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Properties of bright squeezed vacuum at increasing brightness
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A bright squeezed vacuum (BSV) is a nonclassical macroscopic state of light, which is generated through
high-gain parametric down-conversion or four-wave mixing. Although the BSV is an important tool in quantum
optics and has a lot of applications, its theoretical description is still not complete. In particular, the existing
description in terms of Schmidt modes with gain-independent shapes fails to explain the spectral broadening
observed in the experiment as the mean number of photons increases. Meanwhile, the semiclassical description
accounting for the broadening does not allow us to decouple the intermodal photon-number correlations. In this
work, we present a new generalized theoretical approach to describe the spatial properties of a multimode BSV.
In the multimode case, one has to take into account the complicated interplay between all involved modes: each
plane-wave mode interacts with all other modes, which complicates the problem significantly. The developed
approach is based on exchanging the (k, t ) and (ω, z) representations and solving a system of integrodifferential
equations. Our approach predicts correctly the dynamics of the Schmidt modes and the broadening of the angular
distribution with the increase in the BSV mean photon number due to a stronger pumping. Moreover, the model
correctly describes various properties of a widely used experimental configuration with two crystals and an air
gap between them, namely, an SU(1,1) interferometer. In particular, it predicts the narrowing of the intensity
distribution, the reduction and shift of the side lobes, and the decline in the interference visibility as the mean
photon number increases due to stronger pumping. The presented experimental results confirm the validity of
the new approach. The model can be easily extended to the case of the frequency spectrum, frequency Schmidt
modes, and other experimental configurations.

DOI: 10.1103/PhysRevResearch.2.013371

I. INTRODUCTION

At a high parametric gain, parametric down-conversion
(PDC) and four-wave mixing (FWM) generate a bright
squeezed vacuum (BSV). The BSV is a nonclassical state of
light without a coherent component (displacement) but with a
large (macroscopic) number of photons per mode. This state
has strong photon-number correlations (twin-beam squeez-
ing) [1–4], quadrature squeezing [5], multimode structure
[6–8], and polarization entanglement if the generated photons
have orthogonal polarizations [9]. The BSV is a promising
tool for a lot of applications in quantum optics and metrol-
ogy: imaging [10–14], quantum state engineering [15,16],
nonlinear interferometry [17–19], super-resolution, and phase
sensitivity beyond the shot-noise limit [20,21]. Due to the high
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mean photon number and the large number of modes involved,
a theoretical description of a BSV is complicated.

Several works on a description of a multimode BSV are
based on the coupled differential equations for the signal
and idler plane-wave operators under the plane-wave pump
approximation [22–25]. This approximation implies that each
plane-wave signal mode interacts with only one plane-wave
idler mode. This simplifies the problem significantly and
provides analytical expressions for the output operators. In
other works, equations similar to the classical propagation
equations were derived and their solutions based on the
Green function method were suggested [26]. Integrodiffer-
ential equations for PDC with a fixed spectral profile of
the pump were written in Refs. [27–30]. Multimode PDC
in the frequency domain was studied in Refs. [31,32] using
the Magnus expansion.

The broadband-mode approach for the temporal domain
based on the independent Schmidt modes was introduced
in Ref. [27] and developed in Ref. [28]; the Schmidt mode
approach for the spatial domain was developed and applied
to experiment in Ref. [33]. This approach describes several
effects observed for a BSV and is very convenient for the
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analytical treatment of the problem. However, the existing
Schmidt mode theory neglects the energy mismatch between
the pump, signal, and idler photons and therefore leads to
gain-independent shapes of the Schmidt modes. For this rea-
son, it cannot describe the broadening of the spectrum, which
is observed in experiment [34] as the BSV gets brighter due
to the increase in the parametric gain (stronger pumping).

Moreover, the behavior of BSV properties with the increase
of the parametric gain can be completely different depending
on the geometry of experiment. For PDC in a single crystal,
the spatial intensity distribution has a typical “sinc-squared”
shape at low parametric gain, and it broadens as the parametric
gain increases (see the results below). Similar behavior was
observed for the frequency spectrum in Ref. [34]. In contrast,
a two-crystal configuration with an air gap in between leads
to a complicated interference pattern of intensity with side
lobes, which gets narrower with increasing parametric gain
[17,33,35]. This configuration is known as the SU(1,1) inter-
ferometer [18], and it has recently attracted a lot of attention
due to its metrological applications [21,36–39].

