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Abstract: For p-polarized light incident on an interface
between an ordinary dielectric and an epsilon-near-zero
(ENZ) material, an enhancement of the component of the
electric field, normal to this interface, has been shown to
occur. This local field enhancement holds great promise for
amplifying nonlinear optical processes and for other
applications requiring ultrastrong local fields in epsilon-
near-zero based technologies. However, the loss associ-
ated with the imaginary part of the dielectric constant of an
epsilon-near-zero material can greatly suppress the field
enhancement factor. In this study, we analyze, using
density matrix formalism, the field enhancement factor for
a saturable two-level system that exhibits second- and
third-order nonlinearities. We show that, in such a system,
an almost lossless ENZ response can arise as a conse-
quence of saturable nonlinearity and that the local field
enhancement factor can be readily controlled dynamically
by adjusting the intensity of the incident electromagnetic
wave. Our findings provide for the first time a pathway to
design a material exhibiting an external field responsive
epsilon-near-zero behavior for applications in nonlinear
photonics.
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1 Introduction

An epsilon-near-zero (ENZ) material is a natural or engi-
neered (meta)material with the real part of the dielectric
permittivity approaching zero. In what follows, we will
consider an ENZ medium to be a material that exhibits a
dispersion curve with the real part of dielectric permittivity
crossing zero, rather than just approaching it from either
positive or negative half-planes. The interest in ENZ media
has grown substantially during the last decade since the
seminal works by Ziolkowski [1] and Silveirinha and Engheta
[2]; they theoretically presented unusual modes of propaga-
tion and scattering of electromagnetic waves in ENZ mate-
rials. In such a material, the wavelength of light is stretched,
and spatial and temporal field oscillations decouple, leading
to effects such as zero propagation-phase advance and en-
ergy squeezing through super coupling—propagation of light
through a narrow ENZ-material-based channel, highly
directional emission, nonlinearity enhancement and others
[2, 3]. Recent advancements in this field have given rise to a
new promising technological platform dubbed near-zero
refractive index photonics [3]. Among naturally occurring
materials, transparent conductive oxides (TCOs), such as in-
dium tin oxide (ITO), titaniumnitride (TiN), aluminumdoped
zinc oxide (Al:ZnO), and phononic materials such as silicon
carbide (SiC) have been studied as ENZ media. It is worth-
while to note that our analysis is limited to materials that
exhibit the ENZ property due to the presence of screened
electron plasma, such as TCOs. In the case of phononic ma-
terials, the ENZ property is determined by the effective po-
larization due to the ionic lattice motion. Even though the
response due to phonon resonances will obey equations very
similar to those for electronic responses [4], these materials
are outside the scope of this study. Here, we focus on one
particular property of ENZ materials, namely local field
enhancement inside an ENZmedium due to the continuity of
the normal component of the displacement vector at the
interface with a conventional dielectric material which has a
positive valueof the realpart of thedielectricpermittivity. The
continuity condition reads as follows:
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(D1 − D2) ⋅ n̂ � 0 , (1)

where subscript 1 refers to the dielectric, subscript 2 to the
ENZ medium and n̂ is the boundary unit normal. For linear
lossless optical media, Eq. (1) translates to the following
equation:

ε1(ω)Ez
1 � ε2(ω)Ez

2  , (2)

where Ez
i is the normal component of the electric field of

p-polarized wave and εi is the dielectric constant, which in
the case of a losslessmedium is real-valued. From Eq. (2), it
follows that a zero-valued dielectric constant of material 2
gives rise to a large discontinuity of the normal component
of the electric field across the boundary and, consequently,
a divergent local electric field inside the ENZ medium.
However, if the ENZ medium is lossy—i.e. the imaginary
part of ε2(ω) has a nonzero value, ε″2—then the normal
component of the electric field inside the ENZ medium at-
tains a finite value (along with a phase shift)

Ez
2 �

ε1(ω)
iε″2(ω)

Ez
1 (3)

