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‘We report on a detailed investigation of the process of SBS with focused Gaussian beams
via a three-dimensional simulation of the SBS process that includes spontaneous noise.
We show that spontaneous noise present at points other than where the initiation of SBS
occurs does not significantly affect the Stokes wave. The effects on the Stokes beam of
modes not present in the pump wave (nonconjugate modes) are investigated and it is
found that the phase of a given Stokes mode is affected by the presence of other modes,
a process termed phase pulling. We also show that for a focused Gaussian beam the
Brillouin gain parameter does not increase linearly with increased pump power once
SBS threshoid is reached; rather, above threshold the SBS process resembles a reverse
saturable absorber for the pump wave at any point between the entrance to the medium
and the focal point of the pump beam.

1. Introduction

The process of stimulated Brillouin scattering (SBS) has been investigated for many
years and the equations describing the process of SBS are well known!=3; however,
the nature of the equations is such that analytical solutions have been found only
for very narrowly defined situations. Specifically, the case of the undepleted pump
has been extensively investigated.

Our purpose here is to investigate the process of SBS and optical phase conju-
gation in the geometry in which it is usually encountered in the laboratory. That
is, we will investigate SBS of focused Gaussian beams with pump powers well above
SBS threshold. To accomplish this investigation we will utilize the technique of
modal decomposition.

The use of a modal decomposition to study the SBS process has, of course, been
used by many researchers.* 1! In our investigation however, we do not assume an
undepleted pump as has often been the case in the past and we allow the propaga-
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tion of many transverse modes. Using numerical modeling, we look closely at the
behavior of the modes in the Stokes wave, concentrating on the mode conjugate to
the pump mode (i.e. phase conjugation). In the following sections we discuss the
process of SBS in general, and then present the results of numerical simulations
that lend new insights into the process of SBS. '

2. Theory

To develop the formalism we assume a homogeneous, nonlinear, time-independent

medium. The wave equation for an electric field travelling in this medium is given

by

VQE*%@:E-@E, (1)

2 ot? 2 It?

where as usual ¢ is the dielectric constant of the medium and ¢ is the speed of light.
Let us assume that the electric field in the medium counsists of a pump wave and a

Stokes wave that are generally counter propagating. Thus the field in the medium

is adequately described by two counter-propagating waves with independent and

slowly varying envelopes that are functions of all three spatial coordinates:

E = (Ey(r,z)e”k=%rt) L B (r, z)elkemwt)) L e e, (2)

We now write the steady-state driven wave equation for the field described by
Eq. (2). We make the slowly varying envelope approximation and separate the
portions of the nonlinear polarization that are phase matched to the two parts of
the electric field and treat them as independent driving terms. This allows us to
write two coupled wave equations, each one describing the propagation of one of
the constituent fields. These equations are

O0E, —4nw?

ViE, - 2ik L= PNL (3a)

and o N
A
VRE, +2ik = = = PNy (3b)

c2

~

where Pfi]%z refers to the phase matched portion of the nonlinear polarization, we
assume that w, = wy, = w, and V4 is the transverse portion of the Laplacian
operator given by V& = 9%/9z% + 82 /9y2.

We now consider a modal decomposition of the transverse components of the
pump and Stokes fields. For the moment we will leave the basis set arbitrary, but
require that the individual functions of the basis set be orthonormal and individually
satisfy the homogeneous wave equation. Thus we may write the pump and the
Stokes waves as a superposition of the basis sets A and B:

Ep(r.z) =) aa(2)Aa(r, 2) (4a)

and

E,(r,2) =) ba(2)Bal(r,2). (4b)
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Substituting Eqs. 4(a) and 4(b) into Eqgs. (3a) and (3b), and utilizing the fact
that both A, and B, are solutions to the homogeneous wave equation, the coupled
equations describing the propagation of the wave described by Eq. (2) become

dag _ 4
QZkZA = 4 (5a)

and o
211»23 — Pﬂkz. (5b)

The phase matched portion of the nonlinear polarization under the slowly vary-
ing envelope approximation is well known and, assuming on-resonance SBS, is given
by2,3

3
Pl = i6x§ps (1Bs(r, 2) P Ey(r, 2) = |E,(x, 2)PEs(r, 2) (6)

where X(S?ia)s is the contribution of the on-resonance Brillouin interaction to x(*)

By substituting Eqs. (4) into Eq. (6) we may write the phase matched portions of
the nonlinear polarization in terms of the two basis sets used for the decomposition
of the electric fields. Equations (3) may then be written as

da, 127w (3
%:Aa i & Zk;a]A ;i Bib By (7a)
and 1
n W
ZB = Xigs > biBjaiAray A (7b)
7kl

