
PHYSICAL REVIEW A 100, 032319 (2019)

Performance analysis of d-dimensional quantum cryptography under state-dependent diffraction

Jiapeng Zhao ,1,* Mohammad Mirhosseini,2 Boris Braverman,3 Yiyu Zhou,1 Seyed Mohammad Hashemi Rafsanjani,1

Yongxiong Ren,4 Nicholas K. Steinhoff,5 Glenn A. Tyler,5 Alan E. Willner,4 and Robert W. Boyd1,3

1The Institute of Optics, University of Rochester, Rochester, New York 14627, USA
2California Institute of Technology, Pasadena, California 91125, USA

3Department of Physics, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5
4University of Southern California, Los Angeles, California 90007, USA

5The Optical Science Company, Anaheim, California 92806, USA

(Received 18 December 2018; published 13 September 2019)

Standard protocols for quantum key distribution (QKD) require that the sender be able to transmit in two
or more mutually unbiased bases. Here, we analyze the extent to which the performance of QKD is degraded
by diffraction effects that become relevant for long propagation distances and limited sizes of apertures. In
such a scenario, different states experience different amounts of diffraction, leading to state-dependent loss and
phase acquisition, causing an increased error rate and security loophole at the receiver. To solve this problem,
we propose a precompensation protocol based on preshaping the transverse structure of quantum states. We
demonstrate, both theoretically and experimentally, that when performing QKD over a link with known, state-
dependent loss and phase shift, the performance of QKD will be better if we intentionally increase the loss of
certain states to make the loss and phase shift of all states equal. Our results show that the precompensated
protocol can significantly reduce the error rate induced by state-dependent diffraction and thereby improve the
secure key rate of QKD systems without sacrificing the security.
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I. INTRODUCTION

Quantum key distribution (QKD) is considered to be one
of the most promising and practical applications of quantum
information science [1–3]. It has been studied both theoret-
ically and experimentally since it was proposed by Bennett
and Brassard in 1984 [4], leading to many advances in the past
decades, including protocols and technical prototypes [5]. In
early works, researchers focused mainly on two-dimensional
quantum systems, for example, the polarization states of
individual photons [6]. In the past decade, effort has been
dedicated to the investigation of higher-dimensional quantum
systems [7–9]. The benefits of utilizing higher-dimensional
quantum systems for QKD include higher information capac-
ity and enhanced robustness against eavesdropping.

Orbital angular momentum (OAM) states are attractive
candidates for QKD because they intrinsically span an in-
finitely large Hilbert space. Beams with an azimuthal phase
dependence exp(i�θ ) carry an OAM of �h̄ per photon, where
� is the integer OAM quantum number. After the breakthrough
work by Allen et al. in 1992 [10], the properties and applica-
tions of OAM have been studied in both classical and quantum
regimes [11–15].

One characteristic of an OAM state is its �-dependent
diffraction [16]. Because of the state-dependent diffraction
(SDD), OAM states with higher � will have larger far-field
sizes, and acquire more propagation phase [for example,
the Gouy phase of Laguerre Gaussian (LG) states]. Thus,
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in practical free-space communication links, different OAM
states will suffer different amounts of loss for a given col-
lection aperture of finite size [17,18], leading to �-dependent
detection efficiency. Similar problems occur for states in
the complementary angular (ANG) basis, which consist of
an equal superposition of OAM states with fixed relative
phase between adjacent OAM components [8,19]. Due to the
SDD, both the amplitude of each OAM state and the relative
phase will be modified. Therefore, the received state will be
different from the transmitted state, increasing the error rate
at the receiver even in the absence of an eavesdropper. The
adverse effects of SDD in both OAM and ANG bases result
in QKD systems less robust against background noise, mea-
surement errors, and eavesdropping. Although OAM-based
QKD systems have been demonstrated in both laboratory and
outdoor environments [8,9,20], the influence of SDD on QKD
systems has not yet been adequately addressed in previous
work [21].

Here, we investigate the performance of a d-dimensional
QKD system under SDD using OAM states as the example.
The SDD results in an efficiency mismatch in the OAM basis
and an increased error rate in the ANG basis, which leads
to a lower secure key rate. These SDD-induced defects are
quantitatively studied as a function of the Fresnel product
Nf in a vacuum, which is defined as Nf = (π/4)DADB/(λz)
[22]. DA and DB are the diameters of the circular transmitting
and receiving apertures respectively, λ is the wavelength of
the light, and z is the propagation distance. For a given free-
space link, the parameter Nf shows how strong the diffraction
is. A small Nf (Nf � 1) indicates a link suffering from a
strong diffraction whereas the diffraction is negligible for
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links with Nf � 1. We then propose a precompensation pro-
tocol to minimize the SDD-induced defects. To validate the
approach, we experimentally measure the crosstalk matrices
for both the precompensated protocol and the original pro-
tocol, and then estimate the secure key rates in both cases.
We find that for a quantum channel with a small Fresnel
number product Nf but high-dimensional encoding space, the
precompensated protocol can significantly reduce the error
rate and provide a greater secure key rate per transmitted
photon.

