
September 1, 1995 / Vol. 20, No. 17 / OPTICS LETTERS 1821
Z-scan measurement technique for non-Gaussian
beams and arbitrary sample thicknesses
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We demonstrate a new Z-scan measurement technique that permits the use of non-Gaussian beams and
thick, as well as thin, samples. We expect that this technique will make possible the measurement of optical
nonlinearities by the use of lasers that previously would have been unsuitable for this purpose, because of
either inadequate beam quality or inadequate power. Another advantage of this technique is that it does not
require detailed knowledge of the temporal characteristics of the laser pulse that is used.  1995 Optical
Society of America
The Z-scan measurement technique is a simple experi-
mental procedure that gives information on the optical
nonlinearities of materials. The technique as origi-
nally formulated1,2 is performed by sending an axially
symmetric Gaussian beam through a converging lens,
then through a sample of material placed near the
beam waist, and finally through an aperture placed
in front of a detector in the far field. As the sample
is moved to one side of the beam waist, the detected
power increases to a peak; as the sample is moved to the
other side of the waist, the detected power decreases to
a valley. The difference in power from the peak to the
valley has been shown to be proportional to the non-
linear index of refraction n2. Consequently the Z-scan
technique permits determination of n2 for different
materials.

In its original formulation, the Z-scan technique
assumes that the input beam is Gaussian (with a
beam-quality factor3 of M2 ­ 1). Often, however, the
lasers found in laboratories do not produce Gaussian
beams. The Nd:YAG laser, which is often used in
Z-scan measurements, may have a beam-quality
factor of M2 . 2.4 It is possible to modify a laser
beam to make it a more Gaussian; for example, one
group obtained M2 ­ 1.02 by sending light from a
doubled Nd:YAG laser through a spatial filter and
an apodizer.5 Such modifications are not always
practical or convenient, however. An alternative to
the Gaussian beam is the top-hat beam,6 which can
be obtained by use of a spatial filter, an expander,
and an aperture. Much of the pulse energy may
be thrown away in forming a top-hat beam, but, in
partial compensation, the peak-to-valley response is
increased by a factor of 2.5 compared with that of a
Gaussian beam.6

The original formulation also assumes that the
sample is much thinner than a Rayleigh range.2 For a
laser of moderate pulse power, this condition may limit
the minimum value of n2 that can be measured. This
is the case because the peak-to-valley change in trans-
mittance decreases as the sample thickness is made
smaller. More recently, techniques have been devel-
oped for applying the Z-scan method to samples thicker
than a Rayleigh range. One of these techniques is
based on empirical observations,7 and another is based
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on a (more accurate) Gaussian–Laguerre decomposi-
tion method.5 The Z-scan measurement techniques
described above also require knowledge of the tempo-
ral profile of the laser pulse for accurate calculation of
n2,5 but in some cases this information may not be easy
to obtain.

In this Letter, we present a new Z-scan measurement
technique that permits the use of lasers that do not
have ideal Gaussian beams. This technique permits
the use of thick or thin samples and can be used
to determine n2 without detailed knowledge of the
temporal profile of the laser pulse. To understand
the new measurement procedure, we now derive a
differential equation that accounts for the physical
effects of interest. We begin by defining the electric
field E in terms of the electric field amplitude A,

Esr, T d ­ 1/2Asr, T dexpfib
sj d

0 z 2 iv0T g 1 c.c. , (1)

where T is the time in the laboratory frame of ref-
erence, b

sj d
0 ­ n

sj d
0 k0 is the propagation constant,

k0 ­ v0yc is the vacuum propagation constant at
the reference frequency v0, and n

sj d
0 is the linear in-

dex of refraction. The superscript (or subscript) j is
used to identify each different material. We assume
that linear absorption and two-photon absorption are
negligible. We also assume that temporal dispersion
has a negligible effect, which is usually a very good
assumption for pulse lengths greater than 1 ps. For
an intensity-dependent change in the refractive index
of the jth sample of Dnj ­ n

0sj d
2 jAj2y2, the differen-

tial equation that governs the propagation of the beam
through the Z-scan test setup is then8
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where A ­ Asx, y, t; zd, with t the time referenced to
the center of the pulse and z the propagation direc-
tion. The first term on the right-hand side of Eq. (2)
accounts for diffraction in the x and y directions.

