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1. Introduction

The control of photons represents a pillar of our modern tech-
nological society. The emerging field of quantum photonics 
exploits quantum properties of light to dramatically improve 
the performance of protocols for communication, metrology, 
imaging and information processing [1–4]. These remark-
able examples of photonic technologies have been demon-
strated through the precise manipulation of polarization and 
the spectral and spatial properties of photons. The possibility 
of engineering complex optical fields with specific polariza-
tion properties, phases or values of orbital angular momentum 
(OAM) at specific transverse locations has allowed scientists 

to utilize the transverse degree of photons to develop novel 
paradigms in quantum photonic technologies that go beyond 
optical imaging [1–4].

In the past few years, there has been a strong impetus 
to develop methods to infer amplitude and phase informa-
tion of optical fields for various applications, ranging from 
astrophysics to medical sciences [5–12]. These techniques, 
that utilize interferometry, wavefront sensing and projective 
measurements to characterize the spatial degree of freedom 
of light, have been applied to quantum protocols for informa-
tion processing [3, 7–13]. The similarities existing among cer-
tain protocols for quantum information science and quantum 
imaging have triggered a rapid evolution of both fields [2]. 
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The maturity of fields such as optical physics and quantum optics has brought with it a new 
era where the photon represents a promising information resource. In the past few years, 
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More specifically, we describe the underlying physics behind remarkable protocols in which 
information is processed through high-dimensional spatial states of photons with sub-shot-
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discuss the fundamental role that certain imaging techniques have played in the development 
of novel methods for quantum information processing and vice versa.
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In this review article, we introduce the fundamental physics 
behind these two important forms of quantum technologies 
and describe the challenges that both disciplines face.

The next section of this article is devoted to the description 
of the spatial properties of light and how these can be used to 
define complex superpositions and high-dimensional Hilbert 
spaces. This section  is followed by a description of spatial 
correlations in the degrees of freedom of linear position, lin-
ear momentum, angular position (ANG) and OAM. The third 
and fourth sections  of this article introduce the basic ideas 
behind correlated imaging and compressive sensing (CS), 
respectively. A discussion regarding the relevance of high-
dimensional spatial states for quantum measurement theory 
is presented in the fifth section. The last section  is devoted 
to discuss interesting connections between quantum imaging 
and quantum information science. We conclude our review by 
providing the reader with the most representative challenges 
in the fields of quantum imaging and quantum information 
science.

2. The transverse profile of light and spatial 
wavefunctions

The underlying mathematical structure of wave theories has 
allowed physicists to establish interesting connections that 
have led to interesting philosophical discussions in physics 
[14, 15]. More specifically, the similarities between electro-
magnetic theory and quantum mechanics have motivated 
investigations regarding the existence of the wavefunction 
of a photon and its relationship with the transverse degree of 
freedom of the electromagnetic field [7, 14, 15]. Interestingly, 
in the context of optical physics, there has been extensive 
research work devoted to the measurement of the real and 
imaginary components of the electromagnetic field [16, 17]. 
Similarly, in the quantum domain, the measurement of the real 
and imaginary parts of the photonic wavefunction has been 
performed by means of quantum state tomography [7, 8, 18]. 
In this regard, there has been a strong interest in engineering 
fundamental properties of photonic wavefunctions to perform 
tasks for quantum imaging and information processing [19]. 
In this section, we will describe fundamental properties of 
light that can be used to define photonic wavefunctions.

2.1. Linear and spin angular momentum of photons

The identification of the linear momentum of light can 
be traced back to the seventeenth century when Johannes 
Kepler suggested that radiation pressure from the sun played 
an important role in defining the orientation of comet tails. 
This seminal idea influenced scientists and philosophers 
to explore mysteries surrounding the nature of light [20]. 
However, it was not until the end of the nineteenth century 
and the beginning of the twentieth that the formulation of 
the electro magnetic theory of light and the development of 
quantum mechanics allowed the theoretical description of 
electro magnetic momentum. The formulation of Maxwell 

equations in free-space allows the definition of the density of 
the linear momentum P̂k  as

P̂k =
Ê × Ĥ

c2 , (1)

where c represents the speed of light in vacuum and the elec-
tric and magnetic fields are described by the vectors Ê  and 
Ĥ , respectively. Thus, the magnitude for density of linear 
momentum can be written in terms of the energy density U as

Pk =
U
c

. (2)

Consequently, by making use of the energy carried by a single 
photon, �ω, it is possible to express the momentum per photon 
as

p̂ = �k̂. (3)

The magnitude of the wavevector |k̂| is defined as 
2π/λ, where λ represents the wavelength of the photon. The 
wavevector provides information about the spatial frequency 
of the photon. The properties of the photons in the position 
and momentum domains enable the full spatial description of 
an optical field [19]. Even though the mathematical definition 
of photon momentum might look abstract at first glance, the 
wavevector typically defines the direction of propagation. In 
practice, the photon wavevector can be measured using a sim-
ple experimental setup, such as the one depicted in figure 1. 
In this case, the spatial distribution of photons, in the aper-
ture plane, is described by the transverse wavefunction ψ(x̂). 
Naturally, this is defined by the geometry of the aperture. The 
corresponding momentum distribution of the transmitted pho-
tons can be found by performing a Fourier transform opera-
tion. This transformation can be implemented using a lens, 
thus, the intensity distribution in the far-field is described 
by |ψ(k̂)|2 . As illustrated in figure  1, photons with differ-
ent spatial frequency components, and thus different linear 
momentum components, hit specific locations on the screen 
located in the Fourier plane of the lens. As discussed below, 
it is possible to engineer the phase of light beams at specific 
transverse positions to produce complex wavefunctions with 
exotic distributions of linear momentum [8]. These structured 
beams have been utilized for applications in optical imaging 
and optical communications [3, 19].

In addition to linear momentum, photons can carry spin 
angular momentum. The angular momentum of light has 
been utilized to implement photonic qubits in protocols for 
quant um information processing [21]. The rotation of the 
electric field with respect to the propagation direction defines 
the spin angular momentum of light, see figures 2(a) and (b). 
In 1936, Beth reported the first experimental observation of 
the angular momentum of light associated with the polari-
zation of a light beam [22]. In his landmark experiment, he 
observed a mechanical torque on a qurtz plate. The meas-
ured torques were in the order of 10−9 dyne cm. As shown 
in figures 2(a) and (b), circularly polarized light is character-
ized by a symmetric rotation of the electric field. In this case, 
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each photon with circular polarization carries spin angular 
momentum given by σ�. The spin angular momentum can be 
positive or negative, for example, σ is equal to  −1 for left-
handed circular polarized light and to  +1 for right-handed. 
These polarization states of a photon are eigenstates of the 
spin operator. As discussed below, polarization states of light 
have been utilized to encode quantum bits of information in 
single photons [23, 24].

2.2. OAM

In addition to linear and spin angular momentum, light can 
also carry OAM [25]. The OAM of light is due to a helical 
phase front given by an azimuthal phase dependence of the 
form ei�φ, where � represents the OAM number and φ repre-
sents the azimuthal angle [26]. In general these beams have 
the following mathematical form

E(x, y, z,φ) = u0(x, y, z)eikze−i�φ (4)

which describes a beam of light with a slowly varying  
ampl itude distribution u0(x, y , z) propagating along the z coor-
dinate. Optical beams with these properties are solutions to 
the paraxial approximation of the Helmholtz equation, which 
is written in a Cartesian coordinate system as

[
∂2

∂x2 +
∂2

∂y2 + 2ik
∂

∂z
]u0(x, y, z) = 0. (5)

This equation  is satisfied by cylindrical Laguerre–Gauss 
modes LG�

p(ρ,φ, z), which consist of a family of orthogonal 
modes that have well defined values of OAM. The field ampl-
itude of a normalized Laguerre–Gauss mode is given by

LG�
p(ρ,φ, z) =

√
2p!

π(|�+ p|)!
1

w(z)

[√
2ρ

w(z)

]|�|

L�
p

[
2ρ2

w2(z)

]

exp

[
− ρ2

w2(z)

]
exp

[
− ik2ρ2z

2(z2 + z2
R)

]

exp [i(2p + |�|+ 1)] tan−1
(

z
zR

)

 (6)
where p  is the radial index, w(z) is the beam waist given by √

2(z2 + z2
R)/kzR , zR is the Rayleigh range defined as kw2(0)/2, 

L|�|
p  is the associated Laguerre polynomial and ρ , φ denote the 

transverse coordinates. Each photon in a Laguerre–Gaussian 
mode carries an OAM ��. The azimuthal phase dependence 
of these beams induces the helical phase fronts shown in fig-
ures 2(c) and (d).

There are different methods in which beams carrying OAM 
can be generated and detected [25]. Most of the work pre-
sented in this review makes use of computer generated holo-
grams, digital micro-mirror devices (DMDs) and spatial light 
modulators (SLMs) [27]. The encoded holograms contain the 
phase information that endows light with OAM and a diffrac-
tion grating that allows one to increase the quality of the gener-
ated modes. As shown in figure 3(a), a SLM and a lens allows 
one to select a diffracted beam that carries specific values of 
OAM. Interestingly, the exact same technique can be used in 
reverse to characterize the OAM spectrum of light, see fig-
ure 3(b). The fact that the singularity of a beam carrying OAM 
can be removed by projecting it onto the conjugate azimuthal 
phase allows one to determine the OAM spectrum of light. In 
figure 3(b) a beam of light carrying a specific value of OAM is 
projected onto −�, this produces a Gaussian mode, which is the 
only mode that couples efficiently onto a single mode fiber. If 
the beam is projected onto a different mode, then only a small 
amount of light is coupled to the fiber. In general, this procedure 
allows for the determination of the OAM spectrum of light.

As described below, beams of light carrying OAM have not 
only played an important role in the understanding of funda-
mental properties of light but also in the development of novel 
photonic technologies [3, 25]. Interestingly, there has been an 
enormous interest in using the OAM of light for implementing 
functional protocols for communication, cryptography, imag-
ing, metrology, particle manipulation and, in general, infor-
mation processing [28]. In the next sections we outline some 
of the major motivations behind some of the most remarkable 
OAM protocols.

2.3. High-dimensional photonic states

The polarization of photons is one of their multiple proper-
ties that can be used to encode quantum bits of information, 
typically known as qubits [23, 24]. In the degree of freedom 
of polarization, a single photon can be measured in one of 
two mutually exclusive polarization states, for example, the 
polarization state can be circular to the left or circular to the 
right. In the standard Dirac notation, this can be described as 
|L〉 and |R〉, respectively. However, a generic pure polarization 
state can be described as follows

|ψ〉 = a|L〉+ b|R〉, (7)

for a normalized state, the complex coefficients a and b satisfy

|a|2 + |b|2 = 1. (8)

The state |ψ〉 in equation (7) represents a qubit with the circular 
polarization states of light acting as the representation basis. 
The coefficients in the wavefunction |ψ〉 can be carefully pre-
pared to produce specific probabilities of measuring the state 
in one of the two polarizations. This process is known as state 
preparation. The probability of measuring a photon in the cir-
cular to the left state is simply given by the squared amplitude 

Figure 1. The concept of spatial frequency components and linear 
momentum of light are introduced in the context of diffraction. The 
intensity distribution formed in the Fourier plane of the lens reveals 
different spatial frequency components that indicate the presence of 
different photon wavevectors.
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of the complex coefficient a, this is Pa = |a|2. Similarly, the 
probability of finding a photon in the circular to the right state 
is given by Pb = |b|2. In practice, one can obtain this informa-
tion by performing projective measurements, in this case, the 
projective operators can be defined as

P̂L = |L〉〈L| and P̂R = |R〉〈R|. (9)

The probability of measuring a photon, that has been pre-
pared in the state |ψ〉, in a circular to the left state is given by 
the expectation value of the projector operator P̂L

pL = 〈ψ|P̂L|ψ〉 = |〈ψ|L〉|2 . (10)

Alternatively, one can prepare the initial state in either |L〉 
or |R〉 and this system can be projected onto the operators 
in equation (9). In this case, it is possible to infer the initial 
state with 100% certainty. In addition, one can assume that a 
photon is prepared in left circular polarization, |L〉. Then, one 
can mathematically project this state onto the new set of basis 
|P±〉 defined as

|P±〉 =
1√
2
(|L〉 ± |R〉). (11)

If this mathematical projection also corresponds to a physical 
measurement, then one would find the photon in the state |P+〉 
or |P−〉 with 50% of probability.

The polarization properties of photons allows one to define 
a two-dimensional (2D) Hilbert space that has resulted funda-
mentally important for many applications in quantum infor-
mation science [23, 24]. In general, it is possible to define a set 
of conjugate basis for any Hilbert space, these basis are known 
as mutually unbiased basis (MUBs). The use of MUBs allows 
the characterization of a state in a given basis system by per-
forming a series of projections in the conjugate basis. Thus, 
the projections of a state onto its MUBs lead to equal detection 
probabilities among all states that form the conjugate basis. 
In this regard, the outcome of the projective measurement is 
completely random and unbiased. Sharing similarities with 
conjugate variables such as position and momentum, the mul-
tiple MUBs that one can define using polarization qubits can 
be related through discrete Fourier transforms. Consequently, 
the polarization MUBs form discrete conjugate basis. By con-
struction, this is a general result that remains valid for other 
degrees of freedom of light such as OAM. This implies that 
for any set of general states,

|〈α|β〉|2 = 1/N (12)

where |α〉 and |β〉 are two general states from different MUBs 
and N represents the dimensionality of the Hilbert space. For 
example, the polarization properties of a photon can also be 
described in terms of its horizontal and vertical polarization 
components. However, one can also chose an additional sets 

Figure 3. Generation and detection of beams of light carrying OAM. (a) shows a spatial light modulator (SLM) displaying a computer-
generated hologram that allows one to generate beams of light carrying specific values of OAM. The engineered mode is selected from the 
first diffraction order in the Fourier plane of the SLM. As shown in (b) a similar forked diffraction grating displayed onto the SLM can also 
be utilized to measure the OAM spectrum of light.

Figure 2. The rotation of the electric field and the helical phase fronts of photons define the total angular momentum of light. The spin 
angular momentum of light is caused by the circular polarization of photons, the rotation of the electric field for right-handed circular 
polarized light is shown in (a), the rotation for left-handed circular polarized light is shown in (b). The helical phase front for a beam 
of light with a positive value of OAM, � = 3 is shown in (c), a beam of light with a negative value of OAM is shown in (d), in this case 
� = −3.

Rep. Prog. Phys. 82 (2019) 124401
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of basis, for instance, the polarization state of a photon can 
also be described in terms of diagonal or anti-diagonal polar-
ization states. As shown below, the horizontal and vertical 
polarization states can be expressed in terms of the circular 
polarization states

|H〉 = 1√
2
(|R〉+ |L〉) (13)

|V〉 = i√
2
(|R〉 − |L〉). (14)

In the degree of freedom of polarization, the projections on 
the MUBs lead to

|〈R|H〉|2 = |〈R|V〉|2 = |〈R|D〉|2 = |〈R|A〉|2 = 1/2. (15)

In this case, |D〉 and |A〉 represent diagonal and anti-diagonal 
polarization states, respectively. These projections unveil the 
dimensionality of the Hilbert space. Each projection provides 
the same information about the circularly polarized state 
|R〉. The projections onto the states that define the MUBs are 
widely used in protocols for quantum state tomography and 
quantum information science [2, 23].

Interestingly, one can exploit other degrees of freedom of 
photons to prepare complex superpositions of more than two 
states. In addition, it is possible to define high-dimensional 
MUBs. These ideas can be implemented by utilizing the fre-
quency spectrum of photons, linear momentum, OAM and the 
excitation mode of the field [29–34]. In the basis of OAM, one 
can for example define a high-dimensional photonic wave-
function in the following form

|φ〉 = 1√
5
(|� = −2〉+ |� = −1〉

+ |� = 0〉+ |� = 1〉+ |� = 2〉).
 

(16)

Alternatively, it is also possible to define a high-dimensional 
set of MUBS as shown below

Φ =
1√
5

�=5∑
�=−5

Φ�
OAM exp

(
i
2πn�

5

)
. (17)

The coefficient Φ�
OAM represents a spatial mode with a top-hat 

intensity distribution and a helical phase profile given by the 
azimuthal phase dependence ei�φ. In this case, one can obtain 
the same amount of information from the state |Φ〉 by project-
ing it onto different OAM values |�〉

|〈Φ|�〉|2 = 1/5 (18)

as before, the denominator in equation  (18) represents the 
dimensionality of the Hilbert space. In contrast to other 
degrees of freedom, such as the excitation mode of the field, 
the relative simplicity of experimental methods utilized to 
prepare high-dimensional OAM states has made the OAM 
of light an attractive tool for quantum imaging and quantum 
information science [3, 25, 28].