II. SECURITY LOOPHOLE INDUCED BY
STATE-DEPENDENT DIFFRACTION

Because of the finite sizes of transmitter and receiver aper-
tures, higher-order OAM states, which have stronger diffrac-
tion, will experience greater loss and acquire more propaga-
tion phase. To determine the channel transmission efficiency
of a specific OAM state, we define a propagation operator
F̂ that transfers the OAM eigenstate prepared by Alice |�〉A

to the state received by Bob |�〉B (which is also an OAM
eigenstate but has a different radial amplitude distribution)
as

|�〉B = F̂ |�〉A. (1)

The operator F̂ includes the effects of propagation in vacuum
and the finite apertures at both transmitter and receiver sides.
Note that F̂ only results in different amounts of loss, but
does not introduce any crosstalk between different OAM |�〉
states. Therefore, this is not a unitary transformation, and if
we define the efficiency ε� as ε� = 〈�|�〉B/〈�|�〉A, we obtain
the following eigenvalue relation:

Ĥ |�〉A = ε�|�〉A, (2)

where Ĥ = F̂ †F̂ , and the theoretical transmission efficiency
of |�〉A in vacuum is represented by ε� which is a function of
both OAM quantum number � and Fresnel number product Nf

(see Appendix A for details) [22].
In OAM-based QKD, the complementary ANG basis is the

Fourier conjugate of the OAM basis. The ANG state of index
j is defined as [8,19]

| j〉 = 1√
d

L∑
�=−L

|�〉e−i2π j�/d , (3)

where d is the dimension of the Hilbert space and L is the
maximum OAM quantum number in use, which satisfies the
relation 2L + 1 = d . The ANG basis and the OAM basis form
two mutually unbiased bases (MUBs), and the use of two or
more sets of MUBs guarantees the unconditional security of
QKD [23,24].

In practice, as we mentioned above, different OAM states
will suffer different amounts of diffraction, as do the OAM
components of an ANG state. As shown in Fig. 1(a), for
a low Fresnel number product (Nf � 1), there are huge
efficiency differences between lower-order and higher-order
OAM states. This difference results in a nonuniform probabil-
ity of detecting the OAM states. The ANG basis for Bob will
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FIG. 1. (a) Theoretical transmission efficiency ε� of different
OAM states as a function of Fresnel number product Nf in a d = 7
quantum system. (b) QSER at Bob as a function of Fresnel number
product Nf . The solid lines show the QSER induced by the effects
of SDD. The dashed lines show the maximum value of the QSER
for which a secure channel can be obtained in the limit where the
effects from SDD are negligible (Nf � 1). When the QSER goes
above the corresponding upper bounds, the communication system
is not secure and the secure data rate goes to zero.

thus be modified as

| j〉B = 1√
ε j

F̂ | j〉A =
d−1∑
p=0

√
Pj,p| j + p〉A

=
L∑

�=−L

√
P�|�〉Ae−i�[2π j/d−ψ (z)], (4)

where 1/
√

ε j is the normalization constant given by ε j =∑d
� ε�/d , which describes the transmission efficiency of ANG

states. The state | j〉A is the ANG state j prepared by Alice,
which has the same form as Eq. (3). The state | j〉B is the
ANG state received by Bob after being modified by SDD.
The quantity Pj,p characterizes the crosstalk between ANG
states, and is equal to the probability of finding the ANG state
| j + p〉A prepared by Alice in the ANG state | j〉B received by
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Bob which has been modified by SDD. The quantity P�, which
can be calculated from transmission efficiency ε�, is the proba-
bility of finding the OAM component |�〉 in the modified ANG
state | j〉B. The quantities

√
Pj,p and

√
P�/d are related by a

discrete Fourier transform, and one can also show that Pj,p

is independent of j (see Appendix B for details). The propa-
gation phase ψ (z) is the phase acquired by each OAM state
after propagating a distance z. One can notice that the state-
dependent loss gives rise to a nonuniform probability distri-
bution of the OAM spectrum, while the state-dependent phase
terms introduce an extra relative phase between the different
OAM components in each ANG state. Both of these effects
lead to the crosstalk in the ANG basis, which will be further
exacerbated in current methods for sorting ANG states [25].

