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A dense cloud of atoms with randomly changing positions exhibits coherent and incoherent scattering. We
show that an atomic cloud of subwavelength dimensions can be modeled as a single scatterer where both coherent
and incoherent components of the scattered photons can be fully explained based on effective multipole moments.
This model allows us to arrive at a relation between the coherent and incoherent components of scattering based
on the conservation of energy. Furthermore, using superposition of four plane waves, we show that one can
selectively excite different multipole moments and thus tailor the scattering of the atomic cloud to control the
cooperative shift, resonance linewidth, and the radiation pattern. Our approach provides a new insight into the
scattering phenomena in atomic ensembles and opens a pathway toward controlling scattering for applications
such as generation and manipulation of single-photon states.
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I. INTRODUCTION

Since Dicke’s original work in 1954, the physics of col-
lective effects and multiple scattering of light by a dense
ensemble of atoms has attracted significant attention [1–5].
In particular, remarkable phenomena such as Anderson local-
ization [6,7], coherent backscattering [8], random lasing [9],
superradiance [1,10–12], subradiance [1,11,13], and coopera-
tive shift [14] have been explored for cold ensembles of atoms.
The physical origin of these phenomena can be understood by
multiple scattering of light in a collection of atoms [15]. An
ideal platform for observation of these cooperative effects is
an array of cold atoms with subwavelength distances [16–35].
However, arranging atoms in arbitrary subwavelength struc-
tures is highly demanding and cannot be achieved easily [30].
On the other hand, it has been demonstrated that a cloud
of cold atoms can reach densities with atomic distances less
than the resonant wavelength where a strong coherent dipole-
dipole interaction couples the atoms [36,37]. Therefore, the
atoms interact with light collectively [36–41]. Nonetheless,
the linewidth and frequency of each collective mode depends
strongly on the exact spatial arrangement of the atoms, which
changes randomly even in a cold ensemble of atoms. As a
consequence, the atomic cloud exhibits both coherent and
incoherent scattering [39,40]. Moreover, the random motion
of the atoms seems to weaken the cooperative effects signif-
icantly and causes a subwavelength cloud of atoms to scatter
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fewer photons on average compared to a single atom, in con-
trast to Dicke’s work [42].

In this paper, we show that the cooperative shift and reso-
nance linewidth of a subwavelength cloud of cold atoms can
be controlled by structuring the excitation field. Structured
light beams enable properties and applications in both classi-
cal and quantum optics [43–45]. In particular, structured light
offers unique control of many phenomena including angstrom
localization and detection of nanoparticles [46–49], Kerker
effects and directional scattering [50,51], counterintuitive op-
tical pulling and lateral forces [52,53], multipolar excitation in
nanoparticles [54,55], and nonlinear microscopy [56], among
other feats [43–45]. However, the potential of structured light
to manipulate cooperative effects remains unexplored.

We introduce a multipolar decomposition and demonstrate
that both coherent and incoherent scattering of a subwave-
length atomic cloud can be fully characterized by electric and
magnetic multipole moments. Using conservation of energy
and multipolar decomposition, we find analytical expressions
that relate fluctuating and averaged electric and magnetic po-
larizabilities. Then, by employing superposition of four plane
waves, we selectively excite the electric and magnetic multi-
pole moments. As a result, we can control the cooperative shift
and resonance linewidth of the atomic cloud by changing the
relative phase between the plane waves.

II. WEAK EXCITATION LIMIT

We consider a subwavelength cloud of atoms uniformly
distributed in a sphere with radius R [see Fig. 1(a)]. The
atomic cloud is assumed to be dense, i.e., ρ/k3 > 1, where
ρ = N/V is the spatial density, N is the number of atoms, and
V is the volume of the atomic cloud. We assume cold atoms
without nonradiative losses and with a negligible Doppler
effect compared to their radiative linewidth as in experimen-
tal realizations [36,37]. The atomic cloud is investigated in
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FIG. 1. (a) Schematic drawing of a subwavelength atomic cloud composed of N atoms at random positions for different realizations. NR is
the number of realizations. The diameter D of the atomic cloud is smaller than the wavelength. (b) The induced electric and magnetic multipole
moments of each realization obtained from multipole expansion of the induced current [using Eqs. (B1) in the Appendix]. (c) Coherent
electric and magnetic polarizabilities as a function of frequency detuning obtained from the induced multipole moments shown in panel (b).
(d) Coherent and incoherent scattering cross sections and contribution of each multipole moment obtained from Eq. (4). The ensemble-averages
are obtained from 10 000 realizations of the atomic cloud with radius R = 0.2λa composed of N = 25 atoms.

the weak excitation limit such that the atomic transition is
far below the saturation limit. Thus, each atom in the cloud
is modeled by an isotropic electric polarizability given by
α(ω) = −(α0�0/2)/(ω − ωa + i�0/2), where �0 is the radia-
tive linewidth, ωa is the atomic transition angular frequency,
and ω − ωa � ωa is the detuning of the illumination from the
atomic resonance. α0 = 6π/k3, where k = ω/c is the wave
number of the illumination [57–60].

III. COHERENT AND INCOHERENT MULTIPOLE
EXPANSION

We assume that the atoms in the subwavelength cloud have
random spatial distributions. We consider many realizations
for which the position of the atoms are changed with a uniform
probability distribution [see Fig. 1(a)]. The atomic cloud is
illuminated by plane waves and the total scattered field can
be decomposed into two parts: Esca = 〈Esca〉 + δEsca, where
〈Esca〉 and δEsca are the coherent (ensemble-averaged) and
incoherent (fluctuating) fields, respectively [39,40,42]. The in-
duced polarization current density of the atomic cloud is given
by J(r, ω) = −iω

∑N
i=1 p(ri )δ(r − ri ) [31,32,61,62], where δ

is the Dirac δ function and p(ri ) is the induced electric dipole
moment of the ith atom placed at ri [see Fig. 1(a)]. Now
by employing multipole decomposition of the current J(r, ω)
[63,64], we can calculate the induced effective multipole mo-
ments of the atomic cloud which can be decomposed into
coherent and incoherent parts (see Appendix B for details):

dE
μ = 〈

dE
μ

〉+ δdE
μ, dM

μ = 〈
dM

μ

〉+ δdM
μ ,

QE
μν = 〈

QE
μν

〉+ δQE
μν, QM

μν = 〈
QM

μν

〉+ δQM
μν, (1)

where μ, ν ∈ x, y, z. The quantities dE
μ , dM

μ , QE
μν , and QM

μν

are the effective electric dipole (ED), magnetic dipole (MD),
electric quadrupole (EQ), and magnetic quadrupole (MQ)
moments of the atomic cloud, respectively. The symbol 〈 〉

represents an ensemble-average. Using the induced multipole
moments, we obtain the electric and magnetic dipole and
quadrupole polarizabilities

αi = 〈αi〉 + δαi, i ∈ {ED, MD, EQ, MQ}, (2)

where 〈αi〉 and δαi are the coherent and incoherent polariz-
abilities, respectively.

