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Abstract. Histopathological image analysis of stained tissue slides is routinely used in tumor detection and
classification. However, diagnosis requires a highly trained pathologist and can thus be time-consuming,
labor-intensive, and potentially risk bias. Here, we demonstrate a potential complementary approach for
diagnosis. We show that multiphoton microscopy images from unstained, reproductive tissues can be robustly
classified using deep learning techniques. We fine-train four pretrained convolutional neural networks using
over 200 murine tissue images based on combined second-harmonic generation and two-photon excitation fluo-
rescence contrast, to classify the tissues either as healthy or associated with high-grade serous carcinoma with
over 95% sensitivity and 97% specificity. Our approach shows promise for applications involving automated
disease diagnosis. It could also be readily applied to other tissues, diseases, and related classification problems.
© 2018 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JBO.23.6.066002]
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1 Introduction
Ovarian cancer is the most lethal gynecological malignancy with
an estimated 22,280 new cases and 14,240 deaths in 2016 in the
United States alone.1 High-grade serous carcinoma (HGSC) is
the most common type of epithelial ovarian cancer accounting
for 70% of the cases and associated with a low 5-year survival
rate of only 40%.2 Due to the lack of effective screening and
diagnostic imaging techniques, the disease is normally detected
at a late stage after wide-spread dissemination. Furthermore, the
existing techniques do not permit the detection of microscopic
residual disease at the time of surgery. There is thus an urgent
need for developing a high-resolution imaging technique that
permits the rapid and automated detection of early and recurrent
ovarian cancer from tissue biopsies with high accuracy.

Multiphoton microscopy is a high-resolution optical imaging
technique that is becoming an indispensable tool in cancer
research and diagnosis.3–9 In this imaging paradigm, the nonlin-
ear optical signals are generated only at the focal point of the
excitation beam, providing intrinsic three-dimensional (3-D)
optical sectioning and permitting nondestructive, label-free im-
aging. In particular, second-harmonic generation (SHG) imag-
ing provides intrinsic contrast to visualize the organization of
collagen fibers and elastin, which are major constituents of
the extracellular matrix (ECM), the distribution of which can
be a key identifier for several diseases.8,9 Another example is
two-photon excitation fluorescence (TPEF) imaging of intrinsic

tissue fluorescence, which enables the identification of changes
in cellular morphology and organization. SHG and TPEF imag-
ing have been utilized to demonstrate that remodeling of the
ECM is associated with cancer progression.7–12 Wen et al.13

implemented two-dimensional texture analysis of SHG images
from unstained ovarian tissue to quantify the remodeling of the
ECM. Recently, the approach was generalized to 3-D texture
analysis and to classify SHG images from six different ovarian
tissue types.14 These studies demonstrate the potential of
machine learning-based evaluation of SHG images for improved
diagnostic accuracy of ovarian cancer detection.

In machine learning, the computer programs learn to perform
data analysis tasks, such as image classification, that are hard to
perform algorithmically due to the complexity of the data set.
Image classification is often achieved using supervised learning,
where the task is learned by using labeled training images. In
general, the labeled images are used to learn a more optimal
representation of the image data, which facilitates clustering
of the images into clearly separated sets and thus enables
their classification. Several supervised learning approaches
exist for classification tasks; support vector machines (SVMs)
and logistic regression are among the most commonly used
due to their relative simplicity and performance.15 However,
these classification approaches require extensive image process-
ing and handcrafted feature extraction procedures. In contrast,
deep learning is a rapidly growing area of machine learning, in
which data are analyzed using multilayered artificial neural
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networks that avoid extensive human intervention.16 In particu-
lar, convolutional neural networks (CNNs) have been applied
also for classifying images of stained tissue biopsy slides.16–22

In these studies, the CNNs have been trained using large
amounts of data consisting of millions of images.23,24 But so
far, the use of CNNs in the classification of multiphoton images
has been remarkably limited,25 mainly because of the small
size of the typically available data set. However, with the
development of deep learning techniques for high-accuracy
classification that requires fewer training images, its applica-
tion to multiphoton image data sets has become more viable,
which could lead to rapid and reliable automated diagnos-
tic tools.