We now multiply each of Eq. (7) by a single member of the applicable basis set
‘A5 or By) and integrate over all of transverse space, utilizing the orthonormality
of the functions to produce the equations

dan 1‘)71:0 «
o = ggsz%bkbl/ d*rA,;B; B A" (8a)
- Gkl
and o, N
1
= fed g?;;szb akal/ d®rB,; AL A B: . (8b)
o jki

To continue the development of the model it is now necessary to choose basis sets
for the decomposition; we have chosen the Hermite-Gaussian functions as the basis
set. The Hermite-Gaussian functions are chosen instead of the Laguerre-Gaussian
functions for two reasons. First, the use of Hermite-Gaussian functions introduces
some parity considerations into the equations that are of practical use. Second,
the choice of Hermite-Gaussian modes allows the convenient modeling of aberrated
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beams that are not cylindrically symmetric; while not reported here, we will report
the modeling of aberrated beams in the near future.

In one of the two transverse dimensions the normalized Hermite-Gaussian modes
for the pump wave are given by!?

o (2N oy b it Bt Var L
An(@,2) = (w) (@ nt(z) "2 MO, (w(z)> eXp[ "3R(z) w(z)z} ’
(9a)

For the Stokes wave we choose the basis set made up of the complex conjugates of
the modes of the pump wave. These are given by

B,(z,z) = (%)i(2nnmmz»—%e—“”+%wwﬂfal(g%%)emp[i§%§$-afgg].

(9b)
Here w(z), R(z) and 1¥(z) have their usual meanings of spot size, radius of curvature
of the wave front and Guoy phase angle respectively, given by

m@=w01+<i><

<R

and

¥(z) = tan™! (i) .

As usual, wyg is the spot size at the beam waist and zgr is the Rayleigh range given
by

2
TWG

AR = ——.

A
Since the transverse coordinates are orthogonal, in two dimensions the basis sets

are given by
Apm(r,2) = Az, 2)An(y, 2)
and
By m(r,z) = Bp(x,2)Bin(y, 2) .
For notational simplicity we will develop the rest of the model in only one of the
two transverse dimensions.
Having chosen a basis set, the product under the integral in Eq. (8) can be
written explicitly as

2 ; 1 2
A-BXBA* = [ 2 j+k+i+n AR -1/2f =
1Pk DN (7l>(2 J kl ) ('I.U(Z))

a5 ) (3 ) m (5 ) - (35
—472

X €Xp (W +ij+k-1- n]?b(z)) (10a)
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and
B,ALAB: = (%)(2j+k+l+”j!k!l!n!)‘1/2(;%)2
< (0 ) (i ) m () m (55
« exp (%‘”)22 R n]¢(z)> . (10b)

Since the integral is over the transverse dimensions and the Hermite-Gaussian
functions are separable, we can perform the integration in Eqs. (8) explicitly and
define an overlap integral by

Eikin = (%)(2j+k+l+”j!k!l!n!)“1/2
) /°° da' Hy(V2a')Hi (V22" H (V22 ) H, (V22') exp(—4a™)
o (11)

where
1’ :E

- w(z)

Equations (8) can now be written in final form as

dan 127 1 ‘ .
= < M) <—> X$Bs > a;bpbigpmetU IV (12a)

0z Vvee J\w(z) =
and
(‘9bn 127&0\,( 1 (3) i k—]—
22—y § b * @ Eipme UTR=l=n)y(z)
0z < NEY _w(z)>ASBS Gkl e (120

Equations (12) are tl:c steady-state coupled SBS equations in two dimensions.
In three dimensions this system of equations is given by

Ban,ﬂ1_<12ww\( 1 )( 1 >/(3)
0z Vvee j \wg(z) wy(z) XsBs

X Z ajvpblt,qbl,rfjklngpqrmei(j+p+k+q_l_’"_n*m)lﬁ(l)
IMpar (13a)

Obpm (127w 1 1 (3)
oz < Nz ) (wzu)) (wy(z))ngs

X Z bj’Paz,qal,réjkln{pqrme_i(j+p+k+q_l”T_"_m)¢(l).
Jhtpar (13b)

and
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There are three important things to note in Eqs. (13). The first thing to note is
that Stokes modes that are conjugate to the pump modes will see higher gain than
those that are not. That is, whenever there is an instance where j = k=1=n or
p = ¢ = 1 = m, the value of the overlap integral is maximum. Stokes modes that
are not conjugate to modes that exist in the pump beam have a reduced value of
the overlap integral, and therefore see less gain than those modes whose conjugate
does exist in the pump beam.

The second important conclusion that can be drawn from an examination of
Eqs. (13) is that there are quite obviously some phase-matching requirements. These
phase matching requirements can also help to ensure that modes correlated with
the pump wave are amplified more than uncorrelated modes.