2.4. The information content of a photon

The interest and motivation behind encoding information in 
high-dimensional photonic states is discussed in this section. 
We describe basic ideas and concepts from information theory 
that are necessary to understand recent research related to the 
information content of the photon [3, 25, 28].

In 1948, Claude Shannon founded the field of classical 
information theory with his seminal paper entitled ‘A math-
ematical theory of communication’ [36]. His contributions not 
only changed the field of communication but modern science 
[37]. His groundbreaking work applied probability theory to 
understand limits of communication and to quantify informa-
tion [38]. His beautiful theory enabled him to quantify infor-
mation through binary digits known as bits of information, 
classical probabilities and entropies [36]. Notably, it is possi-
ble to associate concepts from Shannon’s information theory 
with common situations in our everyday life. In a practical 
context, one bit of information is given by the information 
obtained in the answer of a yes/no question. For example, 
the concept of bit of information can be illustrated with the 
results in a coin tossing game. As dictated by common expe-
rience, it is not possible to predict the outcome of a fair flip 
coin. However, it is possible to gain one bit of information 
about this random process by asking the result of the coin 
toss. Furthermore, we should consider a situation in which the 
coin is not fair, and the probability of ‘tails’ is higher than the 
probability of ‘heads’. In this case, the probability of ‘guess-
ing’ the outcome is higher. Consequently, one would gain less 
information by asking the result of the coin flip. Interestingly, 
the surprise involved in the previous situations and in yes/no 
questions was quantified by Shannon through entropy. Thus, 
the entropy associated to the toss of a fair coin is higher than 
the entropy that characterizes the toss of an unfair coin. This 
means that one gains more information through the answer of 
yes/no questions for the fair coin toss. These ideas constitute 
the pillars of modern communication [36, 38, 39].

We utilize the polarization degree of freedom of light to 
illustrate basic concepts that allows one to describe the sim-
plest scheme for photonic encoding of information. We start 
this section  by describing the potential of the polarization 
states in equations  (13) and (14) for information encoding. 
The information capacity of a photon in these states can be 
analyzed by utilizing the concept of Shannon entropy [38]. 
In this context, the entropy H(x) of the variable x is utilized 
as a measure of its randomness. The Shannon entropy of a 
variable that can take random values represents a metric of 
its uncertainty before its value is unveiled [39]. This can be 
described as

H(x) = H( p1, . . . , pN) = −
∑

n

pnlog2( pn), (19)

where the coefficients p n represent the probabilities of obtain-
ing specific outcomes. By definition, Shannon entropy is 
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expressed in units of bits. Ideally, the amount of informa-
tion that can be encoded or decoded in the two dimensional 
states described in equations (13) and (14) can be quantified 
as follows

H(0.5, 0.5) = −0.5log2(0.5)− 0.5log2(0.5) = 1 bit. (20)

In this case, p n equals to 0.5, this quantity results from the 
modulus squared of the amplitude coefficients in equa-
tions (13) and (14) that are equal to 1/

√
2. According to this 

simple calculation, it is possible to use the polarization degree 
of freedom of a single photon to encode one bit of informa-
tion. For this reason, quantum states with similar functional 
form as those in equations (13) and (14) receive the name of 
qubits. The amount of information that can be encoded in a 
photon described by a two dimensional state decreases as the 
random nature of the physical bit decreases. For example, the 
informational content of a two dimensional state decreases if 
one prepares a photon in the state 1/2|H〉+

√
3/2|V〉. The 

value of Shannon entropy decreases for this polarization state

H(0.25, 0.75) = −0.25log2(0.25)− 0.75log2(0.75)
= 0.811 bit.

 (21)

As discussed below, there are various mechanisms that can 
be employed to increase the information content of a single 
photon. For instance, instead of using its polarization proper-
ties, one can utilize additional properties of photons such as 
OAM or linear photon momentum [3]. In addition, multiple 
degrees of freedom of photons can be combined in a single 
communication protocol to increase the amount of information 
that can be imprinted in a photon [40]. The orthogonal bases in 
this family of communication protocols enable the implemen-
tation of high-dimensional Hilbert spaces [3, 41]. Interestingly, 
the transverse spatial degree of freedom has offered a flexible 
platform to test complex quantum information protocols in rel-
atively simple fashions [8, 9, 30]. For example, quantum high-
dimensional protocols have been implemented by defining 
Hilbert spaces in the pixel basis [8, 30, 35, 42]. These proto cols 
have been demonstrated through the use of diffractive devices 
such as DMDs and SLMs.

Recently, there has been a strong impetus to employ discrete 
pixel basis in high-dimensional quantum protocols [8, 30, 35, 
42, 43]. As discussed below, this photonic degree of freedom 

has been utilized in the context of quantum state engineering, 
quantum state tomography and information processing. For 
example, pixel entanglement was utilized to generate qudits 
[30], this idea was further extended by Dixon and co-workers 
who demonstrated information encoding in high-dimensional 
entangled states defined in the pixel basis [35]. In these cases, 
the Hilbert space is defined by the number of active pixels in 
spatial modulators of light, for example SLMs or DMDs [8, 
30, 35, 42, 43]. In figure 4(a), we illustrate a simple scheme in 
which a diffractive device is utilized to randomly direct pho-
tons to one of five spatial positions. As shown in figure 4(b), 
one can use a sensitive camera with the capability of detecting 
single photons to decode information. In practice, the number 
of states in the Hilbert space is much smaller than the number 
of pixels in the DMD. Consequently, the five groups of pix-
els and the five possible spots detected by the camera define 
a high-dimensional system described by the superposition of 
five states [43]. In this case, the random diffraction of light 
from the five groups of pixels allows one to utilize Shannon 
entropy to study the potential of this communication protocol 
under ideal conditions. Given the fact that the probability of 
detecting a photon in each of the five locations is the same, the 
Shannon entropy can be calculated as

H(0.2, . . . , 0.2) = 5[−0.2log2(0.2)]
= 2.32 bits.

 (22)

This example shows that it is possible to increase the informa-
tion content of a single photon by increasing the dimesionality 
of the state. Thus, it is possible to encode the same amount 
of information by preparing a five-dimensional state in other 
degrees of freedom, for example one can use the OAM of 
light [31, 41]. In practice, technology enables manipulation 
of specific properties of light, such as polarization. However, 
remarkable challenges in the manipulation of other proper-
ties of light have imposed important limitations in high-
dimensional quantum information protocols. As discussed 
below, the possibility of using multiple degrees of freedom 
of multiple entangled photons represents a promising path 
to increase the informational capacity of high-dimensional 
photonic states [34, 35, 44]. Below, we describe how some 
of these ideas can be further extended to protect or compress 
information encoded in quantum photonic states.

Figure 4. (a) A digital micromirror device (DMD) is utilized to prepare high-dimensional photonic states in the spatial degree of freedom. 
The pixels of the DMD direct light at the single-photon level to five spatial positions with equal probability. A sensitive camera is used to 
detect photons at different spatial locations, see (b).

Rep. Prog. Phys. 82 (2019) 124401
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3. Spatial correlations

In this section  we introduce the underlying physics behind 
classical and quantum correlations of light. We start by 
describing the concepts of coherence and statistical fluctua-
tions of light in the framework of optical physics [45]. This 
discussion is followed by a brief description of the Hanbury 
Brown and Twiss experiment [46]. The second part of this sec-
tion  introduces some of the fascinating aspects of quantum 
correlations in optical systems. Naturally, these ideas are pre-
sented in the context of the Einstein–Podolsky–Rosen effect 
[47, 48]. This effect is described in the variables of linear posi-
tion and linear momentum, and ANG and OAM [49].

3.1. Coherence and fluctuations of light beams

The advent of the laser gave an enormous impulse to the 
development of the theory of optical coherence [45]. The fun-
damental statistical fluctuations of light that define the nature 
of correlations are described by this fundamental theory. In 
this section, we provide a brief review of the concept of spatial 
coherence, a property that will be used in several parts of this 
review.

The famous Young’s double slit experiment has been 
widely used in different fields of physics [50–54]. Originally 
this setup was utilized to prove the wave nature of light [55]. 
However, this experiment can also be utilized to illustrate the 
concept of first-order coherence [45]. For this purpose, we use 
the setup depicted in figure  5. We assume that the slits are 
illuminated with a quasi monochromatic source of light with 
a beam waist located at z  =  0. We also assume that the trans-
verse profile of the source is partially coherent. The properties 
of first-order coherence can be quantified through the evalu-
ation of the intensity measured by the detector located in the 
far-field of the two-slit arrangement at the transverse position 
x. The total electric field at the detector Ed(x) is given by the 
sum of the instantaneous field amplitudes E(x1, z) and E(x2, z) 
transmitted through the slits. This can be expressed as

Ed(x) = a1E(x1, z)eik0d1 + a2E(x2, z)eik0d2 . (23)

The magnitude of the wavevector in vacuum is represented by 
k0 and the distances from the upper and lower slits to the detec-
tor D are represented by d1 and d2 respectively. The complex 
coefficients a1 and a2 represent the transmission amplitudes 
associated to the slits, the values for a1 and a2 are defined by 
the geometry of the slits. The intensity measured by the detec-
tor is given by the ensemble average of the instantaneous 
intensities given by the product E∗

d (x)Ed(x). This quantity is 
defined as

Id(x) = 〈E∗
d (x)Ed(x)〉

= |a1|2 I1(x1, z) + |a2|2 I2(x2, z)

+ a∗1 a2Γ
(1)(x1, x2, z)e−ik0(d1−d2) + c.c.,

 

(24)

where I1 is defined as 〈E∗(x1, z)E(x1, z)〉 and I2 as 〈E∗(x2, z)E  
(x2, z)〉, the ensemble average is denoted by 〈. . . 〉. The intensi-
ties I1 and I2 provide information about self-field correlations 
that can be described by the functions of first-order coherence 

Γ(1)(x1, x1, z) and Γ(1)(x2, x2, z). Similarly, the mutual-field 
correlation at plane z is described by the function of first-
order coherence Γ(1)(x1, x2, z). The Gaussian Schell-model 
beams are a common example of a partially coherent beam 
[56]. Such a beam is defined by having a Gaussian intensity 
I = e−x2/2σ2

I , as well as a Gaussian first-order coherence 

Γ(1)(x1, x2, z) =
√

I1(x1, z)I2(x2, z)e−|x1−x2|2/2σ2
µe−ik0(r1−r2) , 

where r1 and r2 are the distances from the center of the beam 
at the origin to slit 1 and 2, respectively. This beam can be 
used to define the intensity measured by the detector as

Id(x) = |a1|2 I1(x1, z) + |a2|2 I2(x2, z)

+ 2 |a1| |a2|
√

I1(x1, z)I2(x2, z)e−|∆x|2/2σ2
µ cos(k0∆s),

 (25)
where ∆s is equal to r1 + d1 − r2 − d2. This result demon-
strates that the formation of interference fringes occurs only 
when the length of the spatial coherence of the illuminating 
beam is larger than the separation of the two slits. In other 
words, interference fringes are formed when the properties of 
light are similar at the spatial locations defined by the two 
slits. This similarity is defined by the function of first-order 
coherence Γ(1). The concept of first-order coherence is also 
used to describe the similarity of light fields at different times, 
this property is known as temporal coherence [45].

3.2. Hanbury Brown and Twiss effect

In 1956, Hanbury Brown and Twiss (HBT) initiated the field 
of quantum optics with the observation of a novel form of 
interference produced by correlations of intensity fluctuations 
of light emitted from a chaotic source [45, 46]. Their stellar 
interferometer, designed to determine diameters of stars, con-
sists of two detectors located at different positions on Earth 
that collect light produced by independent sources on the 
disc of a star [57]. The observation of an interference effect 
through the correlation of intensities was intriguing because at 
that time it appeared that classical and the primitive quantum 
theories of light offered different predictions.

The experimental setup depicted in figure 5 utilizes one 
detector at an specific location to infer coherence properties 
of a light beam that illuminates the two slits. Measurements 

Figure 5. Schematic representation of the Young’s double-slit 
interferometer used to illustrate first-order interference and first-
order coherence. The quantities r1 and r2 represent the distances 
from the center of the source beam at plane z  =  0 to the upper and 
lower slits, respectively. The two slits are separated by δx defined as 
x1 − x2, where x1 represents the transverse position of the upper slit 
and x2 represents the position of the lower slit. The distances from 
the upper and lower slits to the detector D are represented by d1 and 
d2 respectively.
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that utilize similar configurations enable the characteriza-
tion of first-order coherence properties of the light beam. 
However, it is possible to study coherence properties of a 
source of light by performing measurements of intensity at 
two different spatial locations, see figure  6 . These meas-
urements unveil properties of second-order coherence of the 
source. Interestingly, for coherent light emitted by a laser, 
this metric reveals that the statistical properties of the field 
at two spatial or temporal locations are independent and do 
not change in the spatial or temporal domain. In this case, 
the degree of second-order coherence for coherent light is 
equal to one. However, thermal sources of light are charac-
terized by interesting properties of second-order coherence 
[58]. The generic function for second-order coherence is 
defined as

Γ(2)(r1, t1, r2, t2) = 〈E∗(r1, t1)E(r1, t1)E∗(r2, t2)E(r2, t2)〉, (26)

this function describes a statistical average of intensities asso-
ciated to the fields E(r1, t1) and E(r2, t2). In general, the fields 
are detected at two different spatial and temporal positions.

As investigated by HBT, the experimental setup shown in 
figure 6 can be utilized to measure the second-order coherence 
function in equation (26). The HBT experiment consists of a 
source of pseudothermal light, in this case, a mercury lamp 
that is spatially filtered by a rectangular aperture and divided 
by a beam splitter. Then the two resulting beams are measured 
by two detectors located in the arms of the experiment. The 
position of one detector is fixed whereas the other detector is 
free to move in the transverse plane of the beam [46]. Given 
the finite size of the source, the two detectors can collect light 
from different spatial locations of the beam as shown in fig-
ure 6. The detected portions of the light beams are generated 
by a large number of independent emitters, these independent 
contributions to the detected field are described by Ei(r1, t1) 
and Ei(r2, t2), the subindex i represents the contributions from 
an emitter. Using this information, one can write the function 
of second-order coherence as

Γ(2)(r1, t1, r2, t2)

=

〈∑
i,j,k,l

E∗
i (r1, t1)Ej(r1, t1)E∗

k (r2, t2)El(r2, t2)
〉

. (27)

After identifying the conditions under which superpositions 
of random phases from independent fields do not contribute 
to the function of second-order coherence, one can obtain the 
following general expression in terms of the first-order coher-
ence functions Γ(1) [58]

Γ(2)(r1, t1, r2, t2)

= Γ(1)(r1, t1, r1, t1)Γ(1)(r2, t2, r2, t2) +
∣∣∣Γ(1)(r1, t1, r2, t2)

∣∣∣ .
 (28)
In contrast to the separable second-order coherence function 
that characterizes coherent light, the coherence function for 
thermal light cannot be mathematically separated. As shown 
in equation (28), the thermal second-order coherence function 
can be written in terms of first-order coherence functions. As 
described in the previous section, first-order coherence func-
tions quantify field correlations. Consequently, the first term in 
equation (28) describes a product of independent intensities. 

Furthermore, the second term 
∣∣Γ(1)(r1, t1, r2, t2)

∣∣ describes 
cross-field correlations. Interestingly, 

∣∣Γ(1)(r1, t1, r2, t2)
∣∣ can-

not be mathematically separated through factorization. This 

implies that 
∣∣Γ(1)(r1, t1, r2, t2)

∣∣ cannot be written as the prod-
uct of two fields at coordinates r1, t1 and r2, t2. This second 
term in equation  (28), induces point-to-point correlations. 
In fact, an important consequence of the functional form of 
this second-order coherence function is the presence of inten-
sity correlations in thermal beams of light [59]. As described 
below, this interesting property has been utilized to generate 
correlated photonic technologies in the classical domain.

3.3. Einstein–Podolsky–Rosen effect with photons entangled 
in momentum and position

In 1935, Einstein, Podolsky and Rosen (EPR) identified one 
of the most remarkable and surprising consequences of quan-
tum physics, nonlocality [47]. This mysterious property of 
quant um systems was utilized as a solid argument to question 
the validity of quantum mechanics. In their influential paper, 
EPR analyzed a system of two distant particles entangled 
simultaneously in their position and momentum properties 
[47]. They pointed out that in a system with these proper-
ties one could perform a measurement of either position or 
momentum of one of the particles and infer, with complete 
certainty, either the position or momentum, respectively, of 
the unmeasured particle. In their emblematic gedanken exper-
iment, the two distant particles do not interact and thus the 
possibility of inferring information of a distant particle would 
imply that the position and momentum of the unmeasured 
particle were simultaneous realities, leading to a violation of 
the Heisenberg’s uncertainty principle. Remarkably, over the 
past 25 years, a series of systematical experimental tests have 
demonstrated that entanglement is in fact a real property of 
quantum mechanical entities such as molecules, atoms and 
photons [48, 49, 60].