Using SI units and the conventions of Eq. (1),
jAsx, y, t; zdj2 ­ 2I sx, y, t; zdyn

sj d
0 e0c,9 where I is
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the intensity. We use this result to evaluate the
quantity N std ­

RR
`

2` dxdyjAsx, y, t; zdj2 to obtain
N std ­ 2P stdyn

sj d
0 e0c, where P std in the instantaneous

power. Note that N and P are functions of t but
not of z because temporal dispersion and loss are
assumed negligible. The coefficient n

sj d
2 , defined by

the relation Dnj ­ n
sj d

2 I , is related to the coefficient
n

0sj d
2 by n
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2 ­ n
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2 , from which it follows

that n
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2 P . We use this, along with the
definition of the critical power, Pcj ­ 2pyk 2

0 n
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2 ,10

and the definition of the normalized field amplitude,
usx, y; zd ­ Asx, y, t; zdy

p
Nstd, to rewrite the nonlin-

ear term in Eq. (2) as f2pPyb
sj d

0 Pcj gjuj2. (Note that
Pcj as defined can be negative.) We substitute this
result into Eq. (2) along with a new variable, z ­ zyk0,
to obtain
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Now let us consider the hypothetical situation
in which two beams of light with identical normal-
ized amplitudes usx, yd enter two different samples,
which we denote by the superscripts j ­ r (reference
sample) and j ­ t (test sample). We let the samples
have linear indices of refraction n srd

0 and n std
0 and

thicknesses Lr and Lt. If the power is small enough
that the last term in Eq. (3) can be neglected, and if the
sample lengths are chosen so that Ltyn std

0 ­ Lryn srd
0 ,

it follows from Eq. (3) that the normalized amplitudes
are identical at the exit faces of the two samples.
Furthermore, the normalized amplitudes will be
nearly identical at the exit faces of the two samples if
jLtyn std

0 2 Lryn srd
0 j ,, zd0, where zd0 is the Rayleigh

range11 in free space. If the input power is increased
to some large values Pr and Pt, and if the nonlinear
indices of refraction of the samples are n srd

2 and n std
2 ,

we see from Eq. (3) that to obtain the same usx, yd at
the exit faces of the two samples, we should adjust the
powers so that fLtyn std

0 g sPtyPctd ­ fLryn srd
0 g sPryPcrd.

For two samples of the same thickness Lt ­ Lr ­ L,
this condition is equivalent to Ptn

std
2 ­ Prn srd

2 . With
the sample thicknesses properly selected and the
powers properly adjusted, usx, yd will be the same for
both samples at any given distance from the exit faces,
and therefore the measured normalized peak-to-valley
transmittances DTpvj ­ fP sdetd

pj 2 P sdetd
vj gyP sdetd

jave will also
be the same. Here P sdetd

pj and P sdetd
vj are the maximum

(peak) and minimum (valley) powers that are regis-
tered for the jth sample of the detector (det) after it
passes through the aperture. The average or baseline
power is P sdetd

jave ­ fP sdetd
pj 1 P sdetd

vj gy2.
Following this analysis, we see that a simple

procedure for making a Z-scan measurement is as
follows: (1) Obtain reference and test samples of
equal thicknesses L for which jLyn std

0 2 Lyn srd
0 j ,, zd0.

(2) Make a Z-scan measurement of one of the samples.
The exact size and shape of the aperture do not
matter. For example, an obscuration disk (as in an
eclipsing Z scan12) can be used. (3) Insert the second
sample and adjust the input power until the normal-
ized peak-to-valley transmittance DTpvj matches that
obtained for the first sample. (4) Calculate the non-
linear index of refraction using the following formula:

n std
2 ­ n srd

2 PryPt . (4)

For a thin sample, it is not necessary to match the
lengths as indicated in step (1) above, since the beam
does not evolve appreciably (in either size or shape) in
traversing the sample. For the special case in which
the nonlinear phase shift is much less than unity, step
(3) may also be simplified. To see how, we first note
that I sx, y, t; zd ­ P stdjusx, y; zdj2. The nonlinear
phase shift for a thin sample can then be written
as Dfjsx, y, t; zd ­ v0n

sj d
2 LjPj stdjusx, y; zdj2yc.

