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A collection of N emitters can exhibit an N-fold broadening of the radiative linewidth resulting from the
development of a macroscopic dipole moment. Such a broadening of the radiative linewidth has previously been
observed in systems of several nanoparticles and has often been described in terms of superradiant behavior.
However, the understanding of the physics behind the observed dependence of radiative linewidth on the number
of irradiated nanoparticles is far from complete. In this paper, we present theoretical and experimental results
that elucidate this broadening mechanism in plasmonic systems and draw a connection with the phenomenon
of Dicke superradiance. We demonstrate that, in the limit where radiative broadening dominates, the extinction
linewidth of a planar array of plasmonic nanoantennas scales linearly with the number of nanoantennas contained
within a circle of radius equal to the resonant optical wavelength. We explain this classical phenomenon as a weak
superradiance effect, which corresponds to the case in the Dicke model where only the ground state and the first
collective excited state contribute to the enhanced radiation.
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I. INTRODUCTION

A collection of N emitters can behave cooperatively, for
example, by emitting radiation in the form of a temporally
short, bright pulse [1,2]. Also associated with this cooperative
radiation is the broadening of the spectrum of the collec-
tion by a factor of N . In the electric dipole approximation,
this behavior indicates the presence of a macroscopic dipole
moment in the system equal to the sum of dipole moments
of the individual emitters, which results from the collective
radiative interactions between the emitters [1–5]. Cooperative
radiative effects were first predicted by Dicke [1], and have
been demonstrated in gases [6], atomic vapors [7], Rydberg
atoms [8], Bose-Einstein condensates [9], trapped ions [10],
superconducting qubits [11], Mössbauer nuclei [12], and color
centers in diamond [13].

Although there are quantum features of this “superradi-
ance,” the phenomenon of accelerated radiative damping of a
collection of mutually coherent dipoles due to interaction with
a common radiation field is essentially a classical effect. It
is therefore interesting to study the cooperative interaction of
dipoles in classical systems. One such system is a collection of
metallic nanoparticles supporting dipolar optical resonances
due to the excitation of localized surface plasmons [14]. Such
dipolar modes can be modeled as classical harmonic oscilla-
tors with their light-scattering properties resembling, in many
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ways, the radiative properties of natural dipolar emitters.
Hence, plasmonic scatterers are an interesting system for the
study of collective radiative behavior. Intuitively, radiative in-
teractions in a collection of identical plasmonic nanoparticles
would drive the system into developing a macroscopic dipole
moment leading to the shortening of the radiative lifetime and
broadening of the spectral linewidth.

Previously, coupled modes in systems of plasmonic
nanoparticle dimers have been shown to exhibit a linewidth
that is broader than that of each of the particles constituting the
system [15–20]. The broadening of resonance linewidth has
also been observed in two-dimensional collections of identical
nanoparticles, such as periodic arrays of subwavelength-size
split-ring resonators [21–25] and rod nanoantennas [26]. In
some of these cases, the linewidth broadening has been ex-
plained either by an enhanced scattering rate due to nonra-
diative near-field dipole-dipole coupling [16–20,23,24] or by
a retarded radiative interaction between the particles [25].
The spectral broadening in three-dimensional arrangements
of nanoparticles [27–30] has also been studied, and the
broadening of the transmittance spectrum of a periodic three-
dimensional arrangement of plasmonic nanowires has been
explained by a far-field coupling between the wires [27]. Fur-
thermore, cooperative radiative behavior has been studied in
various arrangements of plasmonic nanospheres, such as gold
nanospheres trapped in a linear array by a tightly focused laser
beam [28], a plastic bead coated with gold nanospheres [29],
and random aggregates of gold and silver nanospheres [30].
In each of these studies, the linewidth of scattered light scales
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linearly with the number of irradiated nanospheres, which
has been phenomenologically associated with a corresponding
increase in the radiative decay rate [28–30].

Despite the various observations of radiative spectral
broadening in plasmonic systems, a detailed analysis of the
emergence of the radiative linewidth dependence on the num-
ber of irradiated plasmonic nanoparticles has not yet been
presented. In this paper, we study the collective behavior in
arrays of identical plasmonic nanoparticles through experi-
ment, finite-difference time-domain (FDTD) simulations, and
an analytical model. We show that the radiative linewidth of a
planar array of nanoantennas is directly proportional to the
effective number of nanoantennas, Neff , contained within a
circle of radius equal to the resonant optical wavelength, λ0.
In addition, we show that in the dipole approximation this
linewidth dependence is due to the enhancement of the radia-
tion reaction field of each nanoantenna by that of its neighbors
in the array, and is, therefore, a cooperative effect. Finally,
we draw a connection between the “plasmonic superradiance”
observed in our system and Dicke superradiance and argue
that the plasmonic system is analogous to a system of weakly
excited emitters in the Dicke model.

