-time monitoring of the dynamics
of quantum states and paves the way for the development of high-dimensional, time-efficient quantum

metrology techniques.
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Introduction.—The ability to characterize a quantum
state is crucial in quantum technologies, both because it
ensures that the desired quantum state has been generated
and it can be used to determine the quantum state after
interacting with a system. Quantum-state tomography is an
established approach to reconstruct a general quantum state
(either pure or mixed) through a series of projective
measurements performed on identically prepared states
[1-13]. Recently, the concept of direct measurement [14]
has been established, which can directly be used to read out
the complex-valued amplitudes of a pure quantum state
through a proper sequence of weak and strong measure-
ments [15-31]. The elimination of the complicated post-
processing procedure of state reconstruction is one of the
main advantages of direct measurement methods, allowing
it to serve as an alternative metrology technique that may
greatly reduce experimental complexity.

The concept of direct measurement is quickly being
extended to the characterization of various quantum sys-
tems [32-38]. Nonetheless, one remaining challenge in
quantum-state metrology is the limited characterization
speed and efficiency for high-dimensional quantum states.
Most demonstrated techniques, including direct measure-
ment methods, involve either a slow scanning process or a
complicated postprocessing procedure, where the charac-
terization time scales unfavorably with the dimension of the
quantum system. As a result, almost all quantum metrology
demonstrations to date have been carried out under stable
laboratory conditions, and the measurement of a high-
dimensional quantum state can take as long as several
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hours. Compressive sensing has been implemented for the
tomography of an N-dimensional pure state in the spatial
domain with N =19, 200, which still requires ~ 0.25N
measurements [36]. Direct measurement of the density
matrix in the high-dimensional orbital-angular-momentum
(OAM) basis has also been reported [37,38]. However,
these methods use single-pixel detectors for data collection
and require performing a series of measurements via
scanning for the reconstruction of high-dimensional quan-
tum states. In general, since the number of measurements
scales linearly with the dimension of the Hilbert space,
the data acquisition time inevitably increases for high-
dimensional quantum states, hindering the possibility of
real-time monitoring of dynamic quantum systems. While
the recently proposed auxiliary Hilbert space tomography
[39] can reduce the measurement complexity for density
matrix characterization, this method is only applicable to
OAM states and thus exhibits a limited range of applica-
tion. This is because it is more desirable to characterize the
density matrix in the position basis, which is analogous to
the mutual coherence function in classical optics, of which
Michelson stellar interferometry [40] is a practical appli-
cation. However, the conventional method observes the
interference visibility between two apertures to measure the
coherence between two points, and the positions of two
apertures have to be scanned to obtain the complete density
matrix [41], which is extremely time consuming. In the
following, we introduce a scan-free direct tomography
protocol that can measure the complex-valued high-
dimensional density matrix for mixed photon states in
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the position basis by using a polarization-resolving camera.
The data acquisition time does not increase with the
dimension of the Hilbert space, and the maximum dimen-
sion allowed by our protocol is only limited by the pixel
count of the detector array.

Direct tomography protocol.—The density matrix can be
represented as an incoherent mixture of pure states, which
can be expressed as py = Y, prlwi) (wi|, where |y ) is the
pure quantum state normalized as (y|w;) = 1, and py is
the probability coefficient normalized as >, p, = 1. The
element of a density matrix in the position basis can be
computed as

Po(X1, Y15 %2, ¥2) = (X1, ¥11Polx2, ¥2)
= Zpk<x1vyl‘l//k><l//k|x2a)72>
k

= Zpkl//k(xh)’l)l//z(xz,)b)v (1)

where |x,y) denotes the position eigenstate located at
(x,y). In our experiment, we assume that the transverse
profile of the quantum state has only a one-dimensional
(1D) variation along the x axis and is invariant along the y
axis. Therefore, we have that yy(x;,y;) = ywi(x;) is
independent of y, and the density matrix element can be
Slmphﬁed as pO(-xl » Y15 X2, yZ) = pO('xl ’ .Xz), and

po(x1.x2) =Y pari(x)yi(x), (2)
X

which is the quantity to be measured. It is worth noting that
Eq. (2) is reminiscent of the mutual coherence function in
classical optics [40,41]. We use the polarization as the
pointer state [32] which is prepared in the diagonal pola-
rization state |D) = (|H) + |V))/V/2, where |H) and |V)
denote the horizontal and vertical polarization state,
respectively. Therefore, the full initial density matrix can
be written as p; = pg @ |D)(D|. Our direct tomography
protocol entails introducing a 90° beam rotation for the
horizontally polarized beam while leaving the vertically
polarized beam unchanged. This polarization-sensitive
beam rotation can be described by a unitary transformation
as [38]