In this paper, we demonstrate the use of deep neural networks
for robust and real-time classification of multiphoton micros-
copy images of unstained tissues. We acquire SHG and
TPEF images of ovarian and upper reproductive tract tissue
from healthy mice and tumor tissue from orthotopic syngeneic
HGSC murine models. We construct binary image classifiers
(healthy versus HGSC) by fine-tuning pretrained CNNs using
a relatively small acquired data set consisting of ∼200multipho-
ton images. We study the performance of four pretrained CNNs
(AlexNet, VGG-16, VGG-19, and GoogLeNet), and examine
the role of data augmentation on the results. We demonstrate
classification of the acquired images with over 95% sensitivity
and 97% specificity. In particular, we show that best classifica-
tion performance is achieved when the combined TPEF and
SHG data are used compared to using only the SHG or
TPEF data. The trained classifiers are also shown to outperform
more traditional classifiers based on SVMs. Because the dem-
onstrated approach is minimally invasive, operates in real-time,
and requires very little sample preparation, it has potential for
clinical applications and computer-aided diagnosis.

2 Image Classification Using Pretrained
Convolutional Neural Networks

Deep learning and CNNs have recently proved useful for vari-
ous computer vision tasks.16–22 Although several CNNs with
different architectures and configurations exist, their overall
working principles are similar. The input image is passed
through the CNN consisting of different layers, such as convolu-
tional, pooling, activation, and fully connected (FC), where each
layer performs specific types of data operations. The layers are
made of artificial neurons, which calculate a weighted sum of

the inputs and transform it, often with a bias, to an output using
a transfer function. During the training process of the CNN,
the weights and biases of the artificial neurons are optimized
leading to the desired performance of the network, such as
distinguishing between healthy and diseased tissue samples.

In convolutional layers, the input data are convolved using
various filters into a more useful representation, which can
be used, for example, in feature detection/extraction. The num-
ber of sequential convolutional layers, i.e., the depth of the
CNN, varies from a few layers to hundreds of layers where
the deeper CNNs are computationally more expensive but
often outperform shallower ones.16,18 Pooling layers downsam-
ple the input to reduce its dimensionality. Activation layers, such
as rectified linear units, provide nonlinearity to the signal
processing allowing faster and more effective training of the
network.16 At the end of the CNN, FC layers are used to com-
pute the output, in our case the binary class scores (healthy ver-
sus HGSC) for each input image. Alternatively, the FC layers
can be replaced by other classifiers, for example, based on logis-
tic regression or SVMs, which are optimized for the task of
classification.26

After the CNN is designed, it needs to be trained for the par-
ticular task. For the case of supervised learning this is done by
forming a cost function for the network and using it to compare
the calculated output of the network with the desired output.
The network is then trained by iteratively optimizing its
weights and biases to minimize the cost function. This process
utilizes gradient descent method and a procedure known as
backpropagation.27 First and foremost, a large data set is needed
to successfully train a network from scratch and to overcome
problems related to overfitting. For example, the well-known
AlexNet was trained using ∼1.2 million images divided into
1000 categories.16,23

For our task of binary classification of multiphoton images
from ovarian and surrounding reproductive tract tissues, no
extensive data sets yet existed, and neither was it feasible to gen-
erate a vast amount of data. Therefore, instead of training a CNN
from scratch, we used four pretrained CNNs (AlexNet, VGG-
16, VGG-19, and GoogLeNet). These CNNs were chosen as
they are openly available and due to their success in the
ImageNet Large Scale Visual Recognition Challenges.23,24

AlexNet was the first successful CNN winning the 2012 chal-
lenge outperforming thus the more conventional approaches.
The more sophisticated VGG-16 and VGG-19 networks were
the winners of the following year and were again superseded

Fig. 1 Schematic of the two transfer learning approaches used in this study for classifying the input
multiphoton images either as healthy or cancerous (HGSC). In both cases, the input images are fed
to the pretrained CNNs, which transform the data into a more optimal representation enabling robust
classification. In the first approach, the output of the pretrained CNN is fed to a trained SVM classifier.
In the second approach, the final FC layers of the pretrained CNNs are replaced by new FC layers more
suitable for binary classification.
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by the GoogLeNet in the 2014 competition. Since we had no
prior knowledge on how well each of these CNNs could perform
on our classification task, we fine-trained all of them.