In this work, we present a new theoretical approach to the
description of the spatial properties of the spatially multimode
BSV taking into account the mode correlations. Our approach
is based on exchanging the (k, t ) and (ω, z) representations
and solving the high-dimensional system of integrodifferential
equations for plane-wave operators. This approach describes
various features of the BSV, such as the intensity distribution
and the shapes of the Schmidt modes, as well as their evo-
lution with increasing parametric gain, both in the case of a
single crystal and in the case of a two-crystal configurations.
In full agreement with the experiment, the theory predicts the
broadening of both the intensity distribution and the Schmidt
mode shapes with increasing gain in the case of a single
crystal and the reduction of the side lobes in the two-crystal
configuration. The suggested approach does not include any
limitations on the pump waist width and the number of modes,
as it was the case in the previous considerations, and it does
not assume that the Hamiltonian commutes with itself at
different moments of time.

The paper is organized as follows. Section II describes
the theoretical approach and applies it to the case of high-
gain PDC in a single crystal. The Schmidt modes at variable
parametric gain are considered in Sec. III. Section IV deals
with the two-crystal configuration. In all sections, experimen-
tal results are also presented and compared with the theory.
Finally, Sec. V is the conclusion.

II. HIGH-GAIN PDC IN A SINGLE CRYSTAL

The Hamiltonian of PDC in a crystal with a quadratic
susceptibility χ (2)(r) is given by [23]

H ∼
∫

d3rχ (2)(r)E (+)
p (r, t )Ê (−)

s (r, t )Ê (−)
i (r, t ) + H.c., (1)

where Ês,i are electromagnetic field operators for signal/idler
photons, the pump is assumed to be a classical beam with a
Gaussian envelope, propagating along the z axis, E (+)

p (r, t ) =
E0e− x2+y2

2σ2 ei(kpz−ωpt ), with the full width at half maximum
(FWHM) of the intensity distribution being 2

√
ln 2σ . By

using the quantization of the electromagnetic field,
Ê (−)

s,i (r, t ) = ∫
dks,iCks,i e

−i(ks,ir−ωs,it )a†
ks,i

,where a†
ks,i

are the
creation plane-wave operators, Cks,i are the coefficients of the
decomposition, the Hamiltonian becomes

H = ih̄�̃

2π

∫∫
dksdkid

3re− x2+y2

2σ2 eikpze−i(ks+ki )r

× ei(ωs+ωi−ωp)t a†
ks

a†
ki

+ H.c. (2)

Here we neglect the dependence of the coefficients Cks,i on
ks,i and suppose that the interaction strength �̃, involving
χ (2)(r), the pump field amplitude, and other parameters is a
constant. In the existing Schmidt mode approach, unlike the
current approach, the frequency mismatch ωs + ωi − ωp is
neglected, which makes the Hamiltonian independent of time
and ultimately leads to gain-independent Schmidt modes.

For simplicity we consider a 2D model, using only one
transverse coordinate x. In systems with the radial symmetry,
without loss of generality, the 2D case can be easily extended
to a 3D case by taking into account the additional integral
over the y coordinate. After integration over x and substituting
dks,i = dqs,idksz,iz, where qs,i are the transverse wave vectors
and ksz,iz are the longitudinal wave vectors of signal (idler)
radiation, the Hamiltonian can be represented in the form

H = ih̄�̃

2π

∫∫
dqsdkszdqidkizdze− (qs+qi )2σ2

2 ei(kp−ksz−kiz )z

× ei(ωs+ωi−ωp)t a†
s (qs, ksz, t )a†

i (qi, kiz, t ) + H.c.. (3)

This Hamiltonian is written in the momentum-time (k, t )
representation. In this picture, the Heisenberg equation of
motion for the signal plane-wave operators takes the form

das(qs, ksz, t )

dt
= �̃

2π

∫
dqidkizdze− (qs+qi )2σ2

2

× ei(kp−ksz−kiz )zei(ωs+ωi−ωp)t a†
i (qi, kiz, t ), (4)

and similarly for the idler operators. The operators
a†

s,i(qs,i, ksz,iz, t ) and as,i(qs,i, ksz,iz, t ) defined before are the
slowly varying parts of creation and annihilation operators.
In other words, these operators are solutions to the Heisen-
berg equation in the rotating frame of reference. Taking into
account the free-propagation Hamiltonian for the signal and
idler fields, one can obtain solutions in the fixed frame of
reference. We called these solutions fast varying components.
The fast varying components are connected with the slowly
varying parts as

a†
s,i(qs,i, ksz,iz, t ) = eiωs,it a†

s,i(qs,i, ksz,iz, t ),

a†
s,i(qs,i, ξ , ω̃s,i ) = a†

s,i(qs,i, ξ , ω̃s,i )e
−iksz,iz (ω̃s,i,q)ξ . (5)

