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Abstract: Spatial resolution is one of the most important specifications of an imaging system.
Recent results in the quantum parameter estimation theory reveal that an arbitrarily small distance
between two incoherent point sources can always be efficiently determined through the use
of a spatial mode sorter. However, extending this procedure to a general object consisting of
many incoherent point sources remains challenging, due to the intrinsic complexity of multi-
parameter estimation problems. Here, we generalize the Richardson-Lucy (RL) deconvolution
algorithm to address this challenge. We simulate its application to an incoherent confocal
microscope, with a Zernike spatial mode sorter replacing the pinhole used in a conventional
confocal microscope. We test different spatially incoherent objects of arbitrary geometry, and we
find that the resolution enhancement of sorter-based microscopy is on average over 30% higher
than that of a conventional confocal microscope using the standard RL deconvolution algorithm.
Our method could potentially be used in diverse applications such as fluorescence microscopy
and astronomical imaging.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Enhancing spatial resolution is a persistent goal for imaging systems. The resolution of an
incoherent far-field imaging system was previously believed to be limited by Rayleigh’s criterion
[1]. In recent decades, a multitude of super-resolution methods have been demonstrated to
break the diffraction limit, such as stimulated-emission depletion (STED) [2], photoactivated
localization microscopy (PALM) [3], and stochastic optical reconstruction microscopy (STORM)
[4]. However, these methods generally require the use of specially prepared fluorescent molecules,
and the data collection in an experiment can take a long time. In addition to these classical
methods, various quantum effects have been investigated to enhance the imaging resolution.
Optical centroid measurement [5–9] is another quantum approach that can improve the resolution
by up to 41% via detecting the centroid of entangled bi-photons. The anti-bunching effect
has also been exploited to enhance the spatial resolution when imaging single-photon sources
such as quantum dots through the use of coincidence measurement [10,11]. Nonetheless,
these non-classical methods typically require the use of quantum, low-brightness light sources
(e.g., single-photon sources and entangled-photon sources) as well as slow, high-order intensity
correlation measurements, which limits their widespread adoption in real-world imaging systems.
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In recent years, a quantum-inspired super-resolution imaging method based on spatial mode
sorting (called SPADE) has been proposed [12] and experimentally demonstrated [13–17]. The
Rayleigh diffraction limit can be broken through the use of an appropriate spatial mode sorter, and
an arbitrarily small separation between two spatially incoherent, equally bright point sources can
be well resolved. Although the theory for SPADE was developed in the framework of quantum
metrology, it can be interpreted classically [18] and does not need non-classical light sources
or high-order coincidence detection, which is the major advantage over the aforementioned
super-resolution methods. The theoretical treatment of SPADE approaches the super-resolution
task as a parameter estimation problem, which works well when imaging a scene with a small
number of point objects. However, it is non-trivial to apply the theory to a general scene that
contains many point sources or continuous objects due to the complexity of multi-parameter
estimation problems [19,20]. A few theoretical attempts have been made towards sorter-based
super-resolution imaging for a scene with a very small number of unknown parameters [20–29].
However, these previous works mainly focus on the Fisher information analysis of the mode
sorter, which exhibits intractable complexity in the calculation of quantum Fisher information.
Furthermore, even if the quantum Fisher information can be computed, it is challenge to determine
if the quantum Fisher information can be achieved by practical measurements for all parameters.
Hence, to the best of our knowledge, no method has yet been reported to super-resolve an
object of arbitrary geometry using a mode sorter. Here we address this challenge by treating the
sorter-based super-resolution imaging as a deconvolution problem. We propose to replace the
pinhole in a standard confocal microscope with a spatial mode sorter. We generalize the standard
RL deconvolution algorithm [30,31] to digitally process the multiple outputs of the mode sorter in
order to reconstruct a super-resolved image. In Section 2, we introduce the conceptual schematic
of the sorter-based confocal microscopy as well as the algorithm for image reconstruction. In
Section 3, we present the numerical simulation results. The conclusion of this work is discussed
in Section 4.

2. Generalized Richardson-Lucy deconvolution algorithm

The schematic of a confocal microscope is shown in Fig. 1(a) and (b). Conventional confocal
microscopy uses a pinhole in the image plane before the single-pixel detector. Here we assume
that the illumination beam is spatially coherent and the light scattered by the object is spatially
incoherent, which is common in fluorescence microscopy. The illumination and reflected
beam wavelengths are assumed to be the same for simplicity, although they can be different
in fluorescence microscopy. We use W0 to describe the object brightness profile and use M to
denote the point spread function (PSF) of the conventional confocal microscope using a pinhole
of diameter D. Here we assume a circular aperture of the objective lens, and the PSF of the
objective lens is thus an Airy disk [32]. Additional details of M are presented in Supplement 1.
By raster scanning the object, a 2D image can be obtained, and the resultant confocal image Icon
can be described by the convolution of W0 and M as Icon = M ∗ W0. In our model we consider
only the fundamental quantum noise which leads to Poissonian photon statistics; we ignore other
technical sources of noise. Therefore, the shot-noise-limited image that can be experimentally
measured is described by Iexp

con = Poisson(Icon), where Poisson(·) denotes one random realization
of the Poisson distribution for a given mean. The standard RL deconvolution algorithm can be
expressed as [30,31]