One direct consequence of the increased crosstalk is an
increase in the quantum symbol error rate (QSER) at Bob’s
side (QB). Here we define the QSER as the probability of
detecting a photon in a state other than the launched state [26]:
QB = 1 − (FOAM + FANG)/2, where FOAM and FANG are the
fidelities of the OAM basis and the ANG basis respectively,
defined as FOAM = |A〈�|�〉B|2 and FANG = |A〈 j| j〉B|2. Note that
here we already exclude all the other errors. In our case,
assuming there is no eavesdropping, FOAM equals unity while
FANG equals Pj , which means that only the ANG basis suffers
an increased QSER [27]. To quantitatively show how the
QSER changes with diffraction, we have numerically calcu-
lated the probability distribution of P� for Fresnel number
product Nf ranging from 0.01 to 5 under different quantum
space dimensions in Fig. 1(a). When Nf is close to 0, only
the fundamental Gaussian state (|� = 0〉) can be transmitted.
Therefore, the OAM spectrum at Bob will be very narrow,
and the ANG spectrum will become uniform, leading to a
complete loss of information. As Nf increases, the efficiency
of all OAM states will be closer and finally become near
1, indicating that state-dependent loss is reduced and then
negligible at the high Nf regime. The QSER as a function
of Nf is shown in Fig. 1(b). For a given dimension d , small
Nf can significantly increase the QSER even if there is no
quantum attack. This will lead to a lower information capacity
(see Appendix B for details), and make the system more
vulnerable to eavesdropping and quantum cloning since the
upper bound for the QSER is fixed for each given dimension
d [28,29]. Moreover, for a given Nf , a higher dimensional
system will suffer from more crosstalk introduced by SDD.
For instance, in Fig. 1(b), the crosstalk for d = 11 is three
times larger than the crosstalk for d = 7 in a Nf = 2 system.
In addition to the loss of information, a higher error rate
means that one needs to sacrifice a greater fraction of the
raw key to detect the existence of eavesdroppers, because the
legitimate parties cannot distinguish the errors generated by
eavesdroppers’ attack from other errors in the system.

Meanwhile, the nonuniform efficiencies induced by SDD
in the OAM basis introduces a detection efficiency mis-
match in Bob’s detectors, which can be utilized by Eve to
control the information received by Bob. The security of
QKD in the presence of efficiency mismatch has been both
theoretically and experimentally studied [30–32]. Fortunately,
measurement-device-independent QKD protocols have been
developed to eliminate the loopholes from side channels
including efficiency mismatch [33–35], and one can imple-

ment these protocols to remove this SDD induced security
loophole. However, these strategies cannot eliminate the effect
of SDD (the increased QSER) in the ANG basis. Therefore, a
new protocol that can reduce the effect of SDD in both bases
needs to be developed.

III. WAIST PRECOMPENSATION PROTOCOL

From the discussion above, one can conclude that the
nonuniform efficiency induced by SDD leads to a security
loophole, which is caused by the increased error rates from
the state-dependent loss in both OAM and ANG bases, as well
as the state-dependent phase in the ANG basis. Therefore, to
reduce the adverse effects of SDD, a uniform efficiency for
all encoding states is desirable, which requires adjusting the
efficiencies of low-order states to match the high-order states.

Here, we propose a precompensation protocol to mitigate
these adverse effects. Alice first selects one set of states that
she is going to use for encoding, and measures the efficiency
of state |L〉. To adjust the efficiencies of all low-order states
to match the efficiency of |L〉A, she can change the beam
radius of each low-order state so that each state has a same
divergence angle α�: α� ∝ (|�| + 1)/rrms(0), where rrms(0) is
the root-mean-square (rms) beam radius defined by Ref. [16].
That is to say, Alice intentionally increases the loss of the low-
order states to reduce the state-dependent loss. We call this
set of OAM states uniform-energy-loss (UEL) states. Alice
then uses these specially prepared OAM states to construct the
corresponding ANG basis j. After this, a uniform efficiency
has been achieved for both OAM and ANG states, and both the
efficiency mismatch and the increased QSER for Bob can be
significantly reduced. Since the two bases are orthogonal and
mutually unbiased throughout the entire propagation distance,
the security analysis of this protocol is identical to the one
for the BB84 protocol but with a higher uniform channel
loss. We name the approach we have just described waist
precompensation (WPC).

