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Cylindrical vector (CV) beams are a set of transverse spatial modes that exhibit a cylindrically symmetric intensity
profile and a variable polarization about the beam axis. They are composed of a non-separable superposition of
orbital and spin angular momenta. Critically, CV beams are also the eigenmodes of optical fiber and, as such, are
of widespread practical importance in photonics and have the potential to increase communications bandwidth
through spatial multiplexing. Here, we derive the coupled amplitude equations that describe the four-wave mixing
(FWM) of CV beams in optical fibers. These equations allow us to determine the selection rules that govern the
interconversion of CV modes in FWM processes. With these selection rules, we show that FWM conserves the total
angular momentum, the sum of orbital and spin angular momenta, in the conversion of two input photons to two
output photons. When applied to spontaneous FWM, the selection rules show that photon pairs can be generated
in CV modes directly and can be entangled in those modes. Such quantum states of light in CV modes could benefit
technologies such as quantum key distribution with satellites. ©2020Optical Society of America

https://doi.org/10.1364/JOSAB.386622

1. INTRODUCTION

The term “structured light” refers to optical beams whose inten-
sity, phase, or polarization are non-uniform across the beam’s
transverse profile. Cylindrical vector (CV) beams are a type of
structured light that exhibits intensity and polarization profiles
that are spatially dependent but also exhibit symmetry under
discrete rotations about the beam axis. Specifically, the modes
for such structured light beams, CV modes, are described by
a superposition of product states between the spin angular
momentum (SAM) and orbital angular momentum (OAM)
degrees of freedom. Utilizing the degrees of freedom avail-
able in the transverse profile of an optical beam can benefit
many applications. These can include more complex mode-
division multiplexing techniques to increase communications
bandwidth. Such multiplexing techniques have already been
demonstrated with scalar OAM modes [1,2] and vector beam
modes [3,4]. Similarly, from a quantum optics viewpoint, CV
modes can increase the information capacity available in single
photons via the additional OAM and SAM degrees of freedom.
In free-space quantum key distribution, the rotational sym-
metry of CV modes can be exploited to alleviate the need for

rotational alignment between sending and receiving parties [5].
Outside of communications, the behavior of optical beams in
CV modes are of fundamental interest. For example, radially
polarized modes focus to smaller spot sizes than Gaussian modes
of a comparable beam waist [6], and azimuthally polarized
modes produce a longitudinal magnetic field at their focus.

Thorough understanding of nonlinear optical processes is
vital to many practical applications. An example is telecom-
munications, where unwanted nonlinear interactions between
optical pulses in fiber present a roadblock for increasing signal
power, and thus the bandwidth [7]. To date, the theory for
four-wave mixing (FWM) in fiber systems has been developed
for both uniformly polarized light [8,9] and spatial modes
[10–12]. Despite their potential for increasing communications
bandwidth, the nonlinear optics of structured light and vector
modes is in its infancy [13–15]. In order to address this, here
we derive the coupled amplitude equations that describe FWM
of CV and other complex modes. Using this, we derive a set of
general selection rules for the allowed mixing processes between
CV modes. FWM processes can convert photons between
different CV modes and may provide insight into conversion
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processes that involve structured light and the conservation of
angular momentum of light. Moreover, these FWM transitions
can potentially produce mode-entangled CV photons through
spontaneous FWM (SFWM) photon pair generation.

2. OPTICAL MODE DESCRIPTIONS

We begin with a review of optical spatial modes that includes
a succinct general mathematical description that is suitable
for deriving selection rules. Then, starting with the nonlinear
optical wave equation, we derive general coupled-amplitude
equations for FWM of fields that vary spatially in intensity,
phase, and polarization. The derived FWM theory applies to
both free-space environments such as bulk nonlinear media
and to weakly guiding cylindrically symmetric fibers (exam-
ples are shown in Fig. 1). We end by focusing on examples of
these fields, particularly CV modes, but also circularly polar-
ized OAM modes, and modes that are eigenstates of the total
angular momentum (TAM) along z, the beam or fiber axis. For
these examples, we derive and present selection rules. These
spatial mode solutions are highly relevant in the development
of photonic devices, since CV modes are eigenmodes of all
weakly guiding cylindrically symmetric waveguides, such
as standard optical fibers [16,17]. Furthermore, CV modes
represent approximate solutions to the paraxial vector wave
equation and, in free space, follow the intensity distribution of
Laguerre–Gauss modes [18].

We begin by defining a general type of mode, those with
cylindrically symmetric intensity distributions:

M[u](r , φ)= R [m](r )8[n](φ), (1)

where r and φ are the standard radial and azimuthal cylindri-
cal coordinates, respectively, and the position is denoted as
r= (r , φ, z). Throughout, quantities in bold font are vectors.
Here, 8[n](φ) gives the azimuthal dependence of the polari-
zation (which is strictly transverse) and phase for mode n. The
radial dependence R [m](r ) is usually implicitly dependent on n

Fig. 1. Four examples (step-index, graded-index, double-clad,
and vortex) of fiber types that support CV modes that are directly
applicable to this work.

and will typically exhibit a number of rings in the intensity pro-
file that equal the radial mode index m. We take u to be the set of
mode indices, i.e., u =m, n. By defining M[u](r , φ) in this way
the intensity distribution is explicitly cylindrically symmetric.

Inside a cylindrically symmetric waveguide with weak guid-
ing (e.g., with small refractive index contrast), azimuthally
symmetric modes are approximate paraxial solutions to the wave
equation [18]:

∇
2L(r, t)+

n(r )2

c 2

∂2L(r, t)
∂t2

≈ 0, (2)

where n(r ) is the cylindrically symmetric index profile. Here, we
have defined the normalized electric field solutions as

L[u](r, t)=M[u](r , φ) exp(iβ [u]z) exp(−iωt). (3)

Each mode M[u] has a potentially distinct effective wavevector
β [u]. Moreover, both the mode’s radial dependence R [m] and
β [u] depend on the angular frequency of the fieldω. In contrast,
given the cylindrical symmetry,8[n](φ) will be independent of
frequency. Figure 1 shows a sample of common fiber structures
to which this work is applicable.

The M[u](r , φ) modes obey the following orthonormality
relations [16] for transversely polarized modes:

δu,u′ =

∫
M[u]

∗

(r , φ) ·M[u
′
](r , φ)r dr dφ, (4)

δm,m′ =

∫
R [m](r )R [m

′
](r )r dr , (5)

δn,n′ =

∫
8[n]

∗

(φ) ·8[n
′
](φ)(r , φ)dφ, (6)

where δ j ,k is the Kronecker delta. Here, the integral in Eq. (4)
is over the transverse plane, and u and u ′ are composite indices
incorporating all the indices of the modes. Eqs. (5) and (6)
follow from Eqs. (4) and (1). Since R [m] depends on frequency,
Eqs. (4) and (5) are strictly true only for fields of equal wave-
length. This paper focuses on the azimuthal mode function
8[n], which describes the spatial polarization variation of the
modes. Since this variation is independent of wavelength, the8
orthonormality in Eq. (6) will also be wavelength independent.
In any case, later derivations rely only on the orthonormality of
modes at the same wavelength. In the next three subsections, we
will introduce three types of8modes, each of which composes a
complete mode basis. Examples of the mode types are shown in
Fig. 2.

