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Quantum Imaging

e Goal of quantum imaging is to produce “better’” images
using quantum methods

- image with a smaller number of photons
- achieve better spatial resolution
- achieve better signal-to-noise ratio

* Alternatively, quantum 1maging exploits the quantum
properties of the transverse structure of light fields



Quantum Lithography: Concept of Jonathan Dowling

e Entangled photons can be used to form an interference pattern with
detail finer than the Rayleigh limit

e Resolution = A/2N, where N = number of entangled photons
phase shift ¢

Boto et al., Phys. Rev. Lett. 85, 2733, 2000.
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Quantum spatial superresolution by optical centroid
measurements, Shin, Chan, Chang, and Boyd,
Phys. Rev. Lett. 107, 083603 (2011).
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f | See also, Quantum Lithography: Status of the Field,

— R.W. Boyd and J.P. Dowling, Quantum Information
‘ ‘ ‘ ‘ ] Processing, 11:891-901 (2012).
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Superresolution

* What does quantum mechanics have to say about one’s ability to achieve
superresesolution?

* And what is superresolution? We will take it to mean achieving spatial
resolution in an optical imaging system that exceeds the Rayleigh or
Abbe criterion.

Resolved
— Rayleigh criterion: the

angular separation of two

stars must be greater than o
122 /D, where Dis the ~ Atlimitof
diameter of the collecting resolution
aperture.

Not resolved




Mode Decomposition and Imaging

1. It 1s most natural to perform imaging in co-ordinate space, that is to
measure the intensity /(x) as a fuction of position.

2. However, one can alternatively describe an image by decomposing it
into any complete, orthogonal basis set, such as the Hermite-Gauss (HG)
or Laguerre-Gauss (LG) modes.

3. There are advantages to describing images in terms of a mode decomposition
(a) often a small number of parameters can characterize an image
(b) techniques exist for characterizing and manipulating LG and HG modes

(¢) the mode dcomposition can be used for superresolution



Mankei Tsang and Rayleigh’s Curse

* Mankei Tsang and coworkers speak of Rayleigh’s curse as the result that angular
resolution for incoherent sources is limited to 1.22 A / D, where D is the diameter

of the collecting aperture.

e They show that this limitation is the result of measuring the intensity distribution

I(x) of the light in the image plane.

* They also show through
quantum measurement
theory that there would
be no limitation if one
were instead to measure
the complex field ampli-
tude in the image plane.

* In addition, they show
that there 1s no limitation
if one measures the
mode amplitudes after
performing a mode
decomposition of the field.
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M. Tsang, R. Nair, and X.-M. Lu, “Quantum theory of superresolution for two incoherent optical point sources,” Phys. Rev. X 6, 031033 (2016).



Mankei Tsang and Rayleigh’s Curse - II

Manke1 Tsang’s super-resolution procedure [1] 1s known as SPADE
(SPAtial-mode DEcomposition).

It been confirmed [2-4] for transverse resolution.

What about axial resolution, which is also very important?

1. M. Tsang, R. Nair, and X.-M. Lu, Phys. Rev. X 6, 031033 (2016).

2. W.-K. Tham, H. Ferretti, and A. M. Steinberg, Phys. Rev. Lett. 118, 070801
(2017).

3. M. Patr, B. Stoklasa, Z. Hradil, L. L. Sanchez-Soto, and J. Rehacek, Optica 3,
1144 (2016).

4. F. Yang, A. Tashchilina, E. S. Moiseev, C. Simon, and A. I. Lvovsky, Optica 3,
1148 (2016).
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Laboratory Results: Axial Superresolution

Direct imaging
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Mankei Tsang and Rayleigh’s Curse - 111

« Mankei Tsang’s SPADE method can lead to a factor-of-two increased
accuracy in determining the separation of two point sources.

 Can this method be applied to the task of increasing the sharpness of
more complicated (natural) images?
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Nonlocal Quantum Aberration Correction

- Can a wavefront corrector in the idler path correct for aberrations
in the signal path? (When measured in coincidence.)
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Nonlocal Quantum Aberration Correction

- Can a wavefront corrector in the idler path correct for aberrations
in the signal path? (When measured in coincidence.)
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« This situation is reminiscent of Franson’s dispersion cancellation,
in the time domain.

- Recall strong similarity between time and spatial domains

e
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. Let's remind ourselves about Franson’s dispersion cancellation.



Nonlocal Dispersion Cancellation

- Laboratory setup 0.15¢
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- We replace the dispersive elements with
wavefront aberrators and measure the
distortion of the pulse transverse profile. J. D. Franson, Phys. Rev. A 45, 3126 (1992).



