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Abstract
From its seemingly non-intuitive and puzzling nature, most evident in numerous EPR-like
gedanken experiments to its almost ubiquitous presence in quantum technologies,
entanglement is at the heart of modern quantum physics. First introduced by Erwin
Schrödinger nearly a century ago, entanglement has remained one of the most fascinating
ideas that came out of quantum mechanics. Here, we attempt to explain what makes
entanglement fundamentally different from any classical phenomenon. To this end, we start
with a historical overview of entanglement and discuss several hidden variables models that
were conceived to provide a classical explanation and demystify quantum entanglement. We
discuss some inequalities and bounds that are violated by quantum states thereby falsifying the
existence of some of the classical hidden variables theories. We also discuss some exciting
manifestations of entanglement, such as N00N states and the non-separable single particle
states. We conclude by discussing some contemporary results regarding quantum correlations
and present a future outlook for the research of quantum entanglement.

Keywords: quantum entanglement, hidden variables, foundations of quantum mechanics,
contextuality

(Some !gures may appear in colour only in the online journal)

1. Introduction

Until the beginning of the twentieth century, classical mechan-
ics, e.g. Newtonian or Lagrangian, together with Maxwell’s
electrodynamics were successful in describing and prognos-
ticating nearly all physical phenomena. Eventually, classical
physics failed to describe several effects such as black-body
radiation, Compton scattering, and the photoelectric effect
[1]. Starting with the introduction of the apparently smallest
energy quantum by Max Planck [2], the formalism of quan-
tum mechanics was developed in the 1920s to describe the
atomic and subatomic world. Since its inception, quantum the-
ory has found numerous theoretical and practical applications
in physics, and has even branched out to areas such as biology
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[3–5], chemistry [6–8], and computer science [9–13]. Count-
less experiments have validated its predictions, and quantum
theory remains today one of the most successful scienti!c the-
ories developed by mankind. Although very few people dis-
agree or question the correctness of quantum formalism as a
mathematical model, its foundational aspects still confound
physicists even after more than 90 years since its initial for-
mulation. Issues such as the nature of the wave function and
its collapse (in the Copenhagen interpretation) and the state
superposition, as well as entanglement, still inspire debates
among physicists [14–16]. Apart from the ‘standard’ Copen-
hagen interpretation, there are several other interpretations of
the quantum formalism such as the pilot wave theories (e.g.
Bohmian mechanics [17, 18]), many worlds theories [19],
QBism [20], the retro causal interpretations [21, 22], and many
more. The ‘apparent incompleteness of the wave function
description was one of the main reasons that led to these differ-
ent interpretations. Therefore, physicists suggested to augment
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the wave function with different entities, nowadays referred to
as hidden variables [23]. Among the different classes of hidden
variables, local [24] and crypto-nonlocal hidden variable the-
ories [25] have been tested and ruled out experimentally, thus
showing quantum mechanics to be incompatible with local
realistic and even some non-local realistic theories. Alterna-
tively, as the formalism perfectly describes the application of
quantum theory to physical problems, many scientists choose
to not dwell on the meaning behind the formalism, i.e. on
the foundations of quantum mechanics, but rather adopt the
famous ‘Shut up and calculate’ proverb [26]. However, some
relatively new developments in closing various experimental
loopholes, e.g. freedom-of-choice, fair-sampling, communica-
tion (or locality), coincidence and memory loopholes [27–32],
have led to a resurgence of interest in quantum foundations,
especially in quantum entanglement, even including a global
test of entanglement involving many countries, institutes and
layman participants [33].

Researchers have also been striving to reach a clear under-
standing of what really differentiates a quantum theory from
a classical theory. For instance, the concept of superposi-
tion also appears in classical wave mechanics. In Young’s
double-slit experiment, coherent light waves, diffracted from
two slits, superpose and interfere constructively or destruc-
tively at different positions in space, resulting in bright and
dark fringes at the far-!eld region of the slits. This experi-
ment, easily explained by Maxwell’s equations, is conceptu-
ally different when repeated with a single photon source, or
any single quantum objects. Though the probability of detect-
ing photons in the far-!eld region follows the same fringes
pattern, one may ask ‘which slit does the photon choose to tra-
verse through?’ One can assign some sort of unknown local
physical parameters (hidden variables) which determine the
path of the single photon. However, these ‘hidden variables’
are incapable of describing the experimental outcome at the
single-photon regime. Even in principle, if we have some way
of obtaining the which-path information, then the interference
pattern is different. It is impossible to assign local hidden vari-
ables to describe the photon’s whereabouts before it is actually
detected on the screen. These kinds of experiments, analyz-
ing particles at the atomic or molecular level [34–41], touch
the very heart of quantum foundations and, in fact, accord-
ing to Feynman the two-slit experiment contains ‘the only
mystery’ of quantum mechanics [42, 43]. This renders quan-
tum mechanics completely different from any classical the-
ory, and classical electrodynamics in particular, for the above
example, and also illustrates many of the questions that have
been puzzling scientists since the last century. Very recently,
wave super positions among different degrees of freedom of
a physical system, e.g. polarization and spatial modes of an
optical beam, have been referred to as ‘classical entanglement’
[44, 45]. We believe that the term ‘classical entanglement’ is
a misnomer as it can easily lead to confusion among non-
experts and, sometimes, even experts in the !eld. First, clas-
sical electrodynamics can perfectly describe the physics, as
well as correlations, among these different degrees of freedom
of optical waves. Thus, there is no need to invoke quantum
mechanics for super positions of different degrees of freedom

of light. Moreover, entanglement is the fundamental feature
of quantum physics between two (or more) systems and the
consequences drawn from the obtained correlations do not
apply to any classical system, i.e. classical correlations cannot
lead to the same conclusions as quantum entanglement. While
analogies might be seen in the mathematical formulation, the
possibility of spatial separation, which is the key aspect of
entanglement, does not hold for the classical counterpart.
However, it is important to point out that superposition among
different degrees of freedom of a quantum object, e.g. sin-
gle photon [46, 47] or neutron [48], can be used to test the
contextuality of quantum mechanics, which is a rich subject
of research in itself [47]. Historically, the term entanglement
(‘verschr’‘ankt’ in German) was introduced by Schrödinger
to describe nonlocal correlations among different quantum
systems. Numerous experiments performed on multi particle
entangled states, such as the Hong–Ou–Mandel effect [49],
the Franson interferometer [50], etc. have exhibited correla-
tions that do not have any classical counterparts, thus showing
entanglement to be purely a quantum effect. Here, we try to
provide a comprehensive perspective on entanglement, local
and crypto-nonlocal hidden variables, as well as contextual
hidden variable theories. We further discuss the relatively new
terminology of ‘classical entanglement’ and hope to clarify its
limitations. In addition to these concepts, some recent devel-
opments in understanding entanglement, e.g. improvements of
nonlocal bounds and their relation to generalized uncertainty
principles. We conclude with a future outlook in these areas.

2. Popper’s diffraction experiment

In 1934, Karl Popper proposed a thought experiment [51]
with entangled particles aimed at analyzing the correctness of
the Copenhagen interpretation of quantum mechanics. In his
experiment (!gure 1), he considered a pair of particles entan-
gled in position and transverse momentum that are traveling
in opposite directions towards the two slits. When one of the
particles passes through a slit, then by virtue of entanglement
we also acquire position information of the second particle.
Popper then analyzed the two possible ways the measurement
result of the momentum of the second particle could unfold.
The !rst one, which he argued, is according to his understand-
ing of the Heisenberg uncertainty principle, is that position
measurement of !rst particle should cause a large spread in
the momentum of the second particle. Heisenberg uncertainty
principle for position and momentum of a single particle states,

∆x∆p ! !
2

, (1)

where ∆x and ∆p are the uncertainties in the position and
momentum, respectively. We see that, according to the Heisen-
berg uncertainty relation, when the position is known precisely
there is a large spread in the momentum. However, this violates
the principle of causality as, due to the narrowing or widen-
ing of the slit for the !rst particle, we would instantaneously
affect the momentum spread of the second particle. Therefore,
according to Popper, we are presented with the choice between
relativistic causality and the Copenhagen interpretation.
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Figure 1. Popper’s ghost diffraction setup. Two entangled particles
which we label as 1 and 2 travel in opposite directions from a source
S. One of the particles, say particle 1, passes through a slit. We then
look at the effect of it, i.e. changing the uncertainties in the position
of particle 1, on the momentum spread of particle 2. The green curve
is the original particle wave function, and the red curve is the second
particle’s wave function after particle 1 passes through the slit.
While particle 2 is more localized, the momentum spread remains
constant, thereby saturating the uncertainty relation, but not
violating it.

Popper suggested that the momentum spread would not change
in an experiment and came to the conclusion that the Copen-
hagen interpretation must be inadequate [52].

Looking at this experiment more closely, when consider-
ing the uncertainty relation for the second particle, we should
use the uncertainties in position and momentum that are con-
ditioned upon the measurement result of the !rst particle. The
uncertainty relation reads,

∆(x2|x1)∆(p2|x1) ! !
2

, (2)

where ∆(x2|x1) and ∆(p2|x1) are the uncertainties in the posi-
tion and the momentum of the second particle, respectively
conditioned upon the outcome of the position measurement
of the !rst particle. A recent experiment performed using
entangled photons generated by spontaneous parametric down
conversion (SPDC) [53, 54], has shown that, while there is
no spreading of the wave function, it is still consistent with
the standard quantum formalism and the conditioned uncer-
tainty principle. While there is less uncertainty in position,
the momentum uncertainty remains the same and the prod-
uct saturates the uncertainty relation but does not violate it.
Several other experiments analyzing the different aspects of
Popper’s experiment have also vindicated the correctness of
standard quantum formalism [53–59]. Popper’s experiment
!rst showed that entangled states raise profound questions
about the nature of quantum mechanics, and indeed we will
see in the subsequent sections how entanglement plays a
fundamental role in quantum foundations.

2.1. EPR and local realism

In 1935, Einstein, Podolsky and Rosen (EPR) !rst consid-
ered the now well-known EPR pair of particles in their
highly in"uential paper [60], although without using the
term ‘entanglement’. Analyzing these entangled states, they

questioned the completeness of quantum mechanics. In line
with the EPR argument, a theory is complete only if it has
a physical quantity corresponding to each element of reality.
As de!ned by EPR, a physical quantity is real if its value
can be predicted with certainty irrespective of and before
any measurement. For example, in classical mechanics, the
set of position and momentum (or velocity) is suf!cient to
assign de!nite values to any other dynamical physical quanti-
ties such as kinetic energy, angular velocity, etc. In this sense,
the description provided by classical mechanics can be con-
sidered a complete characterization of reality for the parti-
cle. EPR questioned whether the wave function (or the state
vector) in quantum mechanics is a complete description of
physical reality. In quantum mechanics, two physical quan-
tities represented by non-commuting observables cannot be
measured simultaneously with arbitrary precision. Whenever
we measure one observable, we in"uence the state in such a
way that the measurement outcomes for the other observable
is disturbed. Therefore, simultaneous ‘realities’, at least as per
the EPR criteria, do not exist for non-commuting observables.
Thus, EPR argued that either (a) quantum theory is incomplete
because it cannot simultaneously describe the reality of both
of these observables, or (b) there is no simultaneous reality of
two non-commuting observables. By using an example of an
entangled system with two particles they claimed that there
exist two different simultaneous realities for a physical system
according to quantum theory. Thus, EPR concluded that quan-
tum theory must be incomplete in its current f orm. Note that
EPR excluded the possibility of measurements between space-
like separated events affecting each other instantaneously, or in
Einstein’s words ‘spooky action at a distance’ [61], as in their
opinion this would contradict special relativity. We will come
back to this important issue of non locality later in this section.