A. Definite Spin and Orbital Angular Momentum
Modes

The azimuthal mode function8[n](φ) describes both SAM and
OAM. The first type of mode has a definite value for both SAM
and OAM along the system axis z (e.g., the beam or fiber axis).
The SAM of a photon is given by its circular polarization,

σ [s ] =

(
x+ isy

)
√

2
, (7)
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Fig. 2. Structured light modes. The gray-scale gives the intensity,
arrows indicate polarization, and phase is given by the gray-scale inset.
All the depicted modes have the same orbital angular magnitude,
|l | = |L | = 1. The top two plots are spin and orbital angular momen-
tum eigenstate modes Y with (a) s = 1 and l = 1 and (b) s =−1 and
l =−1. The bottom four plots are cylindrical vector modes: (c) radial
mode (L =−1, S = 1, TM01); (d) azimuthal mode (L = 1, S =−1,
TE01); and hybrid modes, (e) even (L = 1, S = 1, HEe ,21) and (f ) odd
(L =−1, S =−1, HEo ,21).

with right or left circular modes yielding a spin projection
along the system axis of s~ (s =±1). The OAM results from
an azimuthal phase gradient of the field about the beam axis,
exp(ilφ), and has a value of l~ (l = 0,±1,±2, . . .) projected
along that same axis [19]. With these functions, we can define
azimuthal modes 8[n](φ) with definite values of SAM and
OAM, the Y modes:

Y[l ,s ] = e ilφσ [s ]. (8)

In free space, these are paraxial vector solutions to the wave
equation. In waveguides, these azimuthal modes are solutions
only when l ≥ 2 [16].

B. Cylindrical Vector Modes

Our second type of 8 mode is the CV mode. These are the
general set of solutions in cylindrically symmetric weakly guid-
ing waveguides, valid for l ≥ 1 (unlike the Y modes). The CV
azimuthal modes are

CV[L,S] =
1
√

2

(
ei π4 (S−1)Y[L,S] + e−i π4 (S−1)Y[−L,−S]

)
, (9)

where S =±1 and L =±|l | are mode indices. A unique feature
of these modes is that in contrast to the azimuthal modes Y[l ,s ],

they are real at all transverse points. The CV modes cannot be
factored into functions for OAM and SAM; hence, they are non-
separable and are no longer eigenstates of OAM or spin (unlike
the Y modes). Thus, for clarity, we will henceforth refrain from
referring to the spin of a particular CV mode. However, the
magnitude of L does correspond to the magnitude of angular
momentum l in each CV mode, |L | = |l |.

The CV modes can be divided into groups of four that have
effective wavevector β [u] values that are close to each other [16].
Each mode in a particular mode group has an identical radial
mode function (i.e., index m) and identical OAM magnitude
|l |:

CV[L=−|l |,S=1](φ)=
1
√

2
(Y[−|l |,1] + Y[|l |,−1]);

(|l | = 1 :TM0m, |l | ≥ 2 : EHe ,|l |−1,m), (10)

CV[L=|l |,S=−1](φ)=
i
√

2
(Y[−|l |,1] − Y[|l |,−1]);

(|l | = 1 :TE0m, |l | ≥ 2 : EHo ,|l |−1,m), (11)

CV[L=|l |,S=1](φ)=
1
√

2
(Y[−|l |,−1]

+ Y[|l |,1]);

(|l | ≥ 1 :HEe ,|l |+1,m), (12)

CV[L=−|l |,S=−1](φ)=
−i
√

2
(Y[−|l |,−1]

− Y[|l |,1]);

(|l | ≥ 1 :HEo ,|l |+1,m). (13)

The four modes above have identical intensity distributions but
different patterns of spatially varying polarization. The set of
modes for |L | = 1 is shown in Fig. 2. This ladder of modes is
the mode solution to cylindrically symmetric weakly guiding
waveguides.

To understand the relationship of the CV modes to the Y
modes as waveguide solutions, one must consider the degen-
eracy of the CV modes. Some of the CV modes within each
group of four will be degenerate. That is, they will have equal
β [u] within the weakly guiding approximation in a waveguide.
Notice that two of the four modes have OAM and SAM aligned
in each term, whereas the other two modes have anti-aligned
angular momenta. The aligned pair of modes in any weakly
guiding cylindrically symmetric fibers are degenerate, and
likewise for the anti-aligned pair. Any superposition of two
degenerate modes is also a solution and has the same β [u] as the
original modes. Each Y mode is a superposition of two degener-
ate CV modes and, consequently, is a waveguide-mode solution.
An exception is the case of l =±1 where the anti-aligned degen-
eracy is broken [16,20]. i.e., CV[L=−1,S=1] and CV[L=1,S=−1]

are not degenerate. In summary, whereas Y modes are solutions
to cylindrically symmetric weakly guiding waveguides for l ≥ 2,
CV modes are solutions for l ≥ 1.

C. Total Angular Momentum Modes

In addition to the CV and Y mode bases, it will be useful to
define a 8 mode basis for the TAM projected along the beam
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Table 1. Total Angular Momentum Modes

l + s = j Mode

−1+ 1= 0 Z[+0]
=CV[L=−1,S=1]

1− 1= 0 Z[−0]
=CV[L=1,S=−1]

1+ 1= 2 Z[2] = Y[1,1]

−1− 1=−2 Z[−2]
= Y[−1,−1]

or fiber axis. In this basis, each mode has a definite TAM of
j = l + s , which will allow the TAM conservation to be tracked
in the FWM processes. Since the FWM process occurs along
the full length of the medium, this is useful to do only if these j
eigenstates are also eigenmodes of the fiber, so that j is conserved
during propagation. (Note: an eigenstate has a definite value of
some observable, whereas an eigenmode remains unchanged
upon propagation.) That is, since both FWM and linear propa-
gation occur concurrently, it could be the linear propagation
rather than the FWM that causes j to change, obscuring the role
of the FWM.

For |l | ≥ 2, these definite TAM modes will be Y modes. Since
the Y modes have definite s and l , the TAM j will be definite
as well. However, as explained above, for the |l | = 1 subspace,
only two of the four Y modes are waveguide mode solutions,
Y[1,1] and Y[−1,−1]. For the other two Y modes, s and l will not
be preserved during propagation. In their place, we use the
anti-aligned pair of |l | = 1 CV modes. Notice that both super-
position terms in each of these CV modes, Eqs. (10) and (11),
have the same value for TAM, l + s = j = 0. Consequently, the
anti-aligned CV modes are definite TAM states with j = 0. The
TAM mode basis comprises these four modes, which are listed in
Table 1 and are represented by Z in subsequent theory.

3. FOUR-WAVE MIXING THEORY FOR SPATIAL
LIGHT MODES

We begin our FWM theory with the wave equation for a third-
order nonlinear process. Unlike most other published theory,
we retain the transverse vector and spatial variation of the fields.
As we shall discuss later, we assume an isotropic material (such
as silica) and that the nonlinearity is frequency independent.
This allows us to use a simplified form for the third-order non-
linear polarization. In these systems (e.g., optical fiber), the
coupled amplitude equations for the four fields are dependent
on the vector eigenmodes. In our theory, the effects of self-phase
modulation (SPM) and cross-phase modulation (XPM) arising
from the pump beams are also included. However, SPM and
XPM arising from the signal and idler are neglected on the basis
that they are far less intense than the pumps. Similarly, pump
depletion is also neglected in our treatment.

A. Definition of Fields

FWM converts light from two pump (p, p ′) fields to two
outgoing fields, typically called signal (s ) and idler (i),
i.e., p + p ′→ s + i . In the nondegenerate case, all four fields
can have distinct frequencies and spatial modes. We define the
total electric field vector in the system as the sum of the four
fields:

E(r, t)=
∑

v=p,p ′,s ,i

Ev(r, t). (14)

Each field is identified by the subscript v and is assumed to
be monochromatic and exist in just one of the spatial modes
discussed in Section 2. Thus, this subscript will be taken to
implicitly represent the field identity (p, p ′, i, or s ), the field
frequency ωv , and the spatial mode M[u]. When considering
an individual field Ev , we can factor out the slowly varying field
amplitude Av(z):

Ev(r, t)= Av(z)L[u](r, t)+ c.c. (15)

This definition will allow us to later isolate the slow change in
field amplitude Av(z)due to the nonlinear interaction.

