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High-dimensional quantum key distribution based on mutually partially unbiased bases
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We propose a practical high-dimensional quantum key distribution protocol based on mutually partially
unbiased bases utilizing transverse modes of light. In contrast to conventional protocols using mutually
unbiased bases, our protocol uses Laguerre-Gaussian and Hermite-Gaussian modes of the same mode order
as two mutually partially unbiased bases for encoding, which leads to a scheme free from mode-dependent
diffraction in long-distance channels. Since only linear and passive optical elements are needed, our experimental
implementation significantly simplifies qudit generation and state measurement. Since this protocol differs from
conventional protocols using mutually unbiased bases, we provide a security analysis of our protocol.
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I. INTRODUCTION

Quantum key distribution (QKD) is one of the well-
known applications of quantum information, which promises
secure communication—the “holy grail” of communication
security—based only on the laws of physics [1–5]. A typical
QKD protocol involves two parties who aim to generate a se-
cret key by exchanging quantum signals over an insecure com-
munication channel [6–15]. Security is assessed against the
most powerful attack on the channel, where an eavesdropper
perturbs the quantum systems using the most general strate-
gies allowed by physical laws [16–20]. Traditionally, QKD
protocols are performed with qubits, where the information
is encoded in an ensemble of two-level quantum systems. In
these binary QKD systems, the information capacity is limited
to 1 bit per photon. To improve the information capacity of
QKD systems, high-dimensional QKD has experienced rapid
developments in recent years [21–31]. However, due to lim-
ited performance of generation and measurement techniques,
the potential of high-dimensional QKD has not yet been fully
exploited [32].

The orbital-angular-momentum states of photons form
a promising state space that can be used to realize high-
dimensional quantum systems [33–35]. The orbital-angular-
momentum states of quantum number � span an infinite-
dimensional Hilbert space and thus more than 1 bit infor-
mation can be encoded onto each photon [36]. Due to the
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severe mode mixing in multimode fibers, the orbital-angular-
momentum modes have been commonly applied in free-space
communications. Free-space communication can be advanta-
geous in various circumstances, such as satellite-to-ground
and intersatellite communication or connecting end users to
network nodes where installing optical fibers is time con-
suming and expensive. A number of studies have investigated
the benefits of employing orbital-angular-momentum modes
in free-space quantum cryptography [37–43]. However, the
existing realization of high-dimensional QKD protocols with
orbital-angular-momentum encoding is still impractical in a
realistic free-space link, and one important reason is the
low efficiency in measuring single photons in two bases—
the orbital-angular-momentum basis and its complementary
Fourier conjugate angular basis [38]. The problem comes
from the fact that the states in these two bases with differ-
ent quantum number � have �-dependent diffraction. This
mode-dependent diffraction will lead to a mode-dependent
propagation phase (analogous to the Gouy phase for Laguerre-
Gaussian states) as well as mode-dependent loss in the case of
finite-sized apertures and long-distance propagation [31]. In
this realistic scenario, current techniques for measuring the
photons have a low efficiency and relatively high crosstalk,
which lead to a system more vulnerable to quantum attacks.

Here, we propose a practical high-dimensional QKD proto-
col that overcomes the above challenges. Conventional QKD
protocols are based on the mutual unbiased bases (MUBs). In
a set of MUBs {B0, B1, B2, . . . , Bn}, a state in the Bk basis can
be written as an equal superposition of all states in the Bj basis
for any j �= k. It can be shown that a Laguerre-Gaussian mode
can be expressed as a coherent superposition of Hermite-
Gaussian modes of the same mode order and vice versa [44],
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suggesting that the Laguerre-Gaussian and Hermite-Gaussian
bases can be used in a QKD protocol. Since the Laguerre-
Gaussian and Hermite-Gaussian bases are not fully mutually
unbiased, we name this choice of bases as a set of mutually
partially unbiased bases (MPUBs). For a practical realization
of high-dimensional QKD, using the proposed MPUBs leads
to a stable propagation by overcoming the mode-dependent
diffraction. By using a passive π/2 mode converter [44],
both Laguerre-Gaussian and Hermite-Gaussian modes can be
easily generated and measured [45]. A security proof based
on an asymptotic scenario is given in this work to confirm the
security of the MPUB-based QKD protocol.