A quantum state that ideally describes the EPR paradox 
can be described as follows

Figure 6. Schematic representation of the Hanbury Brown and 
Twiss interferometer. A mercury lamp is spatially filtered and 
measured by two detectors. One of the detectors is fixed whereas 
the second dectector is laterally displaced. The output signals of 
both detectors are correlated. This measurement is equivalent to the 
measurement of correlations of intensity fluctuations.
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|EPR〉 =
∫ ∞

−∞

∫ ∞

−∞
δ(x1 − x2)|x1, x2〉dx1dx2

=

∫ ∞

−∞

∫ ∞

−∞
δ(k1 + k2)|k1, k2〉dk1dk2.

 (29)

The product states |x1, x2〉 and |k1, k2〉 represent the position 
and momentum bases of the particles, respectively. The states 
in equation  (29) describe entanglement in the position and 
linear momentum basis [48]. In this case, the nonseparable 
function δ(x1 − x2) describes perfect punctual position corre-
lations in the biphoton system, similarly δ(k1 + k2) describes 
perfect anti-correlations in the space of linear momentum. 
This means that if a photon in a EPR state is detected at posi-
tion x′, the second photon in the pair will be found at the same 
position x′. Similarly, if a photon in the pair is detected in the 
spatial frequency k′, the spatial frequency of the second pho-
ton will be −k′. In this case, the photons are anti-correlated in 
the variable of linear momentum. In contrast to the second-
order correlation function that describes thermal radiation, the 
EPR states are only characterized by nonseparable functions 
that lead to strong point-to-point correlations [59]. These two 
mechanisms can be discriminated by measuring the variances 
in the measurement of position and momentum correlations. 
In general, photons in thermal states satisfy the following 
inequality

(∆x2|x1)
2(∆k2|k1)

2 <
1
4

, (30)

in contrast, photons in quantum mechanical EPR states violate 
the inequality. In this case, ∆x2|x1 denotes the uncertainty in 
the measurement of the position of one photon x2 conditioned 
upon measurement of the other photon in x1, a similar situa-
tion holds for ∆k2|k1. The inequality in equation (30) bounds 
the strength of spatial correlations for beams of light that can 
be described by the classical theory of coherence, for example 
thermal and coherent light beams [45, 46]. The bounds in this 
inequality result from the spatial variances in the position and 
momentum space as predicted by the diffraction theory of 
light [47, 48]. For instance, one might employ a narrow slit 
to perform an accurate measurement of the spatial position 
of photons emitted by a source. However, the presence of the 
narrow slit will produce diffraction that will make extremely 
hard to measure the momentum of photons with small uncer-
tainties. Notably, the violation of this inequality, via correla-
tion measurements, indicates the presence of optical fields 
characterized by nonclassical correlations such as EPR beams 
[47, 48]. As described below, a quantum system with these 
characteristics offers new possibilities for encoding multiple 
bits of information and for performing imaging with unique 
features [1, 2, 61].

Interestingly, the process of SPDC offers the possibility 
of generating pairs of entangled photons with characteristics 
that strongly resemble those described in the EPR paradox  
[48, 49, 62]. As depicted in figure  7, SPDC is a nonlinear 
process in which one pump photon is annihilated to gener-
ate entangled photon pairs [63]. As described in figures 7(b) 
and (c), linear momentum and energy are conserved in this 
nonlinear process. The nature of the correlations in the spatial 

degree of freedom is illustrated in figure  7(a), in this case, 
a pair of entangled photons is generated at the same crystal 
position and consequently the photons are correlated in the 
variable of linear position. As shown in figures 7(a) and (b), 
the conservation of linear momentum forces the two beams to 
propagate with opposite spatial frequencies [63]. Thus, SPDC 
photons are characterized by opposite transverse wavevectors 
that induce anti-correlations in linear momentum.

3.4. Einstein–Podolsky–Rosen effect with photons entangled 
in OAM and ANG

It is convenient to devote part of this section  to discuss the 
Fourier relationship existing between the ANG and OAM 
variables of an optical beam [64]. These physical variables are 
utilized to illustrate the EPR paradox in the azimuthal degree 
of freedom. Similarly to linear position and linear momen-
tum, ANG and OAM are conjugate variables and they form 
a Fourier pair [65]. The Fourier relations are expressed as 
follows

Ψ(�) =
1√
2π

∫ π

−π

dφψ(φ)exp(−i�φ);

ψ(φ) =
1√
2π

π∑
−π

Ψ(�)exp(i�φ).
 (31)

Here Ψ(�) represents the probability amplitude that a photon 
is carrying the OAM number �, whereas ψ(φ) is the probabil-
ity amplitude that the ANG of the photon is φ. From these 
relations, it is important to note that a rotation ∆φ will induce 
a phase that is �-dependent and is given by ∆φ� [64]. Below 
we discuss the relevance of this parameter for the estimation 
of angular rotations.

The Fourier relations described by equation  (31) can be 
illustrated with the cartoon shown in figure 8. It is shown that 
a beam with a uniform spatial profile does not carry OAM 
and consequently the OAM spectrum is centered at zero. In 
contrast, a beam shaped in a form of angular wedge shows 
a broader OAM spectrum. The spectrum is broad for angu-
lar modes with narrow widths and narrow for broad angular 
modes. This behavior is a manifestation of the uncertainty 
principle for the azimuthal variables of ANG and OAM.

The multiple degrees of freedom of light have been 
exploited to perform multiple tests of quantum mechanics 
under specific conditions. In 2010, Leach and colleagues 
demonstrated EPR correlations in the basis of ANG and OAM 
[49]. This demonstration utilized the conservation of OAM in 
SPDC processes. In this case, a pump beam with a Gaussian 
spatial profile (� = 0) produces down-converted photons with 
opposite OAM numbers. In this case, the width of the spi-
ral spectrum of the down-converted photons depends on the 
phase matching conditions of the SPDC process.

The experimental setup depicted in figure 9 was utilized by 
Leach et al to implement the EPR paradox in the azimuthal 
basis [49]. In this case, a BBO crystal was pumped to generate 
photon pairs with opposite OAM values. The down-converted 
photons are separated by a beam splitter and then projected 
onto SLMs [27]. A series of computer generated holograms, 
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displayed on the SLMs, were utilized to measure the ANG 
and OAM of signal and idler photons. The ANG was deter-
mined by displaying angular sectors with different rotations 
whereas the OAM spectrum was measured by using forked 
diffraction gratings. As shown in figures  9(b) and (c), the 
down-converted photons are strongly correlated in the vari-
able of ANG and anti-correlated in their OAM numbers. The 
strength of the correlations is quantified through the use of 
an inequality that shares similarities with that shown in equa-
tion  (30). Remarkably, the team reported a strong violation 
of the inequality that demonstrated the nonclassical nature of 
the detected correlations [49]. The identification of these azi-
muthal correlations has serious consequences for the fields of 
quantum information science and quantum imaging, some of 
the next sections are devoted to discuss implications of azi-
muthal EPR correlations.

4. Quantum imaging

The identification of the quantum properties that characterize 
beams of light has led to novel schemes for correlated imaging 

[66–74]. It results remarkable the fact that classical correlated 
imaging was triggered by experimental demonstrations of 
quantum spatial correlations and not by the HBT effect [68]. 
We start this section  by reviewing classical imaging tech-
niques that rely on intensity correlations. Then, we devote the 
rest of the section to describe the quantum features that make 
quantum imaging an important quantum technology [75].

4.1. Classical coincidence imaging

In contrast to other quantum photonic technologies in which 
the quantum properties of light are utilized to boost the per-
formance of a classical protocol, classical schemes for coin-
cidence imaging were developed in parallel to their quantum 
counterparts. This field initiated in 2002 when Bennink, 
Bentley and Boyd demonstrated the possibility of performing 
coincidence imaging without entanglement [68]. In general, 
this technique utilizes correlations between two beams of light 
to form an image. More specifically, in this protocol one of the 
correlated beams illuminates a known reference system, while 
the other travels through an unknown test system. The location 

Figure 7. (a) The process of spontaneous parametric down-conversion (SPDC) is produced by pumping a χ(2) nonlinear crystal. The SPDC 
photons are generated at the same spatial position in the crystal and consequently photon pairs are correlated in the variable of spatial 
position. The conservation of linear momentum shown in (b) forces a pair of SPDC photons to be anti-correlated in the variable of linear 
momentum. Consequently, photons located in opposite positions of the down-conversion cone are correlated. As shown in (c), the process 
of SPDC satisfies conservation of energy, in this case, a blue photon is annihilated to create two red photons.

Figure 8. Fourier relationship between ANG and OAM. A broad OAM spectrum is observed for an angular mode with narrow width. This 
is a manifestation of the uncertainty principle for the conjugate variables of ANG and OAM.
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of the reference photon is recorded on a detector array, while a 
second detector, known as bucket detector, registers the events 
in which the test photon has been detected. Remarkably, an 
image of the unknown object appears on the spatially resolv-
ing detector via correlations, even though the photons in the 
reference system never interacted with the object.

In their seminal paper, Bennink and co-workers utilized 
a probabilistic approach to identify the conditions under 
which classical sources of light can mimic the functionality 
of entangled sources for imaging purposes [68]. Interestingly, 
the team demonstrated that this is possible when the function 
of second-order coherence is described by a nonseparable 
function. As discussed above, either pseudothermal sources 
of light and biphoton states are characterized by correlation 
functions that are not separable, see equations (28) and (29). 
Furthermore, the team performed the experiment depicted 
in figure  10(a). This experimental setup utilizes a classical 
source of light (HeNe laser), an optical chopper and a mov-
able mirror to produce angularly correlated pulses that are 
splitted and sent to the reference and test arms. As shown in 
figure 10(a), one of the pulses illuminates an object and is then 
collected by a bucket detector, which does not provide spatial 
information. Its correlated pulse is detected by a camera that 
is gated by the first photon’s bucket detector. Interestingly, no 
pattern is observed by averaging all frames when the camera 
is not gated, however, a pattern is formed by averaging the 

gated frames, an example of the pattern formed in correlations 
is shown in figure 10(b).

This classical scheme for correlated imaging has moti-
vated various research lines in the last two decades [69–75]. 
An important example is the development of novel families of 
cameras that we review in the next section. In addition, novel 
proposals that utilize natural sources of light to implement 
light detection and ranging (LiDAR) are subject of active 
research [71, 72, 74, 76]. Last but not least, the use of classical 
intensity correlations has been exploited to encrypt informa-
tion in the spatial profile of light beams [77, 78].

4.2. Quantum coincidence imaging

The nonlocal characteristics of EPR states stimulated multiple 
protocols for quantum information science [1, 2]. In the field 
of imaging, entangled photons in the variables of position and 
momentum have been utilized to demonstrate the formation of 
quantum images with unique signal-to-noise levels and reso-
lution features [75]. The first scheme for quantum imaging 
was demonstrated in 1995 by Pittman and co-workers [66]. 
Due to the surprising nonlocal features of the first quantum 
imaging protocol, this received the name of ‘ghost imaging’ 
[67]. The setup utilized in the demonstration of ghost imaging 
is depicted in figure 11. This consists of a laser beam that is 
used to pump a nonlinear crystal to produce correlated photon 

Figure 9. (a) The conservation of momentum in SPDC processes generates photon pairs correlated in the variable of ANG and anti-
correlated in the variable of OAM. These correlations give rise to the azimuthal version of the EPR paradox. These properties are measured 
by means of two SLMs and single mode fibers. The experimental verification of OAM anti-correlations is shown in (b), the measurements 
that demonstrate the presence of angle correlations are shown in (c). Reprinted with permission from [49].
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pairs with orthogonal polarization. Signal and idler photons 
are separated by a polarizing beam splitter (PBS). The signal 
photon passes through a lens, an object and is finally mea-
sured by a bucket detector. The idler photon is measured by 
a detector that is mounted on a raster scan system to provide 
spatial resolution. The output signal from each detector is pro-
cessed by a coincidence circuit that is used to count joint pho-
ton-detection events. Interestingly, the image of the object is 
only formed in coincidences. Furthermore, the magnification 
of the object is determined by the ratio between the distance 
from the lens to the object s0 and the total distance si from 
the lens to the crystal and from the crystal to the raster scan 
system. Interestingly, the imaging conditions for this quantum 
correlated scheme is described by the well-known thin lens 
formula 1/f = 1/so + 1/si.

The possibility of using the simple thin lens formula to 
describe quantum coincidence imaging allows the unfold-
ing of the experimental setup for ghost imaging. As shown 
in figure 12, this is possible because the ray diagram for the 
corresponding imaging system reproduces correlations in the 
plane of the crystal and anti-correlations in the Fourier plane 
of the imaging system. In this case, the rays that represent the 
signal and idler photons can be traced back to the same posi-
tion in the crystal, this implies that both photons are generated 
at the same transverse position in the crystal, see green arrows 
in figure 12. Furthermore, the rays for signal and idler modes 
can be extended to the Fourier plane of the imaging system. 
As discussed above, the Fourier plane in this configuration 
corresponds to the transverse momentum space of the imaging 

system. In this case, the transverse component of the photons 
have opposite directions, thus signal and idler show anti-cor-
relations in the variable of momentum.

4.3. Sub-shot-noise imaging

Besides the nonlocal properties discussed above, photon pairs 
generated by the process of SPDC show other nonclassical 
properties that have been utilized to form images with unique 
spatial features [5, 79, 80, 81]. In this section, we describe the 
noise properties that can be achieved by manipulating quantum 
states of light. More specifically, we review the experimental 
demonstration of sub-shot-noise quantum imaging [80, 81]. 
This quantum imaging technique enables new possibilities to 
identify sensitive biological materials at low-light levels.

The quantum fluctuations that characterize different kinds 
of light induce different noise properties that can be utilized 
for the development of multiple quantum photonic technolo-
gies for metrology, communication, imaging and remote sens-
ing [72–75, 80–83]. Coherent and thermal light beams are 
described by quantum mechanical states with classical noise 
properties, the photon number distributions of these beams are 
Poissonian and super-Poissonian, respectively [58]. In con-
trast, the nonclassical sub-Poissonian photon statistics of light 
beams produced through SPDC processes enable the forma-
tion of high-contrast images with unique spatial resolutions 
and signal-to-noise properties [79, 84]. Nevertheless, given 
the commonly low-conversion efficiencies of SPDC pro-
cesses, these schemes for quantum imaging work at low-light 

Figure 10. (a) The experimental setup used to demonstrate coincidence imaging with a classically correlated source. (b) The image formed 
in the reference arm when the camera is gated by the detector in the test arm. Reprinted with permission from [68].

Figure 11. (a) The experimental setup used to demonstrate coincidence imaging with a quantum correlated source. The image is formed 
through the correlations between the bucket detector and the detector used for raster scan measurements.
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levels. This feature has been exploited to perform imaging of 
materials that are sensitive to high levels of light.

In 2010, Brida and co-workers demonstrated a clean imag-
ing protocol that enables one to form images with contrasts and 
noise properties that can only be achieved through quantum 
resources [81]. In the setup shown in figure 13, laser pulses are 
used to pump a nonlinear χ(2) material that produces quant um 
correlated photon pairs. Signal and idler photons pass through 
a collimating lens, then, one of the down-conversion modes 
illuminates an object, the transmitted photons in this mode 
are detected by a CCD camera. Similarly, photons in the sec-
ond mode are detected by the same CCD array. The proto-
col is formalized by subtracting correlated pixels in the CCD 
array. Due to the strong correlations between signal and idler 
modes, this operation leads to an improvement in the contrast 
and consequently to the significant reduction of noise in the 
retrieved image [81].

Two experimental realizations of differential quantum 
imaging are presented in figure 14(a). For sake of comparison, 
the classical implementations of differential imaging for same 
mean photon numbers are shown in figure 14(b). It is evident 
for this case that the contrast and noise in the images make 
the identification of the object extremely difficult. Finally, a 
direct classical imaging of the object is shown in figure 14(c). 
The latter implementation does not utilize differential meas-
urements. Figure 14 demonstrates the potential and the advan-
tages of differential quantum imaging. Interestingly, the 

reduction in the amount of noise in the protocol for quantum 
differential imaging cannot be explained using the classical 
theory of electromagnetic radiation. In other words, it is not 
possible to reproduce the signal-to-noise ratio in figure 14(a) 
using coherent or thermal states of light.