IV. SINGLE PLANE WAVE EXCITATION

We consider a subwavelength atomic cloud composed of N
atoms as shown in Fig. 1 (a) and illuminated by an x-polarized
plane wave Einc = E0eikzex propagating in the z direction. The
ensemble-averaged induced multipole moments are given by
(see Appendix C for details)

〈dE〉 = ε0〈αED〉E0ex, 〈dM〉 = 〈αMD〉H0ey,

〈QE〉 = ik

2
ε0〈αEQ〉E0(exez + ezex ),

〈QM〉 = ik

2
〈αMQ〉H0(eyez + ezey), (3)

where QE and QM are tensors of rank two, eμeν is the unit
dyad, μ, ν ∈ x, y, z, and H0 is the amplitude of the magnetic
field of the plane wave. Having the polarizabilities, we can
calculate the coherent and total scattering cross sections by
(see Appendix C)

Ccoh
sca = 3λ2

2πα2
0

(|〈αED〉|2 + |〈αMD〉|2)

+ 5λ2

2πα′
0

2 (|〈αEQ〉|2 + |〈αMQ〉|2),

Ctotal
sca = 3λ2

2πα2
0

Im(〈αED〉 + 〈αMD〉)

+ 5λ2

2πα′
0

2 Im(〈αEQ〉 + 〈αMQ〉), (4)
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FIG. 2. Coherent and incoherent electric and magnetic polarizabilities obtained from the induced multipole moments and defined as α
j
i =

〈α j
i 〉 + δα

j
i , where i ∈ {ED, MD}, j ∈ {D, OD}. ED (MD) denotes the electric (magnetic) dipole and D (OD) represents diagonal (off-diagonal)

components of the polarizability tensor [see Eq. (5)]. (a, b) Electric dipole polarizabilities as a function of frequency detuning. Note that
〈αD

ED
〉 �= 0, whereas 〈αOD

ED
〉 = 0. The thickness of the shaded lines show the fluctuating components of the polarizabilities. (c) Relation between

coherent and incoherent polarizabilities obtained from the conservation of energy, see the left and right sides of Eq. (6). [(d)–(f)] Same as
panels [(a)–(c)] for the magnetic dipole polarizability of the atomic cloud.

where α0 = 6π/k3 (α′
0 = 120π/k5) is related to the radiation

loss of a dipole (quadrupole) moment. Equation (4), which
is the first main result of this paper, allows us to calculate
the coherent and incoherent scattering cross sections of the
atomic ensemble. Note that the incoherent scattering cross
section is given by Cincoh

sca = Ctotal
sca − Ccoh

sca . We consider now a
spherical subwavelength atomic cloud with radius R = 0.2λa

composed of 25 atoms which can be fully characterized by
dipole and quadrupole moments. Figure 1(c) shows that the
atomic cloud exhibits strong electric and magnetic responses.
Figure 1(d) shows the coherent, incoherent and total scattering
cross sections (normalized to λ2/2π ) calculated from Eq. (4),
and the contribution of different multipole moments as a func-
tion of frequency detuning. It can be seen that the maximum
total scattering cross section of the ensemble is approximately
equal to the scattering of a single atom, even though the
atomic cloud consists of 25 atoms [42]. Furthermore, the
maximum cross section of coherent scattering is much smaller
than that of a single atom [39,40,42].

To establish the relation between the coherent and inco-
herent polarizabilities, we focus only on the dipolar response
of the atomic cloud for simplicity. The Appendix B pro-

vides the relations for other multipole moments. Note that the
ensemble-averaged polarizability of a spherical atomic cloud
is isotropic, i.e., 〈αi〉 = 〈αi〉I, where I is the identity matrix.
Therefore, all the diagonal matrix elements of the induced
electric dipole polarizability are identical and are represented
by αD

ED
. All the off-diagonal elements, αOD

ED
, are also identical.

Therefore, the induced electric dipole polarizability can be
written as

αED = (〈αED〉 + δαD
ED

)
I + δαOD

ED
(J − I), (5)

where J is the all-ones matrix. Note also that 〈αED〉 =
〈αED〉I and 〈αOD

ED
〉 = 0. Using conservation of energy, we get

(see Appendix B)

Im(α0〈αED〉) − |〈αED〉|2 =
〈∣∣δαD

ED

∣∣2〉+ 2
〈∣∣δαOD

ED

∣∣2〉. (6)

Equation (6) is the second main result of this paper; it shows
how the fluctuations of the polarizabilities can be obtained
from the ensemble-averaged values (see Appendix B for the
details of the derivation and similar expressions for MD,
EQ, MQ polarizability tensors). In Figs. 2(a) and 2(b), we
plot the coherent and incoherent electric dipole polarizabil-
ities retrieved from multipolar decomposition. In contrast to
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FIG. 3. Selective excitation of ED and MQ moments using four TE polarized plane waves. (a) Schematic drawing of a subwavelength
atomic cloud when illuminated by four plane waves. φ is the relative phase between the plane waves. (b) Normalized ensemble-averaged
scattering cross section of the atomic cloud as a function of frequency detuning and the relative phase φ. The red and green dashed lines depict
selective excitation of pure ED and MQ moments, respectively. [(c)–(e)] Normalized ensemble-averaged total scattering cross sections as a
function of frequency detuning for different phase (c) φ = 2mπ , (d) φ = (2m + 1)π , and (e) φ = (2m + 1)π/2. The ensemble-averages are
obtained from 10 000 realizations of the atomic cloud.

the off-diagonal terms, the diagonal term exhibits a nonzero
ensemble-averaged polarizabiltiy. Note that the components
of the electric dipole moment tensor satisfy Eq. (6) [see
Fig. 2(c)]. Using the duality of the electric and magnetic fields
in Maxwell’s equations and conservation of energy, we can
obtain a similar relation for the components of the magnetic
polarizability tensor (i.e., replacing MD with ED in Eq. (6),
see Appendix B). Figures 2(d) and 2(e) shows the coherent
and incoherent components of the magnetic polarizabilities.
The magnetic response is smaller than the electric one. The
induced multipole moments exhibit asymmetry in their reso-
nance lineshape which explains the non-Lorentzian lineshape
of the scattering cross sections in Fig. 1(d).