Although EPR phrased their argument in terms of position
and momentum correlation ( just like Popper), it is more useful
in the context of this manuscript to use the simpler example of
particles entangled in the spin degree of freedom introduced
by Bohm [62, 63]. Consider an anti-correlated spin state of
two particles A and B, e.g. generated via spontaneous decay,

|ψ〉 =
1√
2

(
|↑〉A|↓〉B − |↓〉A|↑〉B

)
, (3)

where |↑〉 and |↓〉 are spin up and spin down states in the
z direction respectively. Note that this formalism can be
extended to any other two-dimensional vector spaces, e.g.
photonic polarisation or path.

Let us assume that the two particles A and B are spatially
separated, such that any local physical interaction between
them is circumvented. One can perform a measurement on
the spin state of particle A in two different bases, say Eigen
states of the σ̂z and σ̂x operators, similar to the position and
momentum basis in the original EPR argument. Upon perform-
ing these measurements, two scenarios will arise for the spin
state of particle B:

σ̂z: depending upon the outcome of the particle A spin-
state measurement, the spin state of particle B is either
|↑〉B or |↓〉B —it is always opposite to the particle A

3



Rep. Prog. Phys. 83 (2020) 064001 D Paneru et al

spin-state, since the two particles are anti-correlated in the
spin degree of freedom. Upon !nding the particle A in,
say |↑〉A, according to EPR, since the !rst particle cannot
affect the second, the state of the second particle should
be |↓〉B and the spin in z direction has a value of −!/2.

σ̂x : now we perform the measurement in the Eigen basis of the
σ̂x operator, i.e. |±〉 = 1√

2

(
|↑〉 ± |↓〉

)
. The original state

written in this basis is,

|ψ〉 =
1√
2

(
|+〉A|−〉B − |−〉A|+〉B

)
. (4)

Note that this state has the same form as in the |↑〉 , |↓〉
basis. In fact, the original state has the same form in
any orthogonal basis, and we call such states rotation-
ally invariant. Let us assume that we observe particle A
in the |+〉 state. Again we do not disturb the second par-
ticle and thus we conclude particle B to be in the state,
|−〉 = 1√

2

(
|↑〉 − |↓〉

)
. This is an Eigen state of σ̂x with

spin −!/2.

Without in any way disturbing or interacting with the sec-
ond particle, we have obtained two simultaneous spin values
and states for σ̂z and σ̂x , e.g. |ψ〉B = |↓〉 and |ψ′〉B = |−〉 =

1√
2

(
|↑〉 − |↓〉

)
'= |ψ〉B. Therefore, EPR claim that it is possible

to assign the spin values for the two non-commuting opera-
tors. This means that the state vector description of quantum
mechanics must be an incomplete description of reality.

Nowadays, we understand that there are several problems
with the EPR reasoning. One is that a single particle state vec-
tor is not an accurate description of the single particle when it is
in an entangled state. Quantum mechanics resolves the ambi-
guity in spin values and the state representation of a particle in
an entangled state by using density matrices, which provide a
more complete way of representing mixed states. In the den-
sity matrix formalism, the joint state of the two particles is
represented by the density matrix,

ρ̂AB = |ψ〉 〈ψ|

=
1
2

(
|↑〉A|↓〉B − |↓〉A|↑〉B

) (
〈↑|A〈↓|B − 〈↓|A〈↑|B

)
.

If we consider only particle B, its density matrix is,

ρ̂B = TrA
(
|ψ〉 〈ψ|

)

=
1
2

(|↑〉B 〈↑| + |↓〉B 〈↓|) =
1
2

Î, (5)

where Î is the identity operator.
Similarly if we decide to measure in the |+〉 , |−〉 basis,

ρ̂AB = |ψ〉 〈ψ|

=
1
2

(
|+〉A|−〉B − |−〉A|+〉B

) (
〈+|A〈−|B − 〈−|A〈+|B

)
.

ρ̂′B = TrA
(
|ψ〉 〈ψ|

)

=
1
2

(|+〉B 〈+| + |−〉B 〈−|),

=
1
2

Î. (6)

Hence, we observe that density matrices resolve the ambigu-
ity in the state representation for photon B. Photon B pos-
sesses a unique density matrix, ρ̂′B = ρ̂B = Î/2 what we refer
to as maximally mixed state, independent of performing a
measurement on photon A spin state.

The state of photon B if considered independently of A is a
mixed state. On the contrary, as described before, a measure-
ment conditioned on the outcome of photon A leads to a per-
fectly predictable outcome for photon B, i.e. perfect correlation
in any bases.

There is another fundamental issue of non locality pertain-
ing to entangled states: the idea that measurements performed
in spatially separated locations can affect each other. EPR
assumed that nature is local and believed that it would vio-
late the principle of causality if experiments performed in one
location could affect experiments in far away places. As we
will discuss, Bell later showed that a local-realistic description
of entangled states is inconsistent with quantum mechanics,
effectively ruling out the local hidden variables description of
entangled states [24].

2.2. Schrödinger’s cat state and ‘entanglement’

Erwin Schrödinger, inspired by the EPR paper, introduced the
term ‘entanglement’ for the !rst time in his 1935 paper [64].
He used the phrase ‘entanglement of our knowledge of the
bodies’ to refer to the joint states where the state of one sys-
tem is intrinsically linked with the state of another system.
Additionally, he also provided a thought experiment involv-
ing a macroscopic (classical) object, namely a cat, to illustrate
the nature of quantum super positions in entangled states. In
his experiment, a cat is placed inside a steel chamber with a
small amount of radioactive material. The radioactive material
is coupled with a Geiger counter and a vial of poisonous hydro
cyanic acid. With a !nite probability, one atom of the radioac-
tive material may decay in the course of next few hours, which
then registers a click in the Geiger counter. A mechanical appa-
ratus is arranged such that once the counter clicks, it smashes
the bottle of hydro cyanic acid releasing the poisonous gas,
which kills the cat.

Initially, when no atom has decayed and the cat is alive, the
states of the atom and the cat are:

|ψ〉atom = |no-decay〉 , |ψ〉cat = |alive〉 . (7)

After some time, it is now impossible to say whether any
atom has decayed or not. Depending upon the state of the
radioactive atom, it is impossible in turn to ascertain whether
the cat is alive or dead. So, until an external observer checks
whether the atom has decayed or not, the cat is in a weird state
of being dead and alive at the same time. The joint state of the
atom and the cat is,

|ψ〉 = |atom and cat〉

=
1√
2

(
|decay〉|dead〉 + |no-decay〉|alive〉

)
. (8)

In the words of Schrödinger, our knowledge of the two bod-
ies becomes entangled. He further elaborated the de!nition
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of entanglement by adding that, even if the two bodies are
taken very far from each other, ‘knowledge of the two sys-
tems cannot be separated into the logical sum of knowl-
edge about two bodies’. It is not possible to express the
state of the cat and the atom independently of each other.
Until an external observer opens the door of the chamber,
thereby performing the measurement, the state remains in the
superposition.

Schrödinger initially proposed this thought experiment
linking the microscopic world to the macroscopic, classical
world to question the Copenhagen interpretation claiming such
‘blurred’ states where the cat is in some kind of superposition
of being alive and dead can only be observed in the micro-
scopic world. It raises the question when the macroscopic
objects stop being in a superposition and transform into either
one or the other of the alternatives, and if this transition needs
to happen at all. This is still an ongoing debate, and there
are numerous experiments pushing the limits of ‘macroscopic’
super positions [65–68]. More importantly, this experiment
illustrates the nature of quantum superposition in the context
of entangled states.

Wigner [69] proposed an extension of this experiment, with
two observers. One observer, say Wigner, stays outside the
chamber and another, say Wigner’s friend, is positioned inside
the chamber. Wigner’s friend, by virtue of being inside the
chamber can observe a de!nite outcome, i.e. whether the cat is
dead or alive. On the other hand, Wigner has no way of know-
ing the outcome until his friend mentions it to him. For Wigner,
the joint state of the whole system is,

|ψ〉 =
1√
2

[
|no-decay〉 |alive〉 |friend sees alive cat〉

+ |decay〉 |dead〉 |friend sees dead cat〉
]
. (9)

The paradox occurs when we ask ‘when did the cat stop being
in a superposition state?’ For Wigner’s friend, it occurs when-
ever he decides to check if the cat is alive. Wigner, however,
sees the state in superposition until his friend tells him the
outcome. The two observers will not agree about the time
when the cat will be in a de!nite state. Until today, simi-
lar arguments are discussed with novel twists [70–74], which
show that the perplexing nature of the entanglement between a
‘macroscopic’ (or classical) and a ‘microscopic’ (or quantum)
object is still worth a discussion.

3. Hidden variables

In the spirit of EPR, who argued that quantum mechanics is
incomplete, hidden variable theories attempt to supplement
quantum mechanics by adding some extra parameters. These
parameters, or the so called ‘hidden variables’, are assumed
to exist beyond the standard formalism of quantum mechanics
and are supposed to resolve the probabilistic nature of quan-
tum experiments. In other words, the hidden variables ensure
that in principle there can be a deterministic description of
all observables, which might just be unknown to us, thereby
restoring the realistic (in the above mentioned sense) descrip-
tion of nature. To look at a simple example of how such hidden

Figure 2. Four polarization-vectors A, B, C and D are represented
in Poincaré sphere. The angles made by each vector with the y-axis,
which determines which half of the x–y plane each vector lies,
could the hidden variables for polarization components in the other
two directions (x and y). Here the vectors A and C with projections
in the region shaded by blue have positive polarization in the x
direction, while vectors B and D with projections in the region
shaded by red have negative polarization in x direction.

variables work, consider, for instance, a photon’s polarization.
We could represent the polarization of a photon by a three
dimensional vector in a sphere called the Poincaré sphere,
with each dimension representing the corresponding polar-
ization component. Let us look at four such photons whose
polarization vectors make the same angle, θ < π

2 as shown in
!gure 2, with the z-axis, implying that they all have a positive
z component. However, along the x-axis and y-axis they can
have different polarization. In general, there can be in!nitely
many such vectors with the same z component that form a
cone around the z-axis. Standard quantum mechanics postu-
lates that for the particles measured to have positive polariza-
tion in the z-direction, the polarization measurement along say
the y axis can give rise, probabilistically, to either the posi-
tive, (meaning diagonal polarization |D〉) or negative (meaning
antidiagonal polarization |A〉). However, in the classical pic-
ture we considered, one can assign a hidden variableλ :=λ(φ),
such that,
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λ(φ) =

{
+1 if 0 " φ " π

−1 if π " φ " 2π
. (10)

The variable λ would then accurately describe the polarization
in the y direction. For the vectors with λ = +1, i.e. whose pro-
jection vector in the x–y plane lies on the positive half-plane
(the region shaded blue in !gure 2), the polarization in the y
direction is positive. For the vectors with λ = −1, i.e. whose
projection vector in the x–y plane lies on the negative half-
plane (the region shaded red in !gure 2) the polarization in the
y direction is negative. Here, λ serves an example of a hidden
variable for the polarization along y-direction.