4.4. Fundamental limits on optical resolution

Now we turn our attention to the use of quantum correlations 
for surpassing classical resolution limits in optics. The inter-
est in this sub-field of imaging was partially motivated by the 
possibility of fabricating denser patterns for integrated circuits 
and CMOS technology [5]. In 2000, Boto and co-workers pro-
posed the possibility of beating the diffraction limit by exploit-
ing entanglement [5]. This work was followed by D’Angelo 
et al who demonstrated the experimental observation of high-
resolution fringes produced by two-photon interference, this 
effect is known as quantum superresolution [80]. The improved 
spatial resolution obtained through the use of certain quantum 
states of light can be understood as resulting from a combina-
tion of two effects. (1) A two-photon state of light has a de 
Broglie wavelength that is half that of the optical wavelength 
of each photon [85]. This decreased de Broglie wavelength can 
for certain geometries lead to an improved spatial resolution. 
(2) Squeezed states of light can be used to achieve a better sig-
nal-to noise ratio of optical measurements, which allows one to 
localize the position of a light beam to better than the standard 

Figure 12. The unfolded ghost imaging diagram obeys the thin lens equation. The ray description of the imaging system reproduces 
transverse spatial correlations in the plane of the SPDC crystal. In addition, the transverse components of the signal and idler rays in the 
Fourier plane of the imaging system have opposite directions. This condition reproduces the expected anti-correlations in the variable of 
momentum. For sake of clarity, we illustrate two pump spots, however, these do not play a relevant role in the unfolded ghost imaging 
diagram. Furthermore, signal and idler beams are conjugate modes that can be arbitrarily labeled. Nevertheless, this notation should be used 
in a consistent fashion.

Figure 13. Experimental apparatus for differential quantum imaging. In this scheme, SPDC photons are used to image an arbitrary object, 
noise of the formed image is significantly reduced by performing differential measurements of the signal and idler fields.
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shot-noise limit [80]. These findings motivated almost two 
decades of active research in this field [2, 4, 6, 86, 87]. In the 
past few years, scientists have identified the quantum and clas-
sical features of optical superresolution [73, 88].

Nonclassical effects attributed to two-photon interfer-
ence had already been observed in the eighties in the context 
of quantum fluctuations of light and quantum nonlocality  
[79, 89]. However, the spatial implications of two-photon inter-
ference and their importance for overcoming undesirable effects 
caused by diffraction started with the two-photon version of 
the Young’s double-slit experiment [80]. In interferometry and 
imaging, wave diffraction establishes fundamental resolution 
limits that define the minimal resolvable feature size for an 
object, given a wavelength λ [45]. The Abbe–Rayleigh criterion 
represents one of the most common definitions for diffraction-
limited resolution [5]. This stipulates that an optical system 
cannot resolve spatial changes smaller than λ/2. Remarkably, 
it has been demonstrated multiple times that this fundamental 
limit can be surpassed by exploiting quantum interference [6].

The experimental apparatus used to beat the diffraction 
limit through the two-photon Young’s double slit experiment 
is depicted in figure 15. Here, photon pairs generated by the 
process of SPDC are passed through a double-slit arrange-
ment. A PBS separates the generated down-converted photons 
with perpendicular polarizations. Signal and idler photons 
are measured by two single-photon detectors and the elec-
tronic signals produced by the detectors are then correlated. 
As shown in figure 16(a), an interference pattern is observed 
in coincidences, surprisingly no fringes are observed in sin-
gles. Furthermore, the frequency of the interference pattern 
is twice the frequency expected for the classical realization of 
the double-slit experiment [80]. This interesting feature meas-
ured by D’ Angelo et al is shown in figure 16(b). It is impor-
tant to point out that similar effects were then observed using 
classical intensity correlations in thermal light. In contrast to 

interference fringes produced by quantum interference effects, 
these classical interference structures are characterized by low 
visibilities due to the lack of perfect correlations in thermal 
beams of light [73, 88].

4.5. Quantum-secured imaging and optical encryption

The strong correlations of entangled photon pairs have moti-
vated scientists and engineers to implement nonlocal opera-
tions to hide information [31, 76, 78]. Naturally, some of these 
protocols have been specifically designed to offer security in 
the transmission of information. In this section  we review 
quantum-secure imaging and optical encryption [76, 78].

The protocol for quantum-secured imaging utilizes time-
of-flight information of photons entangled in the polarization 
degree of freedom to image a remote object [76]. This proto col 
is capable of avoiding jamming in schemes for remote sensing 
such as LiDAR. More specifically, this protocol delivers to the 
user a secure image against attacks in which the object being 
imaged intercepts and resends photons with spoiled infor-
mation. Any attempt to steal information disturbs the fragile 
quantum state of the imaging photons, this process introduces 
statistical errors that reveal its activity. The image is secure if 
entanglement between photons is preserved. In this case, the 
preservation of entanglement is quantified through a specific 
form of Bell inequality known as the Clauser, Horne, Shimony 
and Holt (CHSH) inequality [60]. This inequality utilizes the 
CHSH parameter |S| to certify the presence of entanglement.

The protocol for quantum-secured imaging is illustrated 
in figure  17. This protocol is based on the Ekert protocol 
that uses polarization entanglement for security [90]. In this 
proof-of-principle experiment, a pulsed laser pumps a pair 
of crossed periodically-poled potassium titanyl phosphate 
(PPKTP) crystals to create polarization-entangled photons 
in the state (|H1H2〉+ |V1V2〉)/

√
2  [62]. Using Pockels cell 

Figure 14. Experimental results for differential and conventional imaging. The mean numbers of photons per pixel is approximately 7000 
for the three experiments. Two realizations of the differential imaging protocol with SPDC photons are shown in (a). The experimental 
results obtained with classical light sources are shown in (b). Images formed through conventional imaging (no differential measurements) 
are plotted in (c). Reprinted with permission from [81].
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(PC), a PBS, and two avalanche photodiodes (APDs) that 
are used as single-photon detectors, photon pairs are meas-
ured in the rotated polarization basis |H′〉+ |V ′〉, where 
|H′〉 = sinθ|V〉+ cosθ|H〉 and |V ′〉 = cosθ|V〉 − sinθ|H〉. 
One photon from the polarization-entangled pair is measured 
by PCa, PBSa, APD1, and APD2 in one of two rotated polariza-
tion bases with θ = 0◦ and 45◦. The other photon travels to the 
object and is reflected back to the source, where it is measured 
by PCb, PBSb, APD3, and APD4 in one of two rotated polariza-
tion bases with θ = 22.5◦ and −22.5◦. For each pulse, coinci-
dence timing measurements between APDs1,2 and APDs3,4 are 
used to calculate the CHSH parameter S [91], as well as the  
distance to, or velocity of the object [71]. If the estimated CHSH 
parameter satisfies the inequeality |S| > 2, the optical ranging 
measurement is secure against an intercept-resend jamming 
attack. This technique represents an alternative to enhance the 
security of current systems for optical ranging [71].

The active research performed in the field of optical encryp-
tion aims to develop effective methods to hide information 

encoded in multiple degrees of freedom of light [77, 78]. This 
can be achieved through different random phase-encoding 
schemes [77]. One important optical encryption scheme, 
known as double random phase encoding is depicted in fig-
ure 18(a). In this technique an image is multiplied by a ran-
dom phase φ(x, y), then a Fourier transform is implemented by 
a lens. In addition, a second projection is implemented in the 
space of spatial frequencies, the protocol is formalized by per-
forming an inverse Fourier transform. This protocol can also 
be implemented using a single phase screen [78]. In the past 
few years, there has been an important interest in performing 
optical encryption in quantum correlated imaging [75]. Here 
we review optical encryption based on ghost imaging.

The proposal of computational ghost imaging (CGI) served 
as a powerful platform for implementing a variety of novel 
protocols for quantum and classical imaging [92, 93]. In con-
trast to the conventional scheme for ghost imaging [66, 67], 
CGI allows one to use a single bucket detector and a raster 
scanning system to form images of arbitrary objects [92, 93]. 
This scheme was exploited by Clemente and colleagues to 
implement image encryption [78]. In their protocol, the team 
assumes that Alice wants to send an encrypted image to Bob. 
It is also assumed that Alice and Bob share a secret key that 
consists of a vector with multiple elements. Furthermore, Alice 
encrypts the image by using an arbitrary phase-only mask. 
This procedure produces a structured beam that is used to illu-
minate an object, the transmitted light is collected by a single-
pixel detector. This operation is performed multiple times for 
different phase profiles. Thus, information about the object is 
encoded in a vector with multiple components that contains 
the corresponding intensity values detected by the single-pixel 
detector. These values are shared with Bob using a public 
channel, who uses this information to decrypt the image.

The image of an arbitrary object O(x, y) is recovered 
through the following linear operation

O(x, y) =
1
N

N∑
i=1

[Bi − 〈B〉]Ii(x, y), (32)

where Ii(x, y ) denotes the intensity distribution that would be 
achieved in the reference arm, and 〈B〉 is the average value for 
the measured intensity values Bi. An important point to note 
in the use of CGI for optical decrytion is that the intensity 
patterns Ii(x, y ) can be easily computed by Bob according to 
equation (32), provided that the set of phase profiles is known.

Figure 15. Experimental apparatus used to demonstrate two-photon interference in a Young’s double slit experiment.

Figure 16. The Young’s double-slit experiment performed with 
quantum and classical light. The interference structure produced 
by two-photon interference effects is shown in (a), the classical 
version of the experiment produces interference fringes with half 
the frequency measured for the quantum implementation, see (b). 
Reprinted with permission from [80].
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5. CS for imaging

CS techniques exploit the potential of optimization algorithms 
to infer sparse signals from partial or incomplete sets of mea-
surements [94, 95]. CS has been applied in multiple research 
fields ranging from seismology and medical science to 

quant um information science [95]. The mathematical formal-
ism behind the optimization methods for CS are not discussed 
in this review. Instead, we focus our attention to illustrate the 
circumstances under which CS algorithms boost the perfor-
mance of protocols for quantum imaging and information.

The typical experimental setup for CS in classical imag-
ing is shown in figure 19. Here an object, represented by the 
vector O, is imaged onto a DMD where a series of random 
binary matrices are displayed, each matrix constitute a row in 
the total sensing matrix A. The reflected light from the DMD 
is collected by a focusing lens and measured by a photodi-
ode, each measurement defines an element in the vector Y. 
In general, this imaging system can be described in the form 
Y  =  AO. It is possible to implement the complete matrix A to 
measure the total elements in Y; subsequently, this informa-
tion can be used to invert the linear equation and determine 
the target object O. However, CS takes advantage of the spar-
sity in the target object by using optimization. This allows the 
estimation of the object O with only a small fraction of meas-
urements. An approximation of the object O is obtained by 
solving the following optimization problem

minO′ ‖∇O′‖�1
+

µ

2
‖Y − AO′‖2

�2
. (33)

Here, ∇O′ is the discrete gradient of O′ with respect to pixel 
position, and µ is a regularization term. The optimal value of 
µ should be chosen considering the specific characteristics of 
the object O and the amount of noise in the data. The solu-
tion of the optimization problem in equation (33), through CS, 
allows one to estimate the object O′ that is an approximation 
of the initial object O.

This imaging protocol has motivated the construction of 
single-pixel cameras [86], these are apparatus that use detec-
tors with no spatial resolution to form images. In the classical 
domain, this technique represents an important alternative to 

Figure 17. Schematic for a secure time-of-flight experiment, based on the Ekert QKD protocol. Polarization-entangled photon pairs 
generated through SPDC are used to measure the distance to an object. Security against an intercept-resend jamming attack is verified 
through a CHSH Bell test. Reprinted with permission from [76].

Figure 18. A typical setup for image encryption via double random 
phase encoding is shown in (a). Encryption of an object by means 
of double random phase encoding in a computational ghost imaging 
(CGI) protocol is depicted in (b). Reprinted with permission from 
[78].
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perform imaging at long wavelengths where cameras are not 
available. In addition, the significant reduction in the number 
of measurements required to reconstruct an image represents 
another important characteristic that has made CS an attrac-
tive tool for applications in which the complete set of data is 
not available [96]. In the following sections, we describe three 
protocols for imaging that exploit sparsity and optimization.

5.1. Compressive imaging with entangled photons

The first implementation of a CS algorithm for quantum imag-
ing was demonstrated by Zerom et al in 2011 [70]. In general, 
the process of SPDC is not efficient and consequently the pho-
ton flux of the down-converted photons is typically small [97]. 
Consequently, most techniques for quantum imaging require 
long integration times to form images with signal-to-noise ratios 
that allow their practical identification [98]. This problem is to 
some extent magnified by the raster scanning process employed 
in a significant number of schemes for single-photon imaging. 
As demonstrated by Zerom and co-workers, optim ization algo-
rithms for CS show potential to alleviate these problems that are 
ubiquitous in single-photon technologies [70].

The schematic that depicts the experimental arrange-
ment for compressive imaging utilized by Zerom and col-
leagues is shown in figure  20(a). In this case, a nonlinear 
BBO crystal is pumped to produce entangled photon pairs. 
A lens is utilized to image the signal mode onto an object 
and the idler mode onto a SLM where CS is implemented. 
Signal and idler modes are measured by single photon detec-
tors that lack of spatial resolution. The protocol is finalized 
by performing a series of correlations between signal and 
idler modes for the multiple random patterns displayed on 
the SLM. Mathematically, this can be expressed by means of 
the correlation function Cm as

Cm =

∫
dx1dx2

∣∣∣〈ψ|Ê(+)(x1)Ê(+)(x2)|ψ〉
∣∣∣
2

∝
∑

n

|Am(−ξn)|2 |T(ξn)|2 .
 

(34)

In this case the subscript m represents a realization of the 
experiment with a particular sensing matrix displayed on the 

SLM with n = 1, . . . , N , where N is the number of pixels in 
the SLM. Furthermore, Ê(+)(x1) and Ê(+)(x2) are the positive 
frequency parts of the electric-field operator at the detector 
positions x1 and x2 in the signal and idler arms, respectively. 
In this case, the correlation function Cm is determined by the 
product of the sensing matrix Am with the transmission func-
tion T that describes an arbitrary object. The evolution of the 
operators Ê(+)(x1) and Ê(+)(x2) through the experimental 
setup in figure 20(a) can be obtained through mathematical 
transfer functions. The transfer functions describe the propa-
gation of the transverse profile of optical beams through the 
experiment. The field operators in equation (34) contain infor-
mation of the sensing matrix and the object displayed on the 
SLM. In this case, the correlation between signal and idler 
modes can be rewritten as the product of matrices C  =  AT by 
expressing |Am(−xn)|2 as Am,n and |T(xn)|2 as Tn. Thus, the 
presence of quantum correlations in the degrees of freedom of 
position and momentum allows one to employ CS techniques 
to form the image of an object through the use of photons that 
never interacted directly with it. Furthermore, CS allows one 
to retrieve images by using only a small fraction of the total 
measurements required for raster scanning. For example, the 
image shown in figure  20(b) was reconstructed using using 
27% of the measurements required in conventional raster scan 
techniques. The particular CS algorithm used in this experi-
ment makes use of a discrete cosine transforms that exploits 
the sparsity of the Greek letter Ψ in this conjugate space. As 
shown in figure 20(c), the discrete cosine transform allows the 
identification of the pixels that provide essential information 
of the object, remarkably, figure 20(c) demonstrates that only 
few pixels convey relevant information about the object. This 
implies that it is possible to retrieve a good approximation of 
the Greek letter Ψ with fewer measurements.

5.2. Compressive object identification with entangled  
photons

The demonstration provided by Zerom in 2011 not only moti-
vated an important number of schemes for quantum imaging 
but triggered the possibility of building quantum protocols 
for remote sensing and object identification [12, 72, 74]. 

Figure 19. Experimental implementation of a single-pixel camera based on CS. Here, an arbitrary object is imaged by performing a series 
of random spatial projections on a DMD. Light reflected from the DMD is measured by a photodiode. The use of optimization allows the 
reconstruction of an image of the object with a small fraction of measurements with respect to conventional raster scan techniques.
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For example, in 2013, Magaña-Loaiza and colleagues dem-
onstrated object tracking using entangled photons [72]. The 
team introduced a CS protocol that tracks a moving object 
by removing static components from a scene. This protocol 
was carried out on a quantum imaging scheme to minimize 
both the number of photons and the number of measurements 
required to form a quantum image of the tracked object. This 
procedure tracks an object at low light levels with fewer than 
3% of the measurements required for a raster scan, leading 
to an effective use of the information content in each photon.