IV. EXPERIMENTAL RESULTS

To implement our protocol in a laboratory setting, we
measure the crosstalk matrix for a Fresnel number product
Nf = 3.96 and dimension d = 7. A HeNe laser is coupled into
a single-mode fiber (SMF) to generate a single spatial mode
at 633 nm. The first spatial light modulator (SLM1), together
with lenses 2 (L2, f = 0.75 m) and 3 (L3, f = 0.5 m), is used
to generate the desired input states |�〉A and | j〉A [19]. Aperture
1 (A1) is used to select the first diffraction order. The distance
(Z1 = 3.12 m) between transmitter’s aperture (the diameter
of A2 is 3.07 mm) and receiver’s aperture (the diameter
of A3 is 3.25 mm) constitute the link with Fresnel number
product Nf = 3.96. Both A2 and A3 are implemented by
round apertures written onto SLM1 and SLM2 respectively.
The second SLM scans the OAM and ANG spectra, and
projects the desired state onto the fundamental Gaussian state,
which can be coupled into the second SMF. The details of
the projective measurement are included in Appendix E. A
power meter (PM) is used to measure the transmitted intensity
coupled into the second SMF.
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FIG. 2. (a) Experimental setup. L1 to L5 are lenses while SLM
denotes the spatial light modulator. A1 to A4 are apertures, and
BE is beam expander. Z1 represents the propagation distance from
transmitter aperture A2 to the receiver aperture A3. (b) Measured
probability distribution with no precompensation. (c) Experimental
result of WPC protocol. The tables showing the probabilities in these
matrices can be found in Appendix F. We can see that the diagonal
elements in (c), which represents the fidelity of the states, have less
error than in (b). The worst fidelity in (b) is less than 70% while the
average fidelity is only 85.8%. As the comparison, the worst fidelity
in (c) is 86.8% and the average fidelity is 93.3%. Therefore, the
crosstalk in (c) is less than the crosstalk in (b). One should also note
that, through the use of WPC, measuring the ANG states in the OAM
basis will have a more uniform distribution, which can be found as
the bottom left corners in (b) and (c).

To quantitatively show the benefits of the WPC protocol,
we measure the conditional probability of finding each state
received by Bob for each state transmitted by Alice, and dis-
play the results in a crosstalk matrix [Fig. 2(c)]. One can see
that the crosstalk in the ANG basis is very small, in particular
when compared with the crosstalk of no compensation proto-
col, which is shown in Fig. 2(b). The average QSER measured
in the case of no compensation is 14.2% while the average
QSER with WPC is 6.7%. The mutual information with the
WPC protocol equals 2.56 bits per photon, an improvement
over 2.22 bits per photon in the case of no compensation.
From the QSER above, we can then find the secure key density
using the following equation based on two MUB protocols
[29,36]:

r = log2 d + 2

[
QB log2

QB

d − 1
+ (1 − QB) log2(1 − QB)

]
,

(5)

where QB represents QSER at Bob’s side. The secure key
density r is then found to be 1.76 bits per received photon
with WPC protocol, a significant improvement from 0.89 bits
per photon in the no compensation case.

V. DISCUSSION AND CONCLUSION

Although the WPC protocol will ensure the robustness of
the quantum system and provide higher information encoded
per photon, it will lower the overall efficiency and may result
in a lower secure key rate because of a lower average transmis-
sion probability [8]. However, for practical quantum encoding
systems with higher dimensionality and lower Fresnel number
products, the crosstalk introduced by SDD can be much larger
than in the ideal case. In such circumstances, the external
errors from either modal dispersion (from turbulence, optical
fiber, etc.) or imperfect mode sorting can be severe, which
makes it even more necessary to implement the precompen-
sation protocol for a better QKD performance.

The simulated comparison of the secure key rate per trans-
mitted photon between WPC protocol and no compensation
protocol with different error rates from external errors are
shown in Fig. 3 as a function of Fresnel number product
Nf . For a given system with fixed transmitting and receiving
apertures, Nf is inversely proportional to the transmission
distance z. Therefore, when Nf is small, usually indicating a
larger z, we see that WPC protocol can significantly improve
the performance of high-dimensional QKD systems in realis-
tic links, especially in the presence of external errors. Even
for our in-laboratory measurements, which have low external
errors, the secure key rate is increased from 0.86 to 1.63
bits per transmitted photon when WPC is implemented (see
Appendix C for details). Therefore, in realistic QKD systems,
intentionally sacrificing some efficiency for low-order states
to get a lower but uniform efficiency can significantly benefit
the system.

Another concern regarding the WPC protocol is how prac-
tical it will be in a realistic QKD scenario. As we discussed
above, in most cases, the WPC protocol is superior to no
compensation protocols only when Nf is limited. In realistic
scenarios, most current free-space QKD systems have Fresnel
number products less than 1, especially the satellite-to-ground
system (Nf = 0.23) [2,37]. Thus the WPC protocol could be
useful in optimizing the performance of future global high-
dimensional QKD systems. Furthermore, implementing the
WPC protocol is simple: one only needs to take the Nf of
the system into consideration, and employ the optimal set of
beam waists, which requires no extra apparatus.

We assumed OAM encoding and circular apertures in the
discussion given above. However, SDD is expected to be a
problem for any type of spatial-mode encoding, and for a
given system, we can always find a set of eigenstates with
uniform transmission efficiency. Therefore, our new protocol
is generic for realistic high dimensional quantum encoding
scenarios utilizing spatial degrees of freedom [38–40].

