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Implications of Low-Index Behavior for Nonlinear Optics

Here is the intuition for why the low-index condition is of interest in NLO
Recall the standard relation between ny and X(B)

3y ®)

"= degeng Re(ng)

Note that under low-index conditions the denominator becomes very
small, leading to a very large value of n

Footnote:
Standard notation for perturbative NLO

P= X(I)E+ X(Z)EZ + X(B)ES + o
P is the induced dipole moment per unit volume and E is the field amplitude.

Also, the refractive index changes according to

n=ng+ nl+ ngP+ ...



How Light Behaves when the Refractive Index Vanishes

- Physics of Near-Zero Index (NZI) and Epsilon-Near Zero (ENZ)
Materials

- Nonlinear Optical Properties of NZI and ENZ Materials
- Metamaterials for NZI and ENZ Studies

- Applications of NZI and ENZ Materials
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Giant Nonlinear Response of ENZ Metastructures

e Nonlinear Optics is important for a variety of reasons:

Photonic Devices

All-optical switching, buffers and routers based on slow light
Used to create quantum states of light for

Quantum Computing/Communications/Imaging
Fundamental understanding of light-matter interactions

Not “just” Lorentz oscillator formalism

Understand rogue waves

Control filamentation process

« However, the nonlinear response is usually much weaker than the linear response

e Means to enhance the nonlinear response

Resonance interactions (atomic vapors)
Plasmonic systems

Electromagnetically induced transparency (EIT)
Metamaterials (composite materials)

e Our approach: Use epsilon-near-zero (ENZ) materials and metamaterials



Physics of Near-Zero-Index (NZI) and Epsilon-Near-Zero (ENZ) Materials

* The wavelength of light is given by
A= Avac/n

and is significantly lenthened in a NZI material. The wavelength approaches
infinity as n approaches zero.

* The phase velocity of light is given by
v=c/n

and also approaches infinity as n approaches zero.

- For n approaching zero, the field oscillates in time but not in space;

oscillations are in phase everywhere
Brown, Proc. IEE 100, 5 (1953).

Ziolkowski, Phys. Rev. E 70, 046608 (2004).
Silveirinha and Engheta, Phys. Rev. Lett. 97, 157403 (2006).



Some Details from Electromagnetic Theory

- The linear response of any material to electromagnetic radation can be described by

- The dielectric permittivity (dielectric constant) € define through the relation

D = €0 4
where D, known as the dielectric displacement, and E, known as the electric field,
are the two fieldsthat describe the material response to an electric field.

- The magnetic permeability u define through the relation
B = popH

where B, known as the magnetic field, and H, known as the magnetic intensity,
are the two fields that describe the magnet response of a material to an applied field.
- Itis straightforward to shown from the equations of electromagnetism that

n = \/€WU

« Thus, n=0 when either ¢ =0 or u=0 (or both € and u equal zero).

- Terminology:
ENZ: epsilon near zero
MNZ: mu near zero
EMNZ: epsilon and mu near zero



Surface Reflection

« There is a problem getting light into a zero-index material.

« There is always reflection from the boundary between two materials

« The impedance and surface reflectivity are given by

Z -1/

Z=ule R:‘Z—-i-l

* Thus the reflectivity will be 100% if € = 0 unless ¢t = 0 as well (with €/ finite).

o=

« This is one reason for the interest in developing EMNZ materials (epsilon and
mu near zero materials.



Physics of Epsilon-Near-Zero (ENZ) Materials

- Radiative processes are modified in ENZ materials

Einstein A coefficient (spontaneous emission lifetime = 1/A)
A =n Avac
We can control (inhibit!) spontaneous emission!

Einstein B coefficient
Stimulated emission rate = B times EM field energy density
B= Bvac / (n ng)

Optical gain is very large!
Einstein, Physikalische Zeitschrift 18, 121 (1917).
Milonni, Journal of Modern Optics 42, 1991 (1995).

Equations are shown for nonmagnetic (u = 1) materials

- Implications:
- If we can inhibit spontaneous emission, we can build thresholdless lasers.
- Expect superradiance effects to be pronounced in ENZ materials.