V. SELECTIVE EXCITATION OF ELECTRIC DIPOLE
OR MAGNETIC QUADRUPOLE MOMENT

Although the constituent atoms have only electric dipole
transitions, the entire atomic cloud can support higher or-
der electric and magnetic multipole moments [see Fig. 1(d)].
Here, we show that it is possible to selectively excite a par-
ticular multipole moment by tailoring the excitation field. To
this end, we consider an excitation by four plane waves with
TE polarization, i.e., Einc = E0/4

∑4
n=1 ei(kn·r+φn )ey, where

k1 = −k2 = k(sinψex + cosψez ), k3 = −k4 = k(sinψex −
cosψez ), φ1 = −φ2 ≡ φ, φ3 = φ4 = 0, and ψ = π/4 [see
Fig. 3(a)]. Hence, the ensemble-averaged induced multipole

moments are given by (see Appendix D)

〈dE〉 = ε0〈αED〉E0cos2 φ

2
ey,

〈dM〉 = −i〈αMD〉H0sin
φ

2
cos

φ

2
(ex − ez )/

√
2,

〈QE〉 = −ε0
k

2
〈αEQ〉E0sin

φ

2
cos

φ

2
{eyex + exey

+ eyez + ezey}/
√

2,

〈QM〉 = − ik

2
〈αMQ〉H0sin2 φ

2
(ezez − exex ). (7)

Equation (7) clearly shows that by changing the relative
phase φ, one can control which multipole moment to be ex-
cited. Consequently, the scattering cross sections are given by
(see Appendix D)

Ccoh
sca = 3λ2

2πα2
0

(
|〈αED〉|2cos4 φ

2
+ |〈αMD〉|2sin2 φ

2
cos2 φ

2

)

+ 5λ2

2πα′2
0

(
|〈αEQ〉|2sin2 φ

2
cos2 φ

2
+ |〈αMQ〉|2sin4 φ

2

)
,

Ctotal
sca = 3λ2

2πα0
Im

(
〈αED〉cos4 φ

2
+ 〈αMD〉sin2 φ

2
cos2 φ

2

)

+ 5λ2

2πα′
0

Im

(
〈αEQ〉sin2 φ

2
cos2 φ

2
+ 〈αMQ〉sin4 φ

2

)
. (8)
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FIG. 4. Selective excitation of MD and EQ moments using four TM polarized plane waves. (a) Schematic drawing of a subwavelength
atomic cloud when illuminated by four plane waves. φ is the relative phase between the plane waves. (b) Normalized ensemble-averaged
scattering cross section of the atomic cloud as a function of frequency detuning and the relative phase between input plane waves. The
orange and purple dashed lines depict selective excitation of pure MD and EQ moments, respectively. [(c)–(e)] Normalized ensemble-averaged
scattering cross sections as a function of frequency detuning for different phase (c) φ = 2mπ , (d) φ = (2m + 1)π , and (e) φ = (2m + 1)π/2.
The ensemble-averages are obtained from 10 000 realizations of the atomic cloud.

Equations (7) and (8) are the third main result of this paper
which show that the induced dipole moments and the scatter-
ing cross sections can be controlled by a simple four-beam
configuration and the relative phase φ between the plane
waves. Figure 3(b) plots the scattering cross section as a
function of the relative phase and the frequency detuning.
Interestingly, as can be seen from Figs. 3(c) and 3(d), the
cooperative resonance linewidth can also be tuned by varying
the phase φ due to selective excitation of different multipole
moments.

We note three different scenarios based on the relative
phase φ:

(i) At φ = 2mπ , where m is a nonnegative integer,
only the electric dipole moment of the atomic cloud
is excited [see Eq. (7) and Fig. 3(c)]. In this case,
the atomic cloud exhibits an omnidirectional radiation
pattern.

(ii) At φ = (2m + 1)π , according to Eq. (7), the atomic
cloud exhibits only a magnetic quadrupole moment as shown
in Fig. 3(d) and scatters light with a quadrupolar pattern.

(iii) At 2mπ < φ < (2m + 1)π , all multipoles can be ex-
cited, see for example Fig. 3(e) for φ = (2m + 1)π/2. Thus,
one can selectively excite the electric dipole or magnetic
quadrupole moment of the atomic cloud by just controlling
the relative phase of the plane waves with TE polarizations
and achieve arbitrary radiation patterns.

VI. SELECTIVE EXCITATION OF MAGNETIC DIPOLE
OR ELECTRIC QUADRUPOLE MOMENT

To selectively excite magnetic dipole or electric
quadrupole, we employ superposition of four plane waves
with TM polarization: Hinc = H0/4

∑4
n=1 ei(kn·r+φn )ey, where

kn and φn are defined similar to the TE polarization, see
the previous section and Fig. 4(a). The coherent and total
scattering cross sections are thus given by (see Appendix D)

Ccoh
sca = 3λ2

2πα2
0

(
|〈αED〉|2sin2 φ

2
cos2 φ

2
+ |〈αMD〉|2cos4 φ

2

)

+ 5λ2

2πα′2
0

(
|〈αEQ〉|2sin4 φ

2
+ |〈αMQ〉|2sin2 φ

2
cos2 φ

2

)
,

Ctotal
sca = 3λ2

2πα0
Im

(
〈αED〉sin2 φ

2
cos2 φ

2
+ 〈αMD〉cos4 φ

2

)

+ 5λ2

2πα′
0

Im

(
〈αEQ〉sin4 φ

2
+ 〈αMQ〉sin2 φ

2
cos2 φ

2

)
. (9)

Figure 4(b) plots the total scattering cross section as a
function of the relative phase φ and the frequency detuning.
As shown in Figs. 4(c) and 4(d), by varying the phase φ, one
can excite different multipole moments and thus control the
cooperative shift and resonance linewidth. In particular, the
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MD and EQ moments can be selectively excited by the TM
polarized plane waves. As a consequence, the atomic cloud
will scatter light in a selective direction depending on the
relative phase between the plane waves.