Laboratory Results

(a) no aberration (b) aberration idler (c) aberration signal (d) cancellation
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Nonlocal Aberration Cancellation for a Real Object
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Earlier Work on Aberration Correction

week ending

PHYSICAL REVIEW LETTERS 5 DECEMBER 2008

PRL 101, 233603 (2008)

Even-Order Aberration Cancellation in Quantum Interferometry
Cristian Bonato,l’2 Alexander V. Sergienko,"3 Bahaa E. A. Saleh,1 Stefano Bonora,2 and Paolo Villoresi?
'Department of Electrical & Computer Engineering, Boston University, Boston, Massachusetts 02215, USA
2CNR-INFM LUXOR, Department of Information Engineering, University of Padova, Padova, Italy

3Department of Physics, Boston University, Boston, Massachusetts 02215, USA
(Received 18 July 2008; published 2 December 2008)

PHYSICAL REVIEW A 84, 043817 (2011)

Nonlocal compensation of pure phase objects with entangled photons

Simone Cialdi”
Dipartimento di Fisica dell’ Universita degli Studi di Milano, 1-20133 Milano, Italy and
INFN, Sezione di Milano, I-20133 Milano, ltaly

Experimental observation of aberration
cancellation in entangled two-photon
beams

L. A. P. Filpi, M. V. da Cunha Pereira, and C. H. Monken*

Departamento de Fisica, Universidade Federal de Minas Gerais, Caixa Postal 702,
Belo Horizonte, MG 30123-970, Brazil

Received 5 Nov 2014; revised 18 Jan 2015; accepted 23 Jan 2015; published 9 Feb 2015
23 Feb 2015 | Vol. 23, No. 4 | DOI:10.1364/0OE.23.003841 | OPTICS EXPRESS 3841

H. Defienne et al., PRL, 121, 233601 (2018)
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Conclusions

* Demonstrated effect of aberrations on transverse entanglementof photons.
* Observed simultaneous even- and odd-order nonlocal aberration cancellation.

* Observed nonlocal cancellation of defocus in quantum ghost imaging.

* Manuscript describing these results 1s presently in review

My coauthors

Enno Giese Boris Braverman  Nick Black Stephen Barnett

Nicholas Zollo (not pictured)
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Ghost (Coincidence) Imaging

object to be 1maged "bucket" detector
— | PDC /
/
T - coincidence
entangled photon pair photodete(or array Circuitry

e Obvious applicability to remote sensing!
(imaging under adverse situations, bio, two-color, etc.)

e Is this a purely quantum mechanical process? (No)
e Can Brown-Twiss intensity correlations lead to

ghost imaging? (Yes)
Strekalov et al., Phys. Rev. Lett. 74, 3600 (1995). Benr}ink, Begtley, Boyd, a}nd Howell, PRL 92 033601 (2004)
Pittman et al., Phys. Rev. A 52 R3429 (1995). Gatq, Brambgla, and Lugiato, PRL 90 133603 (2003)
Abouraddy et al., Phys. Rev. Lett. 87, 123602 (2001). Gatti, Brambilla, Bache, and Lugiato, PRL 93 093602 (2003)

: Padgett Group
Bennink, Bentley, and Boyd, Phys. Rev. Lett. 89 113601 (2002).



Two-Color Ghost Imaging

New possibilities afforded by using different colors in object and reference arms

bucket detector
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Spatial resolution depends on wavelength used to illuminate object.

Two-Color Ghost Imaging, K.W.C. Chan, M.N. O’Sullivan, and R.W. Boyd, Phys. Rev. A 79, 033808 (2009).



Wavelength-Shifted (Two-Color) Ghost Microscopy

e Pump at 355 nm produces signal at 460 nm and idler at 1550 nm
e Object is illuminated at 1550 nm, but image is formed (in coincidence) at 460 nm

» Wavelength ratio of 3.4 1s the largest yet reported.

Setup

Typical images

Photon-sparse microscopy: visible light imaging using infrared illumination, R.S. Aspden, N. R. Gemmell, P.A. Morris, D.S. Tasca, L. Mertens,
M.G. Tanner, R. A. Kirkwood, A. Ruggeri, A. Tosi, R. W. Boyd, G.S. Buller, R.H. Hadfield, and M.J. Padgett, Optica 2, 1049 (2015).



Quantum Imaging by Interaction-Free Measurement
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M. Renninger, Z. Phys. 15S, 417 (1960).
R. H. Dicke, Am. J. Phys. 49, 925 (1981).
A. Elitzur and L. Vaidman, Found. Phys. 23, 987 (1993).
L. Vaidman, Quant. Opt. 6, 119 (1994).
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P. Kwiat, H. Weinfurter, T. Herzog, A. Zeilinger, and M. A. Kasevich, Phys. Rev. Lett. 74,4763 (1995)
A. G. White, J. R. Mitchell, O. Nairz, and P. G. Kwiat, Phys. Rev. A 58, 605 (1998).
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Interaction-Free Measurements and Entangled Photons

O D2
small opaque object \
/ i / D D1

two

spatially /
entangled /

photons

If detector D2 clicks, will the spot size
on the detector array measured in
coincidence become smaller?

photodetector array

* Does an interaction-free measurement constitute a “real” measurement?

» Does it lead to the collapse of the wavefunction of its entangled partner?

« More precisely, does the entire two-photon wavefunction collapse?



Experimental Results

Interaction-free ghost image of a straight wire

coincidence counts singles counts

 Note that the interaction-free ghost image 1s about five times
narrower than full spot size on the ICCD camera

 This result shows that interaction-free measurements
lead to wavefunction collapse, just like standard measurements.

Zhang, Sit, Bouchard, Larocque, Grenapin, Cohen, Elitzur, Harden, Boyd, and Karimi,
Optics Express 27,2212-2224 (2019).



Is interaction-free imaging useful?

Interaction-free imaging allows us to see what something
looks like in the dark!

Could be extremely useful for biophysics. What does the
retina look like when light does not hit it?



Special Thanks To My Students and Postdocs!
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