The phase matching requirements exhibited in Eqgs. (13) are due to the propaga-
tion of the fields and not due to an overall phase matching requirement. This may
be seen by substituting Eq. (6) into Eq. (3). With this substitution, the coupled
amplitude equations may be written as

el —i24mw? .
VAE, —2ik 5L = ——— D EPE, (14a)
and
OE, _ i24mu? A
V3E. +2ik 5= = S\, PE. - (14D)

Equations (14) clearly show that the process of SBS is insensitive to an overall
phase shift in either the Stokes or the pump beam and therefore SBS is considered
a process that is automatically phase matched; however, in the formalism presented
above it is clear that upon propagation there are definite phase terms that become
important. The importance of these phase mismatched terms will be explored in
Sec. 3.

The third important thing to note in Eqgs. (13) is that every Stokes mode is
coupled to every other Stokes and pump mode through the Brillouin nonlinearity.
Therefore all modes affect the phase and amplitude of all other modes. In the
case of SBS for optical phase conjugation, this coupling between modes results in
the imposition of noise on the conjugate modes due to the presence of nonconju-
gate modes. As will be shown later, when the amplitude of the conjugate mode
dominates, this noise can still be seen in the phase of the mode.

One of the advantages of casting the SBS process in the form of Egs. (13) is
that it is relatively easy to obtain a numerical solution provided that the process
being investigated can be described by only a few members of the basis set. One
example of interest to the scientific community is SBS of focused Gaussian beams.
In the following section we will address the numerical solution to Eqgs. (13) when
the pump beam can be described by the lowest order Gaussian mode.
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3. Modeling

In this section we present results of the numerical solutions to Egs. (13) under
conditions often encountered in the laboratory. In particular, the beams modeled
are Gaussian in intensity and focused into the Brillouin medium.

In modeling the SBS process we numerically solve Egs. (13) with one slight mod-
ification. We assume that there is no coupling between modes in orthogonal trans-
verse dimensions higher than order zero. That is, we allow the exchange of energy
between all modes of one dimension and the fundamental mode of the orthogonal
dimension. However, we do not consider coupling between higher order modes in
orthogonal dimensions. This is equivalent to assuming that the SBS process treats
each transverse dimension independently for modes of order greater than zero. This
is not strictly true, but since most of the power in both transverse dimensions re-
sides in the fundamental Gaussian mode we take this as a good approximation.
Additionally we find the results of the simulation to accurately describe the Stokes
beam produced by a Gaussian pump beam in the laboratory.'®

Understanding that the single index on the coefficients implies the lowest order
mode in the orthogonal dimension, we will define the SBS coupling constant by

127w
K= . 15
Jee &o000 (15)
Equations (13) may then be written in the form used for our numerical analysis as
day, . 1 1 (3) . (Gtk—1—n)v(s
7= (mm) (me) 2 G T )

and

an - 1 1 3 * —i(j+k—1—n z
o = K ( ) <———) X(SB)Szbja}}algjklne (Fh-1-n)ple) (16b)

z wo(2) wy(z) TRl

where the possibilities of modeling an aberrated beam is left open by allowing for
astigmatic modes; this is shown explicitly by writing the spot sizes of the orthogonal
transverse dimensions separately.

Stokes pump
Brillouin medium
I
-2 z=0 2

Fig. 1. The physical geometry and the coordinate system assumed in the model.
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The coordinate system and physical picture used for the modeling are shown in
Fig. 1. The choice of the origin at the focus of the pump beam rather than one
end of the Brillouin medium is made to facilitate the modal decomposition. The
modes used as a basis set for the decomposition are completely specified by Eqs. (9),
provided we know the spot size at the beam waist wg. Since we are interested in
investigating focused Gaussian beams, we have defined the basis set by the spot size
at the focus of the pump beam. The spot size at the focus of a lens of focal length
f may be related to the spot size at the entrance to the focusing lens by!2

A
wWg 7rw(f) . (17)

In order to study the effects of stochastic initiation we have added noise to
the simulation. Physically the noise is due to spontaneous Brillouin scattering and
is responsible for the initiation of the SBS process. It has been shown that the
intensity of noise due to spontaneous Brillouin scattering is on the order of 1012
the intensity of the pump.>? In order to introduce noise into the simulation, at each
point in the medium a Stokes wave was introduced that had random phase with
amplitude equal to 1078 of the pump at that point in the medium. Thus some of
the effects of distributed noise could be studied in the context of the steady-state
SBS process.