Arrays of cold atoms with subwavelength spacing scatter
light coherently and thus have been modeled by effective
electric and magnetic multipole moments [31–33]. In contrast,
an atomic cloud composed of randomly distributed atoms
exhibits not only coherent, but also incoherent scattering due
to the motion of the atoms [39,40,42]. In this paper, we
showed that the multipolar decomposition can model not only
the coherent, but also the incoherent response of the atomic
cloud accurately. We also demonstrated that the ensemble-
averaged polarizabilities are adequate to model the response
of the atomic cloud. Furthermore, using superposition of
plane waves, we showed that one can selectively excite the
induced electric and magnetic multipole moments and thus
manipulate the resonant linewidth and cooperative shift of the
ensemble, as well as its radiation pattern. Our study paves the
way toward controlling cooperative effects in atomic systems
through structured light [43,44]. Our approach to control the
cooperative effects is not restricted to subwavelength cold
atomic clouds and can be realized both experimentally and
theoretically in different systems of interacting quantum emit-
ters including ultracold quantum metasurfaces [30], nanoscale
atomic vapor layer [65], two-dimensional semiconductors
heterostructures [66], and atomic arrays in waveguides and
cavities [67].
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APPENDIX A: ATOMIC POLARIZABILITY
AND COUPLED-DIPOLE EQUATIONS

Let us consider an atomic cloud composed of neutral atoms
with only electric dipole transition moments and illuminated
by a plane wave [see Fig. 1(a)]. The atoms confined in a
volume smaller than the wavelength of the resonant light,
i.e., D < λ. We consider the weak-excitation limit where the

atomic response is isotropic and linear. The electric polar-
izability of each atom amounts to α(ω) = −(α0�0/2)/[ω −
ωa + i(�0 + �nr )/2], where �0 is the radiative linewidth of
the atomic transition at frequency ωa, and ω − ωa � ωa rep-
resents the frequency detuning between the illumination and
the atomic resonance, α0 = 6π/k3 and k is the wave number
[57,58]. We assume elastic scattering events and therefore the
nonradiative decay rate is zero, i.e., �nr = 0. The induced
dipole moment of the ith atom p(ri ) = ε0αEloc(ri ) can be
obtained by using the coupled-dipole equations [57,58,60]

p(ri ) = ε0α

[
Einc(ri ) +

∑
i �= j

G(ri, r j )p(r j )

]
, (A1)

where Einc(ri ) is the incident field at the position ri of the
atom, and α is the atomic polarizability. The total field at the
position of the ith atom Eloc(ri ) is the sum of the incident
field and the scattered field from the other atoms. The electric
dipole at position r j radiates an electromagnetic field which
when measured at ri can be calculated from G(ri, r j )p(r j ),
where G(ri, r j ) is Green’s tensor given by [61,62]

G(ri, r j )=
3

2α0ε0
eiζ
[
g1(ζ )¯̄I + g2(ζ )nn

]
, (A2)

where

g1(ζ ) =
(

1

ζ
− 1

ζ 3
+ i

ζ 2

)
, g2(ζ ) =

(
− 1

ζ
+ 3

ζ 3
− 3i

ζ 2

)
, (A3)

¯̄I is the identity dyadic, n = ri−r j

|ri−r j | , and ζ = |k(ri − r j )|
[31,32]. Having the induced dipole moment of each atom,
we can define the induced displacement current J(r, ω) =
−iω

∑N
i=1 p(ri )δ(r − ri ), where δ is the Dirac δ function, and

p(ri ) is the induced electric dipole moment of the ith atom
at r = ri [see Fig. 1(a)]. Here, we assumed e−iωt as a time
harmonic variation.

APPENDIX B: MULTIPOLE EXPANSION
AND CROSS SECTIONS

1. Coherent and incoherent multipole moments

In this subsection, we present expressions for the effective
induced electric and magnetic moments in Cartesian coor-
dinates [31]. Using the multipole expansion of the induced
current J(r, ω), the induced effective multipole moments of
the atomic cloud (at the center r = 0) can be calculated
[63,64]:

dE
μ = − 1

iω

{∫
d3rJμ j0(kr) + k2

2

∫
d3r
[
3(r · J)rμ − r2Jμ

] j2(kr)

(kr)2

}
,

dM
μ = 3

2

∫
d3r(r × J)μ

j1(kr)

kr
,

QE
μν = − 3

iω

{∫
d3r[3(rνJμ + rμJν ) − 2(r · J)δμν]

j1(kr)

kr

+2k2
∫

d3r
[
5rμrν (r · J) − (rμJν + rνJμ)r2 − r2(r · J)δμν

] j3(kr)

(kr)3

}
,

QM
μν = 15

∫
d3r{rμ(r × J)ν + rν (r × J)μ} j2(kr)

(kr)2 , (B1)
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where μ, ν ∈ x, y, z. The quantities dE
μ , dM

μ , QE
μν , and QM

μν are the electric dipole (ED), magnetic dipole (MD), electric
quadrupole (EQ), and magnetic quadrupole (MQ) multipole moments, respectively. jn are the spherical Bessel functions. Note
that QE = ∑

μ,ν QE
μνeμeν and QM = ∑

μ,ν QM
μνeμeν are tensors of rank two and eμeν is unit dyad. We consider NR realizations for

which the positions of the atoms are changed with a uniform probability distribution in a spherical volume. Then, the induced
multipole moments of the atomic cloud can be decomposed into coherent (ensemble-averaged) and incoherent (fluctuating)
parts:

dE
μ = 〈

dE
μ

〉+ δdE
μ, dM

μ = 〈
dM

μ

〉+ δdM
μ , QE

μν = 〈
QE

μν

〉+ δQE
μν, QM

μν = 〈
QM

μν

〉+ δQM
μν, (B2)

where μ, ν = x, y, z. The symbols 〈·〉 represent the ensemble-averaged multipole moments. Note that the incoherent multipole
moments are related to the quasi-isotropic speckle originating from the random positions of the atoms in the spherical
cloud.