II. EXPERIMENT AND NUMERICAL ANALYSIS

A schematic representation of the structure under inves-
tigation is shown in Fig. 1(a). It consists of a planar square
array of bar-shaped gold nanoantennas with subwavelength
dimensions, placed on a 1-mm-thick BK7 (or float) glass
substrate. The background medium is made symmetric by
covering the array by a medium with the same permittivity as
the substrate, which in practice entails coating the fabricated
sample with index-matched oil, followed by a float glass cover
slip. The arrays are excited by normally incident broadband
light, and we study the dependence of the linewidth of scat-
tered light from the array as a function of the number density
of nanoantennas or, equivalently, of the array’s lattice con-
stant, a. The dimensions of the nanoantenna are chosen such

FIG. 1. (a) Schematic of the experimental setup. The labels on
the schematic are as follows: L1, collimating lens; P, linear polarizer;
O1 and O2, microscope objectives (O1, ×10 and NA = 0.25; O2,
×4 and NA = 0.1); L2–L4, imaging lenses; OSA, optical spectrum
analyzer; M1 and M2, folding mirrors; M3, flip mirror. (b) A cross-
section view of the sample showing a nanoantenna array (gold bars).
(c) Scanning electron micrograph of one of the fabricated arrays. The
solid white bar in the lower right corner is 100 nm long for scaling.

that the dominant damping mechanism is radiative, thereby
allowing the observation of variations in radiative linewidth
simply by measuring the transmission spectrum of the array.
To this end, the scattering and absorption cross sections of
the nanoantenna are calculated via FDTD simulations. For the
selected dimensions of the nanoantenna (185 nm long, 105
nm wide, and 20 nm thick; these are also roughly the average
dimensions of the nanoantennas in the fabricated arrays), the
resonant scattering, which occurs at a wavelength (frequency)
of 1181 nm (254 THz), is more than three times as strong as
the absorption (see Fig. 4 in Appendix A).

We have fabricated 11 squared arrays of nanoantennas,
with lattice constants ranging from 250 to 500 nm in steps
of 25 nm, using electron-beam lithography in a Raith Pioneer
30-kV electron-beam system to form a patterned resist on a 1-
mm-thick float glass substrate. A gold film of thickness 20 nm
is then deposited, and the resist is removed by the process of
liftoff, leaving behind the patterned gold on the substrate [31].
Appendix D has a detailed description of the fabrication
procedure. The size of each array is 200 × 200 μm. The
scanning electron micrograph in Fig. 1(c) shows a detail of
one of the fabricated arrays.

The transmission spectra of the fabricated arrays are mea-
sured by transmission spectroscopy using the setup depicted
schematically in Fig. 1(b). The normalized average trans-
mission spectrum T of each array was obtained by taking
the ratio of the transmission spectrum of each array to the
transmission spectrum of the glass-oil assembly, with each
spectrum averaged over three measurements. As the response
of a single nanoantenna to an incident field can be described
by contributions from the excited multipoles [32], the collec-
tive response of nanoantennas in each array also consists of
multipolar contributions. However, as evidenced in the cross-
section spectra and the near-field profile of an isolated nanoan-
tenna (see Fig. 4 in Appendix A), for the range of frequencies
under consideration the dipole mode of the nanoantenna is
dominant. Hence, the radiative decay rate of the collective
dipolar mode of each array is obtained from the full width
at half maximum (FWHM) linewidth of the corresponding
extinction spectrum (1 − T ).