Here we assume long pump pulses and short crystals, so
that the pulse covers the entire crystal at the same time. The
Fourier transformation allows one to pass from (q, kz, t ) to
(q, z, ω) representation. For example, for the fast varying part
of the idler creation operator, the Fourier transformation is

a†
i (qi, kiz, t ) = 1

2π

∫
a†

i (qi, ξ , ω̃i )e
iω̃it eikizξ dω̃idξ . (6)

After substituting (6) and (5) into (4) and integrating its
left and right parts from τ0 = −∞ to τ = +∞ over the
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interaction time, Eq. (4) takes the form

as(qs, ksz, τ ) − as(qs, ksz, τ0)

= �̃

(2π )2

∫
dqidkizdzdtdω̃idξe− (qs+qi )2σ2

2 ei(kp−ksz−kiz )z

× e−i(ωs+ω̃i−ωp)t eikizξ a†
i (qi, ξ , ω̃i )e

−ikiz (ω̃i,qi )ξ . (7)

In real experiments, the final time τ corresponds to the end of
a long interaction. Please note that kiz(ω̃i, qi ) is a function of
ω̃i and qi, while kiz is the integration variable.

The operators at the final as(qs, ksz, τ ) and initial
as(qs, ksz, τ0) moments of time describe the boundary condi-
tions. Due to these conditions, we have an equality between
the operators in the end (beginning) of the interaction and
operators corresponding to further (previous) free propagation
in the linear medium. Outside the nonlinear medium, k and
ω are connected by the dispersion law ω = ω(k) such that
as,i(qs,i, ksz,iz, t ) does not depend on t and as,i(qs,i, z, ωs,i )
does not depend on z. In this case, Eq. (6) with the substitu-
tion ksz = ωs

uksz
leads to the link between boundary conditions

in different representations: as(qs, ksz, τ ) = ukszas(qs, L, ωs),
as(qs, ksz, τ0) = ukszas(qs, 0, ωs) [23], where uksz is the pro-
jection of the group velocity vector of the signal photon on
the z axis and L is the length of the nonlinear medium.

In the right-hand side of Eq. (7), integration over time and
longitudinal momentum leads to the δ functions,

1

2π

∫
dt e−i(ωs+ω̃i−ωp)t = δ(ω̃i − ωp + ωs),

1

2π

∫
dkize

ikiz (z−ξ ) = δ(z − ξ ), (8)

the first of them defines the idler frequency through the signal
and pump frequencies.

The δ functions allow one to take integrals over dω̃ and dz̃
and simplify Eq. (7):

as(qs, L, ωs) − as(qs, 0, ωs)

= �

∫
dqi

∫ L

0
dze− (qs+qi )2σ2

2 ei(kp−ksz−kiz (ωp−ωs ))z

× a†
i (qi, z, ωp − ωs), (9)

where � = �̃/ukz and we assume uksz = ukiz = ukz. In Eq (9),
the idler frequency is defined through the signal and pump
frequencies due to Eq. (8); to emphasize it, we wrote the
frequency dependence explicitly for kiz in the brackets. Dif-
ferentiation of the left- and right-sides of Eq. (9) with respect
to the L leads to the coupled integrodifferential equations for
the signal/idler annihilation/creation operators,

das(qs, L, ωs)

dL
= �

∫
dqie

− (qs+qi )2σ2

2

× ei
kLa†
i (qi, L, ωp − ωs), (10)

where 
k = kp − ksz(ωs) − kiz(ωp − ωs). A similar equation
can be written for the idler frequency,

da†
i (qi, L, ωp − ωs)

dL
= �

∫
dqse

− (qs+qi )2σ2

2

× e−i
kLas(qs, L, ωs). (11)

The solution to the system of coupled integrodifferential
equations (10) and (11) can be found in the form

as(qs, L, ωs) = as(qs) +
∫

dq′
sη(qs, q′

s, L, �)as(q
′
s)

+
∫

dq′
iβ(qs, q′

i, L, �)a†
i (q′

i ),

a†
i (qi, L, ωi ) = a†

i (qi ) +
∫

dq′
iη

∗(qi, q′
i, L, �)a†

i (q′
i )