The experimental setup for object tracking is shown in 
figure  21(a). Entangled photons are generated in a bismuth 
barium borate (BiBO) crystal through a type-I SPDC process. 
The far-field of the BiBO crystal is imaged onto two DMDs 
with a lens and a BS. One DMD is used to display a scene with 
the object to be tracked, while the other is used to display the 
CS random binary patterns. Single-photon counting modules 
are used for joint detection of the signal and idler photons.

This scheme for correlated imaging relies on the simulta-
neous detection of photon pairs reflected off a changing scene 
O and a series of random matrices Am. Similarly to the pre-
vious protocol, the subindex m indicates the mth realization 
of the experiment. The coincidence counts between the two 
detectors are given by

Jm ∝
∫

dρ̂DMD

∣∣∣∣Am

(
ρ̂DMD

mr

)∣∣∣∣
2 ∣∣∣∣O

(
−ρ̂DMD

m0

)∣∣∣∣
2

,
 

(35)

where Am and O are the reflectivity functions displayed on 
the DMDg located in the ghost arm and on DMDo in the 
object arm, respectively. Meanwhile mr and mo are their corre-
sponding image magnification factors. These are determined 
by the ratio of the distance between the nonlinear crystal to the 
lens and the distance from the lens to DMDg or DMDo.

CS uses optimization to recover a sparse n-dimensional 
signal from a series of m incoherent projective measurements, 
where the compression comes from the fact that m  <  n [94]. 
This protocol for compressive object tracking allows one to 
identify a moving object in a scene by discarding static pix-
els. A scene with a moving object possesses static elements 
that do not provide information about the object’s motion or 

trajectory. These redundancies can be discriminated from the 
moving object as follows. Let us consider the projection of 
two different frames onto the same pseudorandom pattern. 
Each projective measurement picks up little information about 
the components of a frame. If the two projective measure-
ments produce the same correlation value, it would imply that 
the two frames are identical and meaningless information is 
being retrieved. The opposite case would reveal information 
about the changes in a scene. This protocol is formalized as 
follows. Two different correlation vectors, Jj  and Jj −1, corre-
sponding to two consecutive frames are subtracted, giving 
∆J . This introduces the following important modification to 
equation (33).

min∆O′ ‖∇(∆O′)‖�1
+

µ

2
‖∆J − A∆O′‖2

�2
. (36)

The algorithm known as total variation minimization by 
augmented Lagrangian and alternating direction (TVAL3) 
allows one to solve the aforementioned problem [99]. The 
subtracted vector ∆J  is sparser than both Jj  or J j1, thus 
requiring fewer measurements for its reconstruction. This 
corresponds to fewer realizations of Am, and hence a smaller 
sensing matrix A. Furthermore, subtracting the background 
in this manner mitigates the presence of environmental noise 
during the tracking process. In this case, the retrieved image 
∆O′ provides information about the relative changes in the 
scene. This is shown in figures 21(b)–(g).

This protocol uses CS to exploit the sparsity existing 
between two realizations of a scene with a moving object [72]. 
It also reduces the environmental noise introduced during the 
measurement process. In addition, it enables the fast retrieval 
of images by means of single-pixel detectors.

5.3. Digital spiral object identification

In addition to photon correlations in the variables of linear 
position and linear momentum, one can utilize correlations 
in the conjugate variables of ANG and OAM to perform 
object identification and remote sensing [49, 100] . In 2005, 
Torner, Torres and Carrasco proposed the possibility of using 

Figure 20. Schematic of entangled-photon compressive ghost imaging (a). Here CS techniques are used to avoid pixel-by-pixel raster 
scan, the experimental reconstruction of the Greek symbol Ψ is shown in (b). The sparsity of the symbol is observed in the space of spatial 
frequencies, see (c). Reprinted with permission from [70].

Rep. Prog. Phys. 82 (2019) 124401



Report on Progress

19

the OAM spectrum of a light beam to perform imaging, they 
called this technique spiral object identification [101]. This 
idea motivated multiple schemes in which the spiral spectrum 
of light and OAM correlations are used to perform remote 
sensing [12, 74, 102, 103]. The group of Miles Padgett used 
OAM correlations to demonstrate holographic ghost imag-
ing for phase objects [102]. In 2013, a team led by Alexander 
Sergienko used OAM correlations to perform object identifi-
cation [12]. More recently, Chen and Romero demonstrated a 
quantum version of the spiral imaging using entangled OAM 
states [103].

In 2016, Magaña-Loaiza et  al demonstrated that inten-
sity fluctuations give rise to the formation of correlations 
in the OAM components and ANGs of random light [73]. 
Interestingly, the spatial signatures and phase information 
of an object with rotational symmetries can be identified 
using classical OAM correlations in random light [74]. The 
Fourier components imprinted in the digital spiral spectrum 
of the object, as measured through intensity correlations, 
unveil its spatial and phase information. Sharing similari-
ties with conventional CS protocols that exploit sparsity to 
reduce the number of measurements required to reconstruct 
a signal, this technique allows sensing of an object with 
fewer measurements than other schemes that use pixel-by-
pixel imaging.

The experimental implementation of digital spiral object 
identification is shown in figure  22(a), a laser beam illumi-
nates a DMD that is used to generate pseudothermal light. The 
BS produces two copies of the thermal beam, one of the two 
beams illuminates the object described by the transmission 
function Γ(r,φ). In addition, a series of OAM projections are 
performed in each of the beams by means of a SLM. As shown 
in figure 22(a), a SLM is used to project random fields of light 
into specific OAM modes. Furthermore, a second SLM is used 
in the other arm to display the object to be identified and to 
perform OAM projections. This is achieved by multiplying 
the object by a forked diffraction grating. The protocol is for-
malized by performing intensity correlations between the two 

arms of the experiment. The second-order correlation func-
tion that describes intensity correlations in the OAM domain 
is defined as

∆G(2)(�r, �t) =

∣∣∣∣
∫

rdrdφ|E(ρ,φ)|
2
Γ(ρ,φ)

ei∆�φ

2π

∣∣∣∣
2

,
 (37)

where ∆� = �t − �r, and the overbar means ensemble aver-
age. As shown in figures  22(b)–(g), the technique is tested 
with objects with four- and six-fold rotational symmetries. 
Each object is encoded onto the SLM located in the test arm.

A series of OAM projections is performed in each arm to 
construct a 2D matrix with the normalized second-order cor-
relation function, see figures 22(c) and (d). The OAM number 
in the test and reference arms are denoted by �t  and �r , respec-
tively. The normalized second-order OAM correlation func-
tion is calculated by g(2)(�r, �t) = 〈I�r I�t〉/〈I�r〉〈I�t〉, where 
〈I�r I�t〉 is proportional to the coincidence count rate.

As shown in figures  22(c) and (f), an amplitude object 
with N-fold rotational symmetry imprints its Fourier comp-
onents into the second-order OAM correlation matrix. The 
correlation signal is high along the diagonal elements of the 
matrix, where ∆� = �t − �r = ±N  due to the symmetry of 
the ampl itude object. These signatures can be observed when 
∆� = ±4, for the object with fourfold rotational symmetry, 
and when ∆� = ±6, for the object with sixfold rotational sym-
metry. Consequently, it is evident that one can use the OAM 
correlation matrix to identify the two objects. Furthermore, 
note that this technique requires a small number of measure-
ments compared to traditional imaging schemes that rely on 
pixel-by-pixel raster scanning.

In figures 22(d) and (g), the transverse sections are plotted 
for the correlation matrices in figures 22(c) and (f), respec-
tively. For simple and symmetric objects, a single line in the 
correlation matrix can provide adequate information about the 
object. However, the measurement of the total OAM correla-
tion matrix is required for complicated objects that lack rota-
tional symmetry [12, 74].

Figure 21. Compressive object tracking with entangled photons. A laser is used to pump a BiBO crystal that produces entangled photon 
pairs in the variables of linear position and linear momentum. (a) One of the down-converted photons illuminates a DMD where a scene 
with a moving object is displayed, the other conjugate photon illuminates a DMD where CS is implemented. Two single-photon detectors 
are used to measure photons reflected from the DMD. Compressed ghost image of (b) the background of the scene and (c)–(g) the tracked 
object at different positions. Reprinted with permission from [72].
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One remarkable advantage of this technique is that it does 
not require the preparation of fragile quantum states of light 
and operates at both low- and high-light levels. In addition, it 
is robust against environmental noise, a fundamental feature 
of any realistic scheme for remote sensing.

6. Quantum metrology and quantum state 
tomography

The spatial profile of light has been utilized to measure small 
physical parameters with unprecedented precision and to 
encode multiple bits of information for quantum informa-
tion tasks [8, 25, 31, 40, 104, 105]. Now we discuss quantum 
protocols for metrology that use the spatial profile of light to 
measure transverse displacements [82, 83, 107, 109]. We then 
turn our attention to review schemes for characterization of 
spatial photonic states that reside in high-dimensional Hilbert 
spaces [8, 110].

6.1. Quantum-enhanced metrology

The use of photons to measure small physical quantities repre-
sents one of the most important applications of light [2]. The 
quantum mechanical properties of light have been recognized 
as useful resources to surpass fundamental limits of protocols 
for classical metrology [111]. Interestingly, the potential of 
these nonclassical resources gave birth to the field of quant-
um-enhanced metrology [2, 111]. Here, we briefly discuss 
schemes that use spatial entanglement to measure small trans-
verse displacements.

As discussed above, the conservation of momentum in 
SPDC processes gives rise to the generation of entangled 
states in the conjugate variables of ANG and OAM [27, 49]. In 
the past two decades, the OAM of light has become an impor-
tant resource for the measurement of small angular displace-
ments [8, 25, 31, 40, 104, 105]. The interest in using beams 
of light carrying OAM for measurement of angular rotations 
started with the work from Courtial and co-workers in which 
the physics behind rotational frequency shifts is described 

[107]. These protocols were then combined with entangled 
states of light such as NOON states to perform accurate esti-
mations of angular rotations. NOON states are path-entangled 
states that are a coherent superposition of N photons path 1 
and 0 photons in path 2, and 0 photons path 1 and N photons 
in path 2 [5]. This interesting combination led to a new form 
of photonic states in the azimuthal degree of freedom that are 
called photonic gears and are used for ultra-sensitive measure-
ments of angular rotations [82, 83, 108].

In 2011, Kumar et al investigated the potential of exploit-
ing entangled photons carrying OAM to increase the resolu-
tion and sensitivity of classical interferometric measurements 
of angular displacements [82]. In this protocol, a Dove prism 
induces a transverse angular rotation of a light beam. The pos-
sibility of using nonclassical fluctuations of light to surpass the 
noise properties that characterize laser beams is called super-
sensitivity [111]. Furthermore, the frequency of the fringes 
formed by multiphoton interference oscillates faster than those 
produced by laser light under equivalent circumstances, this 
feature is also a form of superresolution. The interferometric 
arrangement studied by Kumar is shown in figure 23. In this 
case, multiphoton interference in a Mach–Zehnder interferom-
eter is used to estimate the rotation of a Dove prism.

The nonlinear interaction in the process of SPDC leads to 
the generation of the following high-dimensional state with 
multiple photons, sometimes called two-mode squeezed vac-
uum state [34, 58, 112]

|Φ〉 = |Φ0〉+ |Φ2〉+ |Φ4〉+ ... 
(38)

The first term |Φ0〉 is a vacuum state, the second term |Φ2〉 
describes the simultaneous generation of two photons, one in 
each of the two modes, and the third term |Φ4〉 describes the 
probability amplitude of generating four photons, in this case, 
two photons in the signal mode and two in the idler mode. The 
probability of generating four photons is orders of magnitude 
smaller than the probability of generating two photons. The 
two-photon state in the azimuthal basis can be written as

|Φ2〉 =
∑
�

��|�〉s| − �〉i,
 

(39)

Figure 22. (a) Experimental setup utilized for digital spiral object identification with random fields of light. The SLM in the upper arm 
projects the random field of light into specific OAM modes, whereas, the second SLM in the lower arm is used to display objects and to 
perform OAM projections. This protocol was utilized to identify the objects in (b) and (e). The correlation matrices for the objects are 
shown in (c) and (f), respectively. The rows denoted by the dotted boxes in (c) and (f) are shown in (d) and (g), respectively. Reprinted with 
permission from [74].
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where �� is the probability amplitude of generating a signal 
and idler photons with the OAM values of �� and −�� respec-
tively. Similarly, the four-photon state is described as

|Φ4〉 =
∑
�,�′

��,�′ |�, �′〉s| − �,−�′〉i. 
(40)

��,�′ describes the probability ampitude that two photons with 
OAM values � and �′ are produced in the signal mode, and 
two photons with OAMs −� and −�′  are produced in the idler 
mode.

As shown in figure 23, signal and idler modes are injected 
in the two input ports of a Mach–Zehnder interferometer con-
taining a Dove prism in one of the arms. The photons emerg-
ing through the upper output port of the interferometer are 
projected onto different OAM modes |�〉, whereas the photons 
emerging through the lower port are projected onto | − �〉. The 
OAM projected measurement is performed through the exper-
imental setup shown in figure  3. The protocol is concluded 
by performing photon correlations between the two output 
ports of the interferometer. For this particular case in which 
post-selection is implemented between two modes, the inter-
ference pattern as a function of the angle of the Dove prism θ 
is described as

〈Φ2|Φ2〉 =
1
2

Cos2(2�θ). (41)

In this case, the uncertainty in the estimation of the angular 
rotation ∆θ is given by

∆θ =
〈∆P̂〉

∂〈∆P̂〉/∂θ
=

1
4�

. (42)

The expectation value of the measurement operator P̂ , is 
〈P̂〉 = Tr[P̂|Π�

2〉〈Π�
2|], where the post-selected state |Π�

2〉 is 

given by − 1
2
√

2
[1 + e4i�θ]|1〉+�|1〉−�, the post-selected state 

|Π�
2〉 can be implemented by measuring coincidences of pho-

tons with opposite values of OAM. This expression can be 
generalized for a case in which N entangled photons carrying 
a � value of OAM are utilized. In this case, the uncertainty 
in the measurement of an angular rotation ∆θ scales as 1

2N� . 
Interestingly, the uncertainty in the measurement decreases 
with the number of entangled photons and the OAM value 
of the photons. Remarkably, the sensitivity in the estima-
tion of an angular rotation using classical states, such as a 

coherent states, scales with 12
√

N�, which is known as the shot 
noise limit. In this case, N represents the number of detected 
photons.

This work triggered other protocols for the estimation of 
angular rotations. For example, Magaña-Loaiza et  al dem-
onstrated the use of weak values for estimation of angular 
rotations [109]. In addition, D’Ambrosio and colleagues 
implemented an experimental protocol for quantum metrol-
ogy that relies on the use of NOON-like states with high val-
ues of OAM [83]. Sharing similarities with Kumar’s protocol 
[82], this scheme enables amplification of mechanical angular 
rotations by means of light beams with high values of OAM. 
In this scheme, a device known as a q-plate maps a polariza-
tion state into an OAM state with different polarization prop-
erties [113]. The q of the liquid crystal plate determines the 
OAM values of the photons that pass through the plate, and 
consequently the amplification of the rotation, this is illus-
trated in figure 24 [83]. Here a single photon passes through 
a q-plate and a half wave plate (HWP) to generate coherent 
superposition of OAM states with different polarizations. A 
physical rotation induces a relative phase between the states 
with right- and left-circular polarizations that lead to an ampli-
fication of the angular rotation by a factor of m  =  2q  +  1. The 
two replicas are then combined to form interference fringes in 
the azimuthal profile of the beam. The density of the fringes 
scale with �, enabling a high-resolution measurement of angu-
lar rotations.

6.2. Quantum state tomography for high-dimensional  
photonic wavefunctions

The challenges involved in the process of extracting large 
amounts of information, encoded in photonic wavefunctions, 
impose practical limitations to realistic quantum technolo-
gies [8, 25, 110]. A family of techniques classified under the 
umbrella of quantum state tomography offers the possibility of 
decoding information from light particles [7, 8, 32, 114, 115]. 
The spatial profile of light enables the possibility of encoding 
information [25]. For this reason, there has been an important 
interest in developing non-conventional techniques to fully 
characterize spatial states of light. Alternative techniques for 
state tomography are motivated by the unfeasible number of 
projective measurements required to characterize quant um 
states using conventional techniques [7, 8]. In general, the 

Figure 23. Experimental arrangement for estimation of angular rotations using entangled states endowed with OAM. Entangled OAM 
states are produced by the process of SPDC, entangled photons are injected into a Mach–Zehnder interferometer that contains a Dove 
prism. The photons emerging through the output port of the interferometer are measured by two SLMs and single-photon detectors. The 
purpose of this protocol is to estimate the angular rotation of the Dove prism with high sensitivity.
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number of measurements scales quadratically with the dimen-
sion size of the state. In recent years, the use of direct mea-
surement has enabled the implementation of optimization 
algorithms that offer the possibility of reducing the number 
of measurements to reconstruct the density matrix of a spatial 
state of light [7]. For example, Knarr and co-workers recently 
performed measurement of high-dimensional phase-spaces 
via CS [42]. The team demonstrated compressive measure-
ment of the Dirac distribution for photonic states with differ-
ent degrees of coherence. Interestingly, the Dirac distribution 
provides equivalent information to the density matrix [116].