In Figs. 2(a) and 2(b) we compare the extinction spectra of
the nanoantenna arrays of different lattice constants obtained
from FDTD simulations and from the experiment, respec-
tively. For the FDTD simulation of the periodic nanoantenna
array, we have considered a single unit cell of the array
with periodic boundary conditions at the transverse bound-
aries. As a consequence, the uniformity of dimensions of
the nanoantennas in each array was implicitly assumed. On
the other hand, for the fabricated arrays, there are unavoid-
able inhomogeneities in the dimensions of the nanoantenna,
which contribute to inhomogeneous broadening. In addition,
in the experiment the exciting field could have some obliquely
incident components despite the use of objectives with low
numerical apertures. These factors could explain the slight
differences between the simulated and the measured spectra.
However, both measured and simulated spectra show similar
broadening of the extinction linewidth with decreasing array
lattice constant, which is consistent with the expectation that
increasing the number of dipoles within an optical wavelength
broadens their radiative linewidth.
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FIG. 2. Extinction spectra of nanoantenna arrays of different
lattice constants obtained from (a) FDTD simulations and from
(b) the experiment.

III. ANALYTICAL MODEL

In order to gain physical insight into the relation between
the radiative linewidth and the lattice constant, we introduce
an analytic model to describe the scattered field from an
array of nanoantennas. We approximate each nanoantenna as
a point dipole of electric dipole moment p, and begin by

introducing the polarizability tensor
↔
α0 in the electrostatic

limit. For ease of analytical calculations, each nanoantenna
is modeled as ellipsoids with identical volume and aspect
ratios. We assume our coordinate system to be aligned along
the principal axes of the ellipsoid [see inset in Fig. 5(a)].

The polarizability tensor
↔
α0 is then represented by a diagonal

matrix, and its elements are proportional to the volume of
the ellipsoid. The diagonal elements, α0,ii for i = {x, y, z},
describe the response of the electric dipole excited along
the corresponding axis, and depend on the exact shape and
permittivities of the nanoantenna as well as the surrounding
medium; the form for a gold ellipsoid embedded in glass is

detailed in Appendix B. The implicit dependence of
↔
α0 on

the frequency ω includes the effects of material dispersion
of both the nanoantenna and the surrounding medium. The
resonance frequency ω0 of the dipole is obtained from the
condition Re[α−1

0,ii(ω0)] = 0. In addition, in the electrostatic
limit the damping of the dipole is purely nonradiative, and the
FWHM linewidth of the corresponding extinction spectrum
[Eq. (B5)] depends only on the material losses (characterized
by Im[α−1

0,ii]).
We first consider an isolated ellipsoidal nanoantenna, ex-

cited by an incident field of frequency ω that has a value
E inc at the center of the nanoantenna. There are two features
in the response that arise when we go beyond electrostatics.
First, in the neighborhood of the nanoantenna there is a

field contribution from the nanoantenna itself that is out of
phase with its dipole moment, but proportional to it, and is
responsible for the radiation reaction. Second, if the volume V
of the nanoantenna is not significantly smaller than λ3

0, there
is a part of the field from the nanoantenna which varies across
the nanoantenna due to retardation. The effects due to these
two features of the response on the electric dipole moment p
of the nanoantenna induced can still be captured within a point
dipole model, but with the replacement of E inc by a modified
field Emod. That is, we can write

p = ε0n2 ↔
α0 ·Emod, (1)

where

Emod = E inc + 1

4πε0

2

3
inω̃3 p+

↔
β0 · 1

ε0n2
p. (2)

Here n is the refractive index of the surrounding medium
(here BK7 glass), and ω̃ = ω/c. In (2), the second term on
the right is the radiation reaction field from the nanoantenna

itself, and the dyadic
↔
β0, sometimes referred to as the “dy-

namic depolarization term,” depends on the size and shape
of the nanoantenna, is purely real, and is associated with the
variation of the full electric field over the nanoantenna due to
retardation [33,34]. In Appendix B we give the expression for↔
β0 for our ellipsoids.

The aforementioned electrodynamic contributions to the
response of the nanoantenna to the incident field can alter-

nately be captured by introducing a new polarizability
↔
α that

relates p to the incident field E inc as follows [35]:

p = ε0n2 ↔
α ·E inc, (3)

where
↔
α is also a diagonal matrix in the chosen coordinate

system. From (1) and (3), and using the property that the

diagonal matrices
↔
α0 and

↔
α , and their inverses, all commute

with each other, we then write

↔
α

−1
·Emod =↔

α
−1

0 ·E inc. (4)