+
∫

dq′
sβ

∗(qi, q′
s, L, �)as(q

′
s), (12)

where η(qs, q′
s, L, �), β(qs, q′

i, L, �) are functions of the
transverse wave vectors, crystal length and the interaction
strength, and as(qs) = as(qs, L = 0, ωs), a†

i (qi ) = a†
i (qi, L =

0, ωi ) are the initial plane-wave operators. In the case of an ar-
bitrary pump and a high gain, the functions η(qs, q′

s, L, �) and
β(qs, q′

i, L, �) can be found only numerically. However, in the
low-gain regime, Eqs. (12) coincide with the solutions given
by the Schmidt mode approach [33]. In addition, with the
spatially broad pump, Eqs. (12) coincide with the well-known
analytical solution for the plane-wave pump approximation
[23].

Finally, by solving the system of integrodifferential equa-
tions (10) and (11) in the form of Eqs. (12), various char-
acteristics of the BSV can be found. For example, the mean
photon-number distribution over transverse wave vectors is

Ns(qs) = 〈a†
s (qs, L, ωs)as(qs, L, ωs)〉

=
∫

dq′
i|β(qs, q′

i, L, �)|2. (13)

In what follows, we assume small angles of emission θs,i, so
that qs ≈ ksθs, and consider angular intensity distributions.

Please note that, to generalize our approach, we have
considered signal and idler photons distinguishable in at least
one degree of freedom (for example, noncollinear emission)
and marked their operators with different indices s and i.
Nevertheless, this approach can be simplified to the case of
degenerate type-I PDC under the substitution as = ai and with
taking into account the corresponding commutation relation.

To find the connection between the theoretical parameter
� and the measured experimental gain, we have modelled
the single plane-wave mode by calculating the total pho-
ton number in the collinear direction (qs = qi = 0) from
Eq. (13) as a function of � and fitted this dependence by
the well-known dependence for the single-mode regime, y =
B sinh2(A�), where A and B are the fitting parameters. Then
the parametric gain is defined as G = A�. A similar procedure
was performed in the experiment. Using a pinhole, the depen-
dence of the total intensity in the collinear direction on the
parametric gain was measured and fitted by the function y =
Be sinh2(Ae

√
P), where Ae and Be are the fitting parameters,

P is the pump power. In this case, the experimental gain is
defined as Ge = Ae

√
P, and the theoretical and experimental

gains have to coincide.
To compare the predictions of the described theory with

the experiment, we considered a 2-mm-thick BBO crystal
and a pump laser with the wavelength 354.7 nm and with
a beam waist of FWHM 170 μm. The angular intensity
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FIG. 1. The calculated normalized BSV intensity distributions
for different values of the parametric gain and phase mismatch δk =
4530 (a) and −3200 m−1 (b).

distributions of type-I PDC were calculated using Eq. (13)
for different values of the parametric gain G, as shown in
Fig. 1. For ideal experimental conditions the phase mismatch
δk = kp(θaxis, ωp) − 2ks,i(ωs,i ) = 0, with θaxis being the angle
between the pump wave vector and the optic axis of the crys-
tal. Due to imperfect crystal alignment, the phase mismatch
can be slightly nonzero. Such a deviation is hard to fix in the
experiment but has a considerable effect on the shape of the
intensity distribution, which is shown in panels (a) and (b) of
Fig. 1.

It is clearly seen that with increasing parametric gain the
angular intensity distribution broadens. The broadening is
directly connected with the fact that the angular variables
and the parametric gain both enter the functions β and η.
In contrast, in the Schmidt mode approach, the angular vari-
ables and the parametric gain are separate: the eigenmodes
depend only on the angular variables, the eigenvalues depend
only on the parametric gain, the broadening is not expected.
The origin of the broadening can be clearly seen under
the plane-wave pump approximation, where strong correla-
tions between the signal and the idler photons take place:
qs = −qi.

FIG. 2. The theoretical FWHM of the BSV intensity distribution
vs parametric gain for a 170 μm FWHM pump (cyan solid line)
and plane-wave pump (blue dashed line) calculated according to the
approach of Refs. [23,24], and the experimental data (red dots).

In experiment, a BSV was obtained through PDC pumped
by the third harmonic radiation (wavelength 354.7 nm) of
a pulsed Nd:YAG laser. The pulsed radiation (pulse width
18 ps, repetition rate 1 kHz) is essential to reach the high-
gain regime. The intensity distributions were recorded with a
charge-coupled device (CCD) camera in the Fourier plane of
a lens with the focal length of 100 mm. The spectral filtering
was performed using a band-pass filter with the transmission
centered around the wavelength 710 nm and with a bandwidth
of 10 nm.