Optics of Zero-Index Materials

Snell’s law leads to intriguing predictions
n1 sin 91 — N9 sin 92

- Light always leaves perpendicular to surface of ENZ material!

n=0 |n=1
>

Y. Li, et al., Nat. Photonics 9, 738, 2015; D. |. Vulis, et al., Opt. Express 25, 12381, 2017.

- Thus light can enter an ENZ material only at normal incidence!

n=1 n=0 n=1 |n=0 |
I
S 77 ’

TIR Light enters at normal incidence
but leaves in all directions.

Y. Li, et al., Nat. Photonics 9, 738, 2015. . ,
(wave-optics simulation - O. Reshef)



Some Consequences of ENZ Behavior - 1

« “Funny”lenses

/n:O | n=0

A. Alu et al,, Phys. Rev. B 75, 155410, 2007; X.-T. He, ACS Photonics, 3, 2262, 2016.

- Large-area single-transverse-mode surface-emitting lasers

L

L >> A

~ gain medium, n = 0

L

J. Bravo-Abad et al., Proc. Natl. Acad. Sci. USA 109, 976, 2012.

« No Fabry-Perot interference

/n=0

O. Reshef et al., ACS Photonics 4, 2385, 2017.



Some Consequences of ENZ Behavior - 2

- Super-coupling (of waveguides)
dielectric waveguide ~_

—_—

metal cladding )\/ =

M. G. Silveirinha and N. Engheta, Phys. Rev. B 76, 245109, 2007; B. Edwards et al., Phys. Rev. Lett.
100, 033903, 2008.

« Coupling between two distant waveguides

k>

Mode of upper waveguide beams into the

4 n=1 \ lower waveguide even for large separation
\\\\ Recall that k =n w / c vanishes
in an ENZ medium.

ENZ (n = 0) waveguide

« Automatic phase matching of NLO processes

- Recall that we need Ak =0, but when n=0 - Usual four-wave mixing process
k = nw/c vanishes and so does Ak. in —> out —>

- We have observed this effect in a Dirac-cone,
zero-index metamaterial.

- With zero-index materials we can have

. - 5
in——> out

H. Suchowski et al., Science 342, 1223, 2013.



How Light Behaves when the Refractive Index Vanishes

- Physics of Near-Zero Index (NZI) Materials
-« Nonlinear Optical Properties of NZI Materials
- Meta-materials for NZI Studies

- Applications of NZI Materials
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Nonlinear Optics and Optical Switching

- An important application in photonic technologies is optical switching.

l control (for on/off switching)

in out
— —

- One wants a switch with fast switching times and that operates with weak control fields.

- One needs a nonlinear interaction in order for one optical field to control another field.

- A strong nonlinear response is needed. How does one quantify the strength of a
nonlinear response? Two standard methods:

n=mng+ nel

PNt = 3x®)|EPE
(3)

« The nonlinear coefficients are Mo and X



Implications of ENZ Behavior for Nonlinear Optics

Here is the intuition for why the ENZ condition is of interest in NLO
Recall the standard relation between ny and X(B)

3y ®)

2= degeng Re(ng)

Note that under ENZ conditions the denominator becomes very small,
leading to a very large value of ny

Footnote:
Standard notation for perturbative NLO

P= X(I)E+ X(Z)EZ + X(3)E3 + o
P is the induced dipole moment per unit volume and E is the field amplitude.

Also, the refractive index changes according to

n=ng+ nl+ ngP+ ...



How to Choose an Epsilon-Near-Zero Materials

e Electrical conductors
All conductors display ENZ behavior at their (reduced) plasma frequency

Recall the Drude formula ;

“p

w ~+ i)

e(w):eoo—w(

Note that Ree = 0 for w = w, /e, = wo.
ENZ wavelength restricted to a limited range in the visible.

o Electrical insulators (dielectrics)

Dielectrics can show ENZ behavior at their (optical) phonon resonance.
ENZ wavelength restricted to a limited range in the mid-IR.

e Metamaterials
Can design the material so that the ENZ or EMNZ wavelengths are at
any desired value.

« Challenge (for any material system). For low loss, we want Im ¢ as small
as possible at the wavelength where Re ¢ =0.