The ability to numerically model the SBS process using the formalism developed
in Sec. 2 relies on choosing a geometry that can be described by only a few modes of
the basis set. We have found that under most situations of interest in our research,
ten Hermite-Gaussian modes is an adequate number to describe the stimulated
Brillouin scattering resulting from a pump that is initially described by a Gaussian
beam of lowest order. Fortunately, due to parity considerations the growth of the
odd numbered modes is very small compared to the even numbered modes, and
therefore in many cases it is only necessary to explicitly integrate the first five
even numbered modes to accurately predict the behavior of the fields in a Brillouin
medium in a focused geometry for a variety of input powers.!3

The spatial distribution of the power in the first two even numbered modes of
the Stokes wave for an incident focused Gaussian beam is shown in Fig. 2. Also
shown in Fig. 2 is the evolution of the power in the mode of the incident beam that
was input into the medium (the A, mode). The phase-conjugating ability of SBS is
clearly seen by the dominance of the By mode in the Stokes beam. In this case the
simulation was conducted with the first ten Hermite-Gaussian modes, but the power
in the remaining modes of the basis set is too small to be of any significance on
the scale shown in Fig. 2. In Fig. 2 the abscissa is written in terms of the Rayleigh
range of the incident beam and the ordinate is normalized to the input power of
the pump. The situation modeled is that shown in Fig. 1 with the Stokes beam
containing 88 % of the input power.

The phase-conjugate fidelity of the SBS process is found by dividing the power
in the mode conjugate to the pump by the total power in the Stokes beam. In the
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Fig. 2. Power in the Ap mode of the pump beam, and the By and Bs modes of the Stokes beam
as a function of distance within the Brillouin medium during SBS. The situation modeled is for
ten times above threshold.
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Fig. 3. The intensity of the Stokes beam as it leaves the medium, calculated at ten times the
SBS threshold and at SBS threshold. The dashed line is the profile of the pump beam while the
solid lines are those of the Stokes beams. The units on the abscissa are multiples of the pump
beam diameter. In both cases the Stokes beam is an almost perfect Gaussian with diameter 1.9
(at threshold) and 1.3 (ten times threshold) times that of the pump.

situation shown in Fig. 2 the phase-conjugate fidelity is 0.95. Figure 3 shows the
near-field profile of the Stokes beam as it leaves the medium for both the case of
that shown in Fig. 2 and for the case near SBS threshold (SBS reflectivity of 0.10,
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phase-conjugate fidelity of 0.80). The shape of the Stokes beam is almost perfectly
Gaussian in both instances, but the beam is larger than the pump beam at the
entrance to the medium.

In many experimental investigations the Stokes beam passes back through the
lens focusing the pump beam into the medium and is then reflected out of the pump
beam path for analysis. The phase-conjugate fidelity is measured in the far-field by
focusing the Stokes beam onto a pinhole whose size is chosen to be the diffraction-
limited size of the pump beam. Thus a Stokes beam exactly matching the pump
beam would pass as much power through the pinhole as the pump beam and a
fidelity of unity would be measured. Unfortunately, in the case of a beam that is
wider than the pump but still Gaussian in shape, the fidelity measured will be in
excess of unity. This has been seen in experiments'® and would be the case of a
real beam similar to that modeled here. Thus, while the fidelity of the Stokes beam
near threshold is calculated as 0.80, using the method described above the measured
fidelity would be approximately 1.1.

In the laboratory it appears that most Stokes beams derived from Gaussian
pump beams are Gaussian in shape, but not all larger than the pump beam upon
exiting the medium as our simulation predict. There are reports of Stokes beams
that are narrower than the pump,!® and it is theorized that the narrower beam width
is due to axial gain pulling'® near the entrance to the medium. In our simulations
we see the results of axial gain pulling at and near the focal point of the pump beam
within the Brillouin medium, but to produce a beam narrower than the pump beam
axial gain pulling must occur well away from the focal point. In our simulations, we
do not detect the effects of axial gain pulling far from the focus that are required to
produce a beam narrower than the pump at the entrance to the medium, even when
the pump beam has a power 100 times the SBS threshold power. It is possible that
self-focusing away from the focal point accounts for the reduction in beam diameter
observed in the laboratory and we are currently investigating this idea by adding
other nonlinear effects to the simulation.

In all of our simulations the shape of the Stokes beam exiting the medium was
always an almost perfect Gaussian when the pump beam was a Gaussian. These
results are in contrast to other numerical modeling efforts to predict the behavior
of SBS well above threshold, where the predicted Stokes profiles are distinctly not
Gaussian.!”

There are two parameters that characterize plots of the type shown in Fig. 2.
The first is the length of the medium relative to the Rayleigh range of the incident
beam. This parameter has a large effect both on the behavior of the power transfer
between the incident and Stokes beams and on the ability of the process to produce
a phase-conjugate of the incident wave. By using the Rayleigh range of the pump
beam as the length parameter in the simulation, the output is independent of the
Brillouin medium or the details of the pump beam focusing. Therefore as long as
the ratio of the Rayleigh range to the length of the medium remains the same, the
results will be the same regardless of the actual medium that is being considered.
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The second important parameter is the power in the incident beam. That is, it is
important to know by how much the incident beam power exceeds the threshold for
SBS. It is common to quote the power in the beam in units of the threshold power
for SBS. What is implicit in stating the power in this manner is an understanding
of what the SBS threshold is; unfortunately there is no consensus in the literature
as to what exactly defines SBS threshold.