B. Nonlinear Wave Equation

The wave equation with a nonlinear source term PNL is

∇
2E(r, t)+

n(r )2

c 2

∂2E(r, t)
∂t2

=−µ0
∂2PNL(r, t)

∂t2
, (16)

where µo is the permeability of free space, and c is the speed of
light in vacuum. When considering all four fields pertinent to
FWM, the left-hand side (LHS) of Eq. (16) is

LHS[Eq. (16)] =
∑

v=p,p ′,s ,i

[
∇

2Ev(r, t)+
n(r )2

c 2

∂2Ev(r, t)
∂t2

]
.

(17)
Carrying out the spatial differentiation in the Laplacian,
Eq. (16) becomes

LHS[Eq. (16)] =
∑

v=p,p ′,s ,i

[(
∂2 Av(z)
∂z2

+ 2iβv
∂ Av(z)
∂z

)

×Lv(r, t)+ Av(z)
(
∇

2Lv(r, t)+
n(r )2

c 2

∂2Lv(r, t)
∂t2

)
+ c.c.

]
.

(18)

In the right-hand side (RHS) of the first line of this equation, we
make use of the fact that A(z) is assumed to be slowly varying
compared to the fast oscillation associated with the effective
wavevector β [u] along z. This is the slowly varying amplitude
approximation, ∂2 A(z)/∂z2

= 0. The second line is just the
source-free wave equation, Eq. (2), which is zero for the solution
Lv(r, t). With these simplifications, Eq. (16) becomes∑
v=p,p ′,s ,i

[
2iβv

∂ Av(z)
∂z

Lv(r, t)+ c.c.

]
=−µ0

∂2PNL(r, t)
∂t2

.

(19)

C. Nonlinear Polarization and the Coupled Amplitude
Equations

We now determine the form of the nonlinear polarization
PNL(r, t). We omit contributions from other third-order proc-
esses such as third-harmonic generation, etc. By considering
only the nonlinear polarization Pv(r) created at the pump,
signal, and idler frequencies, the nonlinear polarization can be
expressed as the sum
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PNL(r, t)=
∑

v=p,p ′,s ,i

Pv(r) exp(−iωvt)+ c.c. (20)

With this definition, the RHS of the nonlinear wave equation,
Eq. (19), becomes

RHS[Eq. (19)] =µ0

∑
v=p,p ′,s ,i

ω2
vPv(r) exp(−iωvt)+ c.c.

(21)

In materials that are both isotropic and satisfy the Kleinman
symmetry condition (i.e., the frequency dependence of χ (3)

can be neglected [21]), the third-order nonlinear susceptibility
tensor can be expressed in terms of a single scalar compo-
nent (i.e., χ (3)xxxx). As we show in Appendix A, the nonlinear
polarization at the signal frequency is then given by

Ps (r)= 2ε0χ
(3)
xxxx[

(
E∗p · Ep

)
Es +

(
E∗p · Es

)
Ep +

(
Ep · Es

)
E∗p

+

(
E∗p ′ · Ep ′

)
Es +

(
E∗p ′ · Es

)
Ep ′ +

(
Ep ′ · Es

)
E∗p ′

+
(
E∗i · Ep

)
Ep ′ +

(
E∗i · Ep ′

)
Ep +

(
Ep · Ep ′

)
E∗i ],

(22)

where we have omitted the spatial–temporal coordinates for
clarity. A similar equation can be found for the nonlinear
polarization at the idler frequency Pi by exchanging s and i
throughout Eq. (22). The first six terms in Eq. (22) represent
XPM from the pump beams, and the last three terms are the
contribution to FWM.

Now that we have a succinct form for the nonlinear polariza-
tion, we can evaluate its action on the signal and idler fields. The
nonlinear wave equation [Eq. (19)] for just the signal field is

2iβs
∂ As (z)
∂z

Ms (r , φ) exp(iβs z)=
ω2

s Ps (r)
ε0c 2

. (23)

Substituting in the nonlinear polarization of the signal
frequency Ps from Eq. (22) into Eq. (23), we obtain

∂ As (z)
∂z

Ms =
−iω2

s χ
(3)
xxxx

2βs c 2
{A∗p A p As [αpps + αpsp + ᾱpsp]

+ A∗p ′ A p ′ As [α p ′ p ′s + α p ′s p ′ + ᾱ p ′s p ′ ]

+ A p A p ′ A∗i [αi pp ′ + αi p ′ p + ᾱ pp ′i ] exp(i1kz)},
(24)

where 1k = βp + βp ′ − βs − βi is the phasematching term
and where we introduce the quantities αijk = (M∗i ·M j )Mk

and ᾱijk = (Mi ·M j )M∗k . As before, we have suppressed the
dependence of A and M on the spatial coordinates.

We now isolate the behavior of the scalar amplitudes A by
taking the dot product with M∗s on both sides and integrating
over the transverse plane. With this, the orthonormality con-
dition in Eq. (4) yields the coupled amplitude equation for the
signal (or idler, by exchanging s and i throughout) as

∂ As (z)
∂z

= κs {|A p |
2 As

[
Op∗ ps ∗s +Op∗s s ∗ p +Ops s ∗ p∗

]
+ |A p ′ |

2 As
[
Op ′∗ p ′s ∗s +Op ′∗s s ∗ p ′ +Op ′s s ∗ p ′∗

]
+ A p A p ′ A∗i

[
Oi∗ ps ∗ p ′ +Oi∗ p ′s ∗ p +Opp ′s ∗i∗

]
× exp(i1kz)}.

(25)

Here, the field coupling constant κs is given by κs =
−iω2

s χ
(3)
xxxx

2βs c 2 ,

and Oa (∗)b(∗)c (∗)d (∗) =
∫ (

M(∗)
a ·M

(∗)
b

)
(M(∗)

c ·M
(∗)
d )r dr dφ

is the mode overlap integral. In Oa (∗)b(∗)c (∗)d (∗) , the sub-
scripts a , b, c , and d represent the fields (p , p ′, s , or i )
and an optional conjugate on a particular subscript applies
to the corresponding mode in the integral. For example,
Oi∗ ps ∗ p ′ =

∫
(M∗i ·Mp)(M∗s ·Mp ′)r dr dφ. So far, we have

not used the cylindrical symmetry of the modes. This coupled
wave equation is applicable in bulk media and waveguides since
it only assumes that Mv are paraxial modes that are approximate
solutions to the wave equation. (In Appendix A, we give the
analogous coupled amplitude equation for the pump field.)

We now consider the conditions necessary for efficient
FWM. The first two lines on the RHS of Eq. (25) describe
XPM in the signal field induced by the pumps. The last line
describes FWM. FWM requires perfect energy conservation
and is most efficient when photon momentum is also con-
served. These two conditions constitute perfect phasematching,
1ω=ωp +ωp ′ −ωi −ωs = 0 and 1k = 0, which can
occur in many different FWM processes since βv varies with
mode and frequency [21]. For example, different CV-mode
combinations in the FWM process will be phasematched at
different sets of frequencies. Since the energy and momentum
conservation for FWM will depend on the specific medium and
waveguide of interest, we will not further consider the details of
phasematching in this paper.

The selection rules arise from a third condition for FWM.
Namely, in the final line of the coupled wave equation, Eq. (25),
the total process amplitude,

U≡Oi∗ ps ∗ p ′ +Oi∗ p ′s ∗ p +Opp ′s ∗i∗ , (26)

must be non-zero.