Different variations of the hidden variables exist depending
on their properties and the dependence of these variables on
measurement settings in a quantum experiment. We present
below some classes of hidden variables theories, a few of
which have already been proven to be incompatible with the
predictions of quantum theory.

Local hidden variables and Bell’s proof. As the name
implies, a local hidden variables theory assumes that the hid-
den variables for a particular quantum system are local and
unaffected by experiments performed at any other spatially
separated locations. To de!ne it more formally, consider an
EPR-like setup with two space-like separated and strongly
correlated particles A and B. Again let λ be the hidden vari-
able, and A and B the spin values of A and B measured along
directions a and b, respectively. Then according to a local hid-
den variables theory, the measurement result A depends only
upon the measurement setting a and the hidden variable λ. It
is independent of B’s measurement setting b, and similarly
for B,

A = A(λ, a), (11)

B = B(λ, b).

We also assume that the hidden variable has probability distri-
bution ρ(λ). Apart from these, we do not make any assump-
tions about the nature of the hidden variable or its probability
distribution. Note that by such local hidden variables, the only
assumption made are locality and realism; hence, at this stage,
no knowledge of quantum mechanics has to be known. Then,
in this hidden variable formalism, the two particle correlation,
or the expectation value of the product of the two observations
of A and B, is then given by,

P(a, b) =
∑

λ

ρ(λ) A(a,λ) B(b,λ). (12)

In his seminal paper [24], Bell proved that any theoretical
prediction for measurement outcomes ful!lling the ideas of
locality and realism is upper bounded for a given set of mea-
surements (the so-called Bell inequality). He also showed that
quantum mechanics allows for the possibility to exceed this
bound proving that quantum correlations cannot be obtained
from any local realistic hidden variable theories with the form
described by equation (12).

Bell’s proof proceeds along the following lines [24]. Con-
sider three variables a, b and c as well as the following

algebraic quantity,

|ab − ac| − bc.

Now, if a, b, c = ±1, then the following inequality holds,

|ab − ac| − bc " 1. (13)

This can be seen by further simplifying the expression on
left as,

|a| · |b − c| − bc " 1 (14)

If both b and c have the same values, then the quantity on the
left becomes zero and the whole expression takes a value of
−1 " 1. In contrast, if b and c have different values, then the
expression on the left becomes 2 − 1 = 1 " 1.

The average values of the product terms in equation (13)
will also satisfy the inequality,

|P(a, b) − P(a, c)|− P(b, c) " 1. (15)

This is the inequality Bell derived in his original paper [24],
which is satis!ed by any classical hidden variable theories.
It is easy to see how quantum mechanics would violate this
inequality. Consider the same spin-anti-correlated EPR state
we considered before. Assume that a, b, and c are three vec-
tors along which we choose to measure the spin. Quantum
mechanically,

P(a, b) = − cos θa,b (16)

where θa,b is the angle between two vectors a and b. Now let
us suppose a, b, and c lie in the same plane, with a and c, and
b and c at 45◦ with each other, and b and a, at 90◦. So,

P(a, b) = 0,

P(a, c) = P(b, c) = −0.707.

Plugging it in equation (13), we obtain,

0.707 + 0.707 = 1.414 > 1,

clearly violating the bell inequality.
Experimentally the following form of Bell’s inequal-

ity [75], called the Clauser–Horne–Shimony–Holt (CHSH)
inequality, is commonly used,

|P(a, b) + P(a′, b) + P(a, b′) − P(a′, b′)| " 2. (17)

where a, b, a′, and b′ again are the different vectors along
which we can measure spin/polarization. If a′, b, a, and b′,
are separated successively by 45◦, then,

P(a, b) = P(a′, b) = P(a, b′) = − cos 45◦ = − 1√
2

,

P(a′b′) = − cos 45◦ =
1√
2
.

Then the inequality equation (17) is violated,

2
√

2 > 2.

which clearly shows that quantum mechanics can violate the
inequality. Now in an experiment, typically one would have
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Figure 3. Three different directions for the polarization
measurements: (a) 0, (b) −2π/3, and (c) +2π/3.

Table 1. Single photon polarization values in three different
directions in local hidden variable theory. # means the photon will
pass through the polarizer set in that direction and means that it
will be blocked by the polarizer.

Outcomes a1/b1(0) a2/b2(+2π/3) a3/b3(−2π/3)

1 # # #
2 # #
3 # #
4 #
5 # #
6 #
7 #
8

two parties sharing a maximally entangled state, measuring
the polarization/spin along the speci!ed vectors, and then the
expectation value of the product would be given in terms of the
detector counts as,

P(a, b) =
N++ − N+− − N−+ + N−−

N++ + N+− + N−+ + N−−
, (18)

and so on. Here N+− refers to the number of counts detected
along positive a and negative b and so on.

Since the appearance of Bell’s paper, numerous experi-
ments have been performed that attested the correctness of
quantum mechanics and falsi!ed the assumption of local hid-
den variables [29–33, 76], most recently even loophole-free
[28, 77, 78]. Contrary to the EPR assumption, nature does
seem to allow the measurement of one particle to affect the
‘reality’ of the other, if such reality does exist.

We present here a simpler proof of incompatibility of local
hidden variables with quantum mechanics. Consider a source
that prepares a pair of photons with perfectly correlated polar-
ization in any direction, i.e. if one is horizontally polarized then
the other is also horizontally polarized and so on. In our experi-
ment, we are able to measure the polarization of each of the two
photons, at angles 0, +2π/3, and −2π/3 using three different
polarizer settings (!gure 3).

Assuming that the polarization results in these three direc-
tions are pre-de!ned by local hidden variables before the mea-
surement, we tabulate all the eight possible combinations of
the hidden variables for each photon (table 1).

We then look at the results of Alice’s and Bob’s measure-
ments in two different directions (table 2) and note whether
they get the same results or not (table 3). From the table, we can

Table 2. Two photon polarization measurement results. a1b2 refers
to the polarizer for the !rst photon is set at 0 and that for second
photon is set at 2π/3, and so on. # means that both photons have
same outcomes for the directions speci!ed, i.e. either both photons
pass through the speci!ed polarizers or both are blocked. means
that they have different outcomes.

Outcomes a1, b2 a2, b3 a3, b1 Psame

1 # # # 1
2 # 1/3
3 # 1/3
4 # 1/3
5 # 1/3
6 # 1/3
7 # 1/3
8 # # # 1

Table 3. Possible combinations of the values of the binary variables
α, β, α′, and β′ as per the classical non-contextual theory. Pis are
the corresponding probabilities for the particular combination of
binary values of the variables.

Probability α β α′ β′

P1 +1 +1 +1 +1
P2 +1 +1 +1 −1
P3 +1 +1 −1 +1
P4 +1 +1 −1 −1
P5 +1 −1 +1 +1
P6 +1 −1 +1 −1
P7 +1 −1 −1 +1
P8 +1 −1 −1 −1
P9 −1 +1 +1 +1
P10 −1 +1 +1 −1
P11 −1 +1 −1 +1
P12 −1 +1 −1 −1
P13 −1 −1 +1 +1
P14 −1 −1 +1 −1
P15 −1 −1 −1 +1
P16 −1 −1 −1 −1

deduce that the probability of seeing the same result is always
at least 1/3. To see why this is true, let us assume we are deal-
ing with the pair of photons represented by the second row of
the table. Now if we randomly perform the measurement then,
one third of the time we would be measuring in the a1b2 basis
and we would see the states to be the same. In the remaining
two-thirds, we would see the states to be different. Looking at
rows 2–7 we see that each of them has the same probability,
1/3, for observing the same outcome. For the cases in rows 1
and 8, we get the same results every time. Hence if we assume
the existence of local hidden variables, then we should see the
same results at least one third of the time. One subtle point to
note here is that we have not made any assumptions about how
often each of the eight possible combinations occurs in nature.
Each of the eight possible combinations of the hidden vari-
ables could occur with any probability and still the result would
be the same. Therefore, according to a local hidden variable
(LHV) theory, the probability for observing the same outcome
is bounded as,

P(LHV, same) ! 1
3
. (19)
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Now we turn to quantum mechanics and what it tells us about
such states. For a source that produces photons with perfectly
correlated polarizations in any direction, the initial two-photon
state is an entangled state which is written as,

|ψ〉 =
1√
2

(
|H〉A|H〉B + |V〉A|V〉B

)
, (20)

where |H〉 and |V〉 refer to the horizontal and vertical polariza-
tion respectively.

Let us denote the three measurement directions (or polar-
ization bases) for A by ai, and for B by bi. Written in terms of
|H〉 and |V〉,

|a1〉 = |H〉 ,

|a2〉 = −1
2

|H〉 +

√
3

2
|V〉 ,

|a3〉 = −
√

3
2

|H〉 − 1
2

|V〉 ,

(21)

and similarly for B.
Then the probability of observing the same polarization in

the same basis is given by the cosine of the angle between
the two states, which is 2π/3 in our case. Hence, according
to quantum mechanics(QM),

P(QM, same) = cos2(2π/3) = 0.125. (22)

Thus, we observe that the probability obtained from the
assumption of local hidden variables contradicts the probabil-
ity derived by quantum mechanics. Experimentally, the results
have always vindicated the predictions of quantum mechan-
ics, thus favoring quantum mechanics over local hidden vari-
ables theories. Alongside with many Bell inequalities [76] that
were proposed to rule out local hidden variables models, it is
worth mentioning the existence of proofs which do not invoke
inequalities, most notably using GHZ states [79–81] which
show that local hidden variable theories cannot account for the
results even in an experiment with certain outcomes, and the
non-locality of single photons [82].

3.1. Nonlocal hidden variables theories

Until now we restricted the hidden variable model to be local,
which is an assumption well-justi!ed by another major physi-
cal theory known today, i.e. general relativity. However, as we
have seen above, local hidden variable models cannot explain
the correlations in entangled states; thus, it might be a natural
thing to ask if the locality assumption is too strong and can be
lifted to !nd an agreement with quantum mechanics. Leggett
laid out a more general nonlocal hidden variable theory [25],
which assumes that:

(a) Each pair of photons in an EPR-like setup is characterized
by a hidden variable λ.

(b) The distribution of the hidden variable λ, ρ(λ), is inde-
pendent of the measurement settings a, and b and the
results of the measurements A, and B of either of the
particles.