We replaced their last few FC layers, originally responsible
for the 1000-way classification of ImageNet data,23,24 with a
binary classifier enabling fine-training of the modified CNN
using a considerably smaller data set consisting of ∼200 images.
Since it was not a priori clear what kind of classifier would
result in the best classification performance, we used two differ-
ent approaches. In the first, we replaced the final FC layers by a
linear SVM, since SVMs are often used for binary image clas-
sification. In the second approach, we replaced the final FC
layers by new layers (sequential FC, Softmax, and classification
layers) more suitable for binary classification. Figure 1 shows a
layout illustrating the two chosen approaches. Since in these
approaches we were fine-training the modified CNNs using
smaller amounts of data, overfitting could cause problems,
but such problems were mitigated by data augmentation and
dropout as shown in earlier reports focusing on medical
image analysis.21,26,28–30

3 Experiments and Results
Animal experiments were performed in accordance with the
Canadian Council on Animal Care’s Guidelines for the Care
and Use of Animals under a protocol approved by the University
of Ottawa’s Animal Care Committee. Samples were acquired
from five healthy FVB/n mice and five syngeneic mice with
HGSC-like ovarian cancer generated by injection of spontane-
ously transformed ovarian surface epithelial (STOSE) cells
under the ovarian bursa.2 Five 6-μm-thick sections were pre-
pared both from the upper reproductive tract of healthy mice
(n ¼ 5) and from STOSE ovarian tumors (n ¼ 5). Four sections
from each sample were left unstained and imaged using a multi-
photon microscope. One section per sample was stained with
picrosirius red and was used for overall inspection of the tissues.

All samples were imaged by measuring backscattered TPEF
and SHG signals. In order to ensure that the trained classifiers
could correctly classify images where parts of surrounding non-
ovarian tissues are present, tissues from the upper part of the
reproductive tract were also imaged. ATi:sapphire femtosecond
laser (Mai Tai HP, Spectra Physics) with 80-MHz repetition rate

Fig. 2 (Left) Representative bright-field images from stained murine model (a) healthy ovarian tissue,
(b) healthy reproductive tract tissue, and (c) HGSC tissue. Collagen appears dark red in the stained
tissue images. (Right) (d)–(f) Corresponding multiphoton images from adjacent unstained sections,
respectively. Relative to healthy ovary (a) and (d), remodeling of ECM is visible in cases of HGSC
(c) and (f) as an increase in the amount of collagen and consequent SHG signal (green). In addition,
the overall tissue morphology becomes less organized which is visible in the intrinsic TPEF signal
(red). Scale bars are 50 μm.
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and ∼150-fs pulses at the incident wavelength of 840 nm was
used for excitation in conjunction with a laser-scanning micro-
scope (Fluoview FVMPE-RS, Olympus). All measurements
were taken with a 40× (NA ¼ 0.8) water-immersion objective
(LUMPlanFL, Olympus). The average incident power at the
sample plane was 5 to 10 mW, which was adjusted using a polar-
izer and a rotating half-wave plate along the beam line. A quar-
ter-wave plate and a Soleil–Babinet compensator were used to
ensure that the incident polarization at the sample plane was
circular. Circular polarization was used to make sure that aniso-
tropic structures, in our case mainly the collagen fibers, were
evenly excited and imaged. The backscattered nonlinear signals
were separated from the fundamental beam using a dichroic mir-
ror (DM690, Olympus). The TPEF signal was separated from
the SHG signal using another dichroic mirror (FF452-Di01,
Semrock) and the SHG signal was further filtered using a band-
pass filter (FF01-420/10, Semrock).

Both SHG and TPEF images consisting of 800 × 800 pixels

were simultaneously acquired with a field-of-view of
∼250 × 250 μm2. A pixel dwell time of 8 μs was used and each
image pixel was averaged 16 times to improve the signal-to-
noise ratio, resulting in an imaging speed of 82 s per image.
The raw data were transformed in to RGB images, where the
red (green) channel corresponded to TPEF (SHG) signal and
the blue channel was set to zero. Representative multiphoton
images from healthy and cancerous reproductive tissues along
side with the corresponding bright-field images from adjacent
stained sections are shown in Fig. 2. Remodeling of the
ECM is visible as an increase in the amount of collagen and
thus SHG signal in the cancerous tissue, while changes in
the overall tissue morphology are seen in the TPEF signal [com-
pare Figs. 2(c) and 2(f)].