Then, using (2) and (3) in (4), we can write after some
simplification

↔
α

−1
=↔

α0

−1
− i

6π
(nω̃)3

↔
U −

↔
β0, (5)

where
↔
U is the unit dyadic. Recall that in general Im[

↔
α0

−1
]

describes nonradiative losses due to electron collisions within
the nanoantenna, and free-carrier absorption and interband
transitions in the gold [14]. While the losses due to electron
scattering are not relevant for the dimensions of the nanoan-
tennas considered here, the losses due to bulk free-carrier ab-
sorption and interband transitions (the latter being negligible
for our wavelengths) are captured by using the frequency-
dependent dielectric constant of the gold. In addition to these
nonradiative losses, we can identify the radiation reaction
term in (5) as describing radiative losses due to the scattering
of the electromagnetic field from the nanoantenna. Both the
radiative and nonradiative losses will broaden its extinction
spectrum. The dynamic depolarization term, on the other
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hand, leads to a shift in the resonance frequency from its value
in the electrostatic limit. We note that similar expressions for
the dipolar polarizability of spheres and spheroids have been
calculated previously from the modified long-wavelength ap-
proximation [34] or from Padé approximations of Mie scatter-
ing coefficients [36].

We now consider a square lattice of these dipoles lying in
the xy plane. For a normally incident field we find that all the
dipole moments will be identical, with

p = ε0n2 ↔
α0 ·E tot, (6)

where E tot includes the field Emod, given by (2), along with
the field from the remaining nanoantennas in the array:

E tot = E inc + 1

4πε0

2

3
inω̃3 p + (

↔
β0 +

↔
β ) · 1

ε0n2
p. (7)

The dyadic
↔
β is the “dynamic interaction constant” of the

array [37], and is given by

↔
β =

∑
R �=0

↔
G (−R), (8)

with
↔
G being the periodic Green dyadic [38], such that

↔
G

(−R) · p represents the electric field at the origin due to a
dipole moment p at a lattice site R.

Similar to the strategy used in treating an isolated nanoan-
tenna, we can redefine the polarizability of each nanoantenna
in the array with respect to the incident field as

p = ε0n2 ↔
α eff ·E inc, (9)

and we find that the effective polarizability
↔
α eff of a nanoan-

tenna in a square array is given by

↔
α

−1

eff =
↔
α0

−1
− i

6π
(nω̃)3

↔
U −(

↔
β0 +

↔
β ). (10)

To calculate the the poorly convergent
↔
β , we use the Poisson

summation method followed by singularity cancellation, as
discussed in [37,38]. Assuming the incident electric field
to be polarized along the major axis of the nanoantenna
[aligned with the x axis, as shown in Fig. 5(a)], only the
dipole along the x axis is excited. Hence, the response of
the array is given by the diagonal component of the effective
polarizability [αeff]xx. For our specific case (square lattices
with subwavelength lattice constant a excited by normally
incident light), the exact analytic result for the imaginary part
of the dynamic interaction constant βxx, also known as the
“lattice sum,” can be obtained from Eqs. (76) and (110) in
Swiecicki and Sipe [38], and is given by

Im[βxx] = − 1

6π
(nω̃)3 + nω̃

2a2
. (11)

In contrast, Re[βxx] does not have a closed-form expression,
and is actually an infinite series [37]. We numerically evaluate
the series in our calculations by including as many terms
as required until convergence is achieved for the extinction
spectrum.

From (11) and (10), now we can write [αeff ]xx, while
dropping the suffix xx, as

α−1
eff = α−1

0 − i

6π
(nω̃)3Neff − (β0 + Re[β]), (12)

where Neff = 3λ2/4πn2a2 is the effective number of dipoles
enclosed within a circle of radius equal to the wavelength
in the background medium, λ/n. We note that the effective
depolarization term of the dipole in the array, Re[α−1

eff ], is
enhanced by the “collective retardation” term, Re[β], which
is responsible for the shift in the resonance frequency (given
by Re[α−1

eff (ω0)] = 0, or the maxima of the extinction spectra)
for different arrays observed in Figs. 2(a) and 2(b). We also
note from (12) that there are no collective contributions to
the nonradiative losses due to absorption, which are once
again represented by the term Im[α−1

0 ]. On the other hand,
the radiative damping term has the form of the radiation-
reaction term of Neff dipoles. This collectively enhanced
radiative damping is responsible for the observed linewidth
broadening in Figs. 2(a) and 2(b). Finally, the transmittance
T and reflectance R spectra of the array depend on αeff(ω) as
follows [39]:

R = |r|2 = (nω̃)2|αeff|2
4a4

,

T = |t |2 = 1 + R − nω̃

a2
Im[αeff].