4. FOUR-WAVE MIXING SELECTION RULES

So far, the coupled wave equations have been derived for any
transverse modes satisfying the linear wave equation. We now
restrict ourselves to systems with cylindrical symmetry, such
as optical fibers. We introduce cylindrically symmetric modes
into the FWM integrals listed in Eq. (26) in order to find a set
of selection rules based on the transitions permitted between
the modes. To start, we use the mode definition in Eq. (1) to
separate the overlap integrals comprising the process amplitude
U into a product of radial and azimuthal parts such that

Oa (∗)b(∗)c (∗)d (∗) = F
∫ (

8(∗)
a ·8

(∗)
b

) (
8(∗)

c ·8
(∗)
d

)
dφ,

(27)
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where F ≡
∫

R∗i R p R∗s R p ′r dr is the integral over the radial
dependence. Since the radial mode function Rv = R [m(v)](r )
depends on the specific radial index profile n(r ) of a cho-
sen waveguide, we will focus on the selection rules set by the
azimuthal modes. These selection rules will then be general to
any medium with cylindrical symmetry. Specifically, we assume
that F is non-zero, as would be true if all four fields were in
the same radial mode (i.e., the same value of m). Henceforth,
a “mode” will refer only to its azimuthal component 8v (φ).
(Note that for the CV mode basis only, the potential complex
conjugates of8v in the integral Eq. (27) can be dismissed since
at all transverse positions the modes are real.)

The total FWM intensity is proportional to the sum U,
Eq. (26), of three overlap integrals, each of which is defined
by Eq. (27). By considering the mode combinations for the
four fields that lead to a non-zero U, we can find the corre-
sponding sets of selection rules for a given set of mode indices.
We will express allowed FWM processes in the notation,
Mp +Mp ′→Mi +Ms. All allowed processes can also occur
in reverse, i.e., with input and output modes interchanged. If
a process occurs for a particular set of modes in fields p and p ′,
then it will also occur with the modes interchanged between
p and p ′ and likewise for output fields s and i .

Of particular interest is the scenario where all the involved
modes are taken from the family of four modes (within the Y,
CV, and Z mode types) that have equal |l |. With this limited set
of four, there is a finite number of potential processes, which we
will determine.

A. Summary of the Y Mode Selection Rules

For the sake of completeness and for use later, we derive the
selection rules for fields in the Y angular momentum modes.
Our results agree with similar FWM studies involving linearly
polarized modes [9]. We insert combinations of Y modes into
the three O overlap integrals inside U [Eq. (26)]. Each overlap
integral factors into OAM and SAM components. For example,

Oi∗ ps ∗ p ′ = F
(
σ [−s i ] · σ [sp ]

) (
σ [−s s ] · σ

[sp ′ ]
)

×

∫
e

i
(
−li+l p−ls+l p ′

)
φ
dφ

= F δs i ,sp δs s ,sp ′ δl p+l p ′ ,ls+li . (28)

The other two O integrals give similar results. Given that s is
limited to the values ±1, the Kronecker deltas for the s values
in the three integrals can be combined to arrive at the selection
rules

sp + sp ′ = si + ss ,

l p + l p ′ = li + ls , (29)

where lv and s v are the mode indices of fields v = p, p ′, s , i .
When these rules are satisfied, the process will occur with ampli-
tude U= 4πF . We give a more detailed derivation of this in
Appendix B.

These two rules show that SAM and OAM are independently
conserved. That is, there is no coupling between the SAM and

Table 2. Selection Rules for CV Modes

Rule L S

Process
Amplitude,

U

1 L p + L p ′ = L s + L i S p + S p ′ = Ss + Si 2πF
2 L p + L p ′ =−(L s + L i ) S p + S p ′ =−(Ss + Si ) −2πF
3 L p − L p ′ = L s − L i S p − S p ′ = Ss − Si 2πF
4 L p − L p ′ =−(L s − L i ) S p − S p ′ =−(Ss − Si ) 2πF

OAM degrees of freedom. Consequently, the only way for the
TAM along the fiber or beam axis, j = l + s , to be conserved is
for SAM to be conserved and OAM to be conserved:

1s = sp + sp ′ − s s − s i = 0,

1l = l p + l p ′ − ls − li = 0,

1 j = jp + jp ′ − js − ji = 0. (30)

In other words, in the weakly guiding or paraxial approximation,
TAM cannot be conserved by converting SAM into OAM. This
is a result of the fact that in these approximations, the fields are
transverse everywhere.

B. Summary of the CV Mode Selection Rules

We now consider the situation in which each of the four fields
is in a CV mode. Each mode can have any value of |L |. We
label the mode indices for field v = p, p ′, s , i as Lv and Sv .
Table 2 gives the four selection rules from our derivation, which
is detailed in Appendix B. More than one rule can hold true
simultaneously, and their amplitudes should be added to find
the total process amplitude U. Since S is limited to ±1, the
selection rules disallow processes where there is an odd number
of like S values among i, s , p, and p ′.

We now consider the limited situation in which all the modes
have the same value of |L |. As an example of this, we will identify
the relevant modes for |L | = 1 (i.e., TM, TE, etc.), but the
results hold for all |L |. We compile all 100 distinct possible
processes in a table in Fig. 3 (see Appendix B for a discussion
of counting distinct processes). Now, similar to the situation
for S, since L is limited to ±|L |, the selection rules disallow
processes where there is an odd number of like L values among
i, s , p, and p ′. This is confirmed by the table, which shows
that processes where any given mode (e.g., TE) does not appear
in pairs is ruled out. For example, TM+TE→TM+TE or
HEe +HEe →HEe +HEe or TM+TM→HEo +HEo is
allowed but TM+TE→TM+TM is not. This single selec-
tion rule is similar to the selection rules for linear polarized fields
in an isotropic medium [10] that involve only two orthogonal
polarizations. Examples of possible CV mode conversions for
total amplitudes ranging from 2πF to 6πF are shown in Fig. 4.

When considering higher-order CV modes beyond the
|L | = 1 manifold, one can find non-trivial allowed FWM
processes such as L p = 2, L p ′ = 2, L s = 3, and L i = 1 among
others. However, since radial functions R [m](r ) typically implic-
itly depend on |l |, they will have different shapes for each mode.
In turn, this will decrease the radial overlap integral F and, thus,
these processes will occur with decreased efficiency.
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Fig. 3. Process amplitudes U for four-wave mixing between CV
modes. All four modes have the same value of |L | = |l |. Here, we
take |l | = 1, but the amplitudes for |l |> 1 are identical to these. The
process amplitudes in the table are calculated from Eq. (B16) and are
normalized asU/2πF .

L = -1 S = 1 L = -1 S = 1 L = -1 S = 1 L = -1 S = 1

L = -1 S = -1

L = -1 S = 1 L = -1 S = 1 L = 1 S = -1 L = 1 S = -1

L = 1 S = 1 L = -1 S = -1L = 1 S = 1

L = -1 S = 1

L = -1 S = 1 L = -1 S = 1

L = 1 S = 1 L = 1 S = 1

L = -1 S = -1 L = -1 S = -1

L = -1 S = 1

6 F

4 F

4 F

2 F

2 F

Fig. 4. Examples of allowed four-wave mixing processes between
cylindrical vector modes.

C. Selection Rules for the TAM Mode Basis

We now consider the situation in which each of the four fields is
in a TAM mode. The TAM mode set consists of the two j = 0
modes, Z[−0]

=CV[−1,1] and Z[+0]
=CV[1,−1], and the j =±2

modes Y[1,1] and Y[−1,−1]. A derivation of the relevant selection
rules is given in Appendix B. Here, we summarize them and
consider if conservation of TAM is enforced by the rules. In
particular, we ask whether the sum of the TAM of the two input
photons is conserved in FWM, ji + js = jp + jp ′ .