Nonlinear Optics of Indium Tin Oxide (ITO)

* We recently reported that, at its ENZ wavelength, I'TO possesses a
nonlinear coefficient n, that is 100 times larger than those of previously
reported materials [1].

e ITO 1s a degenerate semiconductor (so highly doped as to be metal-like).

ITO has a large density of free electrons, and a bulk plasma frequency
corresponding to a wavelength of approximately 1.24 um.

Dielectric properties of ITO are well described by the Drude formula.

2
“p

w(w + 1)

€(w) = €0 —

Note that aluminum-doped zinc oxide (AZO), another transparent conduc-
ting oxide, also has strong nonlinear response at its ENZ wavelength [2].

1. Alam, De Leon and Boyd, Science 352, 795-797 (2016)
2. Caspani, Shalaev, Boltasseva, Faccio et al., Phys. Rev. Lett. 116, 233901 (2016).



Huge, Fast NLO Response of Indium Tin Oxide at its ENZ Wavelength

- ellipsometry » n2 can be 3.4 x10° times larger than that of

silica glass
2 L 0.1 g : I
I I
I 0.08 f
i I
2 =)
:g 9 0.06 ]
E % chalcogenide
2 o 0.04] glass
A = 1240 nm 0021
_12000 1 1I00 1 260 1 3‘00 14‘00 1500 0¢ ‘ : :
wavelength (nm) 1000 1100 1200 1300 1400 1500
wavelength (hm)
- overall change in refractive index of 0.8 « sub picosecond reponse time
2 2
|EF*/ (GV/m) L 200fs 360 fs
. 4 . . ] 21 — = =
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0.5
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M. Z. Alam et al., Science 352, 795797 (2016)




The NLO Response Is Larger For Oblique Incidence

Eout
e
i
( : B
€
Standard boundary Ein
conditions show that:
Ein,|| — Eout,|| = Fqut cos 0 \

Din,J_ — Dout,J_ — Ein,J_ — Eout,J_/E — Eout COS 9/6

Thus the total field inside of the medium is given by

- 2
0
Ein = Lout \/COS2 0 + o

€

Note that, for € < 1, B, exceeds Eq, for 6 # 0.

Note also that, for € < 1, Ej}, increases as  increases.



Huge Nonlinear Optical Response of ITO

e /-scan measurements for various angles of incidence

Wavelength dependence of n» Variation with incidence angle
¥ A x vV O
0.090 4 010 s . : ; .
) q —
< M 0.08- =
CD R e Q
<X 0.060 ; 28
N 0.06 - ; O
- 0 Increases | wavelength maximum o~
S 0.04 . values are shown S
% 0.030 - ' -4 X
~ T
- 0.02 - =y
0 | o=y 0 . . _ . e
095 1.05 1.15 125 1.35 0 10 20 30 40 50 60

Wavelength (pm) Angle of incidence 6 (deg)
peak laser intensity was 50 GW cm-2

» Note that n2 is positive (self focusing) and 3 is negative (saturable absorption).
e Both n and nonlinear absorption increase with angle of incidence

e 17 shows a maximum value of 0.11 cm2/GW = 1.1 x 10710 cm2/W at 1.25 um
and 60 deg. This value is 2000 times larger than that away from ENZ region.



Why i1s n; so large for ITO?

The short-wavelength (away from the ENZ resonance) value of n, of ITO
is 5 x 10~ cm2/GW, which is 150 times larger that of fused silica
(3.2 x 107 cm2/GW).

There 1s a 43 X enhancement from working at the ENZ wavelength and an
additional 43 X enhancement from using non-normal incidence.

Thus 7, = 0.01 cm2/GW, which is 3.4 x 10° times that of fused silica.

Incidentally, for arsenic trisulfide glass, ny = 2.4 x 10°% c¢cm2/GW.
which 1s 800 times larger than that of fused silica.
R.E. Slusher et al., J. Opt. Soc. Am. B 21, 1146 (2004).



Why Does ENZ Lead to Large NLO Response?

3y
~ degeng Re(no)

1. From the form of n, no

2. From simple math: for n =n, +An and € = €, + Ae

then: Ay — Qe
an
3. Note behavior of wave equation for € = ()
€L 32 aQPNL
VXVXE+ S —SE=—
XV XET 55 arY>

4. When a collimated laser beam enters a material its intensity remains
constant. Recall that

I = Znepc |E|?