II. MUTUALLY PARTIALLY UNBIASED BASES

By using the relation between Hermite and Laguerre poly-
nomials, a Laguerre-Gaussian state |ln,m〉 of order (n, m) can
be decomposed into a set of Hermite-Gaussian states |hN−k,k〉
with the same mode order as [44]

|ln,m〉 =
N=m+n∑

k=0

ikb(n, m, k) |hN−k,k〉 , (1)

with real coefficients

b(n, m, k) =
(

(N − k)!k!

2N n!m!

)1/2

× 1

k!

dk

dtk
[(1 − t )n(1 + t )m]t=0, (2)

where the integer number k ∈ [0, N], and N = n + m is the
mode order. The factor ik in Eq. (1) corresponds to a π/2
relative phase difference between successive components.
Similarly, a Hermite-Gaussian state rotated by 45◦, |h�

n,m〉 can
be decomposed into exactly the same constituent basis set

|h�
n,m〉 =

N∑
k=0

b(n, m, k) |hN−k,k〉 , (3)

with the same real coefficients b(n, m, k) as above.
With the relations shown above, we can construct two

MPUBs {ln,m} (the Laguerre-Gaussian basis) and {h�
n,m} (the

Hermite-Gaussian basis), which are given by two sets of basis
vectors:

�L = {|l0,N 〉 , |l1,N−1〉 , |l2,N−2〉 , . . . , |lN,0〉}T , (4a)

�H = {|h�
0,N 〉 , |h�

1,N−1〉 , |h�
2,N−2〉 , . . . , |h�

N,0〉}T , (4b)

with �L = ULH �H . ULH is the transformation matrix relating
these two bases. The elements of ULH are given by

uμ, j =
N∑

k=0

ikb(μ, N − μ, k)b( j, N − j, k), 0 � μ, j � N,

(5)

where N is a positive integer. The (N + 1)-dimensional QKD
protocol is given as follows:

(i) Alice generates log2(N + 1) random bits (all the ran-
dom bits we mentioned are generated with equal probability)
as information to be encoded and one extra random bit PA

to decide the encoding basis: {|ln,m〉} or {|h�
n,m〉}. Then Alice

sends the corresponding (N + 1)-dimensional qudit state to
Bob.

(ii) Bob generates one random bit PB to determine the
measurement basis. Upon receiving the state, Bob measures
the qudit state in {|ln,m〉} or {|h�

n,m〉} basis. From the measure-
ment result, Bob receives log2(N + 1) bits of information.

(iii) Alice and Bob repeat steps (i) and (ii) for many rounds
and keep their bits as raw data for later use.

(iv) Sifting process: Alice and Bob announce and compare
all the PA, PB data. They compare PA and PB, discard raw data
where PA �= PB, and keep their bits with PA = PB as the raw
key.

(v) Alice randomly chooses half of the remaining events
as test bits in order to estimate the bit error rate on the code
bits and announces her selection to Bob. They compare the
values of their test bits, aborting the protocol if the error rate
is too high.

(vi) By public discussion, they run classical error correc-
tion and privacy amplification protocols to share a secret key.

According to Ref. [46], a fully random choice of basis is
not necessary. An important advantage of {ln,m} and {h�

n,m}
bases is that they have the same mode order so that the mode-
order-dependent diffraction can be avoided. In addition, since
the Laguerre-Gaussian and Hermite-Gaussian states in the
same mode order can be directly expressed as states with cer-
tain azimuthal quantum number � and radial quantum number
p, the generation and detection of Laguerre-Gaussian modes
and Hermite-Gaussian modes is much simpler compared to
that of the orbital-angular-momentum state and its Fourier
conjugate angular state.

III. PRACTICAL PERFORMANCE

A. Analysis of mode-dependent diffraction

MPUBs are free from mode-dependent diffraction because
all modes used in the protocol have the same mode order,
which leads to considerate transmission robustness. Com-
pared with the MPUB-based QKD, the traditional orbital-
angular-momentum encoding protocol suffers severe informa-
tion loss due to mode-dependent diffraction. In the traditional
protocol, one basis consists of orbital-angular-momentum
states while the complementary basis is the Fourier conjugate
angular basis [47]. The commonly used Fourier conjugate
angular state of index j prepared by Alice is defined as

| j〉 = 1√
d

L∑
l=−L

|l〉 exp

(−i2π jl

d

)
, (6)