(c) The results of each measurements A and B depend upon
the hidden variable λ, as well as both of the measure-
ment settings a and b, and the results of the measurement
performed on the other particle. i.e.,

A = A(a, b,λ, B), (23)

B = B(a, b,λ, A). (24)

Previously, in the local hidden variable theory,
equation (11), we saw that the outcomes A and B depend
only on the hidden variable λ and the respective mea-
surement settings. In a local theory, the measurement
settings of A and its results cannot affect the outcomes
of B and vice versa, as it assumes that space-like sep-
arated events cannot in"uence each other. In contrast,
a nonlocal hidden variable theory assumes nature is
non-local, and, consequently, the outcomes for A and
B are dependent not only upon their respective mea-
surement settings, but also upon the setting of the other
party and their outcomes. In such a theory, the expec-
tation value of the product of the two outcomes is then
given by,

P(a, b) =
∑

λ

ρ(λ) A(a, b,λ, B) B(a, b,λ, A), (25)

or for the case of a continuous hidden variable λ,

P(a, b) =

∫

λ
dλ ρ(λ) A(a, b,λ, B) B(a, b,λ, A). (26)

Such nonlocal hidden variable models can describe any
correlations possible-they can both give rise to the quan-
tum mechanical predictions, for e.g. Bohmian mechanics
[17, 18], or in some cases even exceed the correlations
given by quantum mechanics. Although some of them
have to be considered non-physical, they are interesting
lines of thought themselves [83, 84]. To enable a test of a
subclass of such nonlocal hidden variables (NLHV) mod-
els called crypto-nonlocal theories, Leggett added another
condition, namely:

(d) The outcomes A and B each depend upon the measure-
ment setting of the other but are independent of the
outcome,

A(a, b,λ, B) =A(a, b,λ),

B(a, b,λ, A) =B(a, b,λ).

Let us look at a nonlocal hidden variable model [89]
that satis!es this condition. We will see how this model
successfully recreates quantum correlations for photons
when the polarization measurement vectors are con!ned
to a certain plane in the Poincaré sphere. As a conse-
quence, for measurements performed in that plane, the
model can even account for the violation of the CHSH
inequality [75], an inequality which is satis!ed by local
hidden variable theories. However once we start perform-
ing measurements in a different plane, this model fails to
recreate the quantum correlations. We will then look at
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the Leggett inequality that bounds correlations obtained
from this type of nonlocal hidden variable model, which
nevertheless is violated by quantum correlations.

Our two parties, Alice and Bob each share a pair of photons
A and B, with the initial polarization vectors u and v, respec-
tively. We denote the polarization measurement vectors by a
and b, respectively, for A and B. The measurement outcomes
A and B both are binary valued (±1) variables and as required
for a crypto-nonlocal theory, do not depend upon each other.
The hidden variable model predicts the measurement outcome
for A as follows,

A =

{
+1 if 0 " λ " λA

−1 if λA " λ " 1
,

where λA depends upon A’s initial polarization and the mea-
surement setting as,

λA =
1
2

(1 + u · a). (27)

Similarly for B,

B =

{
+1 if x1 " λ " x2

−1 if 0 " λ " x1 & x2 " λ " 1.

Now if we choose the parameters x1 and x2 such that,

x1 =
1
4

(1 + u · a − v · b + a · b), (28)

x2 =
1
4

(3 + u · a + v · b + a · b) (29)

then the model reproduces Malus’ law,

〈A〉 =

∫ λA

0
dλ−

∫ 1

λA

dλ = u · a,

〈B〉 =

∫ x2

x1

dλ−
∫ x1

0
dλ−

∫ 1

x2

dλ = u · b.

Also, the expectation value of the product of A and B is
given by,

〈AB〉 = −
∫ x1

0
dλ +

∫ λA

x1

dλ−
∫ x2

λA

dλ +

∫ 1

x2

dλ = −a · b,

(30)
which is the same expression as obtained from quantum
mechanics. However, the problem with this model is that it is
inconsistent for some measurement directions. To see how, we
!rst note that the variables x1 and x2 also have to satisfy the
condition,

0 " x1, x2 " 1. (31)

Substituting the expressions for x1 and x2, equations (28) and
(29), in the above equation, leads to the following inequality,

|a · b ± u · a| " 1 ∓ v · b. (32)

For this hidden variables model to successfully give rise
to quantum correlations, inequality (32) needs to be satis!ed.

Figure 4. (a) The nonlocal hidden variable model reproduces
quantum correlations and can even violate the CHSH inequality for
measurements performed along vectors a and b lying in the plane
(purple) perpendicular to the u and v. (b) Leggett’s inequality is
violated once the measurement vectors are not in the plane
perpendicular to u and v.

We observe that in a plane perpendicular to the initial polar-
ization vectors u and v, no matter what a and b we choose,
the inequality (32) is always satis!ed. Hence for any measure-
ment directions a and b lying in this plane (colored purple in
!gure 4), this model correctly predicts quantum correlations
and hence we can also observe the violation of the CHSH
inequality. However for some polarization vectors lying out-
side this plane, the inequality cannot be satis!ed, and this is
where the model fails.

For a nonlocal hidden variable model as described above,
when A uses two different measurement settings a1, a2, and
B uses three b1, b2 and b3 = a2, a more general Leggett’s
inequality is given by,

SNLHV = |E11(φ) + E23(0)| + |E22(φ) + E23(0)| (33)

" 4 − 4
π

∣∣∣∣sin
φ

2

∣∣∣∣ ,

where, Ekl is the expectation value of the product AkBl over all
the initial polarization directions u and v.

Ekl =

∫

u,v
du dv F(u, v) A(ak, bl,λ) B(ak, bl,λ), (34)

where F(u, v) is the distribution of the initial polarization of
two photons. Quantum mechanically, this expectation value is
given by,

Ekl = −ak · bl = − cos φak,bl . (35)

Substituting the expression in the left-hand side of inequality
(34), the quantity S takes the value,

SQM = |2(cos φ + 1)| . (36)

For some values of φ, SQM > SNLHV goes above the
upper bound set by equation (34) (the maximal violation
occurs whenφ = 18.8

◦
). Hence, we can conclude that the

crypto-nonlocal hidden variable theories also fail to fully
describe quantum correlations.

Experiments performed with photon pairs entangled in
polarization and spatial modes have indicated the violation of
Leggett’s inequality [89, 90]. Apart from the concepts of local
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and non-local realism, there is also the notion of macroscopic
realism whose incompatibility with quantum mechanics is
de!ned by the Leggett–Garg inequality [85, 86]. The incom-
patibility of macroscopic realism with quantum mechanics has
also been observed experimentally [87, 88].

3.2. Non-contextuality

After looking into correlations between space-like separated
quantum systems, we turn our focus to another feature of quan-
tum mechanics, namely the context of the measurement. Two
physical observables are non-commuting if they do not have
a set of simultaneous Eigen states. Therefore, the order in
which one measures the two non-commuting quantities affects
their measurement outcomes. Mathematically, the two mea-
surement results, say for observables Â and B̂, are related by
the uncertainty relation,

σAσB !
∣∣∣∣∣
[Â, B̂]

2i

∣∣∣∣∣ , (37)

whereσA and σB are the uncertainties in the two physical quan-
tities Â and B̂. The commutator, [Â, B̂], is zero if Â and B̂ com-
mute with each other, i.e. if their order of measurement does
not matter, and is non-zero if they do not commute (i.e. if their
order of measurement matters).

[Â, B̂]

{
= 0 if Â and B̂ commute.

'= 0 if Â and B̂ do not commute.

For the non-commuting physical quantities, we see that the
uncertainty principle forbids simultaneous assignment of pre-
determined measurement results. Moreover, if we now include
a third observable Ĉ that also commutes with Â, i.e. [Â, Ĉ] = 0,
which does not need to commute with B̂, i.e. [B̂, Ĉ] '= 0, the
value assigned to Â is considered to be non-contextual. In other
words, the outcome of a measurement should not be different if
the observable Â is measured alone, together with B̂ or together
with Ĉ. In the spirit of the EPR argument, one can now discuss
non-contextual realism by assigning prede!ned values v(Âi) to
all the observables Âi.

Therefore, non-contextuality, i.e. the notion that the mea-
surement of a physical quantity is independent of the mea-
surement of any other commuting physical quantities, or the
‘context’ of the measurement, seemed like a valid assumption
in quantum mechanics. However, Bell and Kochen–Specker
(BKS) [91–93] separately proved that it is impossible for the
commuting observables to have pre-existing values indepen-
dent of the context of the measurement. Kochen and Specker
considered special kinds of observables that have binary
Eigenvalues (0 or 1), e.g. projection operators, and proved that
it is impossible to assign values classically to the projection
operators in a 3-dimensional Hilbert space. For the proof, they
used projection operators along 117 different vectors. Cabello
later provided a simpler proof [94] of quantum contextuality,
involving only 18 projection directions in a four dimensional
Hilbert space. Additionally, Klyachko, Can, Binicioǧlu and
Shumovsky (KCBS) simpli!ed it even further and found a

proof that only requires 5 measurements for spin-1 particles
[95].

In the following, we focus on the latter, i.e. the KCBS ver-
sion of the Bell–Kochen–Specker theorem, as it is the most
simple BKS-proof regarding measurement settings and dimen-
sionality of the quantum state [95, 96]. Mathematically, if we
assume quantum theory to be non-contextual, then for a state ψ
described by commuting observables say {Â, B̂, . . .}, it is pos-
sible to assign an underlying value for the outcomes of each
observables as say {v(Â), v(B̂), . . .} independent and before
the actual measurement (non-contextual realism). Since we
know that the result of projective measurement of an observ-
able can return only one of its Eigenvalues, the value of the
observable also must be one of the Eigenvalues.

Now classically if these observables satisfy the equation,

f (A, B, . . .) = 0, (38)

then the pre-assigned values should also satisfy the equation,

f (v(A), v(B), . . .) = 0. (39)

Note that a special case of this logical step, i.e. equation (38)
⇒ equation (39), is the so-called sum rule

A = B + C ⇒ v(A) = v(B) + v(C). (40)

Let us now consider !ve numbers a, b, c, d, e that can either
take the value +1 or −1. For all possible combinations, the
following algebraic inequality has a minimal value of −3:

ab + bc + cd + de + ea ! −3. (41)

This can be easily seen because at least one term always needs
to be +1. As we already discussed above, according to a
non-contextual hidden variable model each measurement has
a prede!ned value, which is independent of the context, i.e.
v(A)B = v(A)C. As this holds for all members of the ensemble,
we can rewrite the inequality in terms of ensemble averages:

〈AB〉 + 〈BC〉 + 〈CD〉 + 〈DE〉 + 〈EA〉 ! −3. (42)

We note that this inequality holds not only for non-contextual
hidden variable models but also for any joint probability dis-
tribution describing the measurements.