The dependence of the FWHM of the spatial intensity
distribution of the BSV on the parametric gain for δk =
4530 m−1 (obtained by fitting the experimental distributions
and fixed for further calculations) was calculated and com-
pared with the experimental data, see Fig. 2. In the low-gain
regime, the FWHM of the BSV intensity distribution coin-
cides with the value calculated using the first-order perturba-
tion theory [40]. As the parametric gain increases, the FWHM
monotonically grows. The same tendency is observed in the
experiment (red points) and is in good agreement with the
theoretical dependence (cyan line). The blue dashed line, cal-
culated for the case of a plane-wave pump, predicts a slower
broadening of the angular distribution than the one with a
focused pump. Note that in the gain-independent Schmidt
mode approach, the FWHM decreases with increasing gain,
contrary to experiment.

III. SCHMIDT MODES

The BSV radiation is strongly multimode. This multimode
structure is important for a lot of applications [11] but, at
the same time, is difficult to analyze. The most useful way
to describe the multimode BSV radiation is by introducing
a system of normalized orthogonal Schmidt modes. Within
the Schmidt mode basis, each signal mode is only correlated
with a single matching idler mode, which greatly facilitates
the analysis.

In a simplified Schmidt mode approach [33], the shapes
of the BSV Schmidt modes do not depend on the parametric
gain. In addition, the natural mode competition mechanism,
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i.e., low-order modes acquiring larger weights at larger gain,
leads to the reduction in the number of Schmidt modes with
increasing gain. These two statements lead to the angular (and
frequency) narrowing of the intensity distribution, which is in
contradiction with the observed broadening. The broadening
can be only understood in the framework of the new approach
considered here, and, as shown below, is connected with the
mode widths changing with the gain.

The complex function β in Eq. (12) can be written using
the Schmidt decomposition with respect to the transverse
wave vectors,

β(qs, q′
i, L, �) =

∑
n

√
�neiφn un(qs, �)ψn(q′

i, �), (14)

where gain-dependent eigenfunctions un(qs, �) and ψn(q′
i, �)

for the signal and idler beams, respectively, are labeled with
the index n, while �n represent gain-dependent weights of
the decomposition, and φn are constant phases. Similarly, the
function η can be decomposed with eigenvalues �̃n, constant
phases ϕn, and eigenfunctions vn(qs, �) and ξn(q′

s, �):

η(qs, q′
s, L, �) =

∑
n

√
�̃neiϕnvn(qs, �)ξn(q′

s, �). (15)

From direct numerical decomposition of β(qs, q′
i, L, �) and

η(qs, q′
s, L, �) the following relations between eigenfunc-

tions are ensued: vn(q, �) = un(q, �), ξ ∗
n (q, �) = ψn(q, �),

and the absolute values of all functions are equal: |ψn| =
|un| = |ξn| = |vn|. The gain-dependent weights �n and �̃n

are different in the low-gain regime (�n = sinh2(
√

λn�) and
�̃n = 4 sinh4(

√
λn�
2 ), where λn are eigenvalues of the Schmidt

decomposition of the two-photon amplitude [33]) but are get-
ting closer with increasing the gain and become equal in the
high-gain regime (�n ≈ �̃n ∼ exp[2

√
λn�]). This behavior

of the renormalized weights is in full agreement with the gain-
independent Schmidt mode approach [33]. Using the Schmidt
decompositions in Eqs. (14) and (15), we can introduce
new photon creation/annihilation operators for the collective
spatial Schmidt modes (the Schmidt mode operators) of the
radiation as a result of the nonlinear interaction,

A†
n =

∫
dqsξ

∗
n (qs, �)a†

s (qs),

B†
n =

∫
dqiψn(qi, �)a†

i (qi ). (16)

The operators A†
n and B†

n have the same form but they are
related with the signal and idler plane-wave creation opera-
tors, respectively. Equations (12) can be written in terms of
the Schmidt operators,

as(qs, L, ωs) = as(qs) +
∑

n

un(qs, �)(
√

�̃neiϕn An

+
√

�neiφn B†
n),

a†
i (qi, L, ωi ) = a†

i (qi ) +
∑

n

v∗
n (qi, �)(

√
�̃ne−iϕn B†

n

+
√

�ne−iφn An). (17)

Equations (17) clearly show that the output signal and idler
plane-wave operators are connected with the same functions
un(q, �) = vn(q, �), which is because we assumed frequency
degeneracy.