Thus for small n the electric field strength is increased, giving a large
nonlinear response

5. Detailed numerical integration confirms this behavior.



Dependence of Second-Harmonic Generation on the Linear Dielectric Permittivity

- We solve the standard equations for second-harmonic generation
dAl _ inlle(?) AQ(Z)A* (Z)e—?,AkZ
dz c ! ’

dA (2) :
2 ?:UQWQX AQ(Z)ezAkz’

dz 2¢ L
« We take Ak = 0 and plot the solution for various values of the permittivity .

- We find that the growth rate increases dramatically as the permittivity is decreased.

.
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Solis, Boyd and Engheta, to be published
See also Solis, CLEO Poster JW2D.15



An ENZ Metasurface

- We functionalize I'TO by creating a photonic metasurface

- We obtain an even larger NLO response by placing a gold antenna
array on top of ITO.

- Lightning rod effect: antennas concetrate the field within the ITO

- Coupled resonators: ENZ resonance and nano-antennas

Concept:

—

=2
.
--_I

—ITO

Glass

I

[

Alam, Schulz, Upham, De Leon and Boyd,
Nature Photonics 12, 79-83 (2018).



A thin ENZ medium supports a bulk plasma mode.

/ light line
/ (BK7)

light line
(vacuum)

ENZ/ Long-range SPP mode

p,screened

wlw

05 1 15 2 25 3
wavevector (1/m)

A thin layer of ITO supports two modes
- the bulk plasma mode, also called the ENZ or long-range SPP mode
- the short range surface plasmon polariton (SPP) mode



NLO response of the coupled antenna-ENZ system

x107
4

~2x107 ny (Si0y)

n (cm?/GW)

—4

— Simulation

® Experiment

T T T T T
1160 1260 1360 1460 1560
Wavelength (nm)

The structure exhibits and extremely large n2 value over a broad
spectral range. The on-resonance n2 value is seven orders of
magnitude larger than that of silica glass.

Alam, Schulz, Upham, De Leon and Boyd,
Nature Photonics 12, 79-83 (2018).



Physics and Applications of Epsilon-Near-Zero Materials

« Physics of ENZ Materials
- Huge NLO Response of ITO and ITO Metastructures
- Materials for ENZ

- Applications of ENZ Materials
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Epsilon-Near-Zero (ENZ) and Near Zero-Index (NZI) Materials

Homogeneous materials

v s e 5 X102 Bi, sSby sTe, gSe; 5
NZnO By et
30+
3 4,{? 15 I & o23700 ¢ Bulk
9 1.29 um 4 | ° T
E eoo . @ L 10 E c % i b _--".‘“ %o,
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0.4 0.8 1.2 1.6 2.0 2.4 Wavelength (um) 200 400 600 800 1,000 1,200 1,400 1,800
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A. Boltasseva (Purdue) J. Caldwell (Vanderbilt) N. Zheludev(Southmapton)
Kim et al., Optica (2016) Kim et al., Optica (2016) Ouet al., Nat. Commun.(2014)
Metamaterials

Re(s) =0
. SEM - Polman's & Encheta' Wire SEM from :Zayat & Podolskiy
]\?. M}%ZW" Li etzc(z)l]:’ Chan, Huang et al., from otmarn 3 ngneta:s Pollard et al., PRL (2009)
at. Photon.(2015) Nat. Mater.(2011) Vesseur et al., PRL (2013) StackSEM from : Polman & Engheta

Mass et al., Nat. Photon.(2013)



Giant Nonlinear Response of ENZ Metastructures: Our Team

Nader Engheta

« H. Nedwill Ramsey Professor at the University of Pennsylvania

« B.S. degree from the University of Tehran and his M.S and Ph.D. from Caltech.

- Activities include ENZ, photonics, metamaterials, nano-optics, graphene optics,
electrodynamics, microwave and optical antennas, studies of fields and waves.

« Many awards including the Streifer Award of IEEE and the Gold Medal from SPIE

Eric Mazur

- Balkanski Professor of Physics and Applied Physics at Harvard University

« Ph.D. University of Leiden.

- Activities include light-matter interactions with ultrashort laser pulses, nonlinear optics
at the nanoscale, and zero-index dielectric metamaterials.