However, KCBS realized that this inequality can be violated
by quantum mechanics using !ve measurements of a spin-
1 particle [95]. The measurements required are expressed by
the spin operator Âi = 2Ŝ2

i − I, where the operator Ŝ2
i has the

Eigenvalues 0 and 1 and, thus, needs to be rescaled and shifted
to realize the required ±1 values. The !ve observables Âi are
de!ned by the projection directions(li according to:

Âi = 2Ŝ2
i − I = I − 2

∣∣∣(li
〉〈

(li

∣∣∣ . (43)

Two measurements Âi and Âj (for i '= j) are commuting, i.e.
are compatible, if and only if the projections (li and (l j are
orthogonal, which means that we need to !nd !ve pairwise
orthogonal measurement directions. As the directions (li can
be directly depicted in a real three-dimensional space, we !nd
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Figure 5. Three-dimensional representation of the measurement
directions Âj. We see that each measurement is orthogonal to two
other directions and as such is compatible with it, i.e. commuting
with these two other measurements. However, when using a
quantum state Ψ along the symmetry axis, the inequality for
non-contextual hidden variable models given in formula (42) can be
violated.

that they form a pentagram. The maximal violation of the
above described minimal value for non-contextualhidden vari-
able can then be found for a quantum state Ψ that lies on
the symmetry axis of the pentagram (see !gure 5). If we now
use these !ve pairwise orthogonal projections as our measure-
ments on the quantum state Ψ0, the quantum mechanical pre-
diction is 5 − 4

√
5 ≈ −3.944; thus, we can surpass the lowest

limit given above. This simple proof demonstrates that quan-
tum mechanics cannot be modeled by a non-contextual hidden
variable model. Although there have been some discussions
about the general validity of an experimental test of quantum
contextuality [97], nowadays it has been generally accepted
to be a valid task and many of experiments have been con-
ducted [98], including one verifying the quantum mechanical
prediction for the above given KCBS proof [99].

Interestingly, Bell searched for a more physical assumption
than non-contextuality, and thus he studied locality instead.
The important connection between the two arguments is that,
simply phrased, in nonlocal hidden variable models, measure-
ments cannot depend on measurements done in a space-like
separated place. On the other hand, in non-contextual hidden
variable models, measurements can ‘only’ question the depen-
dence of the measurement on the context if local or nonlo-
cal. In other words, showing the mismatch between quantum
mechanics and local realistic theories according to the Bell
theorem is a stronger statement and as such includes (as a
special case) non-contextual realistic theories. Thus, the possi-
bility of space-like separation is an essential assumption in the
Bell argument and requires two entangled particles that can be
separated.

3.3. Single particle ‘entanglement’

So far we have only taken one degree of freedom of the quan-
tum system into account. However, there are other quantum
properties of single-particle systems that are similar in form to

those of multipartite entangled states, i.e. non-separable cor-
relations between two different degrees of freedom of a single
particle. For instance, if we pass a diagonally polarized light
through a polarizing beam splitter, it gets transformed to the
state:

|ψ〉 =
1√
2

(
|I,H〉 + |II,V〉

)
, (44)

where the |I,H〉 indicates that the photon is in path I and is hor-
izontally polarized, and similarly for |II,V〉. The mathematical
expression for such states cannot be separated into a product
of individual states in each of the two Hilbert spaces, quite
similar to the entangled states. Although lacking non locality,
these states have been shown to violate the CHSH inequal-
ity [47]. Such ‘entanglement’ tests can be used to probe the
non-separability of such states. However, by using Bell-like
inequalities, these experiments are challenging classical con-
cepts that are closer to non-contextuality rather than non local-
ity. Consequently, the violation of these inequalities rules out
the ‘local non-contextual hidden variable’ description for such
states.

We will discuss the details about such tests below [100],
following an idea that was originally proposed for non locality
by Hardy [82]. Let us look at three statements regarding prob-
abilities, which, when simultaneously satis!ed, would also
imply a fourth statement in classical probability theory. We
will then show that for certain quantum states and measure-
ments in which the !rst three statements are true, the fourth
statement turns out to be false, resulting in a contradiction with
the classical picture. We assume that:

P(α = +1, β = +1) = 0,
P(α = −1, β′ = −1) = 0,
P(α′ = −1, β = −1) = 0,

(45)

where, α,α′, β, and β ′ are all binary variables which can take
values ±1. P(α = +1, β = +1) refers to the probability that
α = +1 and β = +1, and so on. Now if all three statements
are true, then logically a fourth statement should follow:

P(α′ = −1, β′ = −1) = 0. (46)

Let us !rst see why this is true for a classical non-contextual
theory. We tabulate all the possibilities for these binary vari-
ables in table 3.

Looking at table 3, the !rst statement, i.e. P(α = +1, β =
+1) = 0 implies,

P1 + P2 + P3 + P4 = 0. (47)

Similarly, from the second and third statements,

P10 + P12 + P14 + P16 = 0 (48)

P7 + P8 + P15 + P16 = 0. (49)

Since probabilities cannot be negative, these state-
ments imply that the individual probabilities
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P1, P2, P3, P4, P7, P8, P10, P12, P14, P15, P16 are all zero. Now,
for the fourth statement to be true, the following expression
must be satis!ed,

P4 + P8 + P12 + P16 = 0. (50)

We observe that all the individual terms on the left-hand side
are already zero from the !rst three statements. Hence, it
follows that the fourth statement must be true.

Now in the quantum version, we assume that our usual two
parties, namely Alice and Bob, each have access to one of the
two different degrees of freedom of the single particle quantum
state:

|ψ〉 = cos γ|0〉A|1〉B − sin γ|1〉A|0〉B. (51)

The two kets can represent any two degrees of freedom of
a single particle (for e.g. path and polarization) in the two
dimensional Hilbert space. Alice can perform a measurement
of two projection operators α and α′, and Bob can perform his
measurement of projection operators β and β′.

The projection operators α, β and α′, β ′ are de!ned as,

α, β = |+〉 〈−| − |−〉 〈+| (52)

α′, β′ = |+〉′〈−| − |−〉′〈+|. (53)

where,

|+〉 = N
(√

sin γ|0〉 +
√

cos γ |1〉
)

(54)

|−〉 = N
(
−√

cos γ|0〉 +
√

sin γ |1〉
)

(55)

|+〉′ = N′
(√

cos3 γ|0〉 +
√

sin3 γ |1〉
)

(56)

|−〉′ = N′
(
−
√

sin3 γ|0〉 +
√

cos3 γ |1〉
)

(57)

and N = 1√
sin γ+cos γ and N′ = 1√

sin3 γ+cos3 γ
are the normal-

ization constants. For these states we !nd that the probabilities
are as de!ned in equation (45). However the expression for the
fourth probability is,

P(α′ = −1, β′ = −1) =

(
sin 4γ

4(cos3 γ + sin3 γ)

)2

(58)

For certain angles γ, this expression is not zero which is in
con"ict with the assumption that the values of the four opera-
tors can pre-exist before we conduct the measurement. Thus,
it disproves the non-contextual hidden variable description for
non-maximally separable states.

Spin-energy entangled states in massive single particles
such as neutrons have also been used [101] to demonstrate
the violation of Leggett type inequalities for the contextual
realistic hidden variables theories.

4. N00N states

After having discussed various scenarios where quantum sys-
tems involving one or two particles, show features that cannot
be explained with classical theories, we now turn to many-
body quantum systems that resemble bipartite systems and
exhibit interesting correlations. One such state is a N00N state
[102–104], which is an equal superposition of N indistinguish-
able particles in one mode and none in the other, and vice versa.
Mathematically, such states have the form,

|ψ〉 =
1√
2

(
|N〉a|0〉b + |0〉a|N〉b

)
, (59)

where the subscripts ‘a’ and ‘b’ now refer to the modes a and
b which photons can occupy, in contrast to our previous nota-
tion where the subscripts represented the photons themselves.
These states are sometimes also referred to as Schrödinger cat
states [105] as they represent a superposition of N particles (in
theory N could be arbitrarily large) in two distinct states, com-
parable to the ‘dead’ or ‘alive’ states. These N00N states have
interesting applications in quantum metrology [105–107] and
can provide sensitivity even up to the Heisenberg limit.

For our purposes, N00N states present an interesting case
of ‘entanglement’. For instance, let us consider the simplest
N00N state with just a single particle,

|ψ〉 =
1√
2

(
|1〉a|0〉b + |0〉a|1〉b

)
. (60)

Expressed in the number basis, here it looks like we have a
single particle ‘entangled’ with the vacuum. It gets even more
intriguing when we have a particle in this state interacting with
other atoms or particles. Let us look at a photon in such a state,
which is generated by passing a photon through a 50 : 50 beam
splitter, and creating a superposition between the two different
paths (modes). In each of the two paths, we place an atom in
a ground state such that it jumps into an excited state when it
comes in contact with the photon. Unless we perform a mea-
surement, we do not know which path the photon has taken and
which one of the atoms is in the excited state. At this instant,
the joint state of the two atoms is,

|ψ〉 =
1√
2

(
|e〉a|g〉b + |g〉a|e〉b

)
, (61)

where |e〉a|g〉b denotes that the atom in mode a is in the excited
state and the atom in mode b is in the ground state, and
so on. Now this is unequivocally an entangled state. As any
local operations cannot increase or decrease entanglement, this
also strengthens the claim that the single photon state pos-
sess some characteristics similar to an entangled state. Similar
arguments on the ‘nonlocality’ of a single particle have been
much debated in the literature [108–112].

N00N states with two indistinguishable particles also offer
an interesting case. For instance, let us look at two such pho-
tons in a 2002 state, with equal superposition of either both
being diagonally polarized or anti-diagonally polarized,

|ψ〉 =
1√
2

(
|2〉A|0〉D − |0〉A|2〉D

)
. (62)
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When written in a terms of individual kets of each photons,

|ψ〉 =
1√
2

(
|A〉1|A〉2 − |D〉1|D〉2

)
. (63)

This two photon state can be obtained by passing two
indistinguishable photons in a state,

|ψ〉 = |1〉H|1〉V (64)

through a polarizing beam splitter (PBS) set at an angle of 45
◦
,

|ψ〉 = â†
Hâ†

V |0〉

=
1
2

(â†
A + â†

D)(â†
A − â†

D) |0〉

=
1
2

(â†
Aâ†

A + â†
Aâ†

D − â†
Dâ†

A − â†
Dâ†

D) |0〉

=
1
2

(â†
Aâ†

A − â†
Dâ†

D) |0〉

=
1√
2

(
|2〉A|0〉D − |0〉A|2〉D

)
.

The two photons are clearly entangled with each other after
passing through the beam splitter. Note that this is the famous
Hong–Ou–Mandel (HOM) interference for two identical pho-
tons passing through a beam splitter [49]. One crucial point to
be made here is that the entangled state is created by the physi-
cal action of the beam splitter on both of these photons. It may
seem that the entangled state could be obtained simply by just
changing the basis of polarization as,

|ψ〉 = |H〉 |V〉 (65)

=
1
2

(|A〉 + |D〉)(|A〉 − |D〉)

=
1
2

(|A〉 |A〉 − |A〉 |D〉 + |D〉 |A〉 − |D〉 |D〉).

and then one could say that the kets |A〉 |D〉 and |D〉 |A〉 refer to
the same state, i.e., a two photon state with one photon diago-
nally polarized and the other anti-diagonally polarized. Since
their amplitudes are of the same magnitude, but with oppo-
site sign, the terms cancel each other and we seem to have
an entangled state. However, there are two things that have
to be considered. First, since we are dealing with two indis-
tinguishable photons, it is essential to symmetrize the initial
state and hence equation (65) does not characterize the state
of two indistinguishable photons. The second state, written
in the number basis (in fock space), i.e. equation (64), is the
correct approach for writing such states. It captures all the pos-
sible combination of the two photons in such a state. Another
fundamental reason is that the physics, or the phenomenon of
entanglement in this case, should not change just by altering
the basis. In contrast to the discussion before, where we had
a beam splitter performing a joint physical action on the two
photons, here only a rotation of the coordinate system has been
performed. Such a rotation cannot lead to a change or creation
of entanglement.