where d = 2L + 1 is the dimension of the encoding space
and L is the maximum orbital-angular-momentum quantum
number used in the protocol. The Fourier conjugate angular
basis B0 = {| j〉} and angular momentum quantum basis B1 =
{|l〉} are mutually unbiased to each other. However, as we
mentioned above, different orbital-angular-momentum modes
diffract differently according to the quantum number. Hence,
if a Fourier conjugate angular mode is prepared as an equal
superposition of all orbital-angular-momentum modes, the
received Fourier conjugate angular mode will be different
from the transmitted state due to different propagation phases.
In other words, the received state becomes a superposition
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FIG. 1. The mutual information per detected photon, IAB, as a
function of Nf , where d is the dimension of the encoding space. The
solid lines show IAB in the MUB case, while the dashed lines give IAB

in the MPUB case. Since the states in MPUBs have the same mode
order, the mutual information is independent of Nf , which means the
influence of mode-dependent diffraction is fully eliminated in this
case.

of Fourier conjugate angular states in the prepared basis
[31]. Therefore, the error rate will increase when the mode-
dependent diffraction is taken into consideration.

In order to show the performance of MUB and MPUB un-
der the influence of mode-dependent diffraction, we assume a
free-space link with distance z. In the case of a pair of circular
apertures, the mode transmission efficiency is a function of
the Fresnel number product Nf , which is given by

Nf = πD1D2

4λz
, (7)

where D1 and D2 are the diameters of the transmitting and
receiving apertures, respectively, and λ is the wavelength [48].

The mutual information between Alice and Bob, IAB, in the
MUB and MPUB cases is shown in Fig. 1. In the MUB case,
there are huge differences between small Nf and larger Nf .
In this case, the detection probability distribution of orbital-
angular-momentum states is nonuniform. Therefore, it is dif-
ficult to use these modes (with different mode orders) in long-
distance QKD systems. The error induced by mode-dependent
diffraction can be reduced by a sophisticated mode sorter,
which increases experimental complexity. In the MPUB case,
since the states have the same mode order, the mutual infor-
mation is independent of Nf , which means the influence of
mode-dependent diffraction can be fully eliminated.

B. Resistance to turbulence

For practical applications, the main problem of the trans-
verse mode encoding QKD is the atmospheric turbulence.
In this section, we simulate the practical performance of
our MPUB-based protocol in a turbulence model [49] and
compare it with the traditional MUB-based protocol with
orbital-angular-momentum encoding in the same condition.

According to the method of Ref. [49], the cumulative effect
of the turbulence over the propagation path can be modeled
as a pure phase perturbation exp[iφ(r, θ )] on the beam at
the output plane. So after going through the turbulence, the
conditional probability of measuring a photon initially with
Laguerre-Gaussian mode number l0 to be l is given by

p(l ) =
∫ ∞

0
|R(r, z)|2r�(r, l − l0) dr, (8)

where �(r, l − l0) is the circular harmonic transform of the
rotational coherence function, which is given by

�(r, l − l0) = 1

2π

∫ 2π

0
Cφ (r, β ) exp[−iβ(l − l0)] dβ, (9)

where Cφ (r, β ) is the rotational coherence function of the
phase perturbations at radius r. For the Kolmogorov turbu-
lence model, the rotational coherence function at radius r is

Cφ (r, β ) = exp

[
−6.88 × 22/3

(
r

r0

)5/3∣∣∣∣sin

(
β

2

)∣∣∣∣
5/3

]
, (10)

where r0 is the Fried parameter [50]. The orbital-angular-
momentum quantum number probability distribution for
various Laguerre-Gaussian states propagating through Kol-
mogorov turbulence can be evaluated using Eqs. (8)–(10). For
different mode orders, the effect of the phase perturbations
depends on the radial power distribution of the beam, which
for the LGp

l is

〈r2〉 =
∫ ∞

r=0
Rl,p(r)r2 dr = (2p + |l| + 1)b2, (11)

where the azimuthal index l = n − m and the radial index p =
min(n, m). Equation (11) gives a characteristic relative mean-
squared beam radius rp,l = b

√
2p + |l| + 1.

The simulation results of the practical secure key rates (per
detected photon) for the two protocols of different dimensions
and in different turbulence levels are shown in Fig. 2. Aper-
tures with a sufficiently large size are used for these simu-
lations. The Fried parameter r0 corresponds approximately to
the spatial coherence length of the aberrations. For b 
 r0, the
reduction in the secure key rate caused by phase aberrations
is small due to limited intermode crosstalk, but it increases
rapidly as b becomes comparable to r0. The simulation shows
that when the encoding dimension d � 4, the behaviors of
the two protocols are similar and the traditional MUB-based
protocol has slightly better performance. When the dimension
increases, the difference between the two protocols’ behaviors
becomes larger and the MPUB-based protocol has a higher
key rate when d > 4.