For example, Alam et al. [5] have estimated that the
local field of a 310-nm-thick ITO film interfaced with air is
only enhanced by 2-fold at 1240 nm, which is the bulk
plasmon wavelength of ITO. At the same time, the authors
observed a large enhancement of the nonlinear response.
This enhancement, as measured by the intensity depen-
dent refractive index, was attributed in part to a simple

argument: for a lossless material, one finds that Δn � Δε
2√ε

and thus the change in refractive index (Δn) for a given
change in permittivity (Δε)has a pole under ENZ condition.
Thus, it seems that in an ENZ material, even a very low-
power optical field would produce a large nonlinear
response, and local field enhancement would be one of the
sources contributing to this effect. However, it is not
entirely clear what is the contribution of local field
enhancement to the macroscopic polarization of an ENZ
medium, if we take (nonlinear)saturation effect into ac-
count. With a few tens of GW/cm2 of incident peak in-
tensity, this effect may prove significant and needs a
thorough investigation.We believe that this knowledge not
only can help interpret experimental results but also can
aid in the design of ENZ (meta)materials with huge local
field enhancement at a prespecifiedwavelength for various
applications in nonlinear photonics. With the advent of
inverse design tools based on machine learning and arti-
ficial intelligence, targeted design of metasurfaces with
prescribed dispersion of macroscopic quantities, such as
transmittance and reflectance, is becoming widely avail-
able to researchers [6]. In the inverse design paradigm, the

macroscopic parameter space, describing the desired
functionality of a new material, is mapped into the
microscopic parameter space, describing the constituting
engineered meta-atoms. The microscopic parameters can
then be fed into our model which, in turn, can predict the
dispersion of the local field enhancement. Subsequent
iterative feedback cycles of prediction–adjustment–pre-
diction can greatly accelerate the engineering efforts.

Inwhat follows,weanalyze the local field enhancement
(or the squared-field enhancement factor [SFEF]) generated
at the interface between a dielectric and a semiconductor
ENZ medium represented by a model of general quantum
two-state systems (Figure 1). We assume that our model
material possesses second- and third-order nonlinearities
and is drivenby the opticalfields strongenough tobeable to
generate an appreciable excited state population. It is well
known that the real and the imaginary parts of the dynamic
response of a two-state system to a monochromatic excita-
tion follow a Lorentzian dependence on the frequency of the
excitation. Hence, an ensemble of such systems can be a
good approximation to materials with generalized Drude–
Lorentz-type dispersionwith the number density of carriers,
N, corresponding to the number of two-state systems in the
ensemble. The optical absorption mechanisms for such
materials are either free carrier absorption (FCA) for wide-
bandgap semiconductors or interband and intersubband
absorption for narrow-bandgap semiconductors. In such a
system, phonon-assisted FCA can be significant in both the
visible and the infrared range [7]. Although the two-state
approximation in many ways is quite crude, it is simple
enough that we should be able to at least pinpoint some
major trends in the optical response of Drude–Lorentz-type
material systems.

Figure 1: Conceptual sketch of a quantum two-state system
comprising lower level 0 and upper level i.
VB = valence band, CB = conduction band, IBA = interband
absorption, FCA = free carrier absorption.
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2 Model

We consider the interaction of a monochromatic optical

field, E � E
2 exp[ −i(ωt + kz)] + c.c., with a quantum two-

state system (Figure 1). In SI units, the power series
expansion of the macroscopic polarization in the electric
field strength up to the third order reads as follows:

P � ε0 χ 1( )E + χ 2( )EE + χ 3( )EEE +⋯( ) , (4)

where χ(n) is macroscopic (nonlinear) susceptibility tensor.
Here, we assume a single scalar susceptibility term which
is applicable to isotropic media and may also be applied to
a crystal with a cubic symmetry. In an anisotropicmedium,
such as a crystal with a lower symmetry, one has to
consider the full susceptibility tensor. The macroscopic
polarization of a perturbed quantum system interacting
with a bath is best described by the density matrix
formalism. Themacroscopic polarization of an ensemble of
quantum systems—expressed as the atomic number den-
sityN times the expectation value of the dipole operator d̂—
can bewritten in terms of the densitymatrix ρ(t) as follows:

P t( ) � N⟨d t( )⟩ � Tr ρ t( )d t( ){ } � ∑
βα
ραβ t( ) dβα t( ) , (5)

where ραβ are the off-diagonal elements of the density
matrix. The orders of (nonlinear)susceptibilities are then
found as follows [8]:

χ(i) �
∑
βα
dβα(t)r(i)αβ

ε0Ei  , (6)

where r(i)αβ is the orders of a perturbation expansion of the
density matrix:

ραβ(t) � eiωαβt[r(0)αβ + ∑
∞

n�1
(r(n)αβ e

−inωt + r(n)
∗

βα einωt)] (7)

The Liouville–von Neumann equation, governing the
temporal evolution of the density matrix, reads in the
interaction representation:

( ∂

∂t
+ Γ̂)ρ � i

ℏ
[ρ,V] , (8)

where Tr(ρ) = N, V = E⋅d and Γ̂ is the so-called relaxation
matrix, containing the damping parameters due to both the
interactions of the quantum system with vacuum fluctua-
tions (spontaneous decay) and with the bath (dephasing of
quantum oscillators). Equation (8) for diagonal and off-
diagonal elements of the density matrix can be readily
solved in closed forms if we assume quasi-continuous
wave (CW) excitation: the optical pulses should be longer
than all characteristic relaxation times. This condition can

be roughly fulfilled for laser pulses as short as a few
nanoseconds:

ṙ(n)αβ � Γαβr(n)αβ (9)

The perturbation orders of the off-diagonal elements of the
density matrix and the excited state population are then
readily found:

r(0)0i � ir(1)0i

Gii − G00

Γ0i + iω0i
,  r(1)0i � i

G0i

Δ
(r00 − rii),  r(2)0i � ir(1)0i

Gii − G00

Γ0i + i(ω0i − 2ω)  ,

r(3)0i � −r(1)0i
(Gii − G00)2

[Γ0i + i(ω0i − 2ω)][Γ0i + i(ω0i − ω)],  rii �
2|G0i|2Re(1/Δ)

Γii + 4|G0i|2Re(1/Δ)N  ,

Δ � Γ0i + i(ω0i − ω) + (Gii − G00)2
Γ0i + iω0i

+ (Gii − G00)2
Γ0i + i(ω0i − 2ω)  ,

(10)

whereGαβ � Edαβ
2ℏ ,ω is the excitation frequency andω0i is the

resonance frequency of the two-state system. Expansion of
macroscopic polarization (4) leads to a similar expansion
of the displacement vector:

D � ε0E 1 + χ 1( ) + χ 2( )E + χ 3( )E∗E +⋯( ) (11)

Applying the continuity across the boundary leads to the
following equation:

E2z � E1z
ε1

ε2 + χ(2)E2ze−iωt + χ(3)E2
2z

� E1z
ε1

εeff2 (E2z)  , (12)

where εeff2 (E2z) is the electric field–dependent effective
dielectric constant due to nonlinear responses of the ma-
terial up to the third order. Equation (12) can be solved
numerically, in an iterative fashion, assuming the local
field inside the ENZmedium equals the incident field at the
first step of the numerical procedure. Note that we did set
χ(2) to zero in the simulations to reflect the fact that, in Eq.
(12), the term in the denominator, that is proportional to
χ(2), is a fast oscillating term, so the averaging would kill it
even if the susceptibility itself is not zero-valued.

3 Results and discussion

Before we solve Eq. (12), we need to choose parameters of
our system to find the perturbation orders of the density
matrix expansion (10). These important parameters are the
permanent dipole moments of states 0 and i; the transition
dipole, d0i; the transition energy (bandgap); diagonal and
off-diagonal elements of the relaxation matrix and the
number density of free carriers, N. The free carrier number
density can vary widely in materials of interest from
∼2.5 × 1026 m−3 in doped TCOs such as In:CdO and ITO to
∼2.5× 1028m−3 in TiN to∼4.6× 1030m−3 in gold. In ourmodel,
we chose the free carrier number density to be that of TiN.
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We set the rate of spontaneous decay (diagonal
element of the relaxation matrix) to 109 s−1 which is
consistent with typical measured carrier lifetimes of ∼1 ns
[9]. Exciton lifetimes can be even longer because of self-
trapping effects, but we will use the referenced value,
bearing in mind that longer lifetimes will simply result in a
lower saturation intensity of the 0 → i transition, without
affecting the spectral profiles, at least in the first order of
approximation.

