Physics and Applications of Epsilon-Near-Zero Materials

Robert W. Boyd

Department of Physics and
Max-Planck Centre for Extreme and Quantum Photonics
University of Ottawa

Institute of Optics and Department of Physics and Astronomy
University of Rochester

The visuals of this talk are posted at BoydNLO.ca/presentations

Presented at the Nonlinear Photonics virtual meeting, a part of the OSA Advanced Photonics Congress, 13-16 July, 2020.
Physics and Applications of Epsilon-Near-Zero Materials

- Physics of ENZ Materials
- Huge NLO Response of ITO and ITO Metastructures
- Applications of ENZ Materials
Giant Nonlinear Response of ENZ Metastructures

- Nonlinear Optics is important for a variety of reasons:
 - Photonic Devices
 - All-optical switching, buffers and routers based on slow light
 - Used to create quantum states of light for
 - Quantum Computing/Communications/Imaging
 - Fundamental understanding of light-matter interactions
 - Not “just” Lorentz oscillator formalism
 - Understand rogue waves
 - Control filamentation process

- However, the nonlinear response is usually much weaker than the linear response

- Means to enhance the nonlinear response
 - Resonance interactions (atomic vapors)
 - Plasmonic systems
 - Electromagnetically induced transparency (EIT)
 - Metamaterials (composite materials)

- Our approach: Use epsilon-near-zero (ENZ) materials and metamaterials
Physics of Epsilon-Near-Zero (ENZ) Materials

• ENZ materials possess exotic electromagnetic properties

Recall that

\[n = \sqrt{\varepsilon \mu} \]

where \(\varepsilon \) is the permittivity and \(\mu \) is the magnetic permeability

• Many opportunities in photonics are afforded by ENZ and ZMI materials

\[\lambda = \lambda_{\text{vac}}/n \quad \nu = c/n \]

For \(n = 0 \) the wavelength is stretched and the phase velocity becomes infinite

• Light oscillates in time but not in space; oscillations are in phase everywhere

Terminology: ZIM= zero-index material; ENZ=epsilon near zero; EMNZ= epsilon and mu near zero
Physics of Epsilon-Near-Zero (ENZ) Materials

• Radiative processes are modified in ENZ materials

Einstein A coefficient (spontaneous emission lifetime = 1/A)
\[A = n \, A_{\text{vac}} \]
We can control (inhibit!) spontaneous emission!

Einstein B coefficient
Stimulated emission rate = B times EM field energy density
\[B = B_{\text{vac}} / (n \, n_g) \]
Optical gain is very large!

Equations are shown for nonmagnetic (\(\mu = 1 \)) materials

• Implications:
 - If we can inhibit spontaneous emission, we can build thresholdless lasers.
 - Expect superradiance effects to be pronounced in ENZ materials.

Einstein, Physikalische Zeitschrift 18, 121 (1917).
Optics of Zero-Index Materials

• Snell’s law leads to intriguing predictions

\[n_1 \sin \theta_1 = n_2 \sin \theta_2 \]

• Light always leaves perpendicular to surface of ENZ material!

\[n = 0 \quad | \quad n = 1 \]

• Thus light can enter an ENZ material only at normal incidence!

Some Consequences of ENZ Behavior - 2

- Super-coupling (of waveguides)

 ![Diagram of super-coupling](image)

- Coupling between two distant waveguides

 ![Diagram of coupling](image)

- Automatic phase matching of NLO processes

 - Recall that we need $\Delta k = 0$, but when $n=0$

 $k = n\omega/c$ vanishes and so does Δk.

 - We have observed this effect in a Dirac-cone, zero-index metamaterial.

 - Usual four-wave mixing process

 ![Diagram of four-wave mixing](image)

 - With zero-index materials we can have

 ![Diagram of zero-index](image)

Physics and Applications of Epsilon-Near-Zero Materials

• Physics of ENZ Materials
• Huge NLO Response of ITO and ITO Metastructures
• Applications of ENZ Materials
Implications of ENZ Behavior for Nonlinear Optics

Here is the intuition for why the ENZ condition is of interest in NLO

Recall the standard relation between n_2 and $\chi^{(3)}$

$$n_2 = \frac{3\chi^{(3)}}{4\epsilon_0 c n_0 \text{Re}(n_0)}$$

Note that under ENZ conditions the denominator becomes very small, leading to a very large value of n_2

Footnote:

Standard notation for perturbative NLO

$$P = \chi^{(1)}E + \chi^{(2)}E^2 + \chi^{(3)}E^3 + \ldots$$

P is the induced dipole moment per unit volume and E is the field amplitude.

Also, the refractive index changes according to

$$n = n_0 + n_2 I + n_4 I^2 + \ldots$$
How to Choose an Epsilon-Near-Zero Material

• Electrical conductors
 All conductors display ENZ behavior at their (reduced) plasma frequency
 Recall the Drude formula
 \[\epsilon(\omega) = \epsilon_\infty - \frac{\omega_p^2}{\omega(\omega + i\gamma)} \]
 Note that \(\text{Re} \epsilon = 0 \) for \(\omega = \omega_p/\sqrt{\epsilon_\infty} \equiv \omega_0 \).
 ENZ wavelength usually restricted to a limited range in the visible.

• Electrical insulators (dielectrics)
 Dielectrics can show ENZ behavior at their (optical) phonon resonance.
 ENZ wavelength restricted to a limited range in the mid-IR.

• Metamaterials
 Can design the material so that the ENZ or EMNZ wavelengths are at any desired value.