For theoretical investigations one normally assumes that SBS threshold occurs
at the point where the product of the Brillouin gain and the on-axis pump intensity
integrated over the length of the medium reaches a certain value (usually ~25-30).
For engineering expediency the SBS threshold is often defined as the point at which
the Stokes power leaving the medium reaches 10% of the value of the incident
beam power. While there are several disadvantages to this latter definition, the
“10% criteria” has the advantage of being directly measurable in the laboratory.
As long as one ignores the semantic problem of being able to have SBS occur below
SBS threshold, the 10 % criteria is quite useful and we will therefore adhere to that
convention. The interaction shown in Fig. 2 is for an incident beam that is ten
times over threshold.

From Fig. 2 it is obvious that most of the power is extracted from the incident
beam in the region in front of the focus. However, SBS is actually the resuit of the
selective amplification of noise within the medium and must be viewed from that

perspective.
0F 1;0-
— 2
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T 6t .
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Fig. 4. Plot of the log of the power in the first three even modes of the Stokes wave showing the
amplification of noise and discrimination against nonconjugate modes. The incident beam was
made up entirely of the Ag mode.

In order to demonstrate the noise amplification aspect of SBS, in Fig. 4 we
have plotted on a semi-log scale the first three even modes of the Stokes beam
for the same situation shown in Fig. 2. Figure 4 clearly shows that almost all
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of the amplification of the initiating noise occurs at or near the focus and that
very little actually occurs away from the focal region; this is of course expected
from an intuitive understanding of SBS. Furthermore, Fig. 4 shows most of the
discrimination against nonconjugate modes occurs at or very near the focus.

The inclusion of distributed noise in our model is a crucial aspect of our investi-
gation. Some recent research has focused on the temporal aspects of the distributed
nature of the noise in SBS,'%:1° hut little attention has been given to the spatial
aspects.

~ In our model the amplitude of the noise in the Stokes wave at every point in the
medium is fixed at 10~ of the pump amplitude at that point, and given a random
phase. By using a distributed noise source we may investigate exactly where SBS
starts in the focused geometry and what regions are important in the development
of the phase of the Stokes beam. T

Note that we have chosen to keep the noise amplitude fixed rather than use the
more realistic model of a random amplitude with a mean of 1079 of the pump. We
do this so that conclusions about the SBS initiation process are not clouded by
normal statistical fluctuations. Under ideal circumstances one would wish to use a
stochastic phase and Gaussian amplitude distribution. However, given the length of
time required for one simulation, it would be impractical to perform enough simula-
tions to ensure that normal statistical fluctuations were not biasing the conclusions.
Therefore we use a constant amplitude for the noise and follow the effects of the
noise by examining the phase of the wave.

The effects of the noise on the amplitude of the Stokes beam are clearly seen
in the portion of Fig. 4 where z < 0, but it is the phase of the Stokes beam that
yields the most information about the initiation process. Figure 5 shows the phase
of the lowest order mode of the Stokes beam far below SBS threshold and at ten
times threshold (only every fifth point has been plotted for purposes of clarity).
The arrow in Fig. 5a indicates the phase of the noise at the end of the Brillouin
medium.

Figure 5b demonstrates that even very high above SBS threshold, the phase of
the rear-most point determines the phase of the Stokes beam; we find this to be
true regardless of the noise seed or the pump power (up to 100 times threshold).
From a naive point of view one would expect this to be true, since the integral of the
product of the gain and the intensity over the length of the medium is the greatest
if one begins at the farthest possible distance from the front of the medium. It
is surprising however, that even ten times above threshold the phase of the Stokes
beam is determined by the noise at the rear-most point in the medium, a point where
the pump intensity (and hence the intensity of the spontaneous Stokes scattering)
is orders of magnitude lower than near the focus. Judging from the evolution of the
amplitude shown in Fig. 4, one may have thought that the initiating noise occurred
much closer to the focus when the pump is far above threshold and indeed there have
been predictions of this effect,? but we have found no case in our simulations where
this is true. Of course had intensity fluctuations been included in our model, the
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Fig. 5. The phase of the lowest order mode of the Stokes radiation far below SBS threshold (a)
and ten times above SBS threshold (b). The arrow in (a) indicates the phase of the noise at the
point at the back end of the Brillouin medium.

point of initiation could have been slightly different, since a peak in the intensity
of the noise could dominate over the length factor. However, assuming that the
amplitude of the spontaneous scattering is proportional only to the amplitude of
the pump wave at every point in the medium, the point of initiation does not appear
to change regardless of the power in the pump beam.

Thus, the effects of noise in a given model, other than at the point of initiation,
are not significant in determining the phase of that mode in Stokes beam. However,
the phase of a given Stokes mode can be influenced by other modes in the Stokes
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beam. This effect is seen in Fig. 5b, where the phase of the coefficient of the Stokes
wave undergoes a phase shift as it propagates through the focus. The magnitude of
this phase shift depends in detail on the phase and magnitude of the other Stokes
modes and varies with the intensity of the pump. If no modes other than the mode
conjugate to the pump are allowed to propagate in the simulation, the coefficient
of the Stokes wave undergoes no phase shift at all.