6.3. CS for quantum state characterization

We now describe recent experiments related to the direct mea-
surement of the wavefunction. We start this section by intro-
ducing a technique called compressive direct measurement 
(CDM) [8]. In this protocol, Mirhosseini and colleagues com-
bine the benefits of direct measurement with CS [7, 8]. In this 
scheme, the polarization degree of freedom of the photon is 
coupled to its unknown spatial target profile. The initial state 
can be written as

|Ω〉 = |Υ〉|V〉 =
N∑

i=1

Υi|xi〉|V〉,
 

(43)

where |V〉 indicates that the initial polarization is vertical and 
where |Υ〉 is the spatial unknown wavefunction that will be 
characterized. Then, a series of random weak measurements 
are performed in order to retrieve the spatial wavefunction 
|Υ〉. Each measurement is described by the projection opera-
tor Q̂m, that can be expanded as a weighted sum of position 

projection operators π̂j at all the points Q̂m =
∑

j Qm,jπ̂j. In 

this case, the binary coefficient Qm,j  is real and can be either 
0 or 1. The state of the particle after the measurement can be 
approximately described as

eiα|Ω〉 ≈ |Ω〉+ α

N∑
i=1

Qm,jΥi|xi〉|H〉. (44)

Following the weak measurement, a strong projective mea-
surement onto the zeroth order momentum state is performed. 
This measurement destroys the spatial structure of the pho-
tons, producing a beam with the polarization state

|sm〉 = |V〉+ α

φ0
√

N

∑
j

Qm,jΥj|H〉. (45)

At this stage the information about the state-vector Υj is 
encoded in the expected values of the polarization of the post-
selected state

σ̄x,m = 〈sm |σ̂x| sm〉 = k
∑

j

Qm,j�[Υj],

σ̄y,m = 〈sm |σ̂y| sm〉 = −k
∑

j

Qm,j�[Υj],
 

(46)

where σ̂x = |H〉〈V|+ |V〉〈H|, σ̂y = −i|H〉〈V|+ i|V〉〈H| and 
k = 2α

φ0
√

N
. After repeating the measurement M times, one 

obtains a linear relation between the measurement results and 
the unknown wavefunction




Ξ1

Ξ2
...

ΞM


 =




Q1,1 Q1,2 . . . Q1,N

Q2,1 Q2,2 . . . Q2,N
...

...
. . .

...
QM,1 QM,2 . . . QM,N







Υ1

Υ2
...

ΥN


 . (47)

Here, Ξ̂m = 1
k [σ̄x,m − iσ̄x,m], and m ∈ 1 : Mand n ∈ 1 : N , 

where M is the number of times the measurement is repeated 
with different random projections. For the case where M  =  N, 
the solutions of the system above can be exactly solved for a 
non-singular matrix Q̂. However, for the case when M � N  
there exists multiple solutions to the system of equations.

CS provides a method for finding the solution by using 
the prior knowledge of sparsity of the unknown function in 
a known basis. This is often achieved by solving an optim-
ization problem that can be formulated in multiple forms. One 
possibility is to assume sparsity in the gradient basis, which 
leads to the following optimization problem

minΥ̂′‖∇Υ̂′‖�1 +
µ

2
‖Q̂Υ̂′ − Ξ̂|2�2

. (48)

Similar to equation (33), the solution of the optimization 
problem allows the determination of the smoothest state Υ̂′, 
that is approximately in agreement with the experimental data.

Figure 25(a) shows the schematic of the experiment. A 
vertically polarized Gaussian beam illuminates a SLM, which 
together with two quarter wave plates (QWPs) labeled as WP1 

Figure 24. (a) Photonic polarization gears for sensitive measurements of angular displacements. In this case, a physical rotation is 
identified by using interference between photons with � = 3, see (a). As shown in (b), the resolution of the protocol can be improved by 
using light endowed with higher values of OAM. Reprinted with permission from [83].
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and WP2 performs the polarization rotation. The amount of 
rotation can be controlled at each pixel by setting the gray-
scale values on the SLM. After the Fourier transforming lens, 
the post-selection in the momentum basis is performed by 
using a pinhole that projects on a single spatial mode. The real 
part of the wavefunction is retrieved by using a HWP (shown 
as WP3 in figure 25) and a PBS. Similarly, the imaginary part 
of the wavefunction is measured by using a QWP before the 
PBS. The flux of photons at the two output ports of the PBS 
are detected with APDs.

For each measurement m, a pre-generated random binary 
matrix Q̂m is displayed on the SLM. The photon fluxes meas-
ured at the APDs are used to find the expectation values of 
the Pauli matrices in equation  (46) for each measurement. 
The wavefunction is then retrieved via post processing on a 
computer.

The technique is used to measure an aberrated Gaussian 
beam, see figure 25(b). The wavefunction is reconstructed via 
standard direct measurement. The real and imaginary parts 
from a pixel-by-pixel raster scan are shown on the left col-
umn of figure 25(b) for an N = 12 × 16 = 192 dimensional 
Hilbert space. On the middle column, it is shown the real 
and imaginary parts of the wave function reconstructed from 
CDM using N  =  192 and M/N × 100 = 20%. It is evident 
that a reconstruction with 20% of measurements can find all 
the main features of the wavefunction. The increased sam-
pling results in a more sparse representation in the gradient 
basis. On the right column of figure 25(b), the reconstructions 
for N = 120 × 160 = 19 200 and M/N × 100 = 20% are 
shown. In this case an experiment with 20% of measurements 
provides an accurate reconstruction.

In a similar spirit, it has been demonstrated the use of CS for 
entanglement imaging, measurement of spatial wavefunctions, 
and characterization of high-dimensional entangled states in 
the variables of position and momentum. Recently, compres-
sive characterization of telecom photon pairs in the spatial 
and spectral degrees of freedom was demonstrated [110]. This 
technique utilizes a series of random projective measurements 
in the spatial basis that do not perturb the spectral properties 

of the photon. The sparsity in the spatial properties of down-
converted photons allows the efficient implementation of CS 
to reduce the number of measurements to reconstruct spatial 
and spectral properties of correlated photon pairs at telecom 
wavelength. This protocol opens the possibility of increasing 
and exploiting the complexity and dimensionality of quantum 
protocols that utilize multiple degrees of freedom of light with 
high efficiency.

As discussed before, the process of SPDC produces pho-
tons correlated in multiple degrees of freedom. The spatial and 
spectral properties of these photons define high-dimensional 
Hilbert spaces described by the following state:

|T〉 =
Dω∑
ω=1

fω|ω〉s|ω〉i ⊗
Dj∑

j=1

sj|xj〉s|xj〉i,

 

(49)

where fω represents the probability amplitude of finding sig-
nal and idler in the frequency mode |ω〉s,i Similarly, the spatial 
degree of freedom is described by a coherent superposition of 
spatial (‘pixel’) states |xj〉s,i; the probability of finding a photon 
pair in these states is described by the coefficient sj . The gen-
eral state in equation (49) can be characterized by performing 
a series of random projective measurements on photons emerg-
ing from long optical fibers that allows one to map the spectral 
content of the photons to time bins. A series of photon number 
correlations for all the time bins are utilized to solve a similar 
optimization problem to the one in equation (48), this solution 
leads to an approximation of the state in equation (49).

As shown in figure 26(a), a pulsed laser pumps a PPKTP 
waveguide, that produces correlated photon pairs at telecom 
wavelengths [31]. This type-II PPKTP waveguide produces 
telecom photons with orthogonal polarizations. The gener-
ated down-converted photons illuminate a DMD that is used 
to measure their spatial properties. The downconverted pho-
ton pairs are then separated by a PBS and coupled into long 
single-mode fibers that map frequency to time of arrival.

The joint arrival time of SPDC photons is shown in fig-
ure 26(b). The marginals are estimated by taking the transfer 
function of the arrival time of the downconverted photons. 

Figure 25. (a) a collimated vertically polarized Gaussian beam illuminates a SLM, which is used along with two quarter wave plates 
(WP1and WP2) to rotate the polarization at each pixel. A lens focuses the beam onto a pinhole with a diameter of 10 µm. The polarization 
measurement is performed on the light collected from the pinhole using a quarter wave plates/half wave plates (WP3) and a PBS. (b) the 
amplitude, real, and imaginary parts of an aberrated Gaussian state measured experimentally. The left column shows data from a pixel-
by-pixel scan of the state for N  =  192. The middle column presents the reconstructed wavefront for N  =  192, and M/N = 20% of total 
measurements from the CDM method. The right column demonstrates reconstruction of a higher dimensional state for N = 19 200, and 
M/N = 20% of total measurements. Reprinted with permission from [8].
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The resulting spectra of both photons are shown in fig-
ure 26(c). The nonlinear crystal is designed to show a phase-
matching peak at 1570 nm, which corresponds to the main 
peak in the spectrum. The spatial profiles for satellite peaks 
a at an intermediate walenghts are shown in the insets of fig-
ures 26(d) and (e).

The complex photonic states measured with these tech-
niques would require unfeasibly large acquisition times with 
other conventional techniques [8, 42, 110]. The dramatic 
reduction in the number of measurements required to charac-
terize high-dimensional states and SPDC sources make these 
techniques a powerful diagnostic tool for quantum photonic 
protocols. The simplicity and robustness of these techniques 
enable the identification of experimental conditions that limit 
the performance of quantum protocols that rely on efficient 
quantum interference.

7. Quantum information with high-dimensional 
photonic states

The use of optical pulses of light through optical fibers has 
played a tremendous impact in the way modern society com-
municates [40, 104–106]. However, the capacity of multiple 
communication protocols, such as internet, are reaching their 
limits in terms of data traffic capacity. This limitation in clas-
sical communication protocols has triggered new classical 
and quantum schemes for communication as well as secure 
schemes for distribution of quantum information. In this 
section, we discuss recent approaches that exploit multiple 
degrees of freedom of light to boost the data-carrying capac-
ity of protocols for optical communication in free-space and 
fibers.

7.1. Quantum communication with high-dimensional  
states of light

In the past ten years, there has been a strong impetus in using 
new degrees of freedom of light that offer the possibility of 
surpassing information capacity limits of protocols that use 
polarization. In this regard, the engineering of spatial modes 
of light as simple as ‘pixel’ states have been used to transmit 

multiple bits of information in a single photon [25, 31, 40, 
104, 105]. Furthermore, recent progress in liquid crystal 
devices has enabled the robust manipulation of the polariza-
tion and the spatial profile of light. These concepts have been 
extensively studied in free-space links by multiple groups 
[3]. However, recent progress in the engineering of photonic 
crystal fibers that support exotic beams of light endowed with 
OAM have motivated new research directions. Remarkably, 
these protocols have enabled information transmission at the 
impressive rate of 1.6 Tb per second [40, 104].

As discussed in the previous sections  of this review, it 
is possible to engineer spatial modes of light for informa-
tion encoding [117]. Given the maturity of techniques for 
measuring spatial modes carrying OAM, LG�

p(ρ,φ, z) modes 
have been widely utilized in multiple studies [3, 25, 28]. A 
detailed review of this field can be found in [3]. Despite the 
enormous potential of spatial modes of light for optical com-
munication, turbulence represents one of the major challenges 
in the implementation of optical communication protocols in 
free-space. This problem has been alleviated by implement-
ing adaptive schemes with deformable mirrors [41]. Other 
approaches include the implementation of neural networks for 
pattern recognition [105].

Free-space OAM communication in intracity links have 
been demonstrated by multiple groups [3, 25, 28, 106]. In 
2014, Krenn and colleagues implemented a classical com-
munication protocol in a 3 km link of strong turbulence in 
the city of Vienna, see figure 27 [105]. In this experiment, the 
Austrian group demonstrated optical communication with 15 
OAM modes, from � = 0 to � = 15. The transmitted modes 
were detected by a CCD camera and successfully identified 
with trained neural networks that led to an average error rate 
of approximately 1.7%. This protocol was utilized to transmit 
a gray-scale image of Mozart. This demonstration was imple-
mented using a green laser with a wavelength of 532 nm.

Recent developments in photonic crystal fibers have ena-
bled new protocols in which frequency, polarization and the 
spatial profile of light were utilized to dramatically increase 
the channel capacity of a communication protocol [40, 104]. 
In a recent experiment, a fiber link with 20 channels and 10 
wavelength division multiplexers were utilized to multiplex 

Figure 26. (a) Experimental apparatus used for the compressive characterization of telecom photon pairs in the spatial and spectral degrees 
of freedom. (b) shows the joint arrival time of SPDC photons. The measured spectra of the photon pairs is shown in (c). The insets in (d) 
and (e) show the spatial profile of photons at the satellite peaks in (c). Reprinted with permission from [110].
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two OAM modes with different polarization to demonstrate a 
transmission capacity of 1.6 Tb. A series of fiber-based imple-
mentations were then demonstrated with lower losses and 
higher fidelities [40].

7.2. High-dimensional quantum cryptography

Nowadays, there has been great interest in the development of 
means for secure communication that are based on the funda-
mental laws of quantum mechanics. Quantum key distribution 
(QKD) represents a remarkable example of secure quantum 
technologies. Similarly to other schemes for quantum com-
munication, QKD utilizes quantum states to share informa-
tion between two parties [38]. In 1984, Charles Bennett and 
Gilles Brassard proposed to use the polarization of photons 
to transmit information in a secure fashion, the ultimate goal 
of this protocol is to generate a sequence of numbers that acts 
as a quantum key to encrypt information [118], this proto col 
is known as BB84. Due to the dimensionality of the Hilbert 
space for polarization, only a single bit of information can be 

encoded in each photon [108]. As discussed in the first sec-
tions of this review, spatial modes of light, such as LG�

p(ρ,φ, z) 
modes, can be used to construct high-dimensional spaces that 
enable the encoding of multiple bits of information in a single 
particle of light [25]. Furthermore, these protocols offer the 
possibility of increasing the robustness of secure protocols 
against intercept-resend eavesdropping attacks [3, 28]. In the 
particular implementation shown in figure  28(a), the OAM 
of photons and the corresponding MUBs of ANG are used to 
define a seven-dimensional alphabet encoded in these bases, 
see figure 28(b) [31]. In this scheme, the team demonstrated a 
channel capacity of 2.05 bits per sifted photon.

The conceptual experimental setup in figure 28(a) shows an 
attenuated He–Ne laser modulated by an acousto-optic modu-
lator (AOM). The modulated pulse from the AOM illuminates 
a DMD that is used to prepare spatial modes. In this protocol, 
Alice initially picks a random sequence of desired OAM and 
ANG modes in the DMD’s internal memory. The prepared 
spatial states are then imaged to Bob’s receiving aperture via a 
4f -telescope that forms a lossless communication link. Bob’s 

Figure 27. Experimental implementation of a high-dimensional free-space link across the city of Vienna. A series of holograms are 
prepared to define the alphabet of the communication protocol. These spatial modes are prepared by a SLM. The receiver uses a camera and 
neural networks to identify spatial beams of light such as those shown in the left panel of the figure. Reprinted with permission from [105] .

Figure 28. (a) The experimental implementation of high-dimentional quantum cryptography with spatial modes of light. Alice prepares 
the modes by carving out pulses from a highly attenuated He–Ne laser using an AOM. A DMD is used to impress spatial mode information 
on these pulses. Bob’s mode sorter and fan-out elements map the OAM modes and the ANG modes into separated spots that are collected 
by an array of fibers. The images of the implemented alphabet of the two complementary spatial OAM and ANG bases are shown in (b). 
Reprinted with permission from [31].
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mode sorter consists of two refractive elements for performing 
a log-polar to cartesian transformation [119]. Going through 
these elements, an OAM mode is converted to a plane wave 
with a tilt that is proportional to the OAM mode index �. A sin-
gle lens focuses such a plane wave into a spot that is shifted by 
an amount proportional to �. Similarly, an ANG mode trans-
forms to a localized spot shifted by an amount proportional 
to the angular index n. A beam splitter is used to randomly 
choose between the OAM and ANG bases. Figure  28(b) 
shows the two complementary seven-dimensional bases used 
for information encoding.