In summary, we have analyzed the performance of a high-
dimensional QKD system based on OAM encoding in the
presence of SDD. In practical free-space quantum links with
finite aperture sizes and long transmission distance, SDD can
introduce a high error rate and security loopholes, which can
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FIG. 3. (a),(b) Simulated secure key rate per transmitted photon
as a function of Fresnel number product Nf with 0% and 10%
external errors respectively. The solid lines represent the secure key
rate using WPC protocol while the dashed lines represent the secure
key rate with no compensation. Note that the Fresnel number product
Nf is inversely proportional to the transmission distance z.

significantly reduce the information capacity of the quantum
link and its robustness against quantum attacks. To overcome
this threat, we propose the WPC protocol based on the use of
UEL states, which have a uniform loss for all encoding states.
We implemented this approach experimentally and showed
that it can appreciably reduce the QSER and improve the
secure key rate per transmitted photon. Since the two bases in
the WPC protocol are orthogonal and mutually unbiased, the
security of this new approach is the same as the conventional
BB84 protocol. Therefore, by intentionally increasing the
loss for certain states to get a uniform efficiency, we can
significantly reduce the adverse effects induced by SDD, and
improve the secure key rate in QKD systems. Considering that
in the near future, high-dimensional QKD systems will be
a promising platform for increasing the channel information
capacity of free-space communication systems, our WPC pro-
tocol will aid in improving the performance of these systems,
and increase their robustness to eavesdropping.
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APPENDIX A: DERIVATION OF THE EIGENVALUE EQ. (2)
IN THE MAIN PAPER

We employ the same notation as in the main paper. The |�〉A

represents the state prepared by Alice while |�〉B denotes the
state received by Bob. The propagation operator F̂ includes
both the effects of diffraction and limited aperture size at
the receiver. That is, this operator is not unitary and includes
the loss of the link. Therefore, if we define the power sent
out by Alice as PA =A 〈�|�〉A and the power received by Bob
as PB =B 〈�|�〉B, we can write the efficiency ε� = PB/PA =
〈�|�〉B/〈�|�〉A. We can then rewrite this equation in the fol-
lowing form:

B〈�|�〉B = A〈�|F̂ †F̂ |�〉A

= A〈�|ε�|�〉A. (A1)

If we define a new operator Ĥ = F̂ †F̂ , we can get the follow-
ing relation:

PB = A〈�|Ĥ |�〉A. (A2)

Therefore, to find the optimal field maximizing the efficiency,
we need to maximize the PB for a given PA. Then, we use
a Lagrange multiplier by introducing an additional scalar
variable ε�, and rewrite this optimization problem as

P̃ =A〈�|Ĥ |�〉A − ε�[A〈�|�〉A − PA]. (A3)

By differentiating P̃ with respect to A〈�|, we have

∂P̃

∂A〈�| = Ĥ |�〉A − ε�|�〉A. (A4)

By optimizing the P̃, Eq. (4) should be 0. Therefore, we have
the following eigenfunction:

Ĥ |�〉A = ε�|�〉A. (A5)

Hence, the resulting eigenvalue ε� is the efficiency of the
eigenstate |�〉A which maximizes the transmission efficiency
of a given link.

APPENDIX B: CALCULATION OF MUTUAL
INFORMATION IAB IN THE ABSENCE OF EAVESDROPPER

First we prove that the
√

Pj,p and
√

P�/d are related by a
quantum Fourier transform, and Pj,p is independent of ANG
state index j. From Eq. (4) in the main paper, we can find the
following inner products:

A〈 j + p| j〉B = √
Pj,p

= A〈 j + p|
L∑

�=−L

√
P�|�〉Ae−i�[2π j/d−ψ (z)].

(B1)

032319-5



JIAPENG ZHAO et al. PHYSICAL REVIEW A 100, 032319 (2019)

Therefore, we can find the following relation:

√
Pj,p =

L∑
m=−L

√
1

d A
〈m|ei2π ( j+p)m/d

×
L∑

�=−L

√
P�|�〉Ae−i�[2π j/d−ψ (z)]

=
L∑

�=−L

√
P�

d
ei2π ( j+p)�/d e−i2π j�/d ei�ψ (z)

=
L∑

�=−L

√
P�

d
ei�2π (p/d+ ψ (z)

2π
). (B2)

Therefore we can find that Pj,p is independent of j and equals
the Fourier transform of

√
P�/d .

We then show how to get Eq. (5) in the paper. The proba-
bility of Alice sending out each symbol is still equal, but due
to the state-dependent loss, the probabilities of finding each
symbol at Bob’s side are different. Therefore, as discussed in
our paper, for the photons which are registered by both parties,
we have the following probabilities:

P(OAM�,B) = P�,

P(ANG j,B) = 1/d,
(B3)

P(OAM�,A) = P�,

P(ANG j,A) = 1/d.