To explain this, we should notice intermode crosstalk is
more severe in higher-dimensional state space at a high level
of turbulence. Therefore, the influence of turbulence takes a
central role and causes the key rates to decrease when d � 10
in the MUB case and d � 12 in the MPUB case. This result
reveals that the MPUB-based protocol is more resistant to the
effects of turbulence. This resistance comes from the fact that
the same mode order states obtain same beam radius rp,l in the
transmission process. The key rates are calculated from the av-
erage bit error rate, which is the average of the bit error rates in
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FIG. 2. Simulation of the key rates (per photon) as a function
of the encoding dimension d and b/r0. The Fried parameter r0

corresponds approximately to the spatial coherence length of the
aberrations and b is the width of the Laguerre-Gaussian mode.
When b 
 r0, the effects of the phase aberrations are weak and the
intermode crosstalk is small, but they increase rapidly as b becomes
comparable to r0. For any encoding dimension d � 4, the behaviors
of the two protocols are very similar. When the encoding dimension
increases, the difference of the two protocols’ behaviors becomes
more obvious and the MPUB-based protocol has a greater key rate.

FIG. 3. Simulation of the key rate K as a function of dimen-
sion of the MPUB-based QKD (red circles) and MUB-based QKD
(blue squares) at a fixed turbulence level. The parameters are set
as b = 0.01 m and r0 = 0.08 m, which corresponds to moderate
ground-level turbulence strength C2

n = 10−14 m−2/3 and wavelength
λ = 1 μm [49].

two bases and can be directly calculated from the simulation
data when p(l = l0) is known. In the MPUB protocol, during
the measurement process, the Hermite-Gaussian states are
converted to corresponding Laguerre-Gaussian states by using
a π/2 converter. Therefore, the probabilities of measurement
outcomes in the Hermite-Gaussian basis are calculated in the
same way as above [Eqs. (8)–(11)].

Figure 3 shows the calculated key rates at a fixed turbu-
lence level. The parameters here are set as b = 0.01 m and
r0 = 0.08 m, which corresponds to a moderate ground-level
turbulence strength C2

n = 10−14 m−2/3 and wavelength λ =
1 μm [49]. The results clearly show the difference between
the two protocols analyzed above.

In this case, only the simulated turbulence influences the
QKD system. The key rate K is given by [51,52]

K = log2 d + d + 1

d
Q log2

(
Q

d (d − 1)

)

×
(

1 − d + 1

d
Q

)
log2

(
1 − d + 1

d
Q

)
, (12)

where Q is the average error rate calculated from p(l = l0).

C. Comparison with traditional QKD in free space

The first demonstration of free-space QKD over an atmo-
spheric channel outside the laboratory was performed in 1996
[53]. Since then, several prepare-and-measure [13,54,55] and
entanglement-based [56–58] systems have been implemented.
A common feature of the above systems is the use of polariza-
tion encoding. The depolarizing property of the atmospheric
channel is so weak that the states of polarization can be well
maintained even after long-distance propagation. However,
two-dimensional systems have a very limited information
capacity, and such limitation cannot be resolved without in-
volving other degrees of freedom.
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Fortunately, the capacity limitation can be overcome in
the MPUB-based system. By using the π/2 converter to
transform Hermite-Gaussian states into Laguerre-Gaussian
states, the system only needs to prepare and measure the
Laguerre-Gaussian states, which simplify the implementation
and can be easily extended to higher dimensions. Further-
more, Hermite-Gaussian states and Laguerre-Gaussian states
both have symmetrical spatial constructions, because of which
the encoded states are less influenced by rotation.

Above all, the development of traditional free-space QKD
is approaching its upper limit. On the contrary, the orbital-
angular-momentum-based free-space QKD systems are more
promising in the near future to achieve higher-speed free-
space communication. Moreover, the conventional QKD pro-
tocol with orbital-angular-momentum encoding suffers from
turbulence distortion and diffraction loss, while these nega-
tive effects are minimized when using the MPUB protocol.
Therefore, our work presents a step towards practical high-
dimensional QKD.