The input/output relations (17) are similar to the ones of
Ref. [33]. However, in Eqs. (17) not only the weights �n,
�̃n but also the functions un(qs, �), vn(qi, �) depend on the
parametric gain �. Thereby, the output operators are now de-
fined by the Schmidt modes whose shapes are gain-dependent.
Using Eqs. (17), the intensity distribution Eq. (13) can be
written in a simple form as a sum of the squared absolute
values of the Schmidt modes with the corresponding weights:

Ns(qs) =
∑

n

�n|un(qs, �)|2. (18)

The Schmidt eigenmodes and eigenvalues of the BSV can
be reconstructed from the covariance of its intensity distribu-
tion [41]. Indeed, consider the sum of the contributions of the
signal and idler radiation for a fixed gain, i.e., I� (q) = Is(q) +
Ii(q), the covariance of intensities measured at positions q and
q′ is defined as

Cov(q, q′) = 〈I� (q)I� (q′)〉 − 〈I� (q)〉〈I� (q′)〉. (19)

Calculation of the covariance distribution in terms of the
Schmidt modes, using the input/output relations of Eqs. (17),
leads to

Cov(q, q′) ∝
[∑

n

�nun(q)u∗
n(q′)

]2

+
[∑

n

�nvn(q)v∗
n (q′)

]2

+ 2

∣∣∣∣∣
∑

n

�nun(q)vn(q′)

∣∣∣∣∣
2

, (20)

where we suppose that �n = �̃n for high gain. The first two
terms of Eq. (20) are related to the autocorrelation of intensity
fluctuations, respectively, of the signal and idler beams, while
the third one represents the cross-correlation between the
signal and idler radiation.

For simplifying the reconstruction of the Schmidt modes,
in experiment we eliminated the cross-correlations between
the signal and idler radiation by filtering a wavelength slightly
shifted from the degeneracy point, so that the detected signal
photons did not have idler matches. In this case, in the
covariance (20) only the first term should remain, containing
the signal Schmidt modes un(q). Simultaneously, if the filtered
wavelengths are still rather close to degeneracy, one can
assume un(q) = vn(q). The Schmidt modes and weights were
found by performing the singular value decomposition (SVD)
of the square root of the covariance distribution [42].

In experiment, we filtered the signal radiation using a
band-pass filter with the central wavelength 700 nm and a
bandwidth of 10 nm. Since the length of the nonlinear crystal
was small enough (2 mm), we could neglect the effect of
spatial walk-off. Accordingly, the BSV radiation was axially
symmetric and one could assume the factorability of the x and
y degrees of freedom. Therefore the analysis was restricted
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FIG. 3. Experimental distribution of the covariance in normal-
ized units for the parametric gain Ge = 6. Cross-correlations are
removed by using a filter selecting only the signal radiation. For
comparison, the white dashed line denotes the 0.5 level of the fitted
distribution, shown in the inset.

to the intensity profiles along the x direction. For a better
signal-to-noise ratio, we integrated the intensity distributions
in the y direction within the range from −2 to 2 mrad of
the angle qy/|q|, where q = (qx, qy). Around 2000 single-shot
intensity profiles I (θ ) with θ = qx/|q| were measured, and the
2D covariance distribution Cov(θ, θ ′) was calculated.

Figure 3 shows the experimental distribution of
the covariance for Ge = 6 in normalized units. The
autocorrelation part is distributed along the main diagonal,
where θ = θ ′. Conversely, the cross-correlation, which would
lead to nonzero covariance values along the complementary
diagonal θ = −θ ′, is absent due to spectral filtering. In order
to get rid of the background noise, a 2D fit was performed
on the covariance distribution. Given the high-gain version
of the intensity profile of the PDC radiation [24] and the fact
that the covariance distribution along the main diagonal
behaves as the squared intensity profile, the function used for
the fit was

Cov(θ, θ ′) = A + B e−C(θ−θ ′ )2

×
[

sinh2
√

G2
e − (D(θ + θ ′)2 + E )2

G2
e − (D(θ + θ ′)2 + E )2

]2

, (21)

with A, B,C, D being fitting parameters and E being an
experimentally determined quantity dependent on the
phase mismatch. The inset of Fig. 3 demonstrates the
fitted distribution for Ge = 6, which is indeed equivalent
to the experimental one. The white dashed line in the
main figure represents the half-maximum level of the fitted
covariance distribution and shows a good agreement with the
half-maximum level (in cyan) for the experiment.