As the data set of ∼200 images was relatively small for our
purposes, we first augmented the data using patch extraction.
The original RGB images were divided into N evenly spaced
patches (see Fig. 3) consisting of 227 × 227 (224 × 224) pixels,
to match the input size requirements of the pretrained CNN

AlexNet (VGG-16, VGG-19, and GoogLeNet). This choice
also maintained the same field-of-view in the patches, as varying
field-of-view might affect the results. To minimize the amount
of overlapping data, we only considered cases N ¼ 1, 4, 9, 16,
and 25. The performed patch extraction for one example image
for the case of N ¼ 25 is shown in Fig. 3. Due to the reduced
field-of-view some of the image patches were found to be very
dark, containing only minimal image features. As such patches
could compromise the training, patches with mean pixel values
below 3% of the maximum pixel count value were excluded
from the analysis. Data sets processed in this way were further
augmented using horizontal and vertical reflections together
resulting in further threefold increase in the data set size.
Therefore, the overall data augmentation scheme, consisting
of patch extraction along with horizontal and vertical reflections,
led up to a 75-fold increase in the training set size.

The whole data set was randomly divided into training and
validation sets using a ratio of 60/40, respectively. The classi-
fiers were then trained using the training data set and validated
using the validation set by calculating the classification sensitiv-
ity (true-positive rate), specificity (true-negative rate), and accu-
racy (number of correct classifications divided by the total
number of cases). The classification performance of the two
studied approaches as discussed in Sec. 2 (using SVMs with
learned features from pretrained CNNs versus fine-trained
modified CNNs) was quantified in this way. Since the training
and validation sets were randomly chosen, the calculated accu-
racies varied slightly for each training event. Therefore, training
events were repeated 25 times and the mean sensitivities, spec-
ificities, and accuracies (along with their standard deviations)
are reported for better representation of the results. The results
for all the studied classifiers are shown in Fig. 4.

As a second step, we estimated how well the approach gen-
eralizes to independent data sets by performing leave-two-mice-
out cross-validation, where the classifiers are trained using
image data taken from eight mice and validated using the
two remaining independent ones. This better represents a real-
istic scenario in which the classifier is first trained on known
samples, and then used to diagnose a sample being observed
for the first time. Because the approach of fine-training CNNs
resulted in better classification performance compared to using
SVMs with learned features from the pretrained CNNs, only the
approach based on fine-training CNNs was used for this valida-
tion test. During this test, the CNNs were independently trained
on sets from eight samples before being validated on the remain-
ing two samples, which they were seeing for the first time. The
training process was repeated for all the 25 possible data set
permutations and the results for the calculated sensitivities,
specificities, and accuracies with their standard deviations are
shown in Fig. 5.

4 Discussion
In general, three trends are visible in our results. First, it is clear
that the patch extraction improves the results since increasing N
systematically improves the classification performance (see the
colored markers in Fig. 4). Second, more conventional classi-
fiers based on SVMs [see Fig. 4(a)] are clearly outperformed
by the classifiers based on fine-trained CNNs [see Fig. 4(b)].
When fine-trained CNNs are used, the classification sensitivity,
specificity, and accuracy all increase on average by ∼3%,
which is a marked improvement. Third, classification perfor-
mance (sensitivity, specificity, and accuracy) increases by

Fig. 3 Schematic illustrating the overlap between the extracted
patches (colored squares) for the case of N ¼ 25. For clarity, only
every second patch in each row on the upper triangle of the image
is shown. Scale bar is 50 μm.
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∼5% when the classifiers are trained using both the TPEF and
the SHG data (see the colored markers in Fig. 4), compared to
training using only the SHG data (see the black crosses in
Fig. 4). However, when the classifiers were trained by using
only the TPEF data, the classification performance decreased
only marginally (∼0.3%) compared to training with both TPEF
and SHG data. This is a somewhat surprising result, because one
intuitively expects a clear increase in classification performance
when more data are used. Further investigation would be
necessary to determine whether this performance difference is
typical. Therefore, combined TPEF and SHG microscopy seem
beneficial over solely SHG (or TPEF) microscopy. This is some-
what expected since the data set is twice as big, and since the
TPEF + SHG images can support additional features not visible
in bare SHG or TPEF images.

The highest mean sensitivity (95.2� 2.5%), specificity
(97.1� 2.1%), and accuracy (96.1� 1.1%) were found by
fine-training the VGG-16 network using N ¼ 25 image patches
while using the training/validation scheme (see Fig. 4). But we
note that all the studied CNNs performed almost equally well,

implying that the choice of which pretrained CNN to use is not
crucial. We believe that this is mostly because the studied CNNs
were originally designed and trained to classify images into
1000 of different classes, which is a considerably more challeng-
ing computer vision task than the binary classification per-
formed in this work. Therefore, it seems plausible that all of
the studied CNNs exhibited adequately complex network struc-
tures to allow their successful training for the simpler task of
binary classification. However, the size of the training data
set was found important and should be maximized, for example,
using data augmentation, as done in this work.