2. Coherent and incoherent cross sections

In this subsection, we derive coherent and incoherent scattering and extinction cross sections using the induced electric and
magnetic multipole moments in Eqs. (B1) and (B2). The total scattering cross section can be decomposed into coherent and
incoherent parts, i.e., Ctotal

sca = Ccoh
sca + Cincoh

sca , which are and given by [63,64]

Ccoh
sca = k4

6πε2
0E2

0

∑
μ

(∣∣〈dE
μ

〉∣∣2 +
∣∣∣∣
〈

dM
μ

c

〉∣∣∣∣
2)

+ k6

720πε2
0E2

0

∑
μ,ν

(∣∣〈QE
μν

〉∣∣2 +
∣∣∣∣
〈

QM
μν

c

〉∣∣∣∣
2)

, (B3)

Cincoh
sca = k4

6πε2
0E2

0

∑
μ

(〈∣∣δdE
μ

∣∣2〉+
〈∣∣∣∣δdM

μ

c

∣∣∣∣
2〉)

+ k6

720πε2
0E2

0

∑
μ,ν

(〈∣∣δQE
μν

∣∣2〉+
〈∣∣∣∣δQM

μν

c

∣∣∣∣
2〉)

, (B4)

and the extinction cross section of the cloud is given by [63,64]

Cext = k

ε0E2
0

Im

[∑
μ

(〈
dE

μ

〉
E∗

μ +
〈

dM
μ

c

〉
Z0H∗

μ

)]
+ k

12ε0E2
0

Im

[∑
μ,ν

〈
QE

μν

〉(∂E∗
ν

∂rμ

+ ∂E∗
μ

∂rν

)]

+ k

12ε0E2
0

Im

[∑
μ,ν

〈
QM

μν

c

〉
Z0

(
∂H∗

ν

∂rμ

+ ∂H∗
μ

∂rν

)]
, (B5)

where Z0 is the impedance of free space, c is the speed of light
in free space, and r = ∑

μ rμeμ = xex + yey + zez. Note that
in Eq. (B5) and also in the remainder of the Appendices, E and
H show the incident fields, i.e., we omit the subscript “inc” for
simplifying the notation.

3. Conservation of energy: Coherent and incoherent
cross sections

According to the conservation of energy, the extinction
cross section is equal to the sum of the coherent and inco-
herent scattering cross sections, i.e., Cext = Ctotal

sca = Ccoh
sca +

Cincoh
sca . Therefore, from Eqs. (B3)–(B5), we obtain the follow-

ing relations between the coherent and incoherent multipole
moments:

∑
μ

〈∣∣dE
μ

∣∣2〉 =
∑

μ

[∣∣〈dE
μ

〉∣∣2 +
〈∣∣δdE

μ

∣∣2〉]

= ε0α0

∑
μ

Im
[〈

dE
μ

〉
E∗

μ

]
,

∑
μ

〈∣∣dM
μ

∣∣2〉 =
∑

μ

[∣∣〈dM
μ

〉∣∣2 +
〈∣∣δdM

μ

∣∣2〉]

= α0

∑
μ

Im
[〈

dM
μ

〉
H∗

μ

]
,

∑
μ,ν

〈∣∣QE
μν

∣∣2〉 =
∑
μ,ν

[∣∣〈QE
μν

〉∣∣2 +
〈∣∣δQE

μν

∣∣2〉]

= 1

2
ε0α

′
0

∑
μ,ν

Im

[〈
QE

μν

〉(∂E∗
ν

∂xμ

+ ∂E∗
μ

∂xν

)]
,

∑
μ,ν

〈∣∣QM
μν

∣∣2〉 =
∑
μ,ν

[∣∣〈QM
μν

〉∣∣2 +
〈∣∣δQM

μν

∣∣2〉] (B6)

= 1

2
α′

0

∑
μ,ν

Im

[〈
QM

μν

〉(∂H∗
ν

∂xμ

+ ∂H∗
μ

∂xν

)]
,

where α0 = 6π/k3 (α′
0 = 120π/k5) is related to the radiation

loss of a dipole (quadrupole) moment.

4. Coherent and incoherent dipole polarizabilities

From Eq. (B6) the relation between the coherent and inco-
herent electric dipole polarizabilities is found to be

[〈∣∣δdE
μ

∣∣2〉] = ε0α0Im
[〈

dE
μ

〉〈
E∗

μ

〉]− ∣∣〈dE
μ

〉∣∣2. (B7)

For a spherical cloud, the averaged electric polarizability ten-
sor is isotropic and reads as 〈αED〉 = 〈αED〉I, where I is the
identity matrix. Now by substituting 〈dE

μ〉 = ε0〈αED〉Eμ and

023217-7
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|〈dE
μ〉|2 = ε2

0|〈αED〉|2|Eμ|2 into Eq. (B7), we get

∑
μ,ν

〈∣∣∣∣δα
ED
μν

α0

∣∣∣∣
2〉

|〈Eν〉|2 = Im
[〈αED

α0

〉]∑
ν

|〈Eν〉|2

−
∣∣∣〈αED

α0

〉∣∣∣2∑
ν

|〈Eν〉|2. (B8)

For an x-polarized plane wave excitation E = E0eikzex, we get

Im
[〈αED

α0

〉]
−
∣∣∣〈αED

α0

〉∣∣∣2 =
〈∣∣∣∣δαED

xx

α0

∣∣∣∣
2
〉

+
〈∣∣∣∣δα

ED
yx

α0

∣∣∣∣
2〉

+
〈∣∣∣∣δαED

zx

α0

∣∣∣∣
2
〉
. (B9)