5. Bounds on quantum correlations

In the preceding sections, we saw how local, crypto-nonlocal
or non-contextual hidden variable theories are bounded by
Bell-like inequalities and how quantum correlations can vio-
late these and reach beyond the classical bounds. We now
shift our focus to the other side of this picture, i.e. to what
extent quantum mechanics departs f rom classical physics and
what promise such maximal violations hold f or unique quan-
tum technologies? Mathematically, the maximal violation of
a Bell inequality is given by the Tsirelson bound, follow-
ing the seminal work in this respect [116]. It was shown
that,

S = 〈A0 B0〉 + 〈A0 B1〉 + 〈A1 B0〉 − 〈A1 B1〉 " 2
√

2, (66)

where 〈AiBj〉 are the expectation values of the product of
Alice’s and Bob’s ±1-valued observables Ai and Bj, respec-
tively. Quantum correlations can therefore violate the CHSH
inequality [75], S " 2 mentioned above by at most a multi-
plicative factor of

√
2.

Despite its importance, the Tsirelson bound provides only
the point of maximal violation; hence, a much more detailed
characterization of quantum mechanics would consist of all
nonlocal correlations achievable by quantum operators act-
ing on quantum states, i.e. the quantum set of correlations.
In between these two descriptions, there are partial char-
acterizations of quantum correlations such as the Uf!nk
inequality [117], some of which have already been tested
experimentally with a high-!delity source of polarization-
entangled photons [118]. However, a general, !nite charac-
terization of the quantum set is still missing. In the sim-
plest bipartite case with binary inputs and outputs, the TLM
(Tsirelson–Landau–Masanes) inequality is known to be nec-
essary and suf!cient for the correlators to be realizable in
quantum mechanics [119–121]

|c00 c10 − c01 c11| "
∑

j=0,1

√
(1 − c2

0 j) (1 − c2
1 j), (67)

where we have used cij = 〈AiBj〉. In recent years, there has
been a growing interest in further exploring this set of quantum
correlations from within and from outside the quantum for-
malism [122–127] in order to derive the strength of quantum
correlations based on !rst principles [128–133].

According to a recent approach [134], some well-known
bounds on quantum correlations (such as the Tsirelson and
TLM bounds), as well as some new ones, originate from a
principle called ‘relativistic independence’, encapsulating rel-
ativistic causality and indeterminism. This means that even a
very general probabilistic structure can give rise to quantum-
like correlations (but not stronger-than-quantum correlations)
if it obeys a generalized uncertainty principle (i.e. an uncer-
tainty principle which is applicable even beyond quantum
mechanics, but when assuming an Hilbert space structure
reduces to the well-known Schrödinger–Robertson uncer-
tainty relation), which is moreover local. Locality in this con-
text means that choices made by remote parties do not affect
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the uncertainty relations of other parties. This result quanti-
tatively supports a famous conjecture [135–137] arguing that
quantum mechanics can be as nonlocal as it is without vio-
lating relativistic causality only due to its inherent indeter-
minism. Moreover, it shows that entanglement-assisted non-
local correlations and uncertainty are two aspects of the same
phenomenon, imprinted in the algebra of quantum mechan-
ics (which can be accessed from outside the quantum formal-
ism using local uncertainty relations). This result therefore
attributes the differences between classical and quantum cor-
relations to the existence of fundamental uncertainty within
quantum mechanics. Several applications of this approach can
be found in [138–140]. For related analyses see [141, 142].
Many applications of the quantum formalism rely on highly
entangled states. We have already mentioned one such appli-
cation, namely, quantum metrology with N00N states. Addi-
tional applications are super dense coding [113] and quan-
tum teleportation [114]. Among the many other entanglement-
based or entanglement-enhanced protocols, there are crypto-
graphic schemes using entangled states whose security relies
on entanglement monogamy, with the !rst being the E91
protocol [115].

5.1. ‘Classical entanglement’

Having discussed different aspects of quantum physics, such as
realism, locality and non-contextuality for single and multiple
particles, we can now study how concepts such as ‘classical
entanglement’ relate to these fundamental concepts. Some
works [44, 45, 143–147] have compared the true quantum
phenomenon of entanglement with classical waves of light
and called the analogies ‘classical entanglement’. For instance,
instead of single photons if we send a classical electromagnetic
wave through the polarizing beam splitter, then the electric
!eld is now written as a superposition of the two components,

E(r) = EH(r) eH + EV(r) eV ,

where eH and eV are unit vectors along horizontal and vertical
directions, and EH(r) and EV(r) are the corresponding electric
!eld components, respectively. The electric !eld and the polar-
ization are correlated and the intensities also violate inequal-
ities that resemble Bell inequalities [47, 148, 149]. However,
in this case, classical !elds are used instead of single particles,
such as photons, and, therefore, we are not performing tests of
the assumptions such as realism, locality, non-contextuality or
any class of hidden variables. As all these considerations using
classical states of light, i.e. coherent states, are fully described
by Maxwell’s equations, i.e. only require a wave picture with-
out invoking the !eld quantization, they cannot challenge any
of the above mentioned fundamental concepts. All contradic-
tions to classical concepts and mind-boggling questions arose
upon considering the particle nature of light, i.e. when using
single photons. Hence, it is misleading to challenge funda-
mental concepts using states of light that are fully described
by the electromagnetic wave picture and Maxwell’s equations.
Therefore, we suggest that the term entanglement should only
be used in connection to quantum experiments with single or

multiple particles, and in particular for the cases involving non-
locality as it was originally suggested by Schrödinger. Using
the equally valid term of ‘non-separability’, which is not as
closely related to fundamental ideas as entanglement, might be
more appropriate and simplify the distinction between classi-
cal and quantum correlations, for experts as well as the inter-
ested layman. Moreover, although analogies might be cor-
rect, the beauty as well as deep implications due to quantum
entanglement might otherwise be misinterpreted, oversimpli-
!ed or even entirely misunderstood. This type of classical
states, i.e. non-separable states, nevertheless have important
applications [45] for example in polarization metrology [147],
kinematic sensing [150], computation [151], communication
[152, 153], and many more [154, 155]. It could be of inter-
est to compare the above treatment of ‘classical entanglement’
with the Koopman–von Neumann description [156, 157],
introducing a non commutative algebra of observables for
addressing classical mechanics and classical !eld theories
[158, 159].

6. Conclusion

Stemming directly from the principles of quantum mechan-
ics, the presence of entanglement in any multipartite system
marks a distinct departure from classical physics. Defying
any classical explanation, entanglement raises some intrigu-
ing fundamental questions about the physical universe such
as realism, non-locality, etc. Some exciting manifestations of
entanglement, such as Schrödinger cat states and N00N states,
serve to question the boundary between the quantum and
classical world, highlighting some stark differences between
the two regimes. Non-separable single-particle states, simi-
lar to entangled states in their mathematical form, yet lack-
ing non-locality, present some intriguing instances of cor-
relations allowing one to investigate the meaning of con-
textuality. Classical electromagnetic phenomena analogous
in their form to entangled states, although useful in a vari-
ety of applications [147, 150–155], cannot act as tests of
the fundamental concepts of non-locality, realism or contex-
tuality as entangled states can. As such, we suggest ‘non-
seperability’ as a more appropriate term for these states to
clearly distinguish them from the quantum phenomenon of
entanglement.

In addition to being an integral concept of quantum foun-
dations, entanglement is also a key resource in modern tech-
nological advances in quantum computing, quantum commu-
nication and quantum metrology. To a large extent, the sec-
ond quantum revolution we are witnessing these days strongly
relies on generation and manipulation of entangled quantum
states. Bell inequalities [24] and Tsirelson bounds [116] quan-
tify the lower and upper limits, respectively, on the correla-
tions obtainable from entangled states to be non-classical and
still considered quantum. Striking forms of quantum corre-
lations, different from entanglement, have also been studied,
most notably, quantum discord [160–163], which poses some
avenues for future research. Moreover, non locality itself is
believed to be a broader phenomenon than presented here,
often including dynamical non locality [164, 165], such as
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the one commonly attributed to the Aharonov–Bohm effect
[166, 167], which is also closely connected to entanglement
[168–171]. This type of non locality still merits further quan-
titative study [164].
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2008 Simple test for hidden variables in spin-1 systems
Phys. Rev. Lett. 101 020403

[96] Cabello A, Severini S and Winter A 2014 Graph-theoretic
approach to quantum correlations Phys. Rev. Lett. 112
040401

[97] Meyer D A 1999 Finite precision measurement nulli!es the
Kochen–Specker theorem Phys. Rev. Lett. 83 3751

[98] Ambrosio V D, Herbauts I, Amselem E, Nagali E,
Bourennane M, Sciarrino F and Cabello A 2013
Experimental implementation of a Kochen-Specker set of
quantum tests Phys. Rev. X 3 011012

[99] Lapkiewicz R, Li P, Schaeff C, Langford N K, Ramelow S,
Wiésniak M and Zeilinger A 2011 Experimental
non-classicality of an indivisible quantum system Nature
474 490

[100] Karimi E, Cardano F, Maffei M, de Lisio C, Marrucci L,
Boyd R W and Santamato E 2014 Hardy’s paradox tested
in the spin-orbit Hilbert space of single photons Phys.
Rev. A 89 032122

[101] Hasegawa Y, Schmitzer C, Bartosik H, Klepp J, Sponar S,
Durstberger-Rennhofer K and Badurek G 2012
Falsi!cation of Leggett’s model using neutron matter
waves New J. Phys. 14 023039

[102] Sanders B C 1989 Quantum dynamics of the nonlinear rotator
and the effects of continual spin measurement Phys. Rev.
A 40 2417

[103] Boto N A et al 2000 Quantum inter ferometric optical
lithography: exploiting entanglement to beat the
diffraction limit Phys. Rev. Lett. 85 2733

[104] Lee H, Kok P and Dowling J P 2002 A quantum Rosetta
stone for interferometry J. Mod. Opt. 49 2325–38

[105] Dowling J P 2008 Quantum optical metrology–the lowdown
on high-N00N states Contemp. Phys. 49 125–43

[106] Jones J A et al 2009 Magnetic !eld sensing beyond the
standard quantum limit using 10-spin N00N states
Science 324 1166–8

[107] Israel Y, Shamir R and Silberberg Y 2014 Polarization
microscopy using NOON states of light Phys. Rev. Lett.
112 103604

[108] Tan S M, Walls D F and Collett M J 1991 Nonlocality of a
single photon Phys. Rev. Lett. 66 252

[109] Hardy L 1994 Non locality of a single photon revisited Phys.
Rev. Lett. 73 2279

[110] Greenberger D M, Horne M A and Zeilinger A 1995
Nonlocality of a single photon? Phys. Rev. Lett. 75
2064

[111] Vaidman L 1995 Non locality of a single photon revisited
again Phys. Rev. Lett. 75 2063

