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Intense beams of light propagating through a medium with a positive Kerr nonlinearity can undergo self-focusing
provided that their average power is larger than a certain critical power determined by the wavelength and material
properties of the medium. Here, we show that for pulses comprising only a few optical cycles, this self-focusing can
be inhibited by the presence of significant (normal) dispersion. We derive simple expressions to quantify the thresh-
old power for self-focusing in the presence of dispersion. In addition, we show that under certain conditions, this
threshold power can be larger than conventional critical power (for a dispersionless case) by a factor as large as sev-
eral hundred. ©2019Optical Society of America

https://doi.org/10.1364/JOSAB.36.000G68

1. INTRODUCTION

First proposed in 1962 [1], self-focusing is a fundamental
self-action effect that occurs when an intense beam of light
propagating through a medium with Kerr nonlinearity comes
to a focus due to the lensing effect it induces in the medium
[2]. Conventionally, the critical power for self-focusing has
been derived for a monochromatic (cw) beam by assuming
that the diffraction of the beam is compensated for by self-
induced focusing [3]. This assumption is valid for optical pulses
longer than approximately 1 ns, for which chromatic dispersion
has a negligible effect on the temporal form of the pulse as it
propagates through the medium [2]. For pulses shorter than a
nanosecond, dispersion starts to affect the self-focusing dynam-
ics [4]. For example, even for a pulse that is several optical cycles
long, normal (i.e., positive) group velocity dispersion (GVD)
can lead to a temporal splitting of the pulse [5,6]. Normal GVD
can also increase the self-focusing threshold, or equivalently the
critical power, for short pulses, as discussed in [5–8]. In a recent
theoretical work, it was shown that the self-focusing process for
ultrashort pulses propagating in a dielectric medium is partially
suppressed by the increased effect of normal GVD [9]. It was
also recently demonstrated [10] that for ultrashort pulses propa-
gating in air, strong normal GVD can even prevent self-focusing
from occurring altogether. Further, it was shown [11] that a
simple model that ignores any dispersive contributions does
not fully explain the observed variation of self-focusing distance
with carrier–envelope phase for few-cycle pulses in air.

Essentially, the conventional model of self-focusing based
on the concept of a critical power with the usual definition

cannot explain the propagation of an intense few-cycle pulse
through a nonlinear optical medium. Here, we theoretically
study self-action effects in few-cycle optical pulses. We demon-
strate that, for few-cycle pulses, the concept of a critical power
of self-focusing loses its relevance because of the dominance of
dispersion over diffraction. Specifically, dispersion can prevent
self-focusing of a few-cycle pulse even when its peak power is
larger than the critical power defined in the conventional (cw)
sense (or Pcr). In addition, we find that for single-cycle pulses,
the threshold power for self-focusing can be several hundred
times larger than Pcr. Our findings are particularly relevant
in the context of exploring self-action effects in the terahertz
(THz) regime where the conventional high-power sources pro-
duce single-cycle pulses [12–15]. Furthermore, the knowledge
of the distortion of THz pulses during propagation is important
for applications that require the use of single-cycle THz pulses
for probing or manipulating material properties [16–18], and
for accelerating proton beams [19].

2. THEORY

We assume that a linearly polarized optical pulse propagates
along the z axis in an isotropic nonlinear dielectric medium.
We describe the electric field in the envelope notation as
E (x , y , z, t)= E(x , y , z, t)e i(k0z−ω0t), where E is the enve-
lope of the electric field, ω0 is the center angular frequency of
the pulse, and k0 = n0ω0/c , where n0 = n(ω0) is the linear
refractive index of medium at the central frequency ω0, and c
is the speed of light in vacuum. The pulse propagation through
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