The dephasing rates of the carriers are highly depen-
dent on the actual dephasing mechanism. Specifically, the
carrier–carrier scattering times have beenmeasured at tens
of femtoseconds (GaAs, 3–50 fs) [10, 11]; exciton–exciton
scattering times and free carrier–exciton scattering times
have been reported to be hundreds of femtoseconds at
moderate number densities. Exciton–phonon scattering
times have been determined to span ∼1 ps (GaAs, GaP) [12],
and exciton–impurity scattering times are the longest,
measuring a few picoseconds. Obviously, the shortest
dephasing time will translate into the largest dephasing
rate, which will govern the spectral width of the corre-
sponding off-diagonal density matrix frequency de-
pendences. We chose this number to be 1014 s−1 in our
modeling.

Finally, the dipolemoments of the excited state i and of
0 → i transition are chosen to be 500 and 10 Debye,
respectively. The value of the transition dipole moment
may be severely underestimated, considering the fact that
in semiconductors the exciton bound to impurities and
defects can possess giant oscillator strength, which can
translate to the values of dielectric permittivity up to 105,
for example, in MXenes [13]. The value of 10 Debye can be
closer to typical values of molecular-type (Frenkel) exci-
tons. At the same time, some crystalline materials or ma-
terials containing transition metals can have similar
characteristics. The value of the permanent dipole moment
value of 500 Debyewas chosen in conjunction with the fact
that Wannier–Mott excitons, and especially 2D excitons,
can have giant permanent dipole moments, up to
103 Debye, because of the large electron–hole separation
[14, 15]. The bandgap is set to 1 eV.

The choice of model parameters requires an important
caveat: We did not try to model any specific material, but
rather a class ofmaterials with similar electronic properties,
amenable to the analysis described in Section 2. The rather
large pool of existing materials in this one class translates
into a correspondingly wide range of material parameters
that are primarily determined by the elemental composition.
This sets the lower and upper limits, and our parameters are
chosen to be somewhere in the middle of this range.

The main results of our modeling are presented in
Figure 2(a) and (b). Following the study by Alam et al [5], we

define the SFEF as |E2|2/|E1|2, where E2 is the field strength
inside the ENZ layer and E1 is the incident field. For incident
field intensities less than 10 MW/cm2, the SFEF is much less
than 1and is spectrally centeredat the resonance frequencyof
the two-state system. At such a low incident intensity, satu-
ration and other nonlinear effects are negligible and the
imaginary part of the dielectric constant suppresses the local
field at thewavelength corresponding to zero value of the real
part (Figure 3(a)). At around 20 MW/cm2 of the incident field
intensity, the SFEF reaches the value of 0.5 (still less than 1),
also showing a blue shift in its peak position. The corre-
sponding imaginary part of the dielectric constant shows a
dip (Figure 3(b)) at the frequency of the SFEF peak and the
real part flattens out around this peak position, although
never reaching zero. Also, the maximum value of the imagi-
nary part decreases in comparison with the lower intensity
situation, depicted in Figure 3(a). This can be explained by an
onset of saturation of the 0→ i transition. The effect becomes
even more prominent at higher intensities. At 50 MW/cm2,
one can observe 4 enhancement peaks: one is rather broad at
around 1.1 eV and three sharp ones at 1.26, 1.30 and 1.34 eV.
The corresponding real part of the dielectric constant crosses
zero at these frequencies (as shown in the inset in Figure 3(c)),
and the imaginary part features a deep and spectrally wide
saturation signature.

At even higher intensities, one can observe the onset of
nonlinear saturation effect at the frequency of two-photon
resonance that is around 0.5 eV (Figure 3(d)). The SFEF
starts growing consistently at this frequency until it satu-
rates at around 1 GW/cm2 of the incident intensity
(Figure 2(b)). Moreover, the contribution of the third-order
nonlinear term to the effective dielectric constant (as
defined by Eq. (12)) becomes visible at∼0.5 eV (Figure 4). In
Figure 4(a), one can observe a slight decrease of the real
part of the effective permittivity and an increase of the
imaginary part (two-photon absorption) at 100MW/cm2. At
even higher incident intensities (∼500 MW/cm2), the
contribution of the nonlinear absorption and refraction to
the field enhancement around the frequency of the two-
photon resonance seems to be on par with the saturated
linear term of the effective dielectric constant. Both the real
and the imaginary parts of the effective dielectric constant
show a decrease in a large spectral interval. This decrease
ismore prominent for the real part of the effective dielectric
constant (Figure 4(b)). Therefore, the mechanism of the
field enhancement at two-photon resonance is essentially
the same as in the situation when the excitation frequency
is close to one-photon resonance: suppression of both real
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and imaginary parts of the dielectric constant because of
the nonlinear saturation effects plus the contribution of the
third-order term to the effective dielectric constant.