The broadening of the covariance distribution with the
increase of the parametric gain is shown in Fig. 4. The exper-
imental FWHM follows the predicted trend from the theory
for both the main and the complementary diagonals. For low
gain, the theoretical dependence coincides with the covariance
obtained through the first-order perturbation theory. The de-
pendence of the main diagonal on the gain (blue solid curve

FIG. 4. Dependence of the FWHM of the covariance main (blue)
and complementary (orange) diagonals on the parametric gain.
(Please note the different axis scales.) The solid lines represent
theoretical calculations, while the points stand for the experimental
data. The dashed blue line corresponds to the main diagonal of
covariance calculated under the plane-wave pump approximation
[23,24].

in Fig. 4) has a minimum. This minimum is also observed in
the case of a plane-wave pump (blue dashed line in Fig. 4) and
qualitatively separates the low- and high-gain regimes.

The shapes and the weights of the Schmidt modes can
be obtained through the SVD of the function

√
Cov(θ, θ ′).

This procedure has been performed for both the theoretical,
Eq. (20), and the fitted experimental covariance distributions.
The results of the reconstruction for different gain values are
shown in Fig. 5 for the first and the second Schmidt modes.
The shapes of the modes are close to the Hermite functions
and their widths depend on the gain. The general tendency is
the broadening of the Schmidt modes with increasing gain,
this broadening being more pronounced for the higher-order
modes. The theoretical results show a good agreement with
the experimental data.

IV. TWO-CRYSTAL CONFIGURATION

The method described above can be extended to the two-
crystal configuration, with the two crystals separated by an
air gap of length d , known in the literature as the SU(1,1)
interferometer [7,18,36–38]. The earlier models, for exam-
ple, the gain-independent Schmidt mode approach, describe
sufficiently well the BSV at the output of an SU(1,1) inter-
ferometer, including the redistribution of the mode weights
and the narrowing of the spatial distribution. Qualitatively
an agreement between theory and experiment is observed.
Quantitatively, there is a small disagreement in the width of
the spatial distribution, especially as the gain increases [33].
This disagreement is eliminated in the new model.

In the two-crystal case, one should take into account that
during the free propagation in the air gap the signal, idler
and pump photons acquire an additional phase. This phase
creates a factor of ei
k′d standing in front of the integral over
the second crystal, where 
k′ = kair

p − kair
s − kair

i is the wave-
vector mismatch in the air [43]. Considering the problem
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FIG. 5. (a) The first and (b) the second Schmidt modes for
different parametric gain values: G = 5.0 (red), 5.7 (blue), and 6.6
(black). Solid lines represent theoretical calculations. Dashed lines
stand for modes retrieved from the experiment.

step by step, we modify Eq. (7) by taking into account the
δ function conditions in Eq. (8):

as(qs, ksz, t = τ ) − as(qs, ksz, t = 0)

= �

∫
dqie

− (qs+qi )2σ2

2

[ ∫ L

0
dzei
kza†

i (qi, z, ωp − ωs)

+ ei
k′d
∫ 2L

L
dzei
kza†

i (qi, z, ωp − ωs)

]
. (22)

The boundary conditions connect the beginning and the end
of the interaction in different representations: as(qs, ksz, t =
0) ∼ as(qs, L = 0, ωs), as(qs, ksz, t = τ ) ∼ as(qs, 2L, ωs).

Differentiation of Eq. (22) in L gives
das(qs, 2L, ωs)

dL
= �

∫
dqie

− (qs+qi )2σ2

2

× (ei
kL (1 − ei
k′d ) a†
i (qi, L, ωp − ωs)

+ 2ei
k′d e2i
kLa†
i (qi, 2L, ωp − ωs)), (23)

and for the idler creation operator,

da†
i (qi, 2L, ωp − ωs)

dL
= �

∫
dqse

− (qs+qi )2σ2

2

×(e−i
kL (1 − e−i
k′d ) as(qs, L, ωs)

+ 2e−i
k′d e−2i
kL

× as(qs, 2L, ωs)), (24)

where a†
i (qi, L, ωp − ωs) and as(qs, L, ωs) can be found by

solving Eqs. (10) and (11) for the single crystal.
The intensity distribution in the presence of the air gap is

completely different from the single-crystal case and depends
on the length of the air gap. Due to the different refractive
indices of the pump and BSV photons in the air, an additional
phase is acquired in the gap and the intensity of light emitted
in the collinear direction oscillates from minimum to maxi-
mum as d increases. Also, an increase in d leads to more and
more frequent interference fringes in the intensity distribution
[Fig. 6(a)].