Of the 100 potential processes, the ones involving solely Y
modes or solely Z modes are already treated by the selection
rules in the last two sections. We have already shown that the
selection rules for the Y modes conserve j since they separately
conserve OAM and SAM. However, the Z modes are not eigen-
states of OAM or SAM, and, thus, one cannot ascribe s and l
values before and after the process. It follows that it becomes
impossible to evaluate their conservation. Instead, we directly
consider the TAM, j . A process containing only Z modes trivi-
ally conserves the two photons’ TAM, given that each mode
carries none. Thus, we focus on the non-trivial processes that
interconvert j = 0 and j =±2 modes, which we summarize in
Table 3.

Considering the conservation of angular momen-
tum, the first allowed process reads ji + js − jp − jp ′ =

∓2± 2− 0− 0= 0. The second process, the reverse of the
first, conserves TAM in a similar manner. The last process reads
ji + js − jp − jp ′ = 0± 2− 0∓ 2= 0. Thus, all the TAM
interconversion processes conserve TAM of the two photons.

One might ask whether conservation of TAM could be used
as the sole selection rule. The answer is no. There are many
processes that would conserve TAM that are not permitted, such
as Z[+0]

+ Y[±1,±1]
→ Z[−0]

+ Y[±1,±1]. Allowed processes can
occur with different amplitudes of U= 2πF , 4πF , and 6πF .

D. Prospects for the Generation of Mode-Entangled
Photon Pairs

In spontaneous FWM, vacuum-state fields in any chosen pair of
input signal and idler modes (since all the possible input modes
contain vacuum) undergo FWM with a strong pump field. The
mixing will occasionally produce a pair of photons, one in the
output idler field and one in the output signal field. This will
occur with the same relative amplitude as the corresponding
FWM process. Consequently, for any given two input pump
modes, the FWM selection rules identify signal and idler output

Table 3. Selection Rules for Definite Total Angular
Momentum Modes

Process Type
Allowed
Processes

Amplitude,
U(TAM)

Z[w0]
+ Z[w0]

→ Y[q ,q ] + Y[−q ,−q ] w=±,

q =±1
4πF

Y[q ,q ] + Y[−q ,−q ]
→ Z[w0]

+ Z[w0] w=±,

q =±1
4πF

Z[w0]
+ Y[q ,q ]→ Z[w0]

+ Y[q ,q ] w=±,

q =±1
4πF
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mode combinations that SFWM will produce photon pairs in.
That is, it identifies allowed SFWM processes.

Previous work has generated photon pairs that are entan-
gled in their OAM modes [22]. In those cases, entanglement
occurred naturally through the conservation of OAM. More
generally, to generate entanglement through a spontaneous non-
linear process such as downconversion or FWM, one requires
two simultaneous processes that each produce a different pair of
signal and idler modes. In order to generate entanglement, the
modes containing the signal and idler photons must be indistin-
guishable other than in the degree of freedom that is entangled
[23]. For FWM in a fiber, this entails phasematching the two
processes with identical signal wavelengths and identical idler
wavelengths. Since each mode has a different effective wavevec-
tor β with different dependences on wavelength, 1k will
typically vary differently with wavelength for the two processes.
Consequently, such phasematching is nontrivial. Fortunately,
control of the effective indexβ can be achieved by careful design
of the fiber index profile and choice of material [24].

In order for these two processes together to create mode
entanglement, they must produce different pairs of modes,
Mi and Ms , from one another. An example of two appro-
priate processes is Y[1,1]p + Y[−1,−1]

p ′ → Z[+0]
i + Z[+0]

s and

Y[1,1]p + Y[−1,−1]
p ′ → Z[−0]

i + Z[−0]
s . The entangled state of the

two spontaneously generated photons would be Z[+0]
i Z[+0]

s +

Z[−0]
i Z[−0]

s . The availability of many allowed FWM proc-
esses for cylindrical vector modes means that there are many
possibilities for the generation of photons entangled in their
spatial-polarization modes.

5. CONCLUSION

In conclusion, we present a theoretical investigation into the
nonlinear optics of structured light. Specifically, we developed
a theory describing FWM of CV modes in optical fiber or free
space and the mode selection rules that follow. For comparison,
we also review analogous theory for modes with definite SAM
and OAM. Given the cylindrical symmetry of a fiber and free
space, one might expect that the only quantity that must be
strictly conserved in FWM is the TAM along the system axis.
Indeed, in some processes, OAM and SAM are independently
conserved and, thus, so too will be the TAM. However, for
OAM |l | = 1, the fundamental eigenmodes of an optical fiber
are not eigenstates of either SAM or OAM, and, consequently,
these properties will change during propagation. Nonetheless,
we showed that for modes that are TAM eigenstates, the sum
of two photons’ TAM is conserved and emerges in the output
photons. Future work will investigate the link between FWM
selection rules and angular momentum conservation laws
outside of the paraxial and weakly guiding regime.

Since CV modes are the eigenmodes of weakly guiding fibers
and of free-space propagation, the selection rules presented here
are pertinent to a range of applications. These include telecom-
munications, where structured modes can increase bandwidths
[1,2]. Additionally, our results could find use in all-optical
switching by utilizing the optical nonlinearity of structured
spatial modes as a way to route such beams. In quantum optics,
CV modes are currently being investigated for use in quantum
cryptography [25]. Using our results, the CV mode photons

could be generated directly by FWM inside optical fibers.
We also show how to generate photon pairs entangled in their
CV modes. Beyond fiber optics, our results have implications
in free-space FWM, and could shed light on the debate over the
roles of SAM and OAM in photons [26,27].

APPENDIX A: DERIVATION OF THE
FUNCTIONAL FORM OF THE NONLINEAR
POLARIZATION

In this appendix, we will derive the form of the third-order non-
linear polarization P for an isotropic material. In general, each
component Pi (i = x , y , z) of the χ (3) nonlinear polarization
for a given process is [21]

Pi = ε0 D
∑

j kl=x ,y ,z

χ
(3)
ijkl E j (ωo )Ek(ωn)E l (ωm), (A1)

where the degeneracy factor D is equal to the number of distinct
permutations of the fields. For the moment, all subscripts refer
to Cartesian coordinates x , y , z unlike in the main body of the
paper, where subscripts p, p ′, s , and i identify the field.

The non-zero components of theχ (3) tensor are

χ (3)xxyy = χ
(3)
xxzz = χ

(3)
yyxx = χ

(3)
yyzz = χ

(3)
zzxx = χ

(3)
zzyy

= χ (3)xyxy = χ
(3)
xzxz = χ

(3)
yzyz = χ

(3)
yxyx = χ

(3)
zxzx = χ

(3)
zyzy

= χ (3)xyyx = χ
(3)
xzzx = χ

(3)
yxxy = χ

(3)
yzzy = χ

(3)
zxxz = χ

(3)
zyyz

=
1

3
χ (3)xxxx =

1

3
χ (3)yyyy =

1

3
χ (3)zzzz. (A2)

Since most of the χ (3) tensor components are zero, for each
nonlinear polarization component Pi , only seven terms of the
27-term sum are non-zero. The last line of Eq. (A2) shows that
the j kl = i i i term is multiplied by a factor of three. Instead, we
divide the i i i term into three separate terms in order to make
evident an upcoming vector product. All together then, there are
nine non-zero terms in the nonlinear polarization:

Pi =
ε0 Dχ (3)xxxx

3

[
(E i (ωo )E i (ωn)+ E j (ωo )E j (ωn)