(13)

Since the effective number of dipoles Neff within a
wavelength-sized area is proportional to a−2, in the regime
where scattering dominates absorption, the FWHM linewidth
of the extinction spectrum (1 − T ) should decrease according
to a−2 as the lattice constant of the planar array is increased.

The extinction spectra of the equivalent ellipsoid arrays
for various lattice constants are analytically calculated from
Eqs. (13). The dimensions of the ellipsoid (semiprincipal axes
of ae = 112 nm, be = 63.85 nm, and ce = 12.25 nm) have
been chosen so as to have the closest agreement between
the extinction spectrum of the single nanoantenna obtained
through FDTD simulations and that of the gold ellipsoid
obtained analytically for light polarized along their long axes.
We used the Johnson and Christy values for the permittivity
of gold [40] for both FDTD simulations and our analytical
calculations. See Appendix B for the details of the calculation
of the equivalent ellipsoid parameters. Figure 6 in Appendix C
shows the analytically calculated extinction spectra of the
ellipsoid arrays with lattice constants ranging from 250 to 500
nm in steps of 25 nm. Comparing Figs. 2(a) and 2(b) with
Fig. 6, we find a good qualitative agreement between our an-
alytical model, FDTD simulations, and experimental results.

IV. RESULTS AND DISCUSSION

In Fig. 3 we show the lattice constant dependence of
the measured, FDTD simulated, and analytically calculated
FWHM linewidths of the extinction spectra; the last of these
follows from using Eqs. (6)–(13). For the datasets obtained
from FDTD simulations (red triangles) and the experiment
(blue circles), only the linewidths of the spectra shown in
Figs. 2(a) and 2(b), respectively, are plotted in Fig. 3. For
the analytical dataset, the extinction spectra of equivalent
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FIG. 3. FWHM linewidths vs lattice constant of extinction spec-
tra obtained from experiment (circles, blue), simulations (triangles,
red), and analytical calculations (solid, green). The black dashed
curve represents the fitted curve δν = C1 + C2a−2 to the analytical
data, where C1 = −0.1694 THz and C2 = 7.73 × 106 THz nm2.

ellipsoid arrays were calculated for arrays with lattice con-
stants varying from 250 to 500 nm in steps of 1 nm. The
FWHM linewidths of these analytically calculated spectra are
plotted in Fig. 3 as a continuous (green) line. The error bars
on the experimental data indicate the experimental error in
determining the FWHM from the optical spectrum analyzer
readout as a consequence of noise in its detector.

A simple expression for the dependence of the FWHM on
the lattice constant is difficult to extract even for the analytic
model, because the resonant frequency itself depends on the
lattice constant a. However, for the form of the polarizability
α0 adopted (see Appendix B), and recognizing that the shift
of the resonant frequency due to the real part of β and the
linewidth itself are reasonably small compared to the resonant
frequency ω0, a linewidth dependence of the form δν =
C1 + C2a−2 can be expected, where C1 captures the effects
of absorption and C2a−2 captures the effects of radiative
broadening. The constants C1 and C2 are obtained by fitting
the aforementioned curve to the analytical dataset. The fitted
curve (C1 = −0.1694 THz and C2 = 7.73 × 106 THz nm2)
is shown as a dashed black line in Fig. 3, and we see a
good agreement between the analytical dataset and the fitted
curve. Comparing the numerical values of C1 and C2, we note
that the term C2a−2 has a significantly larger contribution to
δν, thereby indicating that the radiative broadening effects
dominate over those of absorption.

For lattice constants larger than about 375 nm there is an
excellent quantitative fit between experiment, FDTD simula-
tion, and the analytic model. At smaller lattice constants we
see that the results of the FDTD simulations differ from those
of the analytic model. This may be in part due to the fact
that the FDTD simulations were done for the actual array
of rod-shaped nanoparticles, which includes contributions
from all multipolar excitations of the nanoparticle as well as
their interactions with the other nanoparticles in the array. In
contrast, the analytic model relies on a fit to the response of
an isolated nanoparticle with ellipsoidal shape, and the use
of a point dipole approximation for calculating the interac-
tion between the nanoparticles in the array. The validity of
these features of the analytic model becomes questionable for