Using the symmetry of the electric dipole polarizability tensor
δαED

zx = δαED
yx = δαED

yz and 〈αED〉 = 〈αED〉I, the electric dipole
polarizability tensor can be written as

αED =

⎡
⎢⎣

α
ED

xx α
ED

xy α
ED

xz

α
ED

yx α
ED

yy α
ED

yz

α
ED

zx α
ED

zy α
ED

zz

⎤
⎥⎦

=
⎡
⎣〈αED〉 + δαD

ED
δαOD

ED
δαOD

ED

δαOD
ED

〈αED〉 + δαD
ED

δαOD
ED

δαOD
ED

δαOD
ED

〈αED〉 + δαD
ED

⎤
⎦

= αD
ED

I + αOD
ED

(J − I), (B10)

where 〈αED〉 = 〈αED〉I and 〈αOD
ED

〉 = 0. I and J are the identity
and all-ones matrices, respectively. Therefore, Eq. (B9) can be
simplified as

Im(α0〈αED〉) − |〈αED〉|2 =
〈∣∣δαD

ED

∣∣2〉+ 2
〈∣∣δαOD

ED

∣∣2〉,
and we obtain Eq. (6) of the main text. Using the duality in
Maxwell’ s equations, a similar expression for a magnetic
polarizability can be obtained:

Im
[〈αMD

α0

〉]
−
∣∣∣〈αMD

α0

〉∣∣∣2 =
〈∣∣∣∣δα

MD
xy

α0

∣∣∣∣
2〉

+
〈∣∣∣∣δα

MD
yy

α0

∣∣∣∣
2〉

+
〈∣∣∣∣δα

MD
zy

α0

∣∣∣∣
2〉

. (B11)

5. Coherent and incoherent quadrapole polarizabilities

In this subsection, we obtain the relation between the
coherent and incoherent quadrupole polarizabilities using
Eq. (B6):

〈∣∣δQE
μν

∣∣2〉 = 1

2
ε0α

′
0Im

[〈
QE

μν

〉(∂E∗
ν

∂xμ

+ ∂E∗
μ

∂xν

)]
− ∣∣〈QE

μν

〉∣∣2,
(B12)

and by substituting 〈QE
μν〉 = 1

2ε0〈αEQ〉〈 ∂Eν

∂xμ
+ ∂Eμ

∂xν
〉 and

|〈QE
μν〉|2 = 1

4ε2
0|〈αEQ〉|2| ∂Eν

∂xμ
+ ∂Eμ

∂xν
|2 into Eq. (B12), we

get

〈∣∣δαEQ
μνβγ

∣∣2〉∣∣∣∣∂Eβ

∂xγ

+ ∂Eγ

∂xβ

∣∣∣∣
2

= α′
0Im

[〈αEQ〉]∣∣∣∣∂Eν

∂xμ

+ ∂Eμ

∂xν

∣∣∣∣
2

−|〈αEQ〉|2
∣∣∣∣∂Eν

∂xμ

+ ∂Eμ

∂xν

∣∣∣∣
2

.

The electric quadrupole tensor is a tensor and is given by

QE =
⎛
⎝QE

xx QE
xy QE

xz

QE
yx QE

yy QE
yz

QE
zx QE

zy QE
zz

⎞
⎠. (B13)

The quadrupole tensor QE is symmetric, i.e., QE
xy = QE

yx,
QE

xz = QE
zx, QE

yz = QE
zy and traceless QE

xx + QE
yy + QE

zz = 0.
Therefore, QE has five independent components in Carte-
sian coordinates. These five independent components are
represented by QE

xx, QE
xy, QE

xz, QE
yy, QE

yz. Now, for a single
plane wave excitation E = E0eikzex, we have ∇E + E∇ =
ikE0(exez + ezex ), and we get

∑
μ,ν

〈∣∣∣∣δα
EQ
μνxz

α′
0

∣∣∣∣
2〉

= Im

[〈
αEQ

α′
0

〉]
−
∣∣∣∣
〈
αEQ

α′
0

〉∣∣∣∣
2

. (B14)

Using the duality in Maxwell’ s equations, a similar ex-
pression can be found for coherent and incoherent magnetic
polarizabilities:

∑
μ,ν

〈∣∣∣∣δα
MQ
μνxz

α′
0

∣∣∣∣
2〉

= Im

[〈
αMQ

α′
0

〉]
−
∣∣∣∣
〈
αMQ

α′
0

〉∣∣∣∣
2

. (B15)

APPENDIX C: SINGLE PLANE WAVE ILLUMINATION

In this section, we provide analytical expressions for co-
herent and incoherent scattering cross sections of an atomic
cloud when illuminated by a single plane wave.

1. Ensemble-averaged multipole moments

Let us consider a cloud illuminated by a plane wave E =
E0eikzex propagating in the z direction, where ex is the unit
vector in the x direction. The ensemble-averaged induced
multipole moments of the cloud at r = 0 are given by

〈dE〉 = ε0〈αED〉E(r = 0) = ε0〈αED〉E0ex,

〈dM〉 = 〈αMD〉H(r = 0) = 〈αMD〉H0ey,

〈QE〉 = 1

2
ε0〈αEQ〉 (∇E + E∇)|r=0

= 〈QE
xz〉exez + 〈

QE
zx

〉
ezex

= 1

2
ε0〈αEQ〉

(
∂Ex

∂z
+ ∂Ez

∂x

)∣∣∣∣
r=0

(exez + ezex )

= ik

2
ε0〈αEQ〉E0(exez + ezex ),

〈QM〉 = 1

2
〈αMQ〉 (∇H + H∇)|r=0

= 〈
QM

yz

〉
eyez + 〈

QM
zy

〉
ezey
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= 1

2
〈αMQ〉

(
∂Hy

∂z
+ ∂Hz

∂y

)∣∣∣∣
r=0

(eyez + ezey)

= ik

2
〈αMQ〉H0(eyez + ezey), (C1)

where 〈αED〉 (〈αMD〉) and 〈αEQ〉 (〈αMQ〉) are ensemble-averaged
electric (magnetic) dipole and quadrupole polarizabilities, re-
spectively. E and H in Eq. (C1) are the incident electric and
magnetic fields, respectively.