P(OAM�,B represents the probability that Bob receives a
photon in the |�〉 state, while P(OAM�,A) = P� represents the
probability that Alice sends out a photon in the |�〉 state. This
is because those events in which Alice sends out one symbol
but Bob receives nothing have been discarded.

The definition of mutual information is

IAB =
∑
a∈A

∑
b∈B

p(a, b) log2
p(a, b)

p(a)p(b)
, (B4)

where p(a, b) is the joint probability. The relation between
joint probability and conditional probability is p(a, b) =
p(a)p(b|a). In our case, even if Alice is sending out each sym-
bol with equal probability, the photon statistics at Bob’s side
are not uniformly distributed because of the state-dependent
loss. Therefore, we have the following probability relations:

p(�A, iB) = P�δi�, p( jA, kB) = Pj,p/d. (B5)

Therefore, considering Alice randomly chooses her basis,
the mutual information between Alice and Bob IAB is

IAB = 1
2 IAB,OAM + 1

2
IAB,ANG, (B6)

where IAB,OAM represents the mutual information using the
OAM basis while IAB,ANG is the mutual information using the
ANG basis. The final form of IAB can be found as

IAB = 1

2

∑
p

Pj,p log2 Pj,pd − 1

2d

∑
�

log2 P�. (B7)
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FIG. 4. The mutual information between Alice and Bob as a
function of Nf . The solid lines represent the mutual information with
SDD while the dashed lines indicate the mutual information log2(d )
in the limit where SDD can be ignored (Nf � 1).

As shown in Fig. 4, it is not difficult to verify that IAB is
smaller than the ideal value log2 d . When Nf is near zero,
the information encoded is almost lost, while in the high Nf

region, the information capacity gets close to the ideal value.
Another interesting result is that the information carried by the
two bases is not equal, and that the information encoded in the
OAM basis is always larger than that carried in the ANG basis
because of the absence of crosstalk in the OAM basis.

APPENDIX C: SIMULATION RESULTS OF WPC
PROTOCOL

Figure 5 shows simulation results comparing the WPC
protocol and transmission without the use of compensation,
which we will refer to as the no-compensation protocol.
Figure 5(a) shows the simulated intensity and phase distri-
butions of the ANG state | j = 0〉 prepared by Alice in the
no-compensation and WPC protocols, while Fig. 5(b) shows
the corresponding results for the received ANG state | j = 0〉.
One can notice that both the intensity and phase profiles for
the two protocols are very different at Alice’s and Bob’s sides.
Diffraction distorts the intensity distribution of the received
state in the no-compensation case; after propagating through
the link, the one single main lobe on Alice’s side, which
indicates the angular position and the value of j, becomes
two main lobes on Bob’s side. In contrast, the intensity profile
in the WPC case remains similar even after diffraction. The
simulated crosstalk matrices of no compensation protocol and
WPC protocol are shown in Figs. 5(c) and 5(d), respectively.
Compared to the experimental data in Figs. 2(b) and 2(c), it
is obvious that in the no compensation case, the SDD gives
a nonuniform probability distribution when we measure the
ANG states in the OAM spectrum with higher probabilities
in lower orders but lower probabilities in the higher orders,
and nonzero off-diagonal elements in the ANG spectrum [the
fidelity of ANG states shown in Fig. 5(c) is 95.1% since
the Fresnel number product is chosen to be 3.96]. How-
ever, with the WPC protocol, an almost uniform probability
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FIG. 5. (a),(b) Simulation results of transmitted and received
| j = 0〉 states respectively, both with WPC and without compen-
sation. (c),(d) probability distributions of finding each OAM com-
ponent in the received ANG state | j = 0〉, in the no-compensation
protocol (c) and WPC protocol (d). The simulated link has a Fresnel
number product equal to 3.96.

distribution can be found when ANG states are measured
in the OAM basis, and there are no nonzero off-diagonal
elements in the ANG basis [the fidelity of ANG states in
Fig. 5(d) is 99.99%]. Therefore, the simulation results show
the ability of the WPC protocol to reduce the adverse effects of
SDD.

FIG. 6. (a)–(d) Four ANG states generated experimentally with
no compensation with Nf = 3.96 at transmitter’s side. The ANG
quantum number of these states is j = 0, 1, 2, and 3 respectively.
(e),(f) Prepared and received ANG states | j = 5〉 in the no compen-
sation protocol. (g),(h) Prepared and received states in the WPC pro-
tocol. All images are taken under identical acquisition parameters.
Note that in panel (f) the dominant lobe of (e) has disappeared, but
that it is retained in (h) through the use of precompensation.