The signals from single-photon detectors are processed by 
electronic circuits to produce photon counts using a gating 
signal that is utilized to synchronize events between Alice 
and Bob. The photon detection events are finally saved in 
Bob’s computer. Alice and Bob are also connected via a clas-
sical link. After Alice and Bob collect a sufficiently large 
number of symbols, that are used to generate the quantum 
key, they stop the measurement. At this point, they publicly 
broadcast the bases used for preparation and measurement 
of each photon via the classical link. This step in the BB84 
protocol utilizes classical communication between Alice 
and Bob. Alice and Bob then discard the measurements that 
were done in different bases. The key generated at this stage 
is referred to as the sifted key. After a series of filters and 
logic operations, the keys are transformed to a binary form 
on a symbol-by-symbol basis and randomized by means of 
a random-number generator shared by Alice and Bob. In this 
case, each of the spatial modes represents a symbol. After 
error-correction, Alice and Bob share two identical copies 
of the quantum key. Alice and Bob perform a post-selection 
procedure known as privacy amplification to minimize Eve’s 
information. Finally, the secure key is used to securely trans-
mit encrypted information over the classical channel. At this 
point, the QKD proto col is completed.

8. Perspectives

The impressive progress in the field of quantum imaging and 
information in the last two decades anticipates an imminent 
change in how society manages information. The possibility 
of using the laws of nature to encode multiple bits of informa-
tion in a single photon or to transmit information in a secure 
fashion have had a tremendous social impact. These emerging 
technologies have transcended the scientific community, and 
nowadays the word ‘quantum’ is associated with enhancement 
or improvement. To some extent, these ideas are consequences 
of the enormous potential that proof-of-principle implementa-
tions of protocols for quantum imaging and information have 
demonstrated. We do not expect quantum technologies to 
replace classical technologies, however, we believe that the 
progress in the field of quantum photonic technologies will 
play a crucial role in the development of new hybrid devices in 
which the functionality of classical and quantum technologies 
is complemented.

Acknowledgments

We thank Ashan Ariyawansa and Chenglong You for helpful 
discussions.

ORCID iDs

Omar S Magaña-Loaiza  https://orcid.org/0000-0003-4484- 
0258

References

	 [1]	 O’Brien J L, Furusawa A and Vuckovic J 2009 Nat. Photon. 
3 687–95

	 [2]	 Giovannetti V, Lloyd S and Maccone L 2011 Nat. Photon. 
5 222

	 [3]	 Willner A E et al 2015 Adv. Opt. Photon. 7 66–106
	 [4]	 Aspuru-Guzik A and Walther P 2012 Nat. Phys. 8 285–91
	 [5]	 Boto A N, Kok P, Abrams D S, Braunstein S L, Wiliams C P 

and Dowling J P 2000 Phys. Rev. Lett. 85 2733
	 [6]	 Kok P, Munro W J, Nemoto K, Ralph T C, Dowling J P and 

Milburn G J 2007 Rev. Mod. Phys. 79 135
	 [7]	 Lundeen J S, Sutherland B, Patel A, Steward C and Bamber C 

2011 Nature 474 188
	 [8]	 Mirhosseini M, Magana-Loaiza O S, Hashemi Rafsanjani S M 

and Boyd R W 2014 Phys. Rev. Lett. 113 090402
	 [9]	 Howland G A, Lum D J and Howell J C 2014 Opt. Express 

22 18870
	[10]	 Tsang M, Nair R and Lu X-M 2016 Phys. Rev. X 6 031033
	[11]	 Tham W-K, Ferreti H and Steinberg A M 2017 Phys. Rev. Lett. 

118 070801
	[12]	 Uribe-Patarroyo N, Fraine A, Simon D S, Minaeva O and 

Sergienko A V 2013 Phys. Rev. Lett. 110 043601
	[13]	 Liberman L, Israel Y, Poem E and Silberberg Y 2016 Optica 

2 193
	[14]	 Bialynicki-Birula I 1996 Coherence and Quantum Optics VII p 

313
	[15]	 Smith B J and Raymer M G 2007 New J. Phys. 11 414
	[16]	 Gerchberg R W and Saxton W O 1972 Optik 35 237
	[17]	 Fienup J 1982 Appl. Opt. 15 2758
	[18]	 Smithey D T, Beck M, Raymer M G and Faridani A 1993 

Phys. Rev. Lett. 70 1244
	[19]	 Andrews D 2008 Structured Light and Its Applications (New 

York: Academic)
	[20]	 Milonni P W and Boyd R W 2010 Adv. Opt.  

Photon. 4 519
	[21]	 Vallone G, D’Ambrosio V, Sponselli A, Slussarenko S, 

Marucci L, Sciarrino F and Villoresi P 2014 Phys. Rev. Lett. 
113 060503

	[22]	 Beth R A 1936 Phys. Rev. 50 115
	[23]	 Bennett C H and Brassard G 1985 Proc. IEEE 28 3153
	[24]	 Shor P W and Preskill J 2000 Phys. Rev. 85 441
	[25]	 Yao A M and Padgett M P 2011 Adv. Opt. Photon. 2 161
	[26]	 Allen L, Beijersbergen M W, Spreeuw R J C and 

Woerdman J P 1992 Phys. Rev. A 45 8185
	[27]	 Mair A, Vaziri A, Weihs G and Zeilinger A 2001 Nature 

412 313
	[28]	 Padgett M J 2017 Opt. Express 10 11265
	[29]	 Ali-Khan I, Broadbent C J and Howell J C 2007 Phys. Rev. 

Lett. 98 060503
	[30]	 O’Sullivan-Hale M N, Ali-Khan I, Boyd R W and Howell J C 

2005 Phys. Rev. Lett. 94 220501

Rep. Prog. Phys. 82 (2019) 124401

https://orcid.org/0000-0003-4484-0258
https://orcid.org/0000-0003-4484-0258
https://orcid.org/0000-0003-4484-0258
https://doi.org/10.1038/nphoton.2009.229
https://doi.org/10.1038/nphoton.2009.229
https://doi.org/10.1038/nphoton.2009.229
https://doi.org/10.1038/nphoton.2011.35
https://doi.org/10.1038/nphoton.2011.35
https://doi.org/10.1364/AOP.7.000066
https://doi.org/10.1364/AOP.7.000066
https://doi.org/10.1364/AOP.7.000066
https://doi.org/10.1038/nphys2253
https://doi.org/10.1038/nphys2253
https://doi.org/10.1038/nphys2253
https://doi.org/10.1103/PhysRevLett.85.2733
https://doi.org/10.1103/PhysRevLett.85.2733
https://doi.org/10.1103/RevModPhys.79.135
https://doi.org/10.1103/RevModPhys.79.135
https://doi.org/10.1038/nature10120
https://doi.org/10.1038/nature10120
https://doi.org/10.1103/PhysRevLett.113.090402
https://doi.org/10.1103/PhysRevLett.113.090402
https://doi.org/10.1364/OE.22.018870
https://doi.org/10.1364/OE.22.018870
https://doi.org/10.1103/PhysRevX.6.031033
https://doi.org/10.1103/PhysRevX.6.031033
https://doi.org/10.1103/PhysRevLett.118.070801
https://doi.org/10.1103/PhysRevLett.118.070801
https://doi.org/10.1103/PhysRevLett.110.043601
https://doi.org/10.1103/PhysRevLett.110.043601
https://doi.org/10.1364/OPTICA.3.000193
https://doi.org/10.1364/OPTICA.3.000193
https://doi.org/10.1088/1367-2630/9/11/414
https://doi.org/10.1088/1367-2630/9/11/414
https://doi.org/10.1364/AO.21.002758
https://doi.org/10.1364/AO.21.002758
https://doi.org/10.1103/PhysRevLett.70.1244
https://doi.org/10.1103/PhysRevLett.70.1244
https://doi.org/10.1364/AOP.2.000519
https://doi.org/10.1364/AOP.2.000519
https://doi.org/10.1103/PhysRevLett.113.060503
https://doi.org/10.1103/PhysRevLett.113.060503
https://doi.org/10.1103/PhysRev.50.115
https://doi.org/10.1103/PhysRev.50.115
https://doi.org/10.1103/PhysRevLett.85.441
https://doi.org/10.1103/PhysRevLett.85.441
https://doi.org/10.1364/AOP.3.000161
https://doi.org/10.1364/AOP.3.000161
https://doi.org/10.1103/PhysRevA.45.8185
https://doi.org/10.1103/PhysRevA.45.8185
https://doi.org/10.1038/35085529
https://doi.org/10.1038/35085529
https://doi.org/10.1364/OE.25.011265
https://doi.org/10.1364/OE.25.011265
https://doi.org/10.1103/PhysRevLett.98.060503
https://doi.org/10.1103/PhysRevLett.98.060503
https://doi.org/10.1103/PhysRevLett.94.220501
https://doi.org/10.1103/PhysRevLett.94.220501


Report on Progress

27

	[31]	 Mirhosseini M, Magana-Loaiza O S, O’Sullivan M N, 
Rodenburg B, Malik M, Lavery M P J, Padgett M J, 
Gauthier D J and Boyd R W 2015 New J. Phys. 17 033033

	[32]	 Kues M, Reimer C, Roztocki P, Romero-Cortes L, Sciara S, 
Wetzel B, Caspani L, Azana J and Morandotti R 2017 
Nature 546 622

	[33]	 Dell’Anno F, De Siena S and Illuminati F 2006 Phys. Rep. 
428 53–168

	[34]	 Pan J-W, Chen Z-B, Lu C-Y, Weinfurter H, Zeilinger A and 
Zukowski M 2012 Rev. Mod. Phys. 84 777

	[35]	 Dixon P B, Howland G A, Schneeloch J and Howell J C 2012 
Phys. Rev. Lett. 108 143603

	[36]	 Shannon C E 1948 Bell. Syst. Tech. J. 27 623
	[37]	 MacKay D J 2000 Information Theory, Interference, and 

Learning Algorithms (Cambridge: Cambridge University 
Press)

	[38]	 Nielsen M A and Chuang I L 2000 Quantum computation and 
quantum information (Cambridge: Cambridge University 
Press)

	[39]	 Shannon C E 1951 Bell. Syst. Tech. J. 30 50
	[40]	 Bozinovic N, Yue Y, Ren Y, Tur M, Kristensen P, Huang H, 

Willner A E and Ramachandran S 2013 Science 
340 1545–8

	[41]	 Rodenburg B, Mirhosseini M, Malik M, Magana-Loaiza O S, 
Yanakas M, Maher L, Steinhoff N K, Tyler G A and 
Boyd R W 2014 New J. Phys. 16 089501

	[42]	 Knarr S H, Lum D J, Schneeloch J and Howell J C 2018 Phys. 
Rev. A 98 023854

	[43]	 Martin L, Mardani D, Kondakci H E, Larson W D, 
Shanahang S, Jahromi A K, Malhotra T, Vamivakas A N, 
Atia C K and Abouraddy A F 2017 Sci. Rep. 7 44995

	[44]	 Hiesmayr B C, de Dood M J A and Loffler W 2016 Phys. Rev. 
Lett. 116 073601

	[45]	 Born M and Wolf E 1980 Principles of Optics (Oxford: 
Pergamon)

	[46]	 Hanbury Brown R and Twiss R Q 1956 Nature 177 27–9
	[47]	 Einstein A, Rosen N and Podolsky B 1935 Phys. Rev. 47 777
	[48]	 Howell J C, Bennink N, Bentley S J and Boyd R W 2004 

Phys. Rev. Lett. 92 210403
	[49]	 Leach J, Jack B, Romero J, Jha A K, Yao A M, Franke-

Arnold S, Ireland D G, Boyd R W, Barnett S M and 
Padgett M J 2010 Science 329 662–5

	[50]	 Mandel L 1999 Rev. Mod. Phys. 71 6861–97
	[51]	 Scully M O, Englert B G and Walther H 1991 Nature 

351 111–6
	[52]	 Magana-Loaiza O S et al 2016 Nat. Commun. 7 13987
	[53]	 Safari A, Fickler R, Giese E, Magana-Loaiza O S, Boyd R W 

and De Leon I 2019 Phys. Rev. Lett. 122 133601
	[54]	 Manzel R, Puhlmann D, Heuer D and Schleich W P 2012 

Proc. Natl Acad. Sci. USA 109 9314–9
	[55]	 Rubinowicz A 1957 Nature 180 160–2
	[56]	 Rodenburg B, Mirhosseini M, Magana-Loaiza O S and 

Boyd R W 2014 J. Opt. Soc. Am. B 31 A51
	[57]	 Knight P L 2005 Science 310 631–2
	[58]	 Loudon R 1983 The Quantum Theory of Light 2nd edn 

(Oxford: Clarendon)
	[59]	 Gatti A, Brambilla E, Bache M and Lugiaton L 2004 Phys. 

Rev. Lett. 93 093602
	[60]	 Abellan C et al 2018 Nature 557 212
	[61]	 Molina-Terriza G, Torres J P and Torner L 2007 Nat. Phys. 

3 305–10
	[62]	 Kwiat P G, Mattle K, Weinfurter H, Zeilinger A, 

Sergienko A V and Shih Y 1995 Phys. Rev. Lett. 75 4337
	[63]	 Boyd R W 2008 Nonlinear Optics 3rd edn (New York: 

Academic)
	[64]	 Franke-Arnold S, Barnett S M, Yao E, Leach J, Courtial J and 

Padgett M 2004 New J. Phys. 6 103

	[65]	 Magana-Loaiza O S 2016 Novel effects in optical coherence: 
fundamentals and applications PhD Thesis University of 
Rochester

	[66]	 Pittman T B, Shih Y H, Strekalov D V and Sergienko A V 
1995 Phys. Rev. A 52 R3429

	[67]	 Strekalov D V, Sergienko A V, Klyshko D N and Shih Y H 
1995 Phys. Rev. Lett. 74 3600

	[68]	 Bennink R S, Bentley S J and Boyd R W 2002 Phys. Rev. Lett. 
89 113601

	[69]	 Ferri F, Magatti D, Gatti A, Bache M, Brambilla E and 
Lugiato L A 2005 Phys. Rev. Lett. 94 183602

	[70]	 Zerom P, Chan K W C, Howell J C and Boyd R W 2011 Phys. 
Rev. A 84 061894

	[71]	 Howland G, Dixon P B and Howell J C 2011 Appl. Opt. 
50 5917

	[72]	 Magana-Loaiza O S, Howland G A, Malik M and Boyd R W 
2013 Appl. Phys. Lett. 102 231104

	[73]	 Magana-Loaiza O S, Mirhosseini M, Cross R M, Hashemi 
Rafsanjani S M and Boyd R W 2016 Sci Adv. 2 e1501143

	[74]	 Zhang Y, Magana-Loaiza O S, Mirhosseini M, Zhou Y, Gao B, 
Hashemi Rafsanjani S M, Long G L and Boyd R W 2017 
Light Sci. Appl. 6 e17013

	[75]	 Kolobov M 2007 Quantum Imaging (Berlin: Springer) 
(ISBN:978-0-387-33988-7)

	[76]	 Malik M, Magana-Loaiza O S and Boyd R W 2012 Appl. 
Phys. Lett. 101 241103

	[77]	 Refregier P and Javidi B 1995 Opt. Lett. 20 767–9
	[78]	 Clemente P, Duran V, Tajahuerce E and Lancis J 2010 Opt. 

Lett. 35 2391–3
	[79]	 Hong C K, Ou Z Y and Mandel L 1987 Phys. Rev. Lett. 

59 2044
	[80]	 D’Angelo M, Chekhova M V and Shih Y 2001 Phys. Rev. Lett. 

87 013602
	[81]	 Brida G, Genovese M and Berchera I R 2010 Nat. Photon. 

4 227–30
	[82]	 Jha A K, Agarwal G S and Boyd R W 2011 Phys. Rev. A 

5 053829
	[83]	 D’Ambrosio V, Spagnolo N, Re L D, Slussarenko S, Li Y, 

Kwek L C, Marrucci L, Walborn S P, Aolita L and 
Sciarrino F 2013 Nat. Commun. 4 2432

	[84]	 Monken C H, Souto Ribeiro P H and Padua S 1998 Phys. Rev. 
A 57 3123

	[85]	 Fonseca E J S, Monken C H and Padua S 1999 Phys. Rev. Lett. 
82 2868

	[86]	 Edgar M W, Gibson G M and Padgett M J 2019 Nat. Photon. 
13 13–20

	[87]	 Pirandola S, Bardahan B R, Gehring T, Weedbrook C and 
Lloyd S 2018 Nat. Photon. 12 724–33

	[88]	 Xiong J, Cao D-Z, Huang F, Li H-G, Sun X-J and Wang K 
2005 Phys. Rev. Lett. 94 173601

	[89]	 Shih Y H and Alley C O 1988 Phys. Rev. Lett. 61 2921
	[90]	 Ekert A K 1991 Phys. Rev. Lett. 67 661
	[91]	 Clauser J F, Horne M A, Shimony A and Holt R A 1969 Phys. 