2. Coherent and incoherent cross sections

In this subsection, we find the scattering cross sections
as a function of ensemble-averaged dipole and quadrupole
polarizabilities. By substituting Eq. (C1) into Eqs. (B3) and
(B5) we obtain

Ccoh
sca = k4

6π

(|〈αED〉|2 + |〈αMD〉|2)
+ k8

1440π

(|〈αEQ〉|2 + |〈αMQ〉|2),
Cext = kIm

[
〈αED〉 + 〈αMD〉 + k2

12
(〈αEQ〉 + 〈αMQ〉)

]
. (C2)

After applying some simple algebra and using α0 = 6π/k3

and α′
0 = 120π/k5, we obtain Eq. (4) of the main text:

Ccoh
sca = 3λ2

2π

(∣∣∣〈αED

α0

〉∣∣∣2 +
∣∣∣〈αMD

α0

〉∣∣∣2)

+5λ2

2π

(∣∣∣∣
〈
αEQ

α′
0

〉∣∣∣∣
2

+
∣∣∣∣
〈
αMQ

α′
0

〉∣∣∣∣
2)

, (C3)

Cext = 3λ2

2π
Im
[〈αED

α0

〉
+
〈αMD

α0

〉]

+5λ2

2π
Im

[〈
αEQ

α′
0

〉
+
〈
αMQ

α′
0

〉]
. (C4)

Using the above equations, we can calculate incoherent scat-
tering cross section from Cincoh

sca = Cext − Ccoh
sca .

APPENDIX D: SELECTIVE EXCITATION

1. Four plane waves with TM polarization

In this subsection, we consider an atomic cloud when il-
luminated by four plane waves with TM polarization. The
magnetic fields of the plane waves are given by

H1 = H0

4
ei(k1·r+φ) = H0

4
ei(kxx+kzz+φ)ey,

H2 = H0

4
ei(k2·r−φ) = H0

4
e−i(kxx+kzz+φ)ey,

H3 = H0

4
eik3·r = H0

4
ei(kxx−kzz)ey,

H4 = H0

4
eik4·r = H0

4
e−i(kxx−kzz)ey, (D1)

where k1 · r = −k2 · r = kxx + kzz, k3 · r = −k4 · r =
kxx − kzz, and kx = ksinψ , kz = kcosψ. Thus, the total

magnetic field at r = xex + yey + zez can be written as

H = H0

2
[cos(kxx + kzz + φ) + cos(kxx − kzz)]ey, (D2)

and the corresponding electric field is given by

E = i
E0

2
cosψ[sin(kxx + kzz + φ) − sin(kxx − kzz)]ex

− i
E0

2
sinψ[sin(kxx + kzz + φ) + sin(kxx − kzz)]ez.

Using the above electric and magnetic fields and their deriva-
tives, we can obtain the ensemble-averaged induced multipole
moments at the center of the cloud (r = 0):

〈dE〉 = ε0〈αED〉E(r = 0)

= ε0〈αED〉iE0(cosψex − sinψez )sin
φ

2
cos

φ

2
,

〈dM〉 = 〈αMD〉H(r = 0) = 〈αMD〉H0cos2 φ

2
,

〈QE〉 = 1

2
ε0〈αEQ〉 (∇E + E∇)|r=0

= 1

2
ε0〈αEQ〉iE0kcos2ψcos2 φ

2
(exez + ezex )

+ 1

2
ε0〈αEQ〉iE0ksin2ψsin2 φ

2
(ezez − exex ),

〈QM〉 = 1

2
〈αMQ〉 (∇H + H∇)|r=0

= −H0k

2
〈αMQ〉sinψsin

φ

2
cos

φ

2
(eyex + exey)

− H0k

2
〈αMQ〉cosψ (eyez + ezey)sin

φ

2
cos

φ

2
. (D3)

Now by substituting Eq. (D3) into Eqs. (B3), we obtain

Ccoh
sca = 3λ2

2π

∣∣∣〈αED

α0

〉∣∣∣2sin2 φ

2
cos2 φ

2

+3λ2

2π

∣∣∣〈αMD

α0

〉∣∣∣2cos4 φ

2

+5λ2

2π

∣∣∣〈αEQ

α0

〉∣∣∣2[cos22ψcos4 φ

2
+ sin22ψsin4 φ

2

]

+5λ2

2π

∣∣∣〈αMQ

α0

〉∣∣∣2sin2 φ

2
cos2 φ

2
. (D4)

And by substituting Eq. (D3) into Eqs. (B5), the total (sum of
incoherent and coherent) scattering (extinction) cross section
can be obtained

Ctotal
sca = Cext = 3λ2

2π
Im
[〈αED

α0

〉]
sin2 φ

2
cos2 φ

2

+3λ2

2π
Im
[〈αMD

α0

〉]
cos4 φ

2

+5λ2

2π
Im
[〈αEQ

α0

〉][
cos22ψcos4 φ

2
+ sin22ψsin4 φ

2

]

+5λ2

2π
Im
[〈αMQ

α0

〉]
sin2 φ

2
cos2 φ

2
. (D5)
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Finally, to selectivity excite different multipole moments, we
assume ψ = π/4 and consider two cases:

(i) φ = 2mπ : the induced moments read as

〈dE〉 = 0, 〈QE〉 = 0, 〈QM〉 = 0,

〈dM〉 = 〈αMD〉H0ey, (D6)

thus, only the magnetic dipole moment is excited and the
scattering cross sections read as

Ccoh
sca = 3λ2

2π

∣∣∣〈αMD

α0

〉∣∣∣2,
Ctotal

sca = 3λ2

2π
Im
[〈αMD

α0

〉]
. (D7)

(ii) φ = (2m + 1)π : the induced moments read as

〈dE〉 = 0, 〈dM〉 = 0, 〈QM〉 = 0,

〈QE〉 = 1
2ε0〈αEQ〉ikE0(ezez − exex ), (D8)

thus, only the electric quadrupole moment is excited and the
scattering cross sections read as

Ccoh
sca = 5λ2

2π

∣∣∣∣
〈
αEQ

α′
0

〉∣∣∣∣
2

,

Ctotal
sca = 5λ2

2π
Im

[〈
αEQ

α′
0

〉]
. (D9)