Then we discuss the leave-two-mice-out cross-validation
results (see Fig. 5). In general, the calculated sensitivities, spec-
ificities, and accuracies were slightly lower (∼3% to 4%) than
what we achieved using the randomized training/validation
scheme (see Fig. 4). However, the best performing classifier
(fine-trained modified VGG-19) still resulted in very high clas-
sification sensitivity (94.1� 4.4%), specificity (93� 7.5%),
and accuracy (93� 4.5%) for the case of N ¼ 25 (marked as
yellow diamonds). Therefore, the results suggest that the studied

Fig. 4 (Left) Calculated (a)–(c) sensitivity, specificity, and accuracy for the classifiers using SMVs with
learned features from the pretrained CNNs, respectively. (Right) Calculated (d)–(f) sensitivity, specificity,
and accuracy for the classifiers formed by fine-training the CNNs. In general, increasing number of image
patches N improves the results (see colored markers). Each data point is the mean result of 25 sep-
arately trained classifiers with the error bars corresponding to the respective standard deviation.
Classification performance using only the SHG (TPEF) data are shown with black crosses (gray
stars), on average resulting in ∼5% (∼0.3%) decrease in the classification performance compared to
classifiers trained using both the TPEF and the SHG data.
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approach could provide automated and reliable ovarian tissue
classification based on label-free multiphoton microscopy
images.

Label-free images based on contrast from intrinsic multipho-
ton SHG and TPEF processes were used to demonstrate the deep
learning technique in this study. Among the many advantages of
the demonstrated approach are that it scales very favorably with
the increasing amount of data. This is not necessarily the case
for more conventional approaches based on user-defined filters
and data analysis.14,26 The amount of training data could
be increased further using a multimodal approach based on
other label-free nonlinear modalities, such as third-harmonic
generation,31,32 coherent anti-Stokes Raman scattering,25 or
polarized SHG.33–36 In addition, considerably larger data sets
could be generated, for example, by switching to 3-D volumetric
imaging. Recent work suggests that such a switch could improve
the classification accuracy.14

The method demonstrated in this study is quite general and
could be readily extended to other tasks, such as multiclass clas-
sification of tissues between known cancer types or stage clas-
sification of malignant tumors.14,37 We also believe that this
approach is not restricted only to cancerous tissues, but could
be straightforwardly extended to study and classify other
diseases/disorders known to correlate with ECM remodeling,
such as many fibrotic diseases.10,11,34,36

Finally, we discuss the speed of the approach. The complex-
ity of the used CNN and the amount of data define the training
time along with the used training parameters. Training was
performed using stochastic gradient method with a batch size
of 50, initial learning rate of 0.0001 for up to four epochs.16

Fine-tuning the simplest CNN (AlexNet) using 25 image
patches took around 300 s, whereas the same training took
∼1 h for the computationally most demanding CNN (VGG-
19). A graphics processing unit (NVIDIA GeForce GTX
1080 Ti) was used to speed-up the training. We note that the
training times were considerably shorter when the learned fea-
tures of pretrained CNNs were used to train an SVM classifier.
But we emphasize that irrespective of the training time, which in
general could be long, the actual classification process using the
learned classifiers is quite fast (8 to 50 ms∕image). Therefore,
the computationally demanding training process does not com-
promise potential applications, since real-time image classifica-
tion is perfectly feasible.

5 Conclusion
We have performed combined SHG and TPEF microscopy on
normal and cancerous murine ovarian and surrounding repro-
ductive tissues. We demonstrated that already with a relatively
small data set consisting of ∼200 images, pretrained CNNs can
be fine-trained into binary image classifiers to correctly classify
the images with over sensitivity 95% and 97% specificity. We
compared four pretrained networks (AlexNet, VGG-16, VGG-
19, and GoogLeNet) and investigated how data augmentation
improves the classification performance. We also showed that
training the classifiers using both the TPEF and SHG data is
beneficial compared to using only the SHG data.

Histopathological image analysis of stained tissue slides is
routinely used in tumor detection and classification. Diagnosis
requires a highly trained pathologist and can thus be time-con-
suming, labor-intensive, and potentially risks bias. The trained
classifiers demonstrated in this paper perform in real-time and
could thus be potentially useful for clinical applications, such as
for computer-aided diagnosis. The technique demonstrated here
will also be valuable for investigating the etiology of ovarian
cancer. Since the approach is very general, it could be easily
extended to other nonlinear optical imaging modalities and to
various biomedical applications.
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