very small lattice constants, giving a possible reason for the
difference between the FDTD simulations and the analytic
model for small values of a. We also see that at small lattice
constants the experimental results differ from the results of
the FDTD simulations, which may be due to inhomogeneities
in the properties of the fabricated nanorods. The inevitable
fabrication imperfections would contribute to some inhomo-
geneous broadening in the experimental case, which is not an
issue in the analytical model or FDTD simulations due to our
assumption of all the nanoantennas being identical. The effect
of these inhomogeneities in the fabricated nanorods can be
expected to have a larger effect at smaller lattice constants
where the response of a given nanorod is more sensitive to the
details of the near field from its neighbors, and thereby could
also contribute to the mismatch between the experiment and
the simulations for smaller lattice constants.

Nonetheless, within a reasonable margin of error our re-
sults indicate that the observed Neff -fold radiative linewidth
broadening in the arrays of nanoantennas is a collective effect.
We have also shown through the closed-form expression of
the imaginary part of the effective polarizability of each
nanoantenna within the array that the observed Neff -dependent
linewidth scaling is because the radiation reaction of the
array is proportional to Neff (12). In addition, since we have
explicitly designed our nanoantennas to have a much larger
scattering cross section than the absorption cross section, we
conclude that the observed linewidth broadening is due to
the interaction of the plasmonic scatterers with the common
radiation field.

The scaling of the linewidth with the number density
of dipoles indicates a connection with Dicke superradiance,
where the interaction with the common radiation field is also
the important physics. Dicke [1] dealt with two-level systems,
while our plasmonic scatterers can be well described by a
harmonic oscillator model; in general one would only expect
a correspondence in the weak excitation limit. With that in
mind we look at the first excited state in the Dicke model,
which consists of a single excitation “shared” among the N
two-level systems. The total dipole matrix element between
this lowest excited state and the ground state is a factor of

√
N

larger than the dipole matrix element between the excited state
and the ground state of a single two-level system, and so if the
N two-level systems are confined within a wavelength of light
the emission rate from this first excited state will be a factor of
N larger than for a single excited two-level system, leading to
a linewidth that is a factor of N times that for a single excited
two-level system. This can be called “weak superradiance,”
to distinguish it from the behavior of other excited states
in the Dicke model that have much enhanced decay rates.
In a scattering problem in the semiclassical approximation,
where the radiation field is treated classically, it is the dipole
moment between the ground state and the first excited state
of the Dicke model that is relevant for weak enough incident
fields. There again one finds a linewidth that is N times as
large as would be seen if only a single two-level system were
considered [35,41–45]. Now if only the ground state and the
first excited state are considered, then the Dicke model is
essentially equivalent to a set of harmonic oscillators, since
for the latter system the first excited state also consists of a
single shared excitation, here shared between the harmonic
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oscillators. Thus we see that the behavior considered here for
plasmonic oscillators mimics the corresponding behavior of
two-level systems. So, whether considering plasmonic oscil-
lators or two-level systems under weak excitation, for planar
arrays of effective atoms the relevant N is the number of those
atoms within a square wavelength of light.

V. CONCLUSION

To summarize, here we have shown that the linewidth of
light scattered by a planar array of plasmonic nanoantennas
scales linearly with the effective number of nanoantennas
contained within an area equal to the square of the resonant
optical wavelength. Through an analytical model, we have
shown that this is a collective effect resulting from the en-
hancement of the radiation reaction of a particular nanoan-
tenna by the radiation reaction of all the other nanoantennas
in the array, which in turns leads to an Neff-fold enhance-
ment of the radiative linewidth. In an effort to elucidate
the relationship between the collective radiative behavior of
plasmonic scatterers and the behavior of Dicke superradiance,
we have also discussed the different radiative behaviors of
plasmonic scatterers and dipolar emitters. We have argued
that the collective radiative behavior of a system of plasmonic
scatterers and a corresponding system of weakly excited
emitters (wherein only one emitter is initially excited on an
average) are analogous. Accordingly, we have termed this
effect “weak superradiance.”

It should be noted that the analytical method used here to
calculate the effective dipolar polarizability can be extended
to include electric quadrupole and magnetic dipole contri-
butions to the array response [38]. The inclusion of these
multipolar contributions should provide insight not only into
the slight difference between the results from the analytical
model and FDTD simulations that we observed for smaller
lattice constants, but also into other interesting phenomena
such as Fano resonances and directional scattering from meta-
surfaces [46,47]. Further, the model could also be extended
to study a wide range of metasurfaces, including arrays of
split-ring resonators and dielectric nanoparticles [47,48], as
well as multilayer metasurfaces [27,49].