U=T(z/2) ® |H)(H|+T(0) ® [V)(V

S C)

where 7(0) = exp(—i6¢) is the rotation operator, # is the
orbital-angular-momentum operator about the optical axis,
and the effect of the rotation operator on the position
eigenstate can be written as 7'(0)|x, y) = |xcos 6 + ysin6,
—xsin @ + y cos #). The final density matrix after this uni-
tary transformation can be represented as p; = Up,U". The
projective measurements [42,43] we propose to perform
can be represented by the following projectors:

zp = |x,y){x.y| & [D)(D|.
Za =[x, y)(x.y] @ |A)(A],
7ig = |x, y)(x,y| @ [R)(R],
= |x, y)(xy| @ |L)(L], (4)

where |A) = (|H) — |V))/+/2 is the antidiagonal polariza-
tion state, |L) = (|H) + i|V))/V/2 is the left-handed cir-
cular polarization state, and |R) = (|H) — i|V))/+/2 is the
right-handed circular polarization state. Therefore, the
expectation values of these projectors are found to be

Tp(x.y) = TelapUp, 0]

= % {Po(=y,=y) + po(x,x) + 2Re[py(=y, x)]},

Ca(x,y) = Tr[ﬁAﬁﬁiﬁT]

= 1 {P0(=3,2) + polx.x) = 2Relpo(=y. V]
u(x.y) = Trli0p, 00

= 2 {oo(=.=3) + pol.2) + 2mipo(~y. )]},

I (x,y) =Tr[a, Aﬁ,fﬁ]
= 2 o= =)+ ol ) = 2Imipy(y, ]
©

Using the above equations, the density matrix can be
experimentally reconstructed as

PSXP(xlvxz) =Tp(xp, =x1) = Ty (X2, —x1)

+ i[Cr(x2, =x1) =Tp(x2. —x1)]. (6)

It can be seen that the density matrix can be directly
reconstructed without using any complicated algorithm. In
addition to the reconstruction of the density matrix pg ', it is
also desirable to be able to reconstruct the pure states |y;).
In order to reconstruct the pure states, we use singular value
decomposition [44]. The reconstruction can be unique if
the pure states are mutually orthogonal. For a square and
Hermitian density matrix p; ", it can always be decom-
posed as [45]

pP = WS )
where M is a unitary matrix, and S is a real-valued diagonal

matrix whose diagonal elements Sy, are the singular values

of pS*P. Tt can be readily seen that
Po y

(x1lpg " |xa) = ZSkk<x1|M|k><k|1\A/IT|x2>. (8)
k
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Comparing Eq. (8) with Eq. (1), one can find that

(xly;") = (x|M]k). ©)

As one can see, singular value decomposition can be used
as a tool to decompose a density matrix into an incoherent
mixture of pure states, which can be efficiently imple-
mented by established numerical algorithms [46]. It is
worth noting that the singular value decomposition dis-
cussed here is reminiscent of the coherent mode decom-
position in optical coherence theory [47,48].
Experiment.—The experimental setup to implement the
direct tomography protocol is shown in Fig. 1. A 633 nm
HeNe laser with an optical power of 3 mW is used as the
source of photons. The light beam is spatially filtered and
attenuated before it illuminates a spatial light modulator
(SLM, Pluto 2 VIS-020, Holoeye). A series of computer-
generated phase-only holograms [49] is displayed onto the
SLM to generate the quantum states of interest. Mixed
states can be generated by switching the hologram on the
SLM and by incoherently mixing the intensity images
acquired by the camera [50]. An iris is used to pass the first
diffraction order of light coming off the SLM while
blocking all other diffraction orders. A polarizer and a
half-wave plate (HWP) are used to generate the diagonal
polarization state |D). To implement the unitary trans-
formation U [cf. Eq. (3)], a polarizing beam splitter (PBS)
is used to separate the horizontally and vertically polarized
beam. A Dove prism is applied to geometrically rotate the
horizontally polarized beam by 90°. A second PBS is used
to recombine the two beams and thus completes the
implementation of U. A 45°-oriented quarter-wave plate
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FIG. 1. The schematic of the experimental setup. A Dove prism
is used to rotate the horizontally polarized beam by 90°. A 1D
Hermite-Gauss state HG, (x) is used as an example to visualize
the beam rotation. SLM: spatial light modulator. HWP: half-wave
plate. PBS: polarizing beam splitter. QWP: quarter-wave plate.
PolarCam: polarization-resolving camera.