2. Four plane waves with TE polarization

In this subsection, we consider an atomic cloud when
illuminated by four plane waves with TE polarization. The
electric fields of the plane waves are defined as

E1 = E0

4
ei(k1·r+φ) = E0

4
ei(kxx+kzz+φ)ey,

E2 = E0

4
ei(k2·r−φ) = E0

4
e−i(kxx+kzz+φ)ey,

E3 = E0

4
eik3·r = E0

4
ei(kxx−kzz)ey,

E4 = E0

4
eik4·r = E0

4
e−i(kxx−kzz)ey, (D10)

where k1 · r = −k2 · r = kxx + kzz, k3 · r = −k4 · r =
kxx − kzz, and kx = ksinψ , kz = kcosψ. Thus, the total
electric field at r = xex + yey + zez can be written as

E = E0

2
[cos(kxx + kzz + φ) + cos(kxx − kzz)]ey,

and the corresponding magnetic field is given by

H = −i
H0

2
cosψ[sin(kxx + kzz + φ) − sin(kxx − kzz)]ex

+ i
H0

2
sinψ[sin(kxx + kzz + φ) + sin(kxx − kzz)]ez.

Using the above electric and magnetic fields and their
derivatives, we obtain the ensemble-averaged induced multi-
pole moments for four plane waves at the center of the cloud

(r = 0):

〈dE〉 = ε0〈αED〉E(r = 0)

= ε0〈αED〉E0cos2 φ

2
ey,

〈dM〉 = 〈αMD〉H(r = 0)

= i〈αMD〉H0(−cosψex + sinψez )sin
φ

2
cos

φ

2
,

〈QE〉 = 1

2
ε0〈αEQ〉 (∇E + E∇)|r=0

= −ε0
E0k

2
〈αEQ〉sinψsin

φ

2
cos

φ

2
(eyex + exey)

− ε0
E0k

2
〈αEQ〉cosψsin

φ

2
cos

φ

2
(eyez + ezey),

〈QM〉 = 1

2
〈αMQ〉 (∇H + H∇)|r=0

= −1

2
〈αMQ〉iH0kcos2ψcos2 φ

2
(exez + ezex )

+ 1

2
〈αMQ〉iH0ksin2ψsin2 φ

2
(exex − ezez ). (D11)

Now by substituting Eq. (D11) into Eq. (B3), we obtain the
coherent scattering cross section:

Ccoh
sca = 3λ2

2π

∣∣∣〈αED

α0

〉∣∣∣2cos4 φ

2

+3λ2

2π

∣∣∣〈αMD

α0

〉∣∣∣2sin2 φ

2
cos2 φ

2

+5λ2

2π

∣∣∣〈αEQ

α0

〉∣∣∣2sin2 φ

2
cos2 φ

2

+5λ2

2π

∣∣∣〈αMQ

α0

〉∣∣∣2[cos22ψcos4 φ

2
+ sin22ψsin4 φ

2

]
.

(D12)

And by substituting Eq. (D11) into Eq. (B5), the total
scattering (or extinction) cross section can be obtained

Ctotal
sca = Cext = 3λ2

2π
Im
[〈αED

α0

〉]
cos4 φ

2

+3λ2

2π
Im
[〈αMD

α0

〉]
sin2 φ

2
cos2 φ

2

+5λ2

2π
Im
[〈αEQ

α0

〉]
sin2 φ

2
cos2 φ

2

+5λ2

2π
Im
[〈αMQ

α0

〉][
cos22ψcos4 φ

2
+ sin22ψsin4 φ

2

]
.

(D13)

Finally, to selectivity excite different multipole moments, we
assume ψ = π/4 and consider two cases:

(i) φ = 2mπ : the induced moments read as

〈dM〉 = 0, 〈QE〉 = 0, 〈QM〉 = 0, 〈dE〉 = 〈αED〉E0ey,

(D14)
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TABLE I. Selective excitation of subwavelength atomic clouds using superposition of four plane waves. The first column shows the
polarization and the relative phase of the waves. See Fig. 3(a) and Fig. 4(a) of the main text for the geometry. The second to fifth columns show
the fields’ amplitudes and their gradient at the center of the atomic cloud, based on which a particular multipole moment is excited as shown
in the last column.

Fields and their gradients at the center of the atomic cloud

Plane waves’ Pure excitation of
polarizations induced
and phases E|r=0 H|r=0 (∇E + E∇)|r=0 (∇H + H∇)|r=0 multipoles

TE: φ = 2mπ E0ey 0 0 0 ED: 〈dE〉 = ε0〈αED 〉E|r=0

TE: φ = (2m + 1)π 0 0 0 ikH0(exex − ezez ) MQ: 〈QM〉 = 1
2 〈αMQ 〉(∇H + H∇)|r=0

TM: φ = 2mπ 0 H0ey 0 0 MD: 〈dM〉 = 〈αMD 〉H|r=0

TM: φ = (2m + 1)π 0 0 ikE0(ezez − exex ) 0 EQ: 〈QE〉 = 1
2 ε0〈αEQ 〉(∇E + E∇)|r=0

thus only the electric dipole moment is excited we excite and
the scattering cross sections read as

Ccoh
sca = 3λ2

2π

∣∣∣〈αED

α0

〉∣∣∣2,
Ctotal

sca = 3λ2

2π
Im
[〈αED

α0

〉]
. (D15)

(ii) φ = (2m + 1)π : the induced moments read as

〈dE〉 = 0, 〈dM〉 = 0, 〈QE〉 = 0,

〈QM〉 = 1
2 〈αMQ〉ikH0(exex − ezez ), (D16)

thus only the magnetic quadrupole moment is excited and the
scattering cross sections read as

Ccoh
sca = 5λ2

2π

∣∣∣∣
〈
αMQ

α′
0

〉∣∣∣∣
2

, Ctotal
sca = 5λ2

2π
Im

[〈
αMQ

α′
0

〉]
. (D17)

Table I presents a summary of selective excitation with four
plane waves. It shows the fields amplitudes and their gradi-
ents at the center of the cloud for different polarizations and
phases of four plane waves. The last column indicates which
multipole moment is excited based on the field amplitudes and
gradients at the center.
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