ACKNOWLEDGMENTS

The authors acknowledge financial support from the
Canada Excellence Research Chairs (CERC) Program, the
Natural Sciences and Engineering Research Council of
Canada (NSERC), and the US Office of Naval Research
(Grants No. N00014-17-1-2443 and No. N00014-17-S-B001).

APPENDIX A: NANOROD CROSS SECTIONS

Figure 4 shows the scattering, absorption, and extinction
cross sections of an isolated nanorod calculated through
FDTD simulations. The resonant scattering (at 254 THz)
is more than three times as strong as the absorption. The
electric-field profile at the resonance (the inset) indicates
that the resonant mode is dipolar. The arrow represents the
polarization of the incident field.

FIG. 4. Scattering (dot-dashed, blue), absorption (dashed, red),
and extinction (solid, gray) cross-section spectra of a single isolated
nanorod. The inset shows the electric-field mode profile at resonance.

APPENDIX B: EQUIVALENT ELLIPSOID
PARAMETER CALCULATION

From the electrostatic model for dipole polarizability of
an ellipsoid of semiaxes lengths ae, be, and ce, we have the
following expression [50]:

α0,ii = V

(
Li + ε

ε1 − ε

)−1

, (B1)

where i = x, y, z; V = 4πaebece/3 is the volume of the ellip-
soid; ε1 and ε are the material permittivity of the ellipsoid
(gold) and of the surrounding medium (BK7 glass), respec-
tively. Li is the shape parameter (or the depolarization factor)
given by

Li = aebece

2

∫ ∞

0

dq

f (q)(q + d2
i )

, (B2)

with di = {ae, be, ce} for i = {x, y, z}, and f (q) =√
(q + a2

e )(q + b2
e )(q + c2

e ). The optical constants of gold
(for ε1) were taken from Johnson and Christy [40], and the
permittivity of the BK7 glass (εm) was taken from [51].
The only damping mechanism in this limit arises from the
material response, which is independent of the dimensions
of the ellipsoid. For ellipsoids of volumes as large as the
nanorod (185 nm long, 105 nm wide, and 20 nm thick),
radiative damping becomes a significant contribution to the
linewidth, along with the nonradiative damping due to the
material response. In addition, retardation effects come into
play, which lead to a shift in the resonance frequency. These
effects are not accounted for in the electrostatic polarizability
model. Kuwata et al. [52] provide an empirical model for
an arbitrary shaped nanoparticle that takes into account
retardation as well as the radiation reaction by approximating
the total polarizability as

α−1
ii ≈ α−1

0,ii − i
(nω̃)3

6π
− β0,ii, (B3)

β0,ii = −A(Li )

V
(nω̃di )

2 − B(Li )

V
(nω̃di )

4, (B4)

where ω̃ = ω/c and n is the refractive index of the sur-
rounding medium. The second term on the right-hand side
of Eq. (3) accounts for the radiation reaction, while the β0,ii

term is an empirical term that accounts for retardation. A(Li )
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and B(Li ) are polynomials of the shape parameter Li. The
specific form of the polynomials depends on the geometry
of the nanoparticles under consideration and does not depend
on the material being considered. The resonance condition
is met when the real part of the right-hand side of Eq. (3)
vanishes. In addition, from (B1) and (B3), we see that a larger
volume of the ellipsoid leads to larger radiative damping (and
hence larger spectral linewidth), as well as a redshift in the
resonance [34,53].

The cross sections of the ellipsoid are given by (assuming
i = x and dropping the suffixes)

Cext = nω̃Im[α], (B5)

Cscat = (nω̃)4

6π
|α|2, (B6)

Cabs = Cext − Cscat. (B7)

Kuwata et al. [52] provide the polynomials A(L) and B(L)
for spheroids of aspect ratios larger than 3.8. However, for
the aspect ratios of the nanorods that we have considered, the
polynomials given in [52] do not yield correct results. In order
to obtain the correct form of the polynomials specific to our
case, we compare the cross-section spectra of ellipsoids of dif-
ferent dimensions simulated in FDTD with the cross-section
spectra corresponding to ellipsoid polarizability given by (B3)

FIG. 5. (a) Extinction and (b) scattering cross section vs fre-
quency for the nanorod (blue, from FDTD simulations) and the
ellipsoid (red, from the analytical dipole polarizability model). In
(a), the inset shows the ellipsoid dimensions and excitation geometry
used for analytical calculations.