+ Ek(ωo )Ek(ωn))E i (ωm)+ (E i (ωn)E i (ωm)

+ E j (ωn)E j (ωm)+ Ek(ωn)Ek(ωm))E i (ωo )

+ (E i (ωo )E i (ωm)+ E j (ωo )E j (ωm)

+ Ek(ωo )Ek(ωm))E i (ωn)
]

=
ε0 Dχxxxx

3

[
(E(ωo ) · E(ωn))E i (ωm)(E(ωm)

· E(ωn))E i (ωo )(E(ωm) · E(ωo ))E i (ωn)
]
, (A3)

where i , j , and k are any permutation of {x , y , z}. We have also
assumed that the frequency dependence of the susceptibility can
be neglected (the Kleinman symmetry condition). Writing the
three polarization Cartesian components as a vector, we have
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P=
ε0 Dχ (3)xxxx

3
[(E(ωo ) · E(ωn))E(ωm)

+(E(ωm) · E(ωn))E(ωo )+ (E(ωm) · E(ωo ))E(ωn)]. (A4)

In the main text, the nonlinear polarization in Eq. (22) follows
from applying this to FWM and XPM (conjugating fields with
negative frequency) and evaluating the degeneracy factor: D=
6 for three distinct fields and D= 3 for two distinct fields.

For completeness, the nonlinear polarization for the pump p
(or p ′, by exchanging p and p ′ throughout) is

Pp(r)= ε0χ
(3)
xxxx[(Ep · Ep)E∗p + 2(E∗p · Ep)Ep

+ 2
(
E∗p ′ · Ep ′

)
Ep + 2(Ep ′ · Ep)E∗p ′ + 2(E∗p ′ · Ep)Ep ′ ].

(A5)

Here, the subscripts on the electric fields and polarization indi-
cate the field identity, p or p ′. By the same procedure used in
the main body of the paper, the coupled equations for the pump
amplitude p (and p ′, by exchanging p and p ′ throughout) are
found to be

∂ A p(z)
∂z

=
1

2
κp

{
|A p |

2 A p

[
Opp p∗ p∗ + 2Op∗ p p∗ p

]
+ 2|A p ′ |

2 A p

[
Op ′∗ p ′ p∗ p +Op ′ p p∗ p ′∗ +Op ′∗ p p∗ p ′

] }
.

(A6)

APPENDIX B: CALCULATION OF FOUR-WAVE
MIXING PROCESS AMPLITUDES

In this appendix, we outline how to evaluate the overlap inte-
gral, Oa (∗)b(∗)c (∗)d (∗) = F

∫
(8(∗)

a ·8
(∗)
b )(8(∗)

c ·8
(∗)
d )dφ. The

sum of three O integrals gives the FWM process amplitude
U=Oi∗ ps ∗ p ′ +Oi∗ p ′s ∗ p +Opp ′s ∗i∗ for the set of modes in
fields v = p, p ′, s , i . We label the mode indices for field v with
the corresponding subscript, e.g., sp , L i , or Ss . As explained in
the main body of the paper, a complex conjugate on the field v
in the subscript of O indicates the corresponding mode should
be conjugated, i.e.,8∗v . In all threeO integrals, two of the indices
are conjugated.

1. Process Amplitudes for Definite Spin and Orbital
Angular Momentum States

We start by considering FWM processes in which all four beams
are in OAM and SAM eigenstate modes, Y[l ,s ] = e ilφσ [s ]. The
process amplitude U(Y) is calculated from the coupled ampli-
tude equation for the signal Eq. (4). The terms comprising the
FWM process amplitude are formed by the product of four Y
modes. We begin with half of this product: the dot product of
two general Y modes. For fields a and b, this is

Y(∗)a · Y
(∗)
b = σ

[±s a ] · σ [±s b ]ei(±la±lb )φ . (B1)

Here, (∗) indicates the optional presence of the complex con-
jugate on 8v , in which case, each mode index of the v field
(e.g., s v) is preceded by the bottom symbol of ± or ∓. Using
σ [s ] =

(x+i s y)
√

2
with s =±1, it holds that σ [s i ] · σ [s j ] = δs i ,−s j .

The full argument of one overlap integral is then

Oa (∗)b(∗)c (∗)d (∗) = F
∫ (

Y(∗)a · Y
(∗)
b

) (
Y(∗)c · Y

(∗)
d

)
dφ

= δ±s a ,∓s b δ±s c ,∓s d F
∫

ei(±la±lb±lc±ld )φdφ

= 2πF δ±s a ,∓s b δ±s c ,∓s d δ0,(±la±lb±lc±ld ),

(B2)

where in the last line, we use
∫ 2π

0 exp(iqφ)dφ = 2πδ0,q . Using
this result, the threeO integrals composingU(Y) are

Oi∗ ps ∗ p ′ = 2πF δs i ,sp δs s ,sp ′ δl p+l p ′ ,li+ls , (B3)

Oi∗ p ′s ∗ p = 2πF δs i ,sp ′ δs s ,sp δl p+l p ′ ,li+ls , (B4)

Opp ′s ∗i∗ = 2πF δsp ,−sp ′ δ−s s ,s i δl p+l p ′ ,li+ls . (B5)

The total process amplitude is then the summation of
Eqs. (B2)–(B5):

U(Y) = 2πF
(
δs i ,sp δs s ,sp ′ + δs i ,sp ′ δs s ,sp + δsp ,−sp ′ δ−s s ,s i

)
× δl p+l p ′ ,li+ls

= 4πF δs i+s s ,sp+sp ′ δli+ls ,l p+l p ′
, (B6)

where the last line uses an identity that we will introduce in the
next section. Each Kronecker delta provides a selection rule:
s i + s s = sp + sp ′ and li + ls = l p + l p ′ , or more succinctly,
1s = 0 and 1l = 0. In summary, the SAM and OAM are
independently conserved in the FWM process.

2. Process Amplitudes for the CV Modes

We now calculate the process amplitudeU(CV) for a FWM proc-
ess where all the beams are in CV modes. A CV mode consists of
a superposition of two Y modes, as in Eq. (9):

CV[L,S] =
1
√

2

(
ei π4 (S−1)Y[L,S] + e−i π4 (S−1)Y[−L,−S]

)
. (B7)

Since these modes are real, we drop the complex conjugates
in O. The mode overlap integral, Eq. (27), contains two inner
products of two CV modes each. When expanded using Eq. (9),
O contains 16 terms, each containing a Y mode factor from all
four fields, v = a , b, c , d . From Eq. (B7), each of these four Y
mode factors will be either of the form Y[+Lv ,+Sv ] or Y[−Lv ,−Sv ].
Consequently, we represent these 16 terms as a sum indexed by
the sign of the S and L values, as represented by nv =±1:
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Oabcd = F
∫ (

CV[La ,Sa ] ·CV[Lb ,Sb ]
) (

CV[L c ,Sc ] ·CV[Ld ,Sd ]
)

dφ

=
F
4

∑
na ..nd=±1

ei π4 (na Sa+nb Sb+nc Sc+nd Sd−K )

×

∫ (
Y[na La ,na Sa ] · Y[nb Lb ,nb Sb ]

)
×
(
Y[nc L c ,nc Sc ] · Y[nd Ld ,nd Sd ]

)
dφ

=
πF
2

∑
na ..nd=±1

ei π4 (na Sa+nb Sb+nc Sc+nd Sd−K )

× δna Sa ,−nb Sb δnc Sc ,−nd Sd δ0,na L+nb Lb+nc L c+nd Ld

=
πF
2

∑
na ..nd=±1

e−i π4 K δna Sa ,−nb Sb δnc Sc ,−nd Sd

× δ0,na L+nb Lb+nc L c+nd Ld ,

(B8)

where the azimuthal integral was evaluated according to the last
section. Each term differs by a constant term in the exponential,
K = na + nb + nc + nd . In the final expression, we applied the
S Kronecker deltas to the exponential factor.