[112] Aharonov Y and Vaidman L 2000 Nonlocal aspects of a
quantum wave Phys. Rev. A 61 052108

[113] Bennett C H and Wiesner S J 1992 Communication via
one-and two-particle operators on
Einstein–Podolsky–Rosen states Phys. Rev. Lett. 69 2881

[114] Bennett C H, Brassard G, Crépeau C, Jozsa R, Peres A and
Wootters W K 1993 Teleporting an unknown quantum
state via dual classical and Einstein–Podolsky–Rosen
channels Phys. Rev. Lett. 70 1895

[115] Ekert A K 1991 Quantum Cryptography based on Bell’s
theorem Phys. Rev. Lett. 67 661

[116] Cirelson B S 1980 Quantum generalizations of Bell’s
inequality Lett. Math. Phys. 4 93–100

[117] Uf!nk J 2002 Quadratic Bell inequalities as tests for
multipartite entanglement Phys. Rev. Lett. 88 230406

[118] Christensen B G, Liang Y C, Brunner N, Gisin N and Kwiat
P G 2015 Exploring the limits of quantum non locality
with entangled photons Phys. Rev. X 5 041052

[119] Tsirelson B S 1987 Quantum analogues of the Bell
inequalities. The case of two spatially separated domains
J. Sov. Math. 36 557–70

[120] Landau L L 1988 Empirical two-point correlation functions
Found. Phys. 18 449–60

[121] Masanes L 2003 Necessary and suf!cient condition for
quantum-generated correlations
(arXiv:quant-ph/0309137)

[122] Popescu S and Rohrlich D 1994 Quantum nonlocality as an
axiom Found. Phys. 24 379–85

[123] Navascués M, Pironio S and Acín A 2008 A convergent
hierarchy of semi de!nite programs characterizing the set
of quantum correlations New J. Phys. 10 073013

[124] Goh K T, Kaniewski J, Wolfe E, Vertesi T, Wu X, Cai Y,
Liang Y-C and Scarani V 2018 Geometry of the set of
quantum correlations Phys. Rev. A 97 022104

[125] Popescu S 2014 Nonlocality beyond quantum mechanics Nat.
Phys. 10 264

[126] Rai A, Duarte C, Brito S and Chaves R 2019 Geometry of the
quantum set on no-signaling faces Phys. Rev. A 99 032106

[127] Pozas-Kerstjens A, Rabelo R, Rudnicki L, Chaves R,
Cavalcanti D, Navascues M and Acin A 2019 Bounding
the sets of classical and quantum correlations in networks
(arXiv:1904.08943)

[128] Pawlowski M et al 2009 Information causality as a physical
principle Nature 461 1101–4

[129] Oppenheim J and Wehner S 2010 The uncertainty principle
determines the nonlocality of quantum mechanics Science
330 1072–4

[130] Navascués M and Wunderlich H 2010 A glance beyond the
quantum model Proc. Roy. Soc. A 466 881–90

[131] Fritz T et al 2013 Local orthogonality as a multipartite
principle for quantum correlations Nat. Commun. 4 2263

[132] Brassard G et al 2006 Limit on non locality in any world in
which communication complexity is not trivial Phys. Rev.
Lett. 96 250401

[133] Linden N, Popescu S, Short A J and Winter A 2007 Quantum
nonlocality and beyond: limits from nonlocal
computation Phys. Rev. Lett. 99 180502

[134] Carmi A and Cohen E 2019 Relativistic independence bounds
nonlocality Sci. Adv. 5 eaav8370

[135] Shimony A 1984 Controllable and uncontrollable
non-locality Proceedings of the International
Symposium: Foundations of Quantum Mechanics in the
Light of New Technology ed S Kamefuchi et al (Tokyo:
Physical Society of Japan) 225–30

[136] Shimony A 1986 Events and processes in the quantum world
Quantum Concepts of Space and Time ed R Penrose and
C Isham (Oxford: Oxford University Press)

[137] Aharonov Y Unpublished Lecture Notes (Tel-Aviv University
Tel Aviv)

[138] Carmi A and Cohen E 2018 On the signi!cance of the
quantum mechanical covariance matrix Entropy 20 500

[139] Carmi A, Herasymenko Y, Cohen E and Snizhko K 2019
Bounds on nonlocal correlations in the presence of
signaling and their application to topological zero modes
New J. Phys. 21 073032

[140] Te’eni A, Peled B Y, Cohen E and Carmi A 2019
Multiplicative Bell inequalities Phys. Rev. A 99 040102

[141] Hofmann H F 2019 Local measurement uncertainties impose
a limit on nonlocal quantum correlations Phys. Rev. A 100
012123

17

https://doi.org/10.1103/revmodphys.65.803
https://doi.org/10.1103/revmodphys.65.803
https://doi.org/10.1103/physrevlett.101.020403
https://doi.org/10.1103/physrevlett.101.020403
https://doi.org/10.1103/physrevlett.112.040401
https://doi.org/10.1103/physrevlett.112.040401
https://doi.org/10.1103/physrevlett.83.3751
https://doi.org/10.1103/physrevlett.83.3751
https://doi.org/10.1103/PhysRevX.3.011012
https://doi.org/10.1103/PhysRevX.3.011012
https://doi.org/10.1038/nature10119
https://doi.org/10.1038/nature10119
https://doi.org/10.1103/physreva.89.032122
https://doi.org/10.1103/physreva.89.032122
https://doi.org/10.1088/1367-2630/14/2/023039
https://doi.org/10.1088/1367-2630/14/2/023039
https://doi.org/10.1103/physreva.40.2417
https://doi.org/10.1103/physreva.40.2417
https://doi.org/10.1103/physrevlett.85.2733
https://doi.org/10.1103/physrevlett.85.2733
https://doi.org/10.1080/0950034021000011536
https://doi.org/10.1080/0950034021000011536
https://doi.org/10.1080/0950034021000011536
https://doi.org/10.1080/00107510802091298
https://doi.org/10.1080/00107510802091298
https://doi.org/10.1080/00107510802091298
https://doi.org/10.1126/science.1170730
https://doi.org/10.1126/science.1170730
https://doi.org/10.1126/science.1170730
https://doi.org/10.1103/physrevlett.112.103604
https://doi.org/10.1103/physrevlett.112.103604
https://doi.org/10.1103/physrevlett.66.252
https://doi.org/10.1103/physrevlett.66.252
https://doi.org/10.1103/physrevlett.73.2279
https://doi.org/10.1103/physrevlett.73.2279
https://doi.org/10.1103/physrevlett.75.2064
https://doi.org/10.1103/physrevlett.75.2064
https://doi.org/10.1103/physrevlett.75.2063
https://doi.org/10.1103/physrevlett.75.2063
https://doi.org/10.1103/physreva.61.052108
https://doi.org/10.1103/physreva.61.052108
https://doi.org/10.1103/physrevlett.69.2881
https://doi.org/10.1103/physrevlett.69.2881
https://doi.org/10.1103/physrevlett.70.1895
https://doi.org/10.1103/physrevlett.70.1895
https://doi.org/10.1103/physrevlett.67.661
https://doi.org/10.1103/physrevlett.67.661
https://doi.org/10.1007/BF00417500
https://doi.org/10.1007/BF00417500
https://doi.org/10.1007/BF00417500
https://doi.org/10.1103/physrevlett.88.230406
https://doi.org/10.1103/physrevlett.88.230406
https://doi.org/10.1103/physrevx.5.041052
https://doi.org/10.1103/physrevx.5.041052
https://doi.org/10.1007/BF01663472
https://doi.org/10.1007/BF01663472
https://doi.org/10.1007/BF01663472
https://doi.org/10.1007/bf00732549
https://doi.org/10.1007/bf00732549
https://doi.org/10.1007/bf00732549
https://arxiv.org/abs/quant-ph/0309137
https://doi.org/10.1007/bf02058098
https://doi.org/10.1007/bf02058098
https://doi.org/10.1007/bf02058098
https://doi.org/10.1088/1367-2630/10/7/073013
https://doi.org/10.1088/1367-2630/10/7/073013
https://doi.org/10.1103/physreva.97.022104
https://doi.org/10.1103/physreva.97.022104
https://doi.org/10.1038/nphys2916
https://doi.org/10.1038/nphys2916
https://doi.org/10.1103/physreva.99.032106
https://doi.org/10.1103/physreva.99.032106
https://arxiv.org/abs/1904.08943
https://doi.org/10.1038/nature08400
https://doi.org/10.1038/nature08400
https://doi.org/10.1038/nature08400
https://doi.org/10.1126/science.1192065
https://doi.org/10.1126/science.1192065
https://doi.org/10.1126/science.1192065
https://doi.org/10.1098/rspa.2009.0453
https://doi.org/10.1098/rspa.2009.0453
https://doi.org/10.1098/rspa.2009.0453
https://doi.org/10.1038/ncomms3263
https://doi.org/10.1038/ncomms3263
https://doi.org/10.1103/physrevlett.96.250401
https://doi.org/10.1103/physrevlett.96.250401
https://doi.org/10.1103/physrevlett.99.180502
https://doi.org/10.1103/physrevlett.99.180502
https://doi.org/10.1126/sciadv.aav8370
https://doi.org/10.1126/sciadv.aav8370
https://doi.org/10.3390/e20070500
https://doi.org/10.3390/e20070500
https://doi.org/10.1088/1367-2630/ab2f5b
https://doi.org/10.1088/1367-2630/ab2f5b
https://doi.org/10.1103/PhysRevA.99.040102
https://doi.org/10.1103/PhysRevA.99.040102
https://doi.org/10.1103/physreva.100.012123
https://doi.org/10.1103/physreva.100.012123


Rep. Prog. Phys. 83 (2020) 064001 D Paneru et al

[142] Zhou X and Yu S 2019 No disturbance without uncertainty as
a physical principle (arXiv:1906.11807)

[143] Goldin M A et al 2010 Simulating Bell inequality violations
with classical optics encoded qubits J. Opt. Soc. Am. B 27
779

[144] Qian X F et al 2015 Shifting the quantum-classical boundary:
theory and experiment for statistically classical optical
!elds Optica 2 611

[145] Song X, Sun Y, Li P, Qin H and Zhang X 2015 Sci. Rep. 5
14113

[146] Qian X-F, Little B, Howell J C and Eberly J H 2015 Shifting
the quantum-classical boundary: theory and experiment
for statistically classical optical !elds Optica 2 611–5

[147] Töppel F, Aiello F A, Marquardt C, Giacobino E and Leuchs
G 2014 Classical entanglement in polarization metrology
New J. Phys. 16 073019

[148] Borges C V S et al 2010 Bell-like inequality for the spin-orbit
separability of a laser beam Phys. Rev. A 82 033833

[149] Kagalwala K H, Di Giuseppe G, Abouraddy A F and Saleh B
E A 2013 Bell’s measure in classical optical coherence
Nat. Photon. 7 72–8

[150] Berg-Johansen S, Töppel F, Stiller B, Banzer P, Ornigotti M,
Giacobino E and Marquardt C 2015 Classically entangled
optical beams for high-speed kinematic sensing Optica 2
864–8

[151] Perez-Garcia B, Francis J, McLaren M, Hernandez-Aranda R
I, Forbes A and Konrad T 2015 Quantum computation
with classical light: the Deutsch algorithm Phys. Lett. A
379 1675–80

[152] Li P, Wang B and Zhang X 2016 High-dimensional encoding
based on classical non separability Opt. Express 24
15143–59

[153] Ndagano B, Perez-Garcia B, Roux F S, McLaren M,
Rosales-Guzman C, Zhang Y, Mouane O,
Hernandez-Aranda R I, Konrad T and Forbes A 2017
Characterizing quantum channels with non-separable
states of classical light Nat. Phys. 13 397–402

[154] Guzman-Silva D et al 2016 Demonstration of local
teleportation using classical entanglement Laser Photon.
Rev. 10 317–21

[155] Korolkova N and Leuchs G 2019 Quantum correlations in
separable multi-mode states and in classically entangled
light Rep. Prog. Phys. 82 056001

[156] Koopman B O 1931 Hamiltonian systems and transformation
in Hilbert space Proc. Natl Acad. Sci. USA 17 315

[157] Neumann J 1932 Zur Operatorenmethode In Der Klassischen
Mechanik Ann. Math. 33 587–642

[158] Morgan P 2019 Classical states, quantum !eld measurement
Phys. Scr. 94 075003

[159] Morgan P 2020 An algebraic approach to Koopman classical
mechanics Ann. Phys. 168090

[160] Zurek W H 2000 Einselection and de coherence from an
information theory perspective Ann. Phys. 9 855–64

[161] Ollivier H and Zurek W H 2001 Quantum discord: a measure
of the quantumness of correlations Phys. Rev. Lett. 88
017901

[162] Henderson L and Vedral V 2001 Classical, quantum and total
correlations J. Phys. A 34 6899

[163] Modi K, Brodutch A, Cable H, Paterek T and Vedral V 2012
The classical-quantum boundary for correlations: discord
and related measures Rev. Mod. Phys. 84 1655

[164] Popescu S 2010 Dynamical quantum non-locality Nat. Phys.
6 151

[165] Aharonov Y et al 2017 Finally making sense of the
double-slit experiment Proc. Natl Acad. Sci. USA 114
6480–5

[166] Bohm Y A D 1959 Signi!cance of electromagnetic potentials
in the quantum theory Phys. Rev. 115 485

[167] Aharonov Y, Cohen E and Rohrlich D 2016 Non locality of
the Aharonov–Bohm effect Phys. Rev. A 93 042110

[168] Vaidman L 2012 Role of potentials in the Aharonov-Bohm
effect Phys. Rev. A 86 040101

[169] Elitzur A C and Cohen E 2015 Quantum oblivion: a master
key for many quantum riddles Int. J. Quant. Inf . 12
1560024

[170] Aharonov Y, Cohen E and Rohrlich D 2016 Non locality of
the Aharonov–Bohm effect Phys. Rev. A 93 042110

[171] Marletto C and Vedral V 2019 The Aharonov–Bohm phase is
locally generated (like all other quantum phases)
(arXiv:1906.03440)

Dilip Paneru is currently a Masters student in Physics at University of Ottawa supervised by Prof. Ebrahim Karimi.
He received his undergraduate degree in Electronics and Communication Engineering from the Institute of Engineering
(IOE), Nepal. His general research interests lie at the intersection of Foundations of Quantum Mechanics and Quantum
Optics. In the past, he worked in the area of weak values and weak measurements. At present, he is working on experi-
mental tests of Quantum correlations and Quantum Imaging. Outside of physics he is also interested in and has worked
on projects in Arti!cial Intelligence and Robotics. He is also a cofounder of Newrun Technology Pvt. Ltd., an arti!cial
intelligence company based in Nepal.

Eliahu Cohen is an assistant professor in the Faculty of Engineering, Bar-Ilan University. He is a member of the Bar-Ilan
Institute of Nanotechnology and Advanced Materials and the Center for Quantum Entanglement Science and Technol-
ogy. He is also the head of the Quantum Engineering program at Bar-Ilan University. Eliahu Cohen has been exploring,
theoretically and experimentally, various types of advanced quantum measurement techniques including: weak, sequen-
tial, partial, interaction-free, nonlocal, protective, and robust. He has also contributed to the study of entanglement and
nonlocality, both kinematic and dynamic. He is interested in various photonic applications of the above, mainly for
metrology, sensing, imaging and computation.

18

https://arxiv.org/abs/1906.11807
https://doi.org/10.1364/josab.27.000779
https://doi.org/10.1364/josab.27.000779
https://doi.org/10.1364/optica.2.000611
https://doi.org/10.1364/optica.2.000611
https://doi.org/10.1038/srep14113
https://doi.org/10.1038/srep14113
https://doi.org/10.1364/optica.2.000611
https://doi.org/10.1364/optica.2.000611
https://doi.org/10.1364/optica.2.000611
https://doi.org/10.1088/1367-2630/16/7/073019
https://doi.org/10.1088/1367-2630/16/7/073019
https://doi.org/10.1103/physreva.82.033833
https://doi.org/10.1103/physreva.82.033833
https://doi.org/10.1038/nphoton.2012.312
https://doi.org/10.1038/nphoton.2012.312
https://doi.org/10.1038/nphoton.2012.312
https://doi.org/10.1364/optica.2.000864
https://doi.org/10.1364/optica.2.000864
https://doi.org/10.1364/optica.2.000864
https://doi.org/10.1016/j.physleta.2015.04.034
https://doi.org/10.1016/j.physleta.2015.04.034
https://doi.org/10.1016/j.physleta.2015.04.034
https://doi.org/10.1364/oe.24.015143
https://doi.org/10.1364/oe.24.015143
https://doi.org/10.1364/oe.24.015143
https://doi.org/10.1038/nphys4003
https://doi.org/10.1038/nphys4003
https://doi.org/10.1038/nphys4003
https://doi.org/10.1002/lpor.201500252
https://doi.org/10.1002/lpor.201500252
https://doi.org/10.1002/lpor.201500252
https://doi.org/10.1088/1361-6633/ab0c6b
https://doi.org/10.1088/1361-6633/ab0c6b
https://doi.org/10.1073/pnas.17.5.315
https://doi.org/10.1073/pnas.17.5.315
https://doi.org/10.2307/1968225
https://doi.org/10.2307/1968225
https://doi.org/10.2307/1968225
https://doi.org/10.1088/1402-4896/ab0c53
https://doi.org/10.1088/1402-4896/ab0c53
https://doi.org/10.1016/j.aop.2020.168090
https://doi.org/10.1002/1521-3889(200011)9:11/12&tnqx3c;855::aid-andp855&tnqx3e;3.0.co;2-k
https://doi.org/10.1002/1521-3889(200011)9:11/12&tnqx3c;855::aid-andp855&tnqx3e;3.0.co;2-k
https://doi.org/10.1002/1521-3889(200011)9:11/12&tnqx3c;855::aid-andp855&tnqx3e;3.0.co;2-k
https://doi.org/10.1103/physrevlett.88.017901
https://doi.org/10.1103/physrevlett.88.017901
https://doi.org/10.1088/0305-4470/34/35/315
https://doi.org/10.1088/0305-4470/34/35/315
https://doi.org/10.1103/revmodphys.84.1655
https://doi.org/10.1103/revmodphys.84.1655
https://doi.org/10.1038/nphys1619
https://doi.org/10.1038/nphys1619
https://doi.org/10.1073/pnas.1704649114
https://doi.org/10.1073/pnas.1704649114
https://doi.org/10.1073/pnas.1704649114
https://doi.org/10.1103/physrev.115.485
https://doi.org/10.1103/physrev.115.485
https://doi.org/10.1103/physreva.93.042110
https://doi.org/10.1103/physreva.93.042110
https://doi.org/10.1103/physreva.86.040101
https://doi.org/10.1103/physreva.86.040101
https://doi.org/10.1142/s0219749915600242
https://doi.org/10.1142/s0219749915600242
https://doi.org/10.1103/physreva.93.042110
https://doi.org/10.1103/physreva.93.042110
https://arxiv.org/abs/1906.03440


Rep. Prog. Phys. 83 (2020) 064001 D Paneru et al

Robert Fickler received his masters degree in physics from Ulm University, Germany, in 2009. He also holds a bachelor’s
degree in philosophy and is a trained electronics engineer. He obtained his PhD degree in 2014 from the University of
Vienna, Austria, and worked as a postdoctoral fellow at the University of Ottawa, Canada, and the Institute for Quantum
Optics and Quantum Information - Vienna, Austria. Since 2019, he is an Assistant Professor at Tampere University,
Finland, where is continuing to work on quantum photonics, quantum information, and light-matter interactions in
the quantum regime. He has published more than 50 research papers. His research was named as one of the Top 10
breakthroughs of the year 2012 by IOPs Physics World, he received the Young Scientist Award 2015 of the IUPAP as
well as the Banting Postdoctoral Fellowship of the Natural Sciences and Engineering Research Council of Canada 2016.

Robert W. Boyd was born in Buffalo, New York. He received the B.S. degree in physics from MIT and the Ph.D.
degree in physics from the University of California at Berkeley. His Ph.D. thesis was supervised by Charles Townes and
involves the use of nonlinear optical techniques in infrared detection for astronomy. He joined the faculty of University
of Rochester in 1977 and in 2010 became Professor of Physics and Canada Excellence Research Chair in Quantum
Nonlinear Optics at the University of Ottawa. His research involves studies of optical physics and of nonlinear optics.
Professor Boyd has written two books, co-edited two anthologies, published over 400 research papers, and been awarded
ten patents. He is a member of the Heidelberg Academy and of the Royal Society of Canada. He is a past winner of the
Townes Award, Schawlow Prize and a Humboldt Research Award. He is a fellow of IEEE, OSA, APS and SPIE.

Ebrahim Karimi was born in Saghez, Kurdistan-Iran. He received the B.Sc. degree in Physics with an emphasis in
mathematics from Kerman University in 2001, and M.Sc. from IASBS in 2003, and Ph.D. degree from the University
of Naples “Federico II” in 2009. He holds Canada Research Chair in Structured Light at the University of Ottawa. His
research focuses on structured quantum waves and their applications in quantum communication, quantum computation,
and materials science. He has published over 120 scienti!c articles in peer-reviewed journals and is co-inventor on three
patents. His contributions notably include studies pertaining to the relationship between the quantum spatial properties of
photons and their internal properties. Professor Karimi is a Fellow of the OSA, member of the Global Young Academy,
Visiting Fellow of the Max Planck Institute for the Science of Light, Fellow of the JCEP, and awarded the Ontario Early
Researcher Award in 2018, and the University of Ottawa Early Career Researcher of the Year Award in 2019.

19


	Entanglement: quantum or classical?
	1.  Introduction
	2.  Popper's diffraction experiment
	2.1.  EPR and local realism
	2.2.  Schrödinger's cat state and `entanglement'

	3. Hidden variables
	3.1. Nonlocal hidden variables theories
	3.2. Non-contextuality
	3.3. Single particle ‘entanglement’

	4. N00N states
	5. Bounds on quantum correlations
	5.1. ‘Classical entanglement’

	6. Conclusion
	Acknowledgments
	ORCID iDs
	References