Wr+1 = Wr ·

(︃
M ∗

Iexp
con

M ∗ Wr

)︃
, (1)

where Wr is the deconvolved image in the r-th iteration and ∗ denotes convolution. In general,
the iterative deconvolution algorithm begins with an image of uniform intensity Wr=1 = const,
and the term inside the parentheses in the above equation can be understood as a correction to Wr
during each iteration. The proposed sorter-based confocal microscope is shown in Fig. 1(b). It
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can be seen that a Zernike mode sorter is used in the Fourier plane. Here Zernike modes are
adopted because they have been shown to be the optimal basis for an imaging system with a
circular aperture [22,33]. In particular, we choose the six lowest-order Zernike modes (Z0

0 , Z−1
1 ,

Z1
1 , Z−2

2 , Z0
2 , and Z2

2), as shown in Fig. 1(c). The Zernike mode sorter projects the collected
photons onto each Zernike mode Zm

n in the Fourier plane, and each output port of the Zernike
mode sorter produces a 2D image Hmn by raster scanning the object. The image Hmn is given by
the convolution of the original object image W0 and Qmn as Hmn = W0 ∗ Qmn, where Qmn is the
effective PSF when projecting into the mode Zm

n :

Qmn(x1, y1) = N0
k2NA2

4π
Bm=0,n=0(r1, θ1) · Bmn(r1, θ1),

Bmn(r1, θ1) =
8(n + 1)
ϵm

J2
n+1(kNAr1)

(kNAr1)2
sin2(mθ1 +

π

2
· H(m)),

(2)

where Jn+1(·) is the Bessel function of order n + 1; ϵm = 2 if m = 0 and ϵm = 1 if m ≠ 0; H(m) is
the Heaviside step function where H(m) = 1 if m ⩾ 0 and H(m) = 0 if m<0; (x1, y1) are the
Cartesian coordinates at the object plane, and (r1, θ1) are the corresponding polar coordinates;
N0 is the photon number in the illumination beam at each raster scanning step; k = 2π/λ is the
wave number, λ is the wavelength, and NA is the collection numerical aperture of the objective
lens. In this equation, Bm=0,n=0 represents the PSF of the illumination beam, and Bmn is the

Fig. 1. (a) Schematic of a conventional confocal microscope. (b) Schematic of the sorter-
based confocal microscopy. Conventional confocal microscopy uses a pinhole and a single
detector, while the proposed scheme uses a spatial mode sorter to first decompose the
received field, with every output port of the sorter measured by a separate detector. (c) The
first six Zernike modes Zm

n and the intensity profiles of their respective Fourier transforms
|F {Zm

n }|2.
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intensity profile of the Fourier transform of Zm
n in the image plane as shown in the bottom row

in Fig. 1(c). Here, we assume that the illumination beam has a flat spatial profile before being
focused by the objective lens and that the illumination NA is the same as the collection NA. We
use this assumption to simplify the calculation and simulation, but we note that this assumption
can be relaxed and is not necessary to the result. Derivations of the analytical form of Bmn, Hmn
and Qmn are presented in Supplement 1. We use Hexp

mn = Poisson(Hmn) to denote the randomly
generated shot-noise-limited image that can be measured in an experiment. As one can see, a
major difference between the conventional confocal microscopy and the sorter-based confocal
microscopy is that multiple images (six in our case) can be obtained simultaneously when using a
mode sorter. Here we propose a generalized RL deconvolution algorithm, which can be expressed
as

Wr+1 = Wr ·
∑︂
mn

(︃
Qmn ∗

Hexp
mn

Qmn ∗ Wr

)︃
. (3)

Compared to the conventional RL deconvolution algorithm (Eq. (1)), it can be seen that the
correction term inside the parentheses in the above equation is the sum of contributions from
different modes.