APPENDIX D: PREPARED AND RECEIVED STATES

Figure 6 shows the images of experimentally realized
ANG states after transmitting and receiving apertures for d =
7, �max = 3. The top row gives the ANG states with ANG
quantum number j from 0 to 3 prepared by the transmitter.
All the states in the top row are prepared with no compensa-
tion while the figures in the bottom row are the comparison
between no compensation and WPC. Figures 6(e) and 6(f)
are prepared and received ANG states | j = 5〉 with no com-
pensation, and Figs. 6(g) and 6(h) are prepared and received
states in the WPC case. After diffracting in the link, the
spatial profile of ANG state | j = 5〉 in the no compensation
case changes greatly, such that it is intractable to identify the
angular position of the main lobe of the state. However, in the
WPC case, the received ANG state has a similar spatial profile
as the launched state.

APPENDIX E: PROJECTIVE MEASUREMENT

Here, we explain how we experimentally realize the pro-
jective measurement in OAM and ANG bases. For the OAM
states, as the first step, we use SLM2 to apply diffraction
gratings with the same OAM quantum number as the incident
beam onto the SLM2. In this case, we couple the Gaussian
states which are selected from the first negative diffraction
order from SLM2 into the SMF. Since the negative first
diffraction order adds the opposite phase we added onto the
SLM2, in cases where the OAM quantum number in the
incident beam match the OAM value on the SLM2, the beam
in the first negative order should be a Gaussian. Therefore,
we can record the coupling efficiencies of each incident
OAM state by switching the OAM quantum number in the
diffraction grating. The single mode coupling efficiency for
the fundamental Gaussian state is about 40%. All these cali-
brations are done with an infinitely large collection aperture.
Then, to do the projective measurement of the incident beam
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in the OAM basis, we sequentially implement the diffraction
gratings with different OAM quantum numbers through the
use of SLM2, and then record the powers coupled into SMF.
These powers are divided by the corresponding coupling
efficiencies of each OAM state to get the exact power of each
OAM component in the incident state before coupling. To get
the probability distribution we show in the main paper, one
needs to normalize the measured power of each incident OAM
state. In theory, if the incident beam is in an OAM state, there
will be no crosstalk in the OAM basis in both the conventional
protocol and WPC. This is because the grating on the second
SLM only modulates the phase of the incident beam but not
the amplitude. Therefore, the projective measurement can be
described by the following equation:

P(�i, �m)

=
∫ R

0

∫ 2π

0 |Ai(r)exp(i�iθ )exp(−i�mθ )|2rdrdθ∑�max
�m=−�max

∫ R
0

∫ 2π

0 |Ai(r)exp(i�iθ )exp(−i�mθ )r|2drdθ
,

(E1)

where P(�i, �m) is the probability of finding the OAM �m

component in the incident beam which has an OAM equal to
�i. Ai(r) is the radial field distribution of the incident beam.
Since the integral over azimuthal degree of freedom gives a
Kronecker delta, Eq. (E1) will finally reduce to P(�i, �m) =
δ�i,�m . Therefore, the radial field distribution of the incident
beam has no influence on the crosstalk in the OAM basis
when the incident beam is in an OAM state. For the ANG
states, the measurement we did is not a complete projective
measurement since ANG states have both amplitude and
phase information, but one single SLM can only manipulate
one of them. However, we find out that if we use the same
method as what we use in the OAM basis, we will only get
light coupled into SMF when the ANG quantum added on
the SLM2 matches the ANG quantum number of the incident
beam in the no SDD case. Even though this method provides
a very low coupling efficiency (around 10%), we can still
scan the ANG space and get the crosstalk matrix. However,
when the SDD is taken into consideration, one can still find
some coupling in the SMF when the ANG quantum numbers
mismatch so that we have errors in the ANG basis (i.e., the
errors induced by SDD only). This gives the off-diagonal
terms in the crosstalk matrices.

APPENDIX F: SECURE KEY RATE CALCULATION BASED
ON EXPERIMENTAL DATA

Equation (5) in the main text gives the secure key density
per detected photon, while the product of the secure key
density and the transmission efficiency of the states yields
the secure key density per transmitted photon. The secure
key rate is then simply the product of the secure key rate
per transmitted photon and the photon rate. In the simulation,
the QSER at Bob’s side (QB) comes from the external error
(Qex) and the error induced by the SDD (Qs). Therefore, the
QSER at Bob’s side is expressed as QB = Qs + Qex − QsQex,
where Qs stands for the error induced by SDD and Qex is
the external error. Here we have assumed that the Qex is
independent of the state which is measured by Bob. This