In the experiment, we pumped two nonlinear crystals with
the third harmonic of a pulsed Nd:YAG laser (repetition rate
50 Hz, wavelength 354.7 nm, and pulse duration 29.4 ps)
with a FWHM diameter of approximately 0.3 mm. The two
BBO crystals (3-mm thick, cut for degenerate type-I PDC)
were aligned, in turn, for degenerate phase matching. A
dichroic mirror and a color-glass filter suppressed the pump
after the nonlinear interaction. A band-pass filter selected a
10-nm bandwidth (FWHM) of the PDC around the wave-
length 710 nm. A lens brought the PDC to the momentum
space, where a CMOS camera was introduced. On the camera,
the background was subtracted and the data was acquired for
200 ms. The pump energy per pulse was measured before the
crystals with a calibrated energy meter. The distance between
the crystals was varied by changing the position of the first
crystal using a translation stage. Neutral density filters were
used to avoid the saturation of the camera. The ring patterns
measured with the camera were then transformed into polar
coordinates. To increase the accuracy, the radial profiles were
obtained by averaging out the polar plots over the azimuthal
angle. Due to the radial symmetry, this procedure is equiva-
lent to fixing one of the Cartesian coordinates in theoretical
calculations and calculating the intensity distribution over the
other coordinate.

As the pump power increases, the parametric gain in each
crystal grows (the gain after two crystals with a gap grows
nonmonotonically). Figures 6(a)–6(c) shows the resulting
spectra both calculated (blue) and measured (red), with the
parametric gain and the pump pulse energy shown in each
panel. (In the low-gain case, the measurement was not pos-
sible because of the small intensity.) Apart of a small shift in
the fringes, increasing the pump power leads to the reduction
of the side peaks. Therefore the envelope of the angular distri-
bution gets narrower as the parametric gain grows, in contrast
to the single-crystal case. Moreover, from Figs. 6(a)–6(c), it is
clearly seen that the visibility of the interference fringes drops
down with increasing pump power. Note that with stronger
pumping the Kerr effect, which leads to an additional phase
(mostly manifested in the collinear direction [41], becomes
more pronounced and was taken into account here.

In Figs. 6(d)–6(f), one can observe that with increasing the
distance between the crystals, the total width of the angular
distribution for the same pump power (or for the same gain in
each crystal) is reduced, as reported in Ref. [33]. This happens
due to diffraction, which leads to the reduction of the angular
width of the BSV that overlaps with the pump and is amplified
in the second crystal; diffraction is more pronounced for larger
distances. As it was mentioned above, the second mechanism
leading to the narrowing of the spatial intensity distribution
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FIG. 6. The normalized intensity distributions of the BSV in the two-crystal configuration with an air gap. [(a)–(c)] The distance between
the crystals is 10.66 mm, the gain in each crystal is (a) G = 0.01, (b) 1.1, and (c) 2.45. [(d)–(f)] The gain is fixed, G = 3.15, the distance
between the crystals is (d) 5.58, (e) 10.66, and (f) 23.36 mm. Blue curves are theoretical calculations, red curves present the experimental data.
The legends also show the values of the pump energy per pulse.

in the two-crystal configuration is the increase of the pump
power (the parametric gain in each crystal). Simultaneously,
these two mechanisms diminish the number of the Schmidt
modes in the system, allowing one to create different shapes
of intensity distributions and to control the number of modes
in the BSV.

V. CONCLUSION

We have presented a new theoretical approach to de-
scribe the spatial properties of a BSV generated through
high-gain PDC. In this approach, we derived and solved the
integrodifferential equations for plane-wave operators with-
out limitations on the pump waist width, number of modes
and commutation of the Hamiltonian at different moments
of time. The developed approach correctly captures a lot

of features of the BSV. On the one hand, it is compat-
ible with the Schmidt mode representation. On the other
hand, it properly describes the broadening of the angular
distribution with increasing parametric gain. As a result,
the new treatment correctly predicts the dependence of the
Schmidt mode widths on the parametric gain. The model
describes different experimental configurations: the single-
crystal case and the configuration of two crystals with an
air gap between them. For the verification of our theoretical
model, we have performed several experiments, both with a
single-crystal and with a two-crystal PDC sources [SU(1,1)
interferometer]. The presented experimental results are in
good agreement with performed theoretical calculations. Our
model gives a deep insight into the properties of high-
gain PDC, its mode structure and the origin of nonclassical
correlations.
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