« Awards include the Beller Award of OSA and the Millikan Medal of the AAPT

Alan Willner

- Steven & Kathryn Sample Chair in Engineering at the University of Southern California.

« Ph.D. Columbia University

« Honors include Member of US National Academy of Engineering; Int’l Fellow of UK Royal
Academy of Engineering; President of OSA and of IEEE Photonics Society.

- Activities include using nonlinearity for signal processing and wave manipulation.




Three Metamaterial Platforms Under Investigation

- Nanoantennas coupled to ENZ substrate
(out of plane; free-space coupling)
(Rochester)

« Dirac cone metamaterials
(in plane; compatible with integrated optics)
(Harvard)

- Photonically doped metamaterials
(out of plane; free-space coupling)
(Penn)




Nonlinear Optical Properties of a Layered Metamaterial in its ENZ Region

Do layered metamaterials also show enhanced NLO response at ENZ wavelength?

+ By controlling the metallic fill fraction p, we can set the
ENZ wavelength to be anywhere from 300 to 700 nm. We
use p = 0.2, which corresponds to 500 nm. We deposit
five layer pairs

&) . 5

3 :

2 .

Metal o "

EL % )

Dielectric / 2 .
e 20! . . . —0:9

300 400 500 600 700

Wavelength (nm)

+ We perform Z-scan measurements on the sample.
Note the enhanced response of the composite as
compared to a single layer of silver.

—
N

Normalized transmittance
()

—
o

-
N

position (mm)

-
D

-
N

1.2
5x 16 nm Ag

Normalized transmittance

10

position (mm)

Suresh, Reshef, Alam, Upham, Karimi and Boyd

ro

+ Note that the real part of epsilon vanishes at 508 nm,
close to the design wavelength. The SEM shows our
structure. Ag thickness = 16 nm; silica thicness = 65 nm

w y T y
é‘ e(e)
£ L Imlg
E !
Eo | S0,
a
.g-‘l Ag
B
o2 :’
0, . Ao
300 400 500 600 700

Wavelength (nm)

* Note the pronounced peak in the value of n2 around
the ENZ wavelength. We find a good but not perfect
agreement with a simple effective medium theory.
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. Expt +‘,
1 | "‘Theory .
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N 0.5¢ ' Iy
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400 450 500 550 600

Wavelength (nm)



Physics and Applications of Epsilon-Near-Zero Materials

« Physics of ENZ Materials
- Huge NLO Response of ITO and ITO Metastructures
- Materials for ENZ

- Applications of ENZ Materials
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All-Optical, Nanoscale, Sub-Picosecond Beam Steering

- Concept 20 d Tune output direction by
+/- 20 degrees under

optical or electrical control

First results

1450

Beam steerer mcan be made

R R R e R e T e R R el Of one or many Ce”S 1400

incident power|= 7uW

£ 1350

length (nm)

Sub-picosecond response time

T
& 1300

Wi

* Design
Top View of Cell nanoantennas
ﬂ _ incident power = 20 uW
600 nm Nonlinear response
depends on
antenna length
1400 nm
incident power = 50 uW
- phase ramp on
\reﬂected beam
Gold
ITO — 30 nn |
nm Deviation angl refativefo the expecied ange of deficton (degrees
200 nm (degrees)
Glass One application: Mode-division multiplexing

for telecommunications

Side View of Cell



Adiabatic Wavelength Conversion by Time Refraction

Experimental setup

Delay line

1.1 mm glass

/ \ Experimental results at 1240 nm

N ) Experiment Simulation
OPA = M (nm) A)\ (nm
\ / \620 nm ITO oon 136
‘ . fiber } ,
2 4
—~ 15 : : 72 -
N "lc 1240nm | " §
E 10t {-49 ;
E;; 5 oo Blouesohifé o 0 25 % | 268 GW/cm? ]
-~ ol © © |P-) " f (THz) " Af (THz
o 0 0 a
@ ° 4 — _
3 5 ° o 126 0 Probe phase and amplitude are measured
£ ol © °_o oo 53 = by frequency-resolved optical gating (FROG)
x Redshift =
S -15 : ' 81 3
0 200 400 600
Intensity (GW/cm?)