TABLE I. Experimental crosstalk matrix in the no compensation
protocol when Alice prepares her states in the ANG basis while
Bob measures in the ANG basis. The typical uncertainty of these
elements is under 3% of each given value, mainly coming from the
power fluctuation in the laser. The dark noise of the detector has been
subtracted, leading to the zero terms in the table, with corresponding
uncertainty typically equal to 0.0001.

| j0〉B | j1〉B | j2〉B | j3〉B | j4〉B | j5〉B | j6〉B

| j0〉A 0.7646 0.1786 0.0048 0.0520 0.0000 0.0000 0.0000
| j1〉A 0.0824 0.6913 0.0980 0.0444 0.0839 0.0000 0.0000
| j2〉A 0.0318 0.0952 0.7182 0.0508 0.1040 0.0000 0.0000
| j3〉A 0.0000 0.0301 0.0740 0.7650 0.0404 0.0904 0.0000
| j4〉A 0.0000 0.0000 0.0504 0.0822 0.7222 0.0919 0.0533
| j5〉A 0.0000 0.0000 0.0000 0.0258 0.0919 0.8599 0.0223
| j6〉A 0.0492 0.0000 0.0000 0.0000 0.0926 0.0339 0.8243

assumption is valid since the external error Qex comes from
the environment but not the state itself. With this QB, we can
easily find the secure key density r from Eq. (5) in the main
text, and the secure key density per transmitted photon rt can
be found as rt = rη, where η is the experimental transmission
efficiency.

In the experiments, the external error Qex usually comes
from measurement devices, which is not easy to estimate.
Therefore, to calculate r, we directly use QB for calculation,
which can be found from the crosstalk matrices. From the
experimental data, the measured efficiency η for the � = 3
state is 92.4% which is the transmission efficiency of WPC
using UEL states. The average efficiency ηavg of all seven
states is 97.1%, which is the transmission efficiency of the
conventional protocol. Therefore, the secure key density with
WPC can be calculated as 1.63 bits per transmitted photon,
as compared to 0.86 bits per transmitted photon with no
compensation. We can see that a uniform efficiency dis-
tribution for all spatial modes, even though it is low, can
provide an improved key rate over maximum transmission
efficiency. Note that there is a discrepancy in the secure key
rate comparison for a Nf = 4 system between simulation and
laboratory data [Figs. 5(c), 5(d) 2(b), and 2(c)]. In theory,
the WPC is advantageous only when Nf is small, since for

TABLE II. Experimental crosstalk matrix in the WPC when
Alice prepares her states in the ANG basis while Bob measures in the
ANG basis. The typical uncertainty of these elements is under 3% of
each given value, mainly coming from the power fluctuation in the
laser. The dark noise of the detector has been subtracted, leading to
the zero terms in the table, with corresponding uncertainty typically
equal to 0.0001.

| j0〉B | j1〉B | j2〉B | j3〉B | j4〉B | j5〉B | j6〉B

| j0〉A 0.8680 0.0328 0.0000 0.0000 0.0000 0.0000 0.0429
| j1〉A 0.0504 0.6913 0.9138 0.0379 0.0000 0.0000 0.0000
| j2〉A 0.0000 0.0535 0.9130 0.0151 0.0000 0.0000 0.0141
| j3〉A 0.0000 0.0000 0.0491 0.9454 0.0251 0.0000 0.0000
| j4〉A 0.0000 0.0000 0.0000 0.0395 0.9373 0.0281 0.0000
| j5〉A 0.0000 0.0000 0.0000 0.0000 0.0376 0.9368 0.0576
| j6〉A 0.0816 0.0000 0.0000 0.0000 0.0000 0.0351 0.08855
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systems with d = 7 and Nf = 4, the QSER in the ANG basis
is very small (less than 1%). However, our experimental data
show a 14.2% QSER for the no compensation case. This is
due to the imperfect measurements in the experiments. In
the no compensation protocol, a perfect measurement should
lead to less than 1% QSER in the ANG basis while the
compensation case should have no QSER. There should be
no QSER in the OAM basis in both cases as well. In the
laboratory, the QSER in the ANG basis is much larger than our
prediction (average QSER is 23.6% without compensation,
and 8.57% with compensation), and the QSER in the OAM
basis also exists (about 4.74%). Therefore, these imperfect
measurements lead to the discrepancy between theoretical

prediction and experimental data. Regarding the QSER in two
bases, one should note that, for the current state of the art, the
measurement error in the ANG basis is usually larger than that
in the OAM basis, which requires a technical improvement in
the future [8,25]. As shown in Tables I and II, the crosstalk
matrices from the experiments, which correspond to the data
in Figs. 2(b) and 2(c) respectively, have off-diagonal terms
larger than the theoretical predictions, which indicates the
imperfect measurement in our experiments. Even with these
imperfections, the WPC protocol can significantly reduce the
QSER in the ANG basis, which matches our prediction in
Fig. 3 .
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