(QWP) and a polarization-resolving camera (PolarCam,
BFS-U3-51S5P-C, FLIR) are used to perform all the
required projective measurements in a single shot. The
PolarCam has microsized polarizers (oriented to 0°, 45°,
90°, and 135° respectively) deposited on the camera
sensors and thus allows for the detection of four different
polarization states simultaneously. The camera exposure
time is approximately 10 ms depending on the intensity of
the generated states. The QWP and the PolarCam jointly
enable the projective measurements proposed in Eq. (4).
The image on the camera has a size of 580 x 580 pixels,
and thus the dimensionality of the quantum states in our
experiment is N = 580. The pixel size of the camera is
3.45 um.

In our experiment, we prepare a mixed state consisting of
three mutually orthogonal pure states |y;) with k = 1,2, 3.
More specifically, as our first demonstration, the pure states
used to construct the density matrix are

P = 0.21, <X|l//1> — ei1.04lrx/a’
Py = 0.30, <)C|l//2> — ei7r[—8.42(x/a)3+4.O4(x/a)]’
p3 =049, (xyrs) = einl=17.60x/ay =x/al (10)

where —a/2 < x < a/2 is the discretized position, and a =
2 mm is the size of the beam. These states are referred to as
the phase-only quantum states henceforth.

As another test of our protocol, we use the 1D Hermite-
Gauss (HG) states to construct the mixed state:

2 \i 1

n(Z)enF) o

where H,,(-) is the Hermite polynomial of order m [51],
and wy = 0.15a is the beam waist radius. The HG states
used in the experiment are

p1 =022, (xy;) = HGy(x),
p2 = 0.33, (xy2) = HG, (x),
p3 =045, (x|{y3) = HG,(x). (12)

The images acquired by the PolarCam for the phase-only
states are shown in Fig. 2(a). We apply a digital low-pass
Gaussian spatial filter to process these images in order to
remove the undesirable fringes caused by dusts and glass
film interference [52]. The density matrix can be directly
reconstructed based on these data by using Eq. (6). Because
of the experimental errors (e.g., misalignments, noises,
imperfect mode generation fidelity, etc.), the experimen-
tally reconstructed density matrix f)g"p may not be strictly

Hermitian. Hence, we implement 5 — (5 + p¢%") /2
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FIG. 2. Experimental results for the phase-only states. (a) The
images acquired by the PolarCam. (b) The real and imaginary
parts of the reconstructed density matrix. The trace distance
between the theoretical density matrix and the experimentally
measured density matrix is 14.2% =4 0.3%.

to guarantee the Hermiticity of the density matrix, and the
results are shown in Fig. 2(b). To quantify the accuracy of
our protocol, we calculate the trace distance between the
ideal density matrix g, and the experimentally measured
density matrix py" as follows [44]:

1
Trace distance = 3 |Tr[\/( S0 =P ) (Bo — Po )T, (13)

and the trace distance for the phase-only states is calculated
to be 14.2% £ 0.3%. It should be noted that a lower trace
distance indicates a higher measurement fidelity of our
measurement protocol. This is because the trace distance
quantifies the maximum possible probability of distin-
guishing the quantum states described by two density
matrices, and thus the trace distance between two exactly
identical states is zero. The experimental results for the HG
states are presented in Fig. 3, and the corresponding trace
distance is measured to be 19.0% =+ 0.3%. We also numeri-
cally perform the singular value decomposition for the
experimentally measured density matrix. The reconstructed
phase-only states are shown in Fig. 4, and the reconstructed
HG states are shown in Fig. 5. For each experimentally
reconstructed quantum state [y "), we compute its fidelity
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FIG. 3. Experimental results for the HG states. (a) The images
acquired by the PolarCam. (b) The real and imaginary parts of the
reconstructed density matrix. The trace distance between the
theoretical density matrix and the experimentally measured
density matrix is 19.0% =+ 0.3%.
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FIG. 4. The reconstructed phase-only quantum state for
(@) |y1), (b) |ws), and (¢) |ws), respectively. The real (imaginary)
part is shown in the left (right) panel. The standard deviation of
the experimental data is denoted by the linewidth, which is
generally too small to be visible. The fidelity of each recon-
structed state is shown at the top of each corresponding subfigure.

as | (" [S*P)|*. The fidelity for each reconstructed state

is shown at the top of each corresponding subfigure. It can
be seen that the fidelity of state is always higher than 90%.
In our experiment, we attribute the nonzero trace distance
primarily to the imperfect spatial mode generation and the
misalignment of the polarization-sensitive beam rotator. As
a consequence, the reconstructed density matrix might be
unphysical due to the possible lack of Hermiticity and
positive semidefiniteness [53]. However, we notice that the
standard maximum-likelihood-estimation-based routine for
recovering a physical density matrix [53] is not readily
applicable to our experiment, because it requires the mini-
mization of a likelihood function with N2 = 336, 400 inde-
pendent parameters. This task can potentially be accom-
plished by using machine learning algorithms [54] and is
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FIG. 5. The reconstructed HG quantum state for (a) |w),
(b) |w»), and (c) |y3), respectively. The real (imaginary) part is
shown in the left (right) panel. The standard deviation of the
experimental data is denoted by the linewidth, which is generally
too small to be visible. The fidelity of each state reconstructed is
shown at the top of each corresponding subfigure.
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subject to future study. In our experiment, we assume the
transverse profile of the field has only a 1D variation along
the x axis [see Eq. (2)]. Although our protocol cannot be
directly applied to a general two-dimensional (2D) spatial
field, it is possible to reshape a finite-sized 2D field
into a 1D field [55] to further generalize our approach.
A potential realization of the 2D-to-1D beam reshaping is
discussed in Supplemental Material [56], which includes
Refs. [10,23,40,42,57-67].

Although many quantum techniques use single-pixel
detectors, advances in detector development have led to
many options for the use of high-performance detector
arrays, such as SPAD arrays [58,59], cooled CCD cameras
[10,23], electron-multiplying CCD cameras [60,61] and
intensified CCD cameras [62—67]. Comparing with raster
scanning techniques using a single-pixel detector, the
parallel measurement via an M-pixel detector array is
generally M times faster, which can be used to apply
our method to quantum applications at the single-photon
level. It is worth mentioning that due to the photon loss
induced by the polarizers in the PolarCam, the photon
efficiency of our method is suboptimal. However, the
PolarCam can in principle be replaced by polarizing
beam splitters and a regular camera to eliminate the photon
loss [42]. In contrast, the standard raster scanning tech-
nique requires the use of two scanning apertures, in which
the photon efficiency drops by a factor of N for an
N-dimensional photon state due to the aperture postselec-
tion loss. Meanwhile, the scanning technique also would
increase the measuring time by a factor of N2. Therefore,
our method can significantly outperform the standard raster
scanning technique in terms of both measurement speed
and photon efficiency (see Supplemental Material [56] for
details).

Conclusion.—In this work, we demonstrated a direct
tomography protocol that can efficiently characterize a
high-dimensional density matrix in the position basis for
general quantum states, where the data acquisition time is
independent of the dimension of the Hilbert space. Two
different mixed states were prepared and characterized
with a high fidelity in our demonstration. Singular value
decomposition was implemented to reconstruct the pure
states that constitute the prepared mixed state, which can
potentially be useful for the analysis of spatially incoherent
fields. We anticipate that our protocol can inspire the
development of high-dimensional, time-efficient quantum
metrology techniques and can be used as a powerful tool
for the experimental study of the spatial mutual coherence
function of optical fields, which plays an important role in
Michelson stellar interferometry, superresolution imaging
[68], and optical coherence theory [40].
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