If Dfj ,, 1, and if the electric-field ampli-
tude at the entrance face of the sample is
A1sx, y, t; zd ­

p
Nstd u1sx, y; zd, then the amplitude

at the exit face of the sample is
p

N u1 expsiDfj d øp
N su1 1 iDfju1d ­

p
N su1 1 gj B1d, where

gj ­ n
sj d

2 LjPj std and B1 ­ iv0ju1j2u1yc. For the
experimental procedure considered here, if the en-
trance faces of the test and reference samples are
located the same distance from (and on the same side
of) the beam waist, then both samples will have the
same values for u1 and B1 but different values for
gj . The electric-f ield amplitude after propagation
to the aperture can be written as

p
N su2 1 gj B2d,

where u2 and B2 are again identical for the test
and reference samples. The normalized trans-
mittance (for a sample located at some arbitrary
position) is defined as DTj ­ fP sdetd

j 2 P sdetd
jave gyP sdetd

jave .
We can evaluate this quantity by using DTj ­
s
RRR

dxdydtju2 1 g2B2j2y
RRR

dxdydtju2j2d 2 1 ø
2gj Re

RRR
dxdydtu2B2. In these expressions, the

integrations over x and y are performed over the
extent of the aperture; the integration over t repre-
sents the action of the detector. Since the quantity
Re

RRR
dxdydtu2B2 is the same for the test and ref-

erence samples, it follows that DTrygr ­ DTtygt and
from this that DTpvrygr ­ DTpvtygt. Substituting
into this equation the expressions for gr and gt, we get

n std
2 ­ n srd

2
DTpvtLrPr

DTpvrLtPt

. (5)

When applicable, this formula permits a simplif ica-
tion of the measurement procedure since the power
can be set to any convenient value. In other words,

Table 1. Ratio of n2 Values for Two Pairs of
Liquids as Measured at l0 ­ 1064 nm with Five

Cuvette Thicknesses

Cuvette Thickness n2(toluene)y n2(methanol)y
(mm) n2(glycerine) n2(water)

1 14.1 1.05
2 14.6 1.07
5 14.4 1.06

10 14.2 1.07
20 14.0 1.07

Average 14.3 1.06
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Fig. 1. Aberrated beam obtained by sending light from a
Nd:YAG laser through a distorted wire mesh.

it is not necessary to perform the adjustment of
step (3) given above. Furthermore, if n std

2 ,, n srd
2 ,

we can use Pt .. Pr, thereby avoiding damage to
the reference sample. Equation (5) is applicable if the
sample thicknesses are much less than a Rayleigh
range and if the nonlinear phase shift is much less
than unity. One can check that this latter condition is
satisfied by verifying that DTpvt ~ Pt and DTpvr ~ Pr .

To demonstrate the validity of the techniques
described in this Letter, we carried out two experi-
ments. In the first experiment, we measured the
relative values of n2 for two pairs of liquids: glycerine
versus toluene and water versus methanol. We did
this by following the procedure described in the para-
graph preceding Eq. (4). The experiment was carried
out using a Nd:YAG laser operating at 1064 nm and
producing pulses of approximately 30-ps duration.
The laser light was sent through a half-wave plate, a
polarizer, a neutral-density filter (when necessary),
and then through the usual elements of a Z-scan
system—a lens, a sample under test (near the beam
waist), an aperture (in the far field), and a detector.
The half-wave plate was used to adjust the power at
the entrance face of the sample. As shown in Table 1,
we used cuvette thicknesses of 1, 2, 5, 10, and 20 mm.
The two largest thicknesses exceeded the Rayleigh
range of our experimental arrangement, which was
somewhat less than 1 cm. For glycerine and toluene,
the n0 values are 1.47 and 1.48, respectively, and for
water and methanol, they are 1.33 and 1.32, so for both
pairs the condition jLyn std

0 2 Lyn srd
0 j ,, zd0 is easily

satisfied. Table 1 shows that consistent results were
obtained for all five sample thicknesses for both pairs
of liquids. The n2 of toluene was found to be ø14.3
times that of glycerine, and the n2 of methanol was
found to be ø1.06 times that of water.

In the second experiment, we used the same pro-
cedure as in the first experiment to measure n2 of
toluene sn0 ­ 1.48d relative to acetone sn0 ­ 1.35d,
using a 10-mm cuvette thickness. [In this case,
jLyn std

0 2 Lyn srd
0 j ø zd0y10, which is acceptable.]

This time, however, we first used the beam from the
Nd:YAG laser without alteration and next used the
beam shown in Fig. 1, which we obtained by sending
the light from the laser through a distorted wire mesh.
We obtained good agreement using the two different
beams. For the beam directly from the laser, we
found n2(toluene)yn2sacetoned ­ 6.32; for the aberrated
beam, we found n2(toluene)yn2sacetoned ­ 6.41.

In conclusion, we have presented a new Z-scan
measurement technique that accurately determines
the value of n2 for a test sample relative to that of a
reference sample. The technique is easy to carry out.
It permits the use of a non-Gaussian beams and either
thick or thin samples, and it eliminates the need to
know the details of the pulse shape.
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