The origin of this phase shift is the coupling between modes mentioned in Sec. 2.
An examination of Eqs. (13) reveals that even when one mode is dominant, the
phases and amplitudes of all modes (including the dominant mode) are dependent
upon the phases and amplitudes of all of the other modes. The more dominant a
single mode is, the less effect the coupling between modes will have on the phase
and amplitude of the dominant mode. In the case of the pump wave, where the
mode structure is imposed externally, the phase shifts of the coefficients of the pump
mode are very small upon propagation through the medium.

In the case considered in Fig. 5b, the phase of the coefficient of the Stokes wave
moves in the same direction as the Guoy phase shift. Thus the Stokes wave has a
total phase shift on the order of 37/2 as it propagates from the back of the medium
to the front.

To demonstrate the effect that noise modes in the Stokes beam have on the
mode conjugate to the pump wave we have solved Eq. (16) for a variety of different
initial phases of the nonconjugate Stokes modes, keeping the initial phase of the
conjugate mode fixed. We do this by forcing both the phase and the amplitude
of the initiating radiation to be fixed for each mode throughout the medium. The
noise in the By Stokes mode was fixed with zero phase and amplitude 107% of the
pump. The noise in the other Stokes modes was fixed at 1078 of the value of the
pump in amplitude, but the phase was varied from zero to 2r. The results of these
simulations are shown in Fig. 6. In Fig. 6 the phase of the coefficient of the mode
conjugate to the pump mode (By mode) is plotted as a function of the initial phase
of the other Stokes modes. It is clear from Fig. 6 that even though the By mode
dominates the Stokes wave (~80% of the power is in the By mode), its phase is
determined in large part by the amplitude and phase of all the other Stokes modes.
Naturally, had the pump wave contained modes other than Ay mode, they would
have affected the phase and amplitude of the Stokes wave as well.

It is surprising that the nonconjugate, non-phase matched modes could have
such a large effect on the Stokes wave. However, a similar behavior is observed for
all modes in the region of high Brillouin gain. That is, a phase shift is observed at
the focal point, and the magnitude of that shift is determined by the magnitudes
and phases of all of the other modes allowed to propagate.

A careful study of these phase shifts shows that they are the result of all of the
modes attempting to shift their phase to maximize the gain. That is, the phase
of each mode is shifted to maximize the constructive effect of all of the non-phase
matched terms. Since all of the non-phase matched terms are also combined with
a reduced overlap integral, one could wonder whether the effect of the non-phase
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Fig. 6. Demonstration of the effects of noise modes on the phase of the Stokes mode that is
conjugate to the pump. The phase of the initiating radiation was held constant for the By mode
and varied for the phase of the nonconjugate modes.

matched terms is of much importance. Our research has shown that the non-phase
matched terms are extremely important.

To demonstrate the importance of the non-phase matched terms in determining
the SBS gain of any given mode we will examine the By, By and By modes of the
Stokes beam in the simple case of a lowest order Gaussian beam focused into a
Brillouin medium. First let us assume that only the Ay mode of the pump beam
is allowed to propagate, and then examine the first three terms in each of the
differential equations describing the first three Stokes modes.

The three differential equations are:

ab . 1 1 —id(z —95(z
‘8‘9‘ =K <——) (—“) Xi9slaol? {booooo + b1€roaoe (%) + baaoooe )}
we(2) ) \wy(2) (18a)

2

b,

. 1 1 il il s
5 = K (—) ( ) X%swol?{boéoome (=) 4 b1€1001 + bodaoore ¥}

wz(2) ) \wy(z) (18b)

Ob: B} 1 1 il = bl =
aj =K < ~ ) (*‘—~> X;(g?stOIQ{b0§0002€2’w(“) + bi&10o2¢™ ) + baloooz } -
z wz(z) wy(z) (18¢)

To understand these equations it is important to know the values of the overlap
integral &;xn. The values of the overlap integrals in Eqgs. (18) are:

o000 = 0.56
&2000 = —0.20
€1001 = 0.28
&2002 = 0.21,

with all of the others being zero due to parity considerations.
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Replacing the overlap integrals with their actual values produces the following
set of coupled equations:

8b0 - I 1 1 (3) p —21(z

5, = K ('wx(s)> (wy(z)> Xspslaol?{(0.56)by — (0.20)bye™ 212} | (19a)
b, o 1 1 (3)

—8; =K (wr(z)) <m> XSleaOI?{(O.QS)bl} B (19b)

%bf =K <Kl(:)> (ﬁ) Xhslaol?{(=0.20)bpe?¥(*) 4 (0.21)bo}.  (19¢)
Examination of Egs. (19) would lead one to believe that the lowest order mode
would dominate a rigorous integration of the SBS equations under these conditions.
The value of the overlap integral for the phase matched term of the By mode is twice
that of the other two modes and would see the highest gain. The B; coeflicient has
the next highest gain and the By coefficient sees the least gain of the three. In this
case of a focused Gaussian beam, the phase angle is changing rapidly in the region
of highest gain and therefore one would think that the importance of the non-phase
matched terms is even less than indicated by the value of the overlap integral.