FIG. 6. Analytically calculated extinction spectra of the ellipsoid
arrays of different lattice constants.

while assuming different forms of the polynomials A(L) and
B(L). The closest agreement between the FDTD simulations
and the analytical model was found for A(L) = −0.4915L −
1.046L2 + 0.8481L3 and dropping the term associated with
the polynomial B(L).

The dimensions of the ellipsoid with scattering and ex-
tinction spectra [obtained from Eqs. (B3), (B5), and (B6)]
in closest agreement with the corresponding spectra of an
isolated nanorod are ae = 112 nm, be = 63.85 nm, and ce =
12.25 nm. Figure 5(a) [Fig. 5(b)] compares the extinction
(scattering) cross-section spectrum of the nanorod, obtained
from FDTD simulations, with the corresponding analytically
calculated spectrum of the ellipsoid of aforementioned dimen-
sions.

APPENDIX C: ANALYTICAL SPECTRA

Figure 6 shows the analytically calculated extinction spec-
tra of the ellipsoid arrays of different lattice constants obtained
by substituting the calculated polarizability of the ellipsoid
from Eq. (B3) into Eqs. (13) given in the main text. As
stated in the main text, the analytically calculated spectra are
very similar to the simulated and measured spectra shown in
Figs. 2(a) and 2(b), respectively. From Fig. 5(b), we see that
the scattering linewidth of the ellipsoid is slightly broader (by
approximately 1 THz). This implies a slightly larger radiative
damping of the ellipsoid compared to the nanorod, and hence a
slightly larger radiative linewidth for decreasing (increasing)
lattice constant (Neff ), as predicted by Eq. (12) in the main
text. To ensure a further agreement between the analytical
calculations and the experiment, one can extract the dipole
polarizability of the nanorod itself and substitute in Eqs. (12)
and (13) of the main text to calculate the extinction spectra.
Nevertheless, for all practical purposes, the present analysis
provides sufficient evidence that the enhancement in linewidth
is due to a corresponding increase in the radiative damping of
the array.

APPENDIX D: FABRICATION DETAILS

Figure 7 shows a flow diagram of the fabrication process of
our nanoantenna arrays. As a first step, a 2 × 2-cm chip was
diced from a fused silica wafer. This chip was then cleaned
through the use of acetone and isopropyl alcohol (IPA),
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FIG. 7. Flow diagram depicting the fabrication process of our
nanoantenna arrays.

followed by blow drying with nitrogen. A 2-wt.-% PMMA in
anisole solution (molecular weight of 450 000) was used as
the bottom resist layer. The chip was then spin coated with the
bottom resist at 5000 rpm for 60 s with an acceleration of 300
rps, and then baked at 180 ◦C for 30 min, thereby producing a
50-nm-thick bottom resist layer. Similarly, a 2-wt.-% PMMA
in anisole solution (molecular weight of 950 000) was used as
the top resist layer. This top layer was spin coated at 7000 rpm
for 60 s, with an acceleration of 300 rps, thereby producing a

25-nm-thick top resist layer. A nonconductive substrate, such
as silica, can result in charge buildup during electron-beam
exposure (commonly termed as charging). To avoid this
charging effect during electron-beam lithography of our plas-
monic nanostructures, espacer, a water-soluble conductive
polymer solution, was spin coated at 2500 rpm for 25 s with
an acceleration of 300 rps. The plasmonic nanostructures
were then patterned using a 30-kV Raith electron-beam
lithography system (CRPuO, uOttawa) with a dose of 550
mC/cm2. After the patterning, the samples were rinsed in
deionized water to remove the espacer layer, and postbaked
on a hot plate at 80 ◦C for 1 h. The resist was then developed
for 2 min in 3:1 MIBK-IPA (methyl isobutyl ketone-isopropyl
alcohol) mixture at 20 ◦C, followed by an IPA rinse. With the
PMMA bilayer pattern prepared, metallization was carried
out by thermal evaporation of 20-nm gold through the use
of an Angstrom Nexdep evaporator. As a final step in the
fabrication, acetone was used to lift off of the PMMA.
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