- The observed effect is 100 times larger with almost 100 times smaller propagation
distance than previous reports of AWC.

- Application: wavelength-division multiplexing for telecom

Zhou, Alam, Karimi, Upham, Reshef, Liu, Willner and Boyd, Nature Communications 11, 2180 (2020).



Relaxed Phase-Matching Requirements in ENZ Media

- We study four-wave mixing in a zero-index waveguide

2wy = Ws + wj

- We find that an idler field is generated in both the forward and
backward directions!

« Recall that we need Ak =0, but when n =0, k=n w /c vanishes for each of the interacting
waves and thus so does Ak.

“forward” process “backward” process
in —_— out —> in —> out —>
> > — —~
65 forward fwm . backward fwm
3 o c
00 © £
=-75 °p © ::;_75 o ° o
Z » o
2807 o 80 ©
c I=
-85 = 85
1580 1600 1620 15680 1600 1620
idler wavelength (nm) idler wavelength (nm)

- Significance: Nonlinear optical processes that were previously believed to be
too weak to be useful can be excited through use of ENZ materials. 3



Some Potential Applications of ENZ Behavior

(a) Non-magnetic isolation

* Forward
direction
A
= Backward No output
direction beam 1 |
- Geometry mismatch. gnz  dielectric

’

- Non-uniform power distribution.
- Breaking reciprocity.

Output
beam

- Intense
A input

beam

(b) Full-band shifting and conjugation

Pump >10nm  NLO-
A=100nm __bandwidt ENZ
— Ilnput band

h N

Wideband input
beam + pump

A} 1
Outputbeam *

Output: 5h|ftedm
band (forward+ > 10 nm
backward FWM) e »tponm  Dandwidth

L ¥ L

Output baam N H A

With shifted band With shifted band Wavelangth
(backward FWM) {forward FWM)

(c) High-speed tunable interferometers

Pump
Input % NLO-ENZ
beam et VE—

=

Mach-Zehnder interferometer

Interference
Output beam

(d) On-demand quantum emitter
NLO-ENZ

e mmp o)

Output photons Single photon

Short pulse detector

laser  qQuantum emitter

embedded in LNO-
ENZ



Real-Time Holography with THz Refresh Rates

« Goal: Real-time holography
with video or much faster Read-out beam
refresh rates.

«The ultrafast response of ITO .
permits THz refresh rates Signal beam »

« Important applications involve
image processing and signal /

rocessin
P 9 Reference beam

-_{_,7

. Signal conjugate beam

RLLILLY

« Current real-time holographic

materials cannot even support video frame rates Transmitted read-out beam

\

Reconstructed signal beam

Signal conjugate beam
\

Reference beam

/

- Demonstration of image processing Read-out beam
(edge enhancement)

&

Reconstructed signal beam

Signal beam

Alam, Fickler, Reshef, Giese, Upham, and Boyd
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Summary: Physics and Applications of ENZ Materials

+ Extremely interesting physical processes occur in ENZ materials

« ENZ materials, metamaterials, and metastructures display extremely
large NLO response

« The huge, ultrafast NLO response of ENZ materials lend themselves
to many important applications

The visuals of this talk are posted at boydnlo.ca/presentations



Dependence of Second-Harmonic Generation on the Linear Dielectric Permittivity

- We solve the standard equations for second-harmonic generation

dAq
dz

2) |
= i Ay(2) Af ()2,

dA (2) :
2 _ ?:UQWQX A%(Z)ezAkz’

dz 2¢

« We take Ak = 0 and plot the solution for various values of the permittivity .

- We find that the growth rate increases dramatically as the permittivity is decreased.

normalized SHG intensity
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Solis, Boyd and Engheta, to be published
See also Solis, CLEO Poster JW2D.15



Dirac Cone Metamaterials

An EMNZ (epsilon and mu
near zero) metamaterial

Opt Express 25, 8326 (2017)
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Low-Loss Zero-Index Metamaterials via a Bound State in the Continuum -- Mazur Group

AADITIONAL ZIM DESIGN \
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Photonic Doping of ENZ
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L. Liberal, A. Mahmoud, Y. Li, B. Edwards and N. Engheta, Science, 355, March 10,2017
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