3. Numerical simulation

3.1. Algorithm performance evaluation

We next present the results of numerical simulations that implement the generalized deconvolution
algorithm and compare its performance to that of the conventional deconvolution algorithm. One
of the objects we use (pattern A) is shown in Fig. 2(a). The original object image has a size of
128×128 pixels and is zero padded to 256×256 pixels to avoid the diffraction-induced boundary
clipping effect. A 2D image Hexp

mn can be obtained at each output port of the mode sorter when
raster scanning the translation stage by (ϵ , η). Here we choose the scanning step size to be 1 pixel
and the total scanning steps to be 256 × 256, resulting in a 2D image Hexp

mn (ϵ , η) of 256 × 256
pixels. At each scanning step, we assume that N0 photons are used to illuminate the object, and
thus the total photon number in the illumination beam is NT = 256 × 256 × N0. In this work, we
use NT as a variable and perform simulations under different NT . This is because NT is typically
controllable in an experiment by adjusting the illumination laser power and is independent of the
sample properties. The results for different Zernike mode outputs are shown in Fig. 2(b)-(g). One
can see that the output of high-order modes has a lower photon count and is thus more susceptible
to Poisson noise. We use Wr=1 = const as the starting point and run the iterative deconvolution
algorithm based on Eq. (3). We choose the commonly used peak signal-to-noise ratio (PSNR) to
quantify the quality of the reconstructed image Wr. The definition of PSNR is given by [34]

PSNR = 10 log10
max(W0)

2

1
N2

∑︁N
i=1

∑︁N
j=1 |W0(i, j) − Wr(i, j)|2

, (4)

where (i, j) are the integer pixel indices of the digital image and N = 256 is the pixel size along
one dimension. We stop the deconvolution algorithm at a maximum iteration number Nite = 104,
which is limited by time and computational power constraints. In general, the PSNR increases
with increasing iteration number r. However, if the data is noisy, the noise can be amplified when
the iteration number is large, and thus the PSNR can decrease if r continues to increase. In our
implementation, we monitor the PSNR as a function of the iteration r and choose the maximum
PSNR for 1 ⩽ r ⩽ Nite for each implementation. The reconstructed image is shown in Fig. 2(h).
More details on the PSNR as a function of the iteration number are provided Supplement 1. For
practical applications where the ground truth is not available, a stopping criterion [35] must
be used. The simplest (and perhaps the most widely used) stopping criterion is to manually
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specify a maximum iteration number. The relation between PSNR and the iteration number
for both sorter-based deconvolution algorithm and the conventional deconvolution algorithm is
presented in Supplement 1 to illustrate the effect of a manually specified stopping criterion. The
results show that both the conventional and sorter-based deconvolution algorithms have a similar
dependence on the iteration number, and thus the PSNR improvement is almost independent of
the chosen stopping criterion.

Fig. 2. Example of image reconstruction with the sorter-based super-resolution approach.
(a) The ground truth image. (b-g) The 2D images Hexp

mn that can be measured via a Zernike
mode sorter by raster scanning the ground truth image at the object plane in the presence
of Poisson noise. (h) The reconstructed super-resolved image obtained by feeding the data
Hexp

mn into the generalized RL deconvolution algorithm.

We next characterize the performance of the generalized deconvolution algorithm under
different levels of Poisson noise by adjusting the total photon number NT in the illumination beam.
The ground truth for pattern A is shown in Fig. 3(a1), and we choose the Rayleigh-criterion
resolution δx0 = 1.22π/(kNA) = 0.61λ/NA to be 80 pixels. We emphasize that only the relative
ratio between λ/NA and the pixel pitch size is important, and here we do not specify the respective
value of these parameters for generality. The noiseless, diffraction-limited confocal image without
deconvolution Icon is shown in Fig. 3(a2), which is too blurry to reveal the details of the ground
truth. We next vary the total photon number NT and test the performance of the deconvolution
algorithm with different NT . The reconstructed images by the sorter-based deconvolution
algorithm and the conventional deconvolution algorithm are presented in Fig. 3(a3)-(a6). We
also test another pattern B made of four handwritten digits (MNIST handwritten digit database
[36]) with non-uniform intensity profile as shown in Fig. 3(b1). The conventional confocal image
Icon without deconvolution is shown in Fig. 3(b2), and the digits cannot be resolved based on
this image. The sorter-based deconvolved images are presented in Fig. 3(b3) and (b5), and the
conventional deconvolved images are presented in Fig. 3(b4,b6). It can be seen that the digits
‘0’ and ‘1’ using the sorter-based approach are more visually resolvable that the conventional
deconvolved results. Figure 3(a7), (a8), (b7), and (b8) are 1D cross-sections through the images
(indicated by the white bars), comparing the reconstructions to the ground truth. We can see
how the reconstructions evolve as the photon number increases. At a larger photon number, the
1D cross-section shows a higher contrast and is more similar to the ground truth than at low
photon numbers. In general, the sorter-based deconvolution algorithm provides a visibly higher

https://doi.org/10.6084/m9.figshare.14274665
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resolution as compared to the conventional deconvolution algorithm, in particular at a low total
photon number.