• Challenge (for any material system). For low loss, we want \(\text{Im} \epsilon \) as small as possible at the wavelength where \(\text{Re} \epsilon = 0 \).
Nonlinear Optics of Indium Tin Oxide (ITO)

• We recently reported that, at its ENZ wavelength, ITO possesses a nonlinear coefficient n_2 that is 100 times larger than those of previously reported materials [1].

• ITO is a degenerate semiconductor (so highly doped as to be metal-like).

• ITO has a large density of free electrons, and a bulk plasma frequency corresponding to a wavelength of approximately 1.24 μm.

• Dielectric properties of ITO are well described by the Drude formula.

$$\epsilon(\omega) = \epsilon_{\infty} - \frac{\omega_p^2}{\omega(\omega + i\gamma)}$$

• Note that aluminum-doped zinc oxide (AZO), another transparent conducting oxide, also has strong nonlinear response at its ENZ wavelength [2].

Huge, Fast NLO Response of Indium Tin Oxide at its ENZ Wavelength

- ellipsometry

\[\lambda = 1240 \text{ nm} \]

- overall change in refractive index of 0.8

- sub picosecond response time

\[n_2 \text{ can be } 3.4 \times 10^5 \text{ times larger than that of silica glass} \]

M. Z. Alam et al., Science 352, 795-797 (2016)
An ENZ Metasurface

- We functionalize ITO by creating a photonic metasurface
- We obtain an even larger NLO response by placing a gold antenna array on top of ITO.
 - Lightning rod effect: antennas concentrate the field within the ITO
 - Coupled resonators: ENZ resonance and nano-antennas

Concept:

SEM:

The material exhibits extremely large n_2 over a broad spectral range. The magnitude of the on-resonance value is 7 orders of magnitude larger than that of SiO$_2$.

Nonlinear Optical Properties of a Layered Metamaterial in its ENZ Region

Do layered metamaterials also show enhanced NLO response at ENZ wavelength?

- By controlling the metallic fill fraction ρ, we can set the ENZ wavelength to be anywhere from 300 to 700 nm. We use $\rho = 0.2$, which corresponds to 500 nm. We deposit five layer pairs.
- Note that the real part of epsilon vanishes at 508 nm, close to the design wavelength. The SEM shows our structure. Ag thickness = 16 nm; silica thicness = 65 nm.
- We perform Z-scan measurements on the sample. Note the enhanced response of the composite as compared to a single layer of silver.
- Note the pronounced peak in the value of n_2 around the ENZ wavelength. We find a good but not perfect agreement with a simple effective medium theory.

Suresh, Reshef, Alam, Upham, Karimi and Boyd
Physics and Applications of Epsilon-Near-Zero Materials

- Physics of ENZ Materials
- Huge NLO Response of ITO and ITO Metastructures
- Materials for ENZ
- Applications of ENZ Materials
Wavelength Conversion by Time Refraction

- Recall that in space refraction (normal refraction) frequency is conserved but the wavelength is changed

\[\frac{c}{f} = n \cdot \lambda \quad \rightarrow \quad n_1 \lambda_1 = n_2 \lambda_2 \]

- Time refraction (analog of space refraction)

\[\frac{c}{f} = n \cdot \lambda \quad \rightarrow \quad n_1 f_1 = n_2 f_2 \]

Photon frequency (energy) is changed because of the temporal change in index, but the wavelength (inverse of momentum) is conserved in the absence of any spatial asymmetry.

- Time refraction is an alternative way of understanding frequency broadening and shifting by self-phase modulation:

\[\delta \omega(t) = \frac{d}{dt} \phi_{NL} = \frac{d}{dt} [n_2 I(t) L \omega / c] \]

Laboratory Study of Wavelength Conversion by Time Refraction

• Pump beam creates a time-varying refractive index in ITO sample
• Frequency of probe beam is thereby modified.

OPA = optical parametric amplifier
wavelength = 1240 nm
pulse duration = 120 fs
OSA = optical spectrum analyzer
Results: Adiabatic Wavelength Conversion by Time Refraction

Experimental results at 1240 nm

Probe phase and amplitude are measured by frequency-resolved optical gating (FROG)

The wavelength shift can be controlled by the pump intensity and the sign of the time delay.

- The observed effect is 100 times larger with almost 100 times smaller propagation distance than previous reports of AWC.
- Application: wavelength-division multiplexing for telecom

Real-Time Holography with THz Refresh Rates

• Goal: Real-time holography with video or much faster refresh rates.

• The ultrafast response of ITO permits THz refresh rates.

• Important applications involve image processing and signal processing.

• Current real-time holographic materials cannot even support video frame rates.

• Demonstration of image processing (edge enhancement).

Alam, Fickler, Reshef, Giese, Upham, and Boyd
Some Potential Applications of ENZ Behavior

(a) Non-magnetic isolation
- Forward direction
 - Geometry mismatch.
 - Non-uniform power distribution.
 - Breaking reciprocity.
- Backward direction
 - Input beam
 - No output beam
 - Intense input beam

(b) Full-band shifting and conjugation
- Pump
- > 10 nm bandwidth
- Input beam
- Output beam
- NLO-ENZ
- Dielectric
- Wideband input beam + pump
- Output beam
- NLO-ENZ
- Dielectric
- Output beam
- Forward FWM
- Backward FWM
- Output photons
- Single photon detector
- Interference

(c) High-speed tunable interferometers
- Input beam
- NLO-ENZ
- Mach-Zehnder interferometer
- Interference
- Output beam

(d) On-demand quantum emitter
- Pump
- Short pulse laser
- Quantum emitter embedded in NLO-ENZ
- Output photons
- Single photon detector
Special Thanks To My Students and Postdocs!

Ottawa Group

Rochester Group