Rev. Lett. 23 880
	[92]	 Shapiro J H 2008 Phys. Rev. A 78 061802
	[93]	 Bromberg Y, Katz O and Silberberg Y 2009 Phys. Rev. A 

79 053840
	[94]	 Baraniuk R G 2007 IEEE Signal Process. Mag. 24 118–24
	[95]	 Duarte M, Davenport M, Takhar D, Laska J, Sun T, Kelly K 

and Baraniuk R 2008 IEEE Signal Process. Mag. 25 83–91
	[96]	 Chan W L, Charan K, Takhar D, Kelly K F, Baraniuk R G and 

Mittleman D M 2008 Appl. Phys. Lettt. 93 121105
	[97]	 Morris P A, Aspden R S, Bell J E C, Boyd R W and 

Padgett M J 2015 Nat. Commun. 6 5913
	[98]	 Katz O, Bromberg Y and Silberberg Y 2009 Appl. Phys. Lett. 

95 131110
	[99]	 Li C 2009 MS Thesis Rice University

Rep. Prog. Phys. 82 (2019) 124401

https://doi.org/10.1088/1367-2630/17/3/033033
https://doi.org/10.1088/1367-2630/17/3/033033
https://doi.org/10.1038/nature22986
https://doi.org/10.1038/nature22986
https://doi.org/10.1016/j.physrep.2006.01.004
https://doi.org/10.1016/j.physrep.2006.01.004
https://doi.org/10.1016/j.physrep.2006.01.004
https://doi.org/10.1103/RevModPhys.84.777
https://doi.org/10.1103/RevModPhys.84.777
https://doi.org/10.1103/PhysRevLett.108.143603
https://doi.org/10.1103/PhysRevLett.108.143603
https://doi.org/10.1002/j.1538-7305.1948.tb00917.x
https://doi.org/10.1002/j.1538-7305.1948.tb00917.x
https://doi.org/10.1002/j.1538-7305.1951.tb01366.x
https://doi.org/10.1002/j.1538-7305.1951.tb01366.x
https://doi.org/10.1126/science.1237861
https://doi.org/10.1126/science.1237861
https://doi.org/10.1126/science.1237861
https://doi.org/10.1088/1367-2630/16/8/089501
https://doi.org/10.1088/1367-2630/16/8/089501
https://doi.org/10.1103/PhysRevA.98.023854
https://doi.org/10.1103/PhysRevA.98.023854
https://doi.org/10.1038/srep44995
https://doi.org/10.1038/srep44995
https://doi.org/10.1103/PhysRevLett.116.073601
https://doi.org/10.1103/PhysRevLett.116.073601
https://doi.org/10.1038/177027a0
https://doi.org/10.1038/177027a0
https://doi.org/10.1038/177027a0
https://doi.org/10.1103/PhysRev.47.777
https://doi.org/10.1103/PhysRev.47.777
https://doi.org/10.1103/PhysRevLett.92.210403
https://doi.org/10.1103/PhysRevLett.92.210403
https://doi.org/10.1126/science.1190523
https://doi.org/10.1126/science.1190523
https://doi.org/10.1126/science.1190523
https://doi.org/10.1103/RevModPhys.71.S274
https://doi.org/10.1103/RevModPhys.71.S274
https://doi.org/10.1103/RevModPhys.71.S274
https://doi.org/10.1038/351111a0
https://doi.org/10.1038/351111a0
https://doi.org/10.1038/351111a0
https://doi.org/10.1038/ncomms13987
https://doi.org/10.1038/ncomms13987
https://doi.org/10.1103/PhysRevLett.122.133601
https://doi.org/10.1103/PhysRevLett.122.133601
https://doi.org/10.1073/pnas.1201271109
https://doi.org/10.1073/pnas.1201271109
https://doi.org/10.1073/pnas.1201271109
https://doi.org/10.1038/180160a0
https://doi.org/10.1038/180160a0
https://doi.org/10.1038/180160a0
https://doi.org/10.1364/JOSAB.31.000A51
https://doi.org/10.1364/JOSAB.31.000A51
https://doi.org/10.1126/science.1120023
https://doi.org/10.1126/science.1120023
https://doi.org/10.1126/science.1120023
https://doi.org/10.1103/PhysRevLett.93.093602
https://doi.org/10.1103/PhysRevLett.93.093602
https://doi.org/10.1038/s41586-018-0085-3
https://doi.org/10.1038/s41586-018-0085-3
https://doi.org/10.1038/nphys607
https://doi.org/10.1038/nphys607
https://doi.org/10.1038/nphys607
https://doi.org/10.1103/PhysRevLett.75.4337
https://doi.org/10.1103/PhysRevLett.75.4337
https://doi.org/10.1088/1367-2630/6/1/103
https://doi.org/10.1088/1367-2630/6/1/103
https://doi.org/10.1103/PhysRevA.52.R3429
https://doi.org/10.1103/PhysRevA.52.R3429
https://doi.org/10.1103/PhysRevLett.74.3600
https://doi.org/10.1103/PhysRevLett.74.3600
https://doi.org/10.1103/PhysRevLett.89.113601
https://doi.org/10.1103/PhysRevLett.89.113601
https://doi.org/10.1103/PhysRevLett.94.183602
https://doi.org/10.1103/PhysRevLett.94.183602
https://doi.org/10.1103/PhysRevA.84.061804
https://doi.org/10.1103/PhysRevA.84.061804
https://doi.org/10.1364/AO.50.005917
https://doi.org/10.1364/AO.50.005917
https://doi.org/10.1063/1.4809836
https://doi.org/10.1063/1.4809836
https://doi.org/10.1126/sciadv.1501143
https://doi.org/10.1126/sciadv.1501143
https://doi.org/10.1038/lsa.2016.231
https://doi.org/10.1038/lsa.2016.231
https://www.springer.com/gp/book/9780387338187
https://doi.org/10.1063/1.4770298
https://doi.org/10.1063/1.4770298
https://doi.org/10.1364/OL.20.000767
https://doi.org/10.1364/OL.20.000767
https://doi.org/10.1364/OL.20.000767
https://doi.org/10.1364/OL.35.002391
https://doi.org/10.1364/OL.35.002391
https://doi.org/10.1364/OL.35.002391
https://doi.org/10.1103/PhysRevLett.59.2044
https://doi.org/10.1103/PhysRevLett.59.2044
https://doi.org/10.1103/PhysRevLett.87.013602
https://doi.org/10.1103/PhysRevLett.87.013602
https://doi.org/10.1038/nphoton.2010.29
https://doi.org/10.1038/nphoton.2010.29
https://doi.org/10.1038/nphoton.2010.29
https://doi.org/10.1103/PhysRevA.83.053829
https://doi.org/10.1103/PhysRevA.83.053829
https://doi.org/10.1038/ncomms3432
https://doi.org/10.1038/ncomms3432
https://doi.org/10.1103/PhysRevA.57.3123
https://doi.org/10.1103/PhysRevA.57.3123
https://doi.org/10.1103/PhysRevLett.82.2868
https://doi.org/10.1103/PhysRevLett.82.2868
https://doi.org/10.1038/s41566-018-0300-7
https://doi.org/10.1038/s41566-018-0300-7
https://doi.org/10.1038/s41566-018-0300-7
https://doi.org/10.1038/s41566-018-0301-6
https://doi.org/10.1038/s41566-018-0301-6
https://doi.org/10.1038/s41566-018-0301-6
https://doi.org/10.1103/PhysRevLett.94.173601
https://doi.org/10.1103/PhysRevLett.94.173601
https://doi.org/10.1103/PhysRevLett.61.2921
https://doi.org/10.1103/PhysRevLett.61.2921
https://doi.org/10.1103/PhysRevLett.67.661
https://doi.org/10.1103/PhysRevLett.67.661
https://doi.org/10.1103/PhysRevLett.23.880
https://doi.org/10.1103/PhysRevLett.23.880
https://doi.org/10.1103/PhysRevA.78.061802
https://doi.org/10.1103/PhysRevA.78.061802
https://doi.org/10.1103/PhysRevA.79.053840
https://doi.org/10.1103/PhysRevA.79.053840
https://doi.org/10.1109/MSP.2007.4286571
https://doi.org/10.1109/MSP.2007.4286571
https://doi.org/10.1109/MSP.2007.4286571
https://doi.org/10.1109/MSP.2007.914730
https://doi.org/10.1109/MSP.2007.914730
https://doi.org/10.1109/MSP.2007.914730
https://doi.org/10.1063/1.2989126
https://doi.org/10.1063/1.2989126
https://doi.org/10.1038/ncomms6913
https://doi.org/10.1038/ncomms6913
https://doi.org/10.1063/1.3238296
https://doi.org/10.1063/1.3238296


Report on Progress

28

	[100]	 Franke-Arnold S, Barnett S M, Padgett M J and Allen L 2002 
Phys. Rev. A 65 033823

	[101]	 Torner L, Torres J P and Carrasco S 2005 Opt. Express 
13 873

	[102]	 Jack B, Leach J, Franke-Arnold S, Ritsch-Marte M, 
Barnett S M and Padgett M J 2009 Phys. Rev. Lett. 
103 083602

	[103]	 Chen L, Lei J and Romero J 2014 Light Sci. Appl.  
3 e153

	[104]	 Wang J et al 2012 Nat. Photon. 6 488
	[105]	 Krenn M, Fickler R, Fink M, Handsteiner J, Malik M, 

Schedi T, Ursin R and Zeilinger A 2014 New J. Phys. 
16 113028

	[106]	 Lavery M P et al 2015 CLEO: Science and Innovations 
STu1L.4

	[107]	 Courtial J, Robertson D A, Dholakia K, Allen L and 
Padgett M J 2014 Phys. Rev. Lett. 112 200401

	[108]	 Potocek V, Miatto F M, Mirhosseini M, Magana-Loaiza O S, 
Liapis A C, Oi K L, Boyd R W and Jeffers J 2015 Phys. 
Rev. Lett. 115 160505

	[109]	 Magana-Loaiza O S, Mirhosseini M, Rodenburg B and 
Boyd R W 2014 Phys. Rev. Lett. 112 200401

	[110]	 Montaut N, Magana-Loaiza O S, Bartley T J, Verma V B, 
Nam S W, Mirin R P, Silberhorn C and Gerrits T 2018 
Optica 5 1418–23

	[111]	 Lee H, Kok P and Dowling J P 2002 J. Mod. Opt. 49 2325–38
	[112]	 Magana-Loaiza O S, de J Leon-Montiel R, Perez-Leija A, 

U’ren A B, You C, Busch K, Lita A E, Nam S W, 
Mirin R P and Gerrits T 2019 npj Quantum Inf. 5 80

	[113]	 Slussarenko S, Murauski A, Du T, Chigrinov V, Marrucci L 
and Santamato E 2011 Opt. Express 19 4085–90

	[114]	 Choudhary S, Sampson R, Miyamoto Y, Magana-Loaiza O S, 
Hashemi Rafsanjani S M, Mirhosseini M and Boyd R W 
2018 Opt. Lett. 43 6101–4

	[115]	 Mirhosseini M, Magana-Loaiza O S, Chen C, Hashemi 
Rafsanjani S M and Boyd R W 2016 Phys. Rev. Lett. 
116 130402

	[116]	 Bamber C and Lundeen J S 2014 Phys. Rev. Lett. 112 070405
	[117]	 Mirhosseini M, Magana-Loaiza O S, Chen C, Rodenburg B, 

Malik M and Boyd R W 2013 Opt. Express 21 30196
	[118]	 Bennett C and Brassard G 1984 Proc. IEEE Int. Conf. CSSP 

vol 175
	[119]	 Mirhosseini M, Malik M, Shi Z and Boyd R W 2013 Nat. 

Commun. 4 2781

Omar S. Magaña-Loaiza received his B. S. from the Instituto Nacional de Astrofisica, Optica y Electronica in 2010. He received 
a Master and Ph.D. from the University of Rochester in 2012 and 2016, respectively. His doctoral dissertation was in the area of 
quantum coherence. He was a Research Associate in the Quantum Nanophotonics Group at the National Institute of Standards and 
Technology in Boulder from 2017 to 2018. He joined the faculty of Louisiana State University as an Assistant Professor of Physics 
in Fall of 2018. Now he leads the Experimental Quantum Photonics Group. His research group investigates novel properties of 
light and their potential for quantum technologies.

Robert Boyd was born in Buffalo, New York, USA. He received a BS degree in physics from MIT and a PhD in Physics from the 
University of California at Berkeley.  He joined the faculty of the University of Rochester in 1977, where he is now a full 
professor. In 2010 he took in addition a faculty position at the University of Ottawa in Canada. His research involves both classical 
and quantum aspects of Nonlinear Optics. He is the recipient of the OSA Townes award and the APS Schawlow Award and the 
Isakson Award. He is a fellow of OSA, APS, SPIE, IEEE and AAAS. He is a fellow of the Royal Society of Canada and a 
corresponding member of the Heidelberg Academy.

Rep. Prog. Phys. 82 (2019) 124401

https://doi.org/10.1103/PhysRevA.65.033823
https://doi.org/10.1103/PhysRevA.65.033823
https://doi.org/10.1364/OPEX.13.000873
https://doi.org/10.1364/OPEX.13.000873
https://doi.org/10.1103/PhysRevLett.103.083602
https://doi.org/10.1103/PhysRevLett.103.083602
https://doi.org/10.1038/lsa.2014.34
https://doi.org/10.1038/lsa.2014.34
https://doi.org/10.1038/nphoton.2012.138
https://doi.org/10.1038/nphoton.2012.138
https://doi.org/10.1088/1367-2630/16/11/113028
https://doi.org/10.1088/1367-2630/16/11/113028
https://doi.org/10.1364/CLEO_SI.2015.STu1L.4
https://doi.org/10.1103/physrevlett.81.4828
https://doi.org/10.1103/physrevlett.81.4828
https://doi.org/10.1103/PhysRevLett.115.160505
https://doi.org/10.1103/PhysRevLett.115.160505
https://doi.org/10.1103/PhysRevLett.112.200401
https://doi.org/10.1103/PhysRevLett.112.200401
https://doi.org/10.1364/OPTICA.5.001418
https://doi.org/10.1364/OPTICA.5.001418
https://doi.org/10.1364/OPTICA.5.001418
https://doi.org/10.1080/0950034021000011536
https://doi.org/10.1080/0950034021000011536
https://doi.org/10.1080/0950034021000011536
https://doi.org/10.1038/s41534-019-0195-2
https://doi.org/10.1038/s41534-019-0195-2
https://doi.org/10.1364/OE.19.004085
https://doi.org/10.1364/OE.19.004085
https://doi.org/10.1364/OE.19.004085
https://doi.org/10.1364/OL.43.006101
https://doi.org/10.1364/OL.43.006101
https://doi.org/10.1364/OL.43.006101
https://doi.org/10.1103/PhysRevLett.116.130402
https://doi.org/10.1103/PhysRevLett.116.130402
https://doi.org/10.1103/PhysRevLett.112.070405
https://doi.org/10.1103/PhysRevLett.112.070405
https://doi.org/10.1364/OE.21.030196
https://doi.org/10.1364/OE.21.030196
https://doi.org/10.1038/ncomms3781
https://doi.org/10.1038/ncomms3781

	Quantum imaging and information
	Abstract
	1. Introduction
	2. The transverse profile of light and spatial wavefunctions
	2.1. Linear and spin angular momentum of photons
	2.2. OAM
	2.3. High-dimensional photonic states
	2.4. The information content of a photon

	3. Spatial correlations
	3.1. Coherence and fluctuations of light beams
	3.2. Hanbury Brown and Twiss effect
	3.3. Einstein–Podolsky–Rosen effect with photons entangled in momentum and position
	3.4. Einstein–Podolsky–Rosen effect with photons entangled in OAM and ANG

	4. Quantum imaging
	4.1. Classical coincidence imaging
	4.2. Quantum coincidence imaging
	4.3. Sub-shot-noise imaging
	4.4. Fundamental limits on optical resolution
	4.5. Quantum-secured imaging and optical encryption

	5. CS for imaging
	5.1. Compressive imaging with entangled photons
	5.2. Compressive object identification with entangled 
photons
	5.3. Digital spiral object identification

	6. Quantum metrology and quantum state tomography
	6.1. Quantum-enhanced metrology
	6.2. Quantum state tomography for high-dimensional 
photonic wavefunctions
	6.3. CS for quantum state characterization

	7. Quantum information with high-dimensional photonic states
	7.1. Quantum communication with high-dimensional 
states of light
	7.2. High-dimensional quantum cryptography

	8. Perspectives
	Acknowledgments
	ORCID iDs
	References