Numeric integration of Eq. (19) shows that indeed the By mode dominates the
Stokes beam as expected. The value of the By mode is an order of magnitude larger
than that of the next largest coefficient. However, the next largest coefficient is that
of the By mode; the value of the coefficient B; is fully three orders of magnitude
below that of the coefficient B, when the equations are integrated well above SBS
threshold. This demonstrates that the overlap of the Stokes mode and the pump
mode is not the dominant factor in determining which mode sees the highest gain.

This surprising result is due to the fact that as the modes propagate, they change
phase to enhance their gain through the non-phase matched terms. This may be
described as phase pulling and is the origin of the phase shift exhibited in Fig. 5.
The B; mode sees such little gain because the coeflicient for the non-phase matched
term connecting the B; mode to the By Stokes mode is zero. In the case of only
three propagating modes, there is no phase of the By mode that can in any way
enhance the gain over the basic phase matched term. The situation of reduced gain
due to the lack of an overlap integral connecting them with the By Stokes mode is
the same for all of the odd numbered modes.

If instead of a pure Ay mode pump beam there were odd numbered pump modes
present, naturally there would be non-phase matched terms in the equation for the
odd numbered Stokes coefficients. However, there would still be no coupling between
even and odd numbered Stokes modes except through the pump beam.

The phase shifts on the Stokes modes as they propagate through a region of
high gain are then due to the process of phase pulling. This process will produce
an intensity dependent phase shift on each mode of the Stokes beam as the phases
adjust themselves for maximum gain. In the process of SBS, this will appear as
phase noise on the Stokes beam.
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The process of phase pulling may be intuitively understood by noting that in
the example just considered, all of the even modes have either a local maximum or
a local minimum at the same transverse coordinate as the maximum of the mode
conjugate to the pump (beam center). Simply by shifting the phase of the By mode
and/or all of the other even numbered modes, all of these inflection points may
be made to add constructively; this is the process of phase pulling. If instead of
the mode amplitudes one were examining the SBS process in terms of the intensity
structure, the process of phase pulling would be described as gain guiding. However,
the presence of the overall shift of phase of the dominant fundamental mode is not
predicted by a simple gain guiding argument.

While the analysis of phase pulling provides important insight into the physics
of SBS, the importance of this induced phase shift in stimulated Brillouin scattering
is debatable since the absolute phase of the Stokes wave is often of little interest.
However, phase pulling does add phase noise to the Stokes beam as the intensity
of the pump changes since as the intensity of the pump changes, the phase of
the Stokes beam changes. Phase pulling effects related to the coupling between
Stokes modes may also be very important in the case of a Brillouin amplifier, where
the absolute phase of the Stokes wave may be of great importance. Eventually a
complete understanding of the process of phase pulling must wait until it can be
addressed within the context of a model that includes the time dependent nature
of the Brillouin process.

4. The Brillouin Gain Parameter

In this section we use the model described above to investigate the response of the
Brillouin gain parameter to variations in the pump power.

We may write the undepleted pump solution for the Stokes wave in terms of the
intensity in the familiar manner

Is(z) = Ipe™) (20)

and define the Brillouin gain parameter as

we) = [ el(a, (21)
—1/2

where again g is the Brillouin gain, I,(2) is the intensity of the pump wave measured

at the symmetry axis, and Iy is the intensity of the spontaneous scattering in the

medium. Since it is often the total value «:: the Brillouin gain parameter that is of

interest, for notational convenience we will define

nl/2) =G. (22)

Note that this definition of the Brillouin gain parameter is different than that
normally defined in the literature. Normally the quantity I,(z) is defined as the
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undepleted pump intensity; here we have used the actual (depleted) value of I,(z)
in the integral.

As mentioned above, the intensity of the spontaneous scattering in the medium
is on the order of 10712 of the intensity of the pump wave. The stimulated Brillouin
scattering intensity becomes comparable to the pump intensity when G ~ 27. Thus
a value of G = 25-30 is often quoted as a theoretical threshold for SBS. The question
may be asked what happens when the pump power is increased after G becomes
on the order of 257 That is, what effect does pump depletion have on the Brillouin
gain parameter?