We will now simplify this expression by pairing the 16
terms with their complex conjugates (i.e., the term with
a particular set of na , nb, nc , nd values is conjugate to the
−na ,−nb,−nc ,−nd term). Combining each conjugate pair,
we find the general form for each of the eight resulting terms:

Gna nb nc nd = πF cos
(π

4
K
)
δna Sa ,−nb Sb δnc Sc ,−nd Sd

× δ0,na L+nb Lb+nc L c+nd Ld . (B9)

With this definition, Oabcd = G++++ + G+++−+
G++−+ + G++−− + G+−++ + G+−+− + G+−−+ +
G−+++. Each of the eight terms has either zero, one, or
two nv parameters with nv =−1 (the other variations
of {nv} were covered by the eight complex conjugate
terms). Consequently, K = 4, 2, and 0 for these cases,
respectively. If K = 2 then the cos term is 0, which
immediately eliminates half the remaining terms, leaving
Oabcd = G++++ + G++−− + G+−+− + G+−−+. If K = 0,
then the cos factor equals 1 and if K = 4 it equals−1. Applying
this to each term, we find

Oabcd = πF [−δSa ,−Sb δSc ,−Sd δ0,La+Lb+L c+Ld + δSa ,−Sb δSc ,−Sd

× δ0,La+Lb−L c−Ld + δSa ,Sb δSc ,Sd δ0,La−Lb+L c−Ld

+ δSa ,Sb δSc ,Sd δ0,La−Lb−L c+Ld ],

(B10)

where we have used δn j S j ,nk Sk = δ−n j S j ,−nk Sk to ensure that the
first argument in all the S Kronecker deltas is positive.

Now we find the three overlap integrals that composeU(CV):

Oi∗ ps ∗ p ′ = πF [−δSi ,−Sp δSs ,−Sp ′
δ0,L i+L p+L s+L p ′

+ δSi ,−Sp δSs ,−Sp ′
δ0,L i+L p−L s−L p ′

+ δSi ,Sp δSs ,Sp ′
δ0,L i−L p+L s−L p ′

+ δSi ,Sp δSs ,Sp ′
δ0,L i−L p−L s+L p ′

], (B11)

Oi∗ p ′s ∗ p = πF [−δSi ,−Sp ′
δSs ,−Sp δ0,L i+L p ′+L s+L p

+ δSi ,−Sp ′
δSs ,−Sp δ0,L i+L p ′−L s−L p

+ δSi ,Sp ′
δSs ,Sp δ0,L i−L p ′+L s−L p

+ δSi ,Sp ′
δSs ,Sp δ0,L i−L p ′−L s+L p ], (B12)

Opp ′s ∗i∗ = πF [−δSp ,−Sp ′
δSs ,−Si δ0,L p+L p ′+L s+L i

+ δSp ,−Sp ′
δSs ,−Si δ0,L p+L p ′−L s−L i + δSp ,Sp ′

δSs ,Si

× δ0,L p−L p ′+L s−L i + δSp ,Sp ′
δSs ,Si δ0,Lp−Lp ′−L s+L i ].

(B13)

Notice how the same four L Kronecker deltas appear in eachO,
albeit in a different order each time. In the U(CV) sum, we now
group these L Kronecker delta terms together:

U(CV)
=Oi∗ ps ∗ p ′ +Oi∗ p ′s ∗ p +Opp ′s ∗i∗

= πF
[
−
(
δSi ,−Sp δSs ,−Sp ′

+ δSi ,−Sp ′
δSs ,−Sp

+ δSp ,−Sp ′
δSs ,−Si

)
δ0,L i+L p+L s+L p ′

+
(
δSi ,−Sp δSs ,−Sp ′

+ δSi ,Sp ′
δSs ,Sp + δSp ,Sp ′

δSs ,Si

)
× δ0,L i+L p−L s−L p ′

+
(
δSi ,Sp δSs ,Sp ′

+ δSi ,Sp ′
δSs ,Sp + δSp ,−Sp ′

δSs ,−Si

)
× δ0,L i−L p+L s−L p ′

+
(
δSi ,Sp δSs ,Sp ′

+ δSi ,−Sp ′
δSs ,−Sp + δSp ,Sp ′

δSs ,Si

)
× δ0,L i−L p−L s+L p ′

]
. (B14)

The following identity will be used to considerably simplify
the expression forU(CV):

δSa ,q1 Sc δSb ,q1 Sd + δSa ,q2 Sd δSb ,q2 Sc + δSa ,−q1q2 Sb δSc ,−q1q2 Sd

= 2δSb+q1q2 Sa ,q2 Sc+q1 Sd ,

(B15)

where qk =±1. While we omit a detailed proof, the identity’s
validity can be understood by considering the three possible
values of either of the arguments of the Kronecker delta on the
RHS, −2, 0, or 2. For both delta arguments to be 2 or both
arguments to be −2, all the terms in both arguments must be
equal. The first two terms on the LHS sum to two if all the terms
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Table 4. Selection Rules for the CV Modes

Rule L S Amplitude

1&2 L p + L p ′ =±(L s + L i ) Sp + Sp ′ =±(Ss + Si ) ±2πF
3&4 L p − L p ′ =±(L s − L i ) Sp − Sp ′ =±(Ss − Si ) 2πF

on the RHS are equal, thereby covering these cases. The third
term and one of the other first two terms on the LHS cover the
remaining case, in which both RHS delta arguments are zero.

Applying this identity toU(CV) four times and reordering the
arguments of the Kronecker deltas, we find

U(CV)
= 2πF

× [−δSs+Si ,−(Sp+Sp ′ )
δL s+L i ,−(L p+L p ′ )

+ δSs−Si ,Sp−Sp ′
δL s−L i ,L p−L p ′

+ δSs+Si ,Sp+Sp ′
δL s+L i ,L p+L p ′

+ δSs−Si ,−(Sp−Sp ′ )
δL s−L i ,−(L p−L p ′ )

]. (B16)

These four terms correspond to four selection rules, each of
which has an L sub-rule and S sub-rule. These are summarized
in Table 4.

In Table 4, either the top or bottom symbol of ± and ∓
should be taken consistently throughout each rule. More than
one rule can hold true simultaneously, and their amplitudes
should be added to findU, the total process amplitude.

In Fig. 3 in Section 4, we compile the amplitudes (×2πF )
for all distinguishable processes. We consider only the simplest
case, one in which all four fields are chosen from the set of four
CV modes defined by having the same value of |L | = |l |. As an
example of this, we will identify the relevant modes for |L | = 1
(i.e., TM, TE, etc.), but the results hold for all |L |. The labels
p and p ′ are interchangeable without changing the physical
process, likewise for output fields s and i . In accordance with
this, we simply label the input and output mode indices by
subscripts 1 and 2. With this in mind, in our scenario, there are
10 physically distinct mode combinations for the pump modes
and the same for the output modes. (In combinatorial multiset

notation, ((
n
k ))= 10 for n = 4 modes and k = 2 input/output

fields.) It follows that there are 10× 10= 100 potential distinct
FWM processes in total.

3. Process Amplitudes for the Total Angular
Momentum Modes

We can use the results of the previous two sections to find selec-
tion rules for the TAM mode basis, i.e., the modes with definite
j that are simultaneously fiber eigenmodes. We categorize the
potential processes into three cases, which we treat separately in
the following subsections. In each, we find U(TAM), the process
amplitude. The results are summarized in Table 5.