IV. SECURITY ANALYSIS BASED ON
UNCERTAINTY RELATIONSHIP

In this part, we prove the security analysis of the MPUB-
based QKD system using the uncertainty relationship [59–62].
Suppose there are two bases X ≡ {|xi〉} and Z ≡ {|zi〉} (i =
1, . . . , L) in an L-dimensional Hilbert space H. The projection
operators relative to these bases are {|xi〉 〈xi|} and {|zi〉 〈zi|}.
HX (ρ) and HZ (ρ) are the Shannon entropies of the probability
distributions of the outcomes when measuring X and Z ,
respectively. From the previous works, the entropy uncertainty
relationship is given by

HX (ρ) + HZ (ρ) � log2

(
1

c

)
:= qMU ∀ρ ∈ H, (13)

where c is defined as the maximum overlap of any two states
from the two bases,

c = max
i, j

ci, j, ci, j := |〈xi|z j〉|2, (14)

and qMU = − log2(c). For the two orthonormal but not fully
unbiased bases {|li〉} and {|h�

i 〉} [these states are defined in
Eqs. (1) and (3)], the maximum overlap c = max (|uμ, j |2),
where uμ, j is defined in Eq. (5). Hence, the entropic uncer-
tainty relationship for {|li〉} and {|h�

i 〉} is given by

HLG(ρ) + HHG(ρ) � − log2(max |uμ, j |2) ∀ρ ∈ H. (15)

For the security analysis, a tripartite uncertainty relation is
usually needed to constrain information available to an eaves-
dropper. In a tripartite scenario (as shown in Fig. 4), the initial
state ρABE is divided into three parts A, B, and E that are sent to
Alice, Bob, and Eve, respectively. Suppose the subsystem held
by Alice is ρA, and there are two complementary measurement
bases (X and Z). The complementarity statement [23] says
that the information Bob could obtain about one observable
XA by measuring his system B, plus the information Eve could
obtain about the other observable ZA by measuring E , cannot
exceed a prescribed bound. So there is a certain unavoidable
amount of uncertainty or entropy about the two observables
conditioned on respective measurements of the two systems B

FIG. 4. Scenario of the tripartite uncertainty relationship.

and E . This uncertainty relationship [63] is given by

H (XA|B) + H (ZA|E ) � qMU , (16)

where H (X |Y ) = H (ρXY ) − H (ρY ) is the conditional von
Neumann entropy. H (XA|B) denotes Bob’s uncertainty on the
X measurement result and H (ZA|E ) denotes Eve’s uncertainty
on the Z measurement.

We take Devetak and Winter’s approach [64] for security
analysis, which is based on the entanglement distillation of
an entanglement-based QKD protocol. For our BB84-like
protocol, an equivalent entanglement-based protocol can be
easily defined. Two protocols are equivalent with respect to
Eve if and only if

(i) The quantum state transmitted by Alice and all the
classical signals revealed are the same.

(ii) All announced classical information is the same.
(iii) Alice and Bob perform the same measurement on the

same quantum states to obtain the raw key bits.
(iv) Alice and Bob use the same postprocessing to extract

secure secure key bits.
Suppose Alice prepares the state

ρ0 := 1√
N + 1

N∑
i=0

|li〉A |li〉 = 1√
N + 1

N∑
i=0

|h�
i 〉A |h�

i 〉 ,

(17)

which is defined on Hilbert space HA ⊗ H. The qudit on
space HA is the ancillary state kept by Alice which is used to
determine the encoded information. Bases {|li〉A} and {|h�

i 〉A}
are two orthonormal bases on HA which ensures Eq. (17)
holds.

Alice then randomly chooses basis {|li〉A} or {|h�
i 〉A} to

measure her ancillary qudit based on the random bit PA she
generates. She keeps her measurement result as raw data a
and sends the qudit in space H to Bob. Bob performs step (ii)
of the protocol described above. It is easy to show that, with
respect to Eve, this entanglement-based protocol is equivalent
to the proposed protocol without entanglement. Let ML(A)
[ML(B)] denote the measurement that Alice (Bob) performs
on system A (B) to derive the raw key. The asymptotic key
rate Ka for the entanglement-based protocol is given by the
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Devatak-Winter formula [64]

Ka = H (ML(A)|E ) − H (ML(A)|ML(B)), (18)

and

ρML (A)ML (B) =
∑

j,k

Tr
[(

M j
L ⊗ Mk

L

)
ρAB

] |l ′
j〉 〈l ′

j | ⊗ |lk〉 〈lk| ,

(19)

ρML (A)E =
∑

j

|l ′
j〉 〈l ′

j | ⊗ TrA
[(

M j
L ⊗ I

)
ρAE

]
. (20)