The model we have developed is specifically designed to investigate the distribu-
tion of the intensity within the Brillouin medium during SBS, so it is natural to use
the simulation to investigate the value of the Brillouin gain parameter throughout
the medium at different intensities of the pump.
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Fig. 7. Evolution of the Brillouin gain parameter n(z) as a function of distance within the medium.
The values of the pump intensity are: (a) threshold (G = 25.37), (b) five times above threshold
(G = 26.63), (c) ten and 15 times above threshold (G = 27.01 and G = 27.15).

Figure 7 shows the evolution of the on-axis value of n(z) in the Brillouin medium
for four values of pump intensity ranging from SBS threshold to 15 times above
threshold. The value of G for each case increased as the pump intensity was in-
creased, but clearly not linearly. In fact, the difference between the final value of
the Brillouin gain parameter for ten and 15 times above threshold (~0.5%) is not
noticeable on the scale used in Fig. 7.

Since it is obvious from Fig. 7 that G does not increase linearly with increased
pump intensity, we may conclude {since the Brillouin gain, g,is a constant) that
the longitudinal intensity profile of the pump wave has been modified by the SBS
process. That is, above SBS threshold a significant amount of power gets extracted
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from the pump wave before the focal point. As the pump intensity is increased, the
amount of power extracted from the pump wave by the Stokes wave at points in front
of the focus becomes proportionally larger, so that an increase in incident pump
intensity does not result in a proportional increase in G. With extensive modeling
we have shown that the power of the waves in a focused Brillouin interaction has a
characteristic functional form as a function of longitudinal coordinate z.
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Fig. 8. Power in the pump beam at different points in the Brillouin medium plotted as a function
of the input pump power. The points are derived from simulation and the lines are fit to Eq. (23).

To demonstrate the functional form of the power in the pump wave as a function
of the longitudinal coordinate, in Fig. 8 we have plotted the power in the pump wave
(Pp(2)) at several different points in the medium versus the input pump power. The
points in Fig. 8 are derived from simulations using the model described above and
the lines are a fit to the equation.

Pp(z) 1
PY alz)+b(2)PY’

(23)

where P9 = P,(1/2) and a(z) and b(z) are constants determined by the position in
the Brillouin medium. Equation (23) shows that from the perspective of the pump
beam, the SBS process looks like a reverse saturable-absorber.

Equation (23) is only valid above SBS threshold and therefore the constant a(z)
is of little importance. The z-dependent parameter b(z) in Eq. (23) is of importance
however. The parameter b(z) indicates the strength of the saturation of the SBS
process at that point in the medium, and we will therefore refer to it as the Brillouin
saturation parameter. The Brillouin saturation parameter is plotted in Fig. 9 as a
function of position in the medium. The actual value of b(z) will very with varying
focal geometries, but the functional form is constant. The functional form of b(z)
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Fig. 9. The saturation parameter plotted as a function of position in the Brillouin medium. From
the front of the medium to the focus b(z) is almost exponential; past the focus b(z) is a constant.
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Fig. 10. Power in the Stokes beam at different points in the Brillouin medium plotted as a
function of the input pump power.

is not easily fit, but we find that the form is almost exponential from the entrance
to the medium to the focal point, where it becomes a constant.

Unfortunately, the functional form of the Stokes wave as a function of position
and pump power is not so easy to analyze. As yet we have found no simple, universal
dependence of the power in the Stokes wave on the parameter 733. A plot of the
normalized power in the Stokes wave as a function of 732 and position in the medium
is shown in Fig. 10.
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5. Conclusions

We have reported here a detailed investigation of the process of SBS with focused
Gaussian beams. This investigation was possible through the development and use
of a three-dimensional simulation of the SBS process. We have investigated some of
the factors that affect the creation of a Stokes beam and have reported the discovery
of some interesting aspects of SBS. Much of the new insight comes from considering
transverse effects that are often ignored during analysis of the SBS process.

In addition to demonstrating the limited phase conjugation of single mode pump
beams, we have shown that spontaneous noise at points other than where the initia-
tion of SBS occurs does not significantly effect the SBS process; however, the phase
of a given Stokes mode is affected by the presence of other modes. The presence of
other modes in the Stokes beam results in a shift in the phase of all Stokes modes,
a process we have termed phase pulling. Phase pulling demonstrates that the over-
lap between a Stokes mode and the pump mode may not be the most significant
factor in determining the gain of a given mode. Indeed, the nonlinear coupling
between modes within the Stokes and pump beams, via the Brillouin interaction, is
the dominant factor in the cases we have studied.

Our simulations have also shown that for a focused Gaussian beam the Brillouin
gain parameter does not increase linearly with increased pump power once SBS
threshold is reached. Rather, above threshold the SBS process mathematically
resembles a reverse saturable absorber for the pump wave at any given point in the
medium between the entrance to the medium and the focal point of the pump. To
characterize this effect for different media and focal geometries we have defined the
Brillouin saturation parameter. While difficult to characterize exactly, the Brillouin
saturation parameter is almost exponential from the entrance to the medium to the
focus of the pump beam.
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