Fig. 3. (a1) Ground truth image for pattern A. (a2) The confocal diffraction-limited image
without deconvolution. (a3-a6) The reconstructed images. The used algorithm and the
total photon number NT in the illumination beam are labeled near each image. (a7, a8)
The 1D cross-section lines for (a1-a6) indicated by the corresponding white bars. (b1-b8)
Results for pattern B. The PSNR is shown at the upper right corner of each image. In all 1D
cross-section lines, it can be seen that the sorter-based deconvolution algorithm consistently
shows better contrast and fidelity to the ground truth than the conventional deconvolution
algorithm.

3.2. Effective resolution enhancement

In Fig. 4 we compare the performance of the conventional deconvolution algorithm to the
generalized deconvolution algorithm in terms of PSNR under different NT for patterns A and B.
For each NT , we run the simulation six times with randomly generated Poisson noise to obtain the
mean and the standard deviation of the PSNR of the reconstructed images. It can be seen that the
generalized deconvolution algorithm based on the mode sorter consistently provides higher PSNR
than the conventional confocal approach. Also, the PSNR of the reconstructed image generally
increases when NT increases. Although PSNR is a widely used metric for quantifying the image
quality, the PSNR of reconstructed images for different ground truths cannot be compared directly.
In addition, the PSNR does not provide an intuitive understanding of the reconstructed resolution.
We next translate PSNR to the effective resolution enhancement in order to answer the frequently
asked question “what is the resolution enhancement of your super-resolution method?”. For a
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ground truth image W0, we blur it with PSFs of different resolutions as Wblur = W0 ∗ M(δx),
where M(δx) is the PSF of the conventional confocal microscopy given a particular Rayleigh
resolution δx. We then numerically calculate the PSNR of Wblur using Eq. (4) to obtain the
relation between resolution δx and PSNR, i.e. PSNR = f (δx). Therefore, for each reconstructed
image Wr, we can calculate its effective resolution based on its PSNR via δxeff = f −1(PSNR),
where f −1 is the inverse function of f . Hence, the effective resolution enhancement (ERE) can be
calculated as

ERE = δx0/δxeff, (5)

and this quantity is shown on the right-hand side axis in Fig. 4. It can be seen that at the maximum
total photon number NT = 1010, the effective resolution enhancement of sorter-based approach is
higher than 5.0 for both pattern A and B. We note that the objects used in our simulation have
a relatively small space-bandwidth product [37] because of the limited computational power,
which allows for relatively high resolution enhancement. Moreover, the effective resolution
enhancement of the sorter-based approach is on average 38% and 30% higher than that of the
conventional approach for pattern A and pattern B, respectively. We also test nine additional
images which are shown in Supplement 1. It can be seen that the mode sorter can provide
on average 24% higher resolution enhancement over the conventional approach for the nine
additional objects. We believe that our method can be readily applied to confocal fluorescence
microscopy by using a Zernike mode sorter, and the Zernike mode sorter can in principle be
experimentally realized by the multi-plane light conversion [38]. Another potential application
of our method is the astronomical imaging where the collected light field is spatially incoherent.
However, since the confocal scheme cannot be used in astronomical imaging, the formulas
developed here need to be adjusted accordingly to account for the non-confocal scheme used in
astronomical imaging.

Fig. 4. The PSNR and effective resolution enhancement as functions of the total photon
number NT for (a) pattern A and (b) pattern B. Both the conventional deconvolution algorithm
and the sorter-based deconvolution algorithm are tested for 6 reconstructions with randomly
generated Poisson noise. The error bars represent the standard deviation of the PSNR of
these trials. The inset shows the corresponding ground truth image.

4. Conclusion

In conclusion, we generalize the standard RL deconvolution algorithm and apply it to enhance
the resolution of sorter-based confocal microscopy. We test our algorithm with general scenes,
which has not previously been realized by spatial mode sorting, to the best of our knowledge.
The effective resolution enhancement of the sorter-based approach can be as large as ≈5.6 when

https://doi.org/10.6084/m9.figshare.14274665
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the total photon number in the illumination beam is NT = 1010. For both patterns we test, the
average effective resolution enhancement of the sorter-based approach is more than 30% higher
that that of the conventional deconvolution algorithm. Hence, our generalized deconvolution
algorithm can achieve robust super-resolution for general scenes compared to the conventional
RL deconvolution algorithm. In particular, our generalized deconvolution algorithm allows
for super-resolving strongly blurred images of digits, which could be used a front-end to a
machine learning-based digit identification task [36]. Furthermore, our method does not require
non-classical quantum light sources, and thus our generalized deconvolution algorithm can be
potentially useful to applications such as fluorescence microscopy and astronomical imaging.
Given the simplicity and generality of our generalized deconvolution algorithm, it is possible to
integrate our method with existing quantum or classical super-resolution methods to increase the
resolution even further.
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