{M j
L} and {Mk

L} are the sets of positive operator-valued mea-
sure elements associated with Alice’s and Bob’s measure-
ments. The H (ML(A)|ML(B)) term in Eq. (18) reflects the
cost for classical error correction, which is equal to the classi-
cal conditional Shannon entropy of the measurement results
ML(A), ML(B). Using the tripartite uncertainty relationship
[Eq. (16)], we have

H (ML(A)|E ) + H (MH (A)|B) � qMU , (21)

where qMU defined in Eq. (13) can be calculated from the basis
transform matrix ULH . Combining Eqs. (18) and (21), we can
obtain

Ka � − log2(max |uμ, j |2) − H (MH (A)|MH (B))

− H (ML(A)|ML(B)). (22)

V. PROTOCOL DESCRIPTION WITH A DIMENSION d = 4

Based on the above analysis, our protocol can be realized
based on two MPUBs {ln,m} and {h�n,m} for any Hilbert space
dimension d � 2. Under realistic atmospheric turbulence, our
protocol beats the MUB-based protocol when the dimension
d � 4. Therefore, we consider the case of a four-dimensional
QKD with N = 3 as an explicit example of the protocol’s
operation. Figure 5 shows the states used in our protocol
(Hermite-Gaussian and Laguerre-Gaussian modes of order 3).

FIG. 5. Examples of the decomposition of Laguerre-Gaussian
(red) and Hermite-Gaussian (blue) modes of order 3.

FIG. 6. Proposed experimental approach for four-dimensional
QKD. Two π/2 converters are used for the transformation between
LG and HG bases.

Each time, the state Alice chooses for information encoding
is one of the eight states including |li〉 and |h�

i 〉 with i =
0, 1, 2, 3. The transformation matrix is given by

ULH = 1 + i

4

⎛
⎜⎜⎝

i
√

3 −√
3i −1√

3 −i 1 −√
3i

−√
3i 1 −i

√
3

−1 −√
3i

√
3 i

⎞
⎟⎟⎠.

Figure 6 shows a sketch of a proof-of-principle experi-
ment for the four-dimensional QKD protocol. The Laguerre-
Gaussian state generators are used to prepare the original LGp

l
states including LG0

3, LG0
−3, LG1

1, and LG1
−1. All the gener-

ators are modulated by acousto-optical modulators. By using
a digital radio frequency driver, acousto-optical modulators
can quickly switch the generators, while a random number
generator is used to control these acousto-optical modulators
for choosing which state to be sent. In the state preparation
and measurement part, the Laguerre-Gaussian mode states
and the Hermite-Gaussian mode states can be transformed
to each other with the help of a π/2 mode converter [44].
In our protocol, both the orbital-angular-momentum modes
and radial modes are used, so at Bob’s side a mode sorter
is needed to detect the radial and azimuthal indices of LGp

l
states, which can be realized with recent advances in mode
sorting [65–67]. Our protocol avoids generating and selecting
grating patterns on active devices, which is the traditional
method of MUB-based QKD for generating encoded states.

A promising potential of our protocol should be mentioned
here. Due to the limitation of current optics technologies, there
are no devices that can manipulate or switch the π/2 converter
at a considerable speed. Once such set of devices is available,
we can control the converter to switch between these two
bases so that only one independent setup (generator or sorter)
is needed for both Alice’s and Bob’s sides. Under such cir-
cumstances, the construction and operation of a MPUB-based
high-dimensional QKD system could be as easy as the one of
two-dimensional phase encoding QKD. However, it should be

032340-6



HIGH-DIMENSIONAL QUANTUM KEY DISTRIBUTION … PHYSICAL REVIEW A 101, 032340 (2020)

noted that our proposed protocol is still implementable in the
absence of a switchable π/2 converter as shown in Fig. 6.

VI. CONCLUSION

In summary, we have proposed a practical high-
dimensional QKD protocol. The MPUBs are used to avoid
the mode-dependent diffraction and simplify the mode gen-
eration and detection so as to improve the secure key rate
in practical application. For the experimental realization, a
detailed approach based only on linear optical devices is
presented, in which the speed of state generation mainly
depends on acoustic-optical modulators which can reach giga-
hertz repetition rate. Moreover, it is straightforward to extend
our protocol to higher-dimensional Hilbert spaces. Given its
provable security and reasonable implementation, we believe
that our protocol presents an important step towards realistic
free-space quantum communication.
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