Case 1: interconversion of j = 0 modes. First we con-
sider interconversion between the two j = 0 modes, Z[−0]

and Z[+0] (i.e., the TE and TM modes, respectively). All the
potential processes will trivially conserve j since it is equal

Table 5. Summary of Allowed FWM Processes
between TAM Modes

Case Process Type Allowed Processes Amplitude,U(TAM)

1 Z[w0]
+ Z[q0]

→ Z[q0]
+ Z[q0]

w=±, q =±
( 2πF forw 6= q

6πF forw= q

2 Y[sp ,sp ] + Y[sp ′ ,sp ′ ]

→ Y[s i ,s i ] + Y[s s ,s s ]

sp + sp ′ = s i + s s 4πF

3b Z[w0]
+ Z[w0]

→ Y[q ,q ] + Y[−q ,−q ]
w=±, q =±1 4πF

3b Y[q ,q ] + Y[−q ,−q ]

→ Z[w0]
+ Z[w0]

w=±, q =±1 4πF

3c Z[w0]
+ Y[q ,q ]

→ Z[w0]
+ Y[q ,q ]

w=±, q =±1 4πF

to zero for every involved mode. Since these are CV modes,
these cases will be governed by the corresponding selection
rules and amplitudes from Eq. (B16). As in the previous sec-
tion, the only disallowed processes are ones in which there is
a single unpaired mode among the four modes in the process,
e.g., TM+TE→TM+TM. Note that this process would
be allowed by TAM conservation, so this principle by itself is
not the sole selection rule for the TAM basis. If all the modes are
alike,U(TAM)

= 6πF , otherwise,U(TAM)
= 2πF .

Case 2: interconversion of j =±2 modes. Similarly, we can
consider conversion between the j =±2 modes in the TAM
basis. These are the Z[2] = Y[1,1] and Z[−2]

= Y[−1,−1] modes.
The relevant selection rules, given by Eq. (B6), are simply those
that separately conserve SAM s and OAM l , s i + s s = sp + sp ′

and li + ls = l p + l p ′ . Since in each beam, s = l , one type of
angular momentum conservation is automatically accompa-
nied by the other. Additionally, the TAM will also be trivially
conserved since j = s + l . Conversely, the only way to conserve
TAM for these modes is for SAM and OAM to be conserved.

Case 3: conversion between j = 0 and j =±2 modes.
Last, we consider interconversion between the j =±2 modes
and the j = 0 modes. We describe the two j = 0 modes Z[±0]

with a single expression that depends on a single parameter,
m =±1:

Z[m0]
=CV[−m,m]

=
1
√

2
ei π4 (m−1) (Y[1,−1]

+mY[−1,1]) .

(B17)

Since each overlap integral O is linear in a given beam’s mode,
if that beam is in a Z mode, the number of terms in U(TAM) will
double. Each term will correspond to a process amplitude U(Y)

for the Y modes in Eq. (B17). (We will show how this works
below). We will derive the selection rules for the TAM modes
using the selection rules of the constituent Y modes. Key will be
the fact that each field q in a Z mode will have anti-aligned SAM
and OAM, s q =−lq ,whereas they will be aligned for each beam
in a Y mode, s q = lq . We now separately consider the sub-cases
in which one, two, or three of the beams are in Z modes.

Sub-case 3a: one beam in a j = 0 mode. We start with the
case of a sole beam in a Z mode, say the idler beam. By linearity,
the superposition of two Y modes in the Z factor leads to two
terms in the TAM process amplitude:
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U(TAM)
=

1
√

2
ei π4 (mi−1)

(
U(Y)
+s pp ′ +miU

(Y)
−s pp ′

)
. (B18)

Here, U(Y)i s pp ′ is the process amplitude for four fields in Y modes
[i.e., Eq. (B6)], where if the field subscript v = i, s , p, p ′

is replaced by nv =±1, it indicates that field v is in mode
Y[nv ,−nv ]. Each U(Y)i s pp ′ term is non-zero only if it satisfies the

standard Y mode selection rules, in which case U(Y)i s pp ′ = 4πF ,
regardless of which four Y modes are involved. At least one
term must be an allowed process for U(TAM) to be non-zero.
In the current case, the Y rules become ni + s s = sp + sp ′ and
−ni + ls = l p + l p ′ for each of the two U(Y)ni s pp ′ terms, where
ni =±1 sets the term considered. However, since for all the
other fields s j = l j (i.e., modes j = i, s , p , are in Y[±n j ,±n j ]),
we have ni + s s = sp + sp ′ and −ni + s s = sp + sp ′ .
Subtracting the two expressions, we are left with ni = 0, which
contradicts ni =±1. Consequently, neither term is allowed,
and U(TAM) is always zero in the current case. In other words, a
process involving a single Z mode is not allowed.

Sub-case 3b: both input beams or both output beams
in j = 0 modes. We now move on to the case with two input
beams in Z modes. The reasoning will be similar, but now we
must also consider the relative amplitudes of the terms, since
they could cancel each other. Though we shall not describe it
explicitly, the case with two output beams in Z modes follows
the same selection rules. Now that there are two Z modes, there
are four terms in the process amplitude:

U(TAM)
=

1

2
ei π4 (mi+ms−2)(U(Y)

++pp ′ +miU
(Y)
−+pp ′

+ms U
(Y)
+−pp ′ +mi ms U

(Y)
−−pp ′)

=
1

2
ei π4 (mi+ms−2)

(
miU

(Y)
−+pp ′ +ms U

(Y)
+−pp ′

)
=

1

2
ei π4 (mi+ms−2)4πF (mi +ms ) , (B19)

where we shall now explain the steps between the lines.
Analogous to the last case, each term must satisfy ni + ns =

sp + sp ′ and−ni − ns = sp + sp ′ . Adding and subtracting these,
we are left with ni =−ns and sp =−sp ′ . The latter must be true
for the whole process. The former sets which terms are non-zero.
The second line above is the remaining terms, the cross-terms
(e.g., ni = 1, ns =−1) between the Z mode superpositions.
The process amplitudes are equal, U(Y)

−+pp ′ =U(Y)
+−pp ′ = 4πF ,

giving the third line above. Consequently, in this sub-case,
U(TAM) is non-zero only if mi =ms . In other words, the two Z
modes must be the same (e.g., mi =ms ) and the Y modes must
be opposite (e.g., sp =−sp ′ ). The total process amplitude is
U(TAM)

=±4πF ei π4 (±2−2)
= 4πF .

Sub-case 3c: one input beam and one output beam
in j = 0 modes. The next case, where one input beam
and one output beam are in a Z mode, follows reason-
ing similar to the last. And so, ni + s s = n p + sp ′ and
−ni + s s =−n p + sp ′ must be satisfied for a term to be
non-zero. This leads to s s = sp ′ and ni = n p ′ . With this,

U(TAM)
=

1
2 ei π4 (mi+ms−2)4πF (1+mi ms). Thus, U(TAM) is

non-zero only if mi =ms , which means the input beam is in the
same Z mode as the pump, and the remaining input and pump
beams are in the same Y mode (e.g., s s = sp ′ ). Again, the total
process amplitude isU(TAM)

= 4πF .
Sub-case 3d: three beams in j = 0 modes. The last

case, three of the four beams in Z modes, is relatively sim-
ple. There will be six terms in U(TAM), each of which must
satisfy ni + ns = n p + sp ′ and −ni − ns =−n p + sp ′ .
Combining these equations leads to the contradiction sp ′ = 0.
Consequently, no such process is possible.

All the allowed processes and their relative amplitudes are
listed in Table 5.
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