We also studied the effect of the carrier density on the
field enhancement. The carrier density can bemanipulated
through doping and, in this context, is not related to the
laser-induced population of the conduction band. The re-
sults are shown on Figure 5(a–c). At lower carrier densities
(between 3 × 1027 m−3 and 6 × 1027 m−3, Figure 5(a)), we can

see a very moderate enhancement peak around the fre-
quency corresponding to resonant excitation and a peak
around two-photon resonance at 0.5 eV. It seems that the
red-shifted broad features between 3 and 6 eV are not
physical for the following reason: the applicability of the
two-state model is seriously compromised when the exci-
tation frequency is much larger than the bandgap. In a
more realistic many-level system, there would be a reso-
nance with one of the low-lying excited states, with

Figure 2: Spectral dependence of the squared-field enhancement factor (SFEF) for (a) moderate incident field intensities and (b) higher
incident field intensities.

Figure 3: Spectra of the real and imaginary parts of the effective dielectric constant.

A. Baev et al.: Controlling local field enhancement at an epsilon-near-zero/dielectric interface 4835



corresponding damping of the field enhancement. Even
when the incident intensity is low, this enhancement in-
creases far from the resonance, simply because in the
Lorentzian two-state system the imaginary part of the
dielectric constant decreases as 1/ω2 which is faster than
the corresponding decrease of the real part –1/ω. But it
does not mean that such an enhancement is physical. In
this context, the Rabi frequency can be a logical and nat-
ural cutoff metric. In our situation, it roughly measures
10% of the bandgap frequency at the carrier density of
2.5 × 1028 m−3 and the incident intensity of 40 MW/cm2.
Figure 5(b) shows a close-up at the frequency of two-
photon resonance: the enhancement decreases as the
carrier density increases. The reason for this is that the real
part of dielectric constant grows faster with the carrier
density than it gets suppressed because of the saturation at
the given incident intensity. At higher carrier densities
(between 1 × 1028 m−3 and 3 × 1028 m−3, Figure 5(c)), the
nonlinear effects are of coursemore prominent at the given
incident intensity which results at larger values of field
enhancement. Again, the real part of the dielectric constant
grows faster with the carrier density than it gets flattened
and suppressed because of the nonlinear contributions at
the given incident intensity.

4 Conclusion

In this study, we showed, using the density matrix
formalism, that local field enhancement at the interface
between a lossless dielectric (air) and a lossy Lorentz–
Drude-typemediumwith large carrier density can be readily
manipulated via adjusting the incident field strength. The
mechanism of the enhancement is mainly related to the
saturation of absorption (including nonlinear saturation
effect), resulting in the previously lossy medium becoming
transparent at moderate light intensities. This work also
provides, for the first time, an exciting prospect of external
field responsive enhancement factor as well as optical loss
to dynamically tune the ENZ behavior. Another feature
revealed by this work is further tuning of enhancement with
the free carrier density, which can be adjusted via doping or
by the use of a nanocomposite effectivemedium.Webelieve
that a proof-of-concept experiment should involve an
observation of a nonlinear phenomenon that is not directly
related to the ENZmaterial itself but rather is sensitive to the
local field enhancement produced by the ENZ material. In
this case, one does not face the problem of extracting the
field enhancement from under the overall enhancement of
the nonlinear signal of the ENZ material. For example, an

Figure 4: Spectra of the real and imaginary parts of the linear term (solid line) and full effective (broken line) dielectric constant as defined by
Eq. (12).

Figure 5: Squared-field enhancement factor vs carrier concentration at an incident field intensity of 40 MW/cm2.
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aluminum-doped zinc oxide layer deposited on a glass
substrate and excited by a wavelength in the vicinity of ENZ
maygenerate a local field strong enough to enhance second-
harmonic generation in an add-on layer of ZnO nano-
particles. One will then look for tunability of the enhance-
ment of the second harmonic generation (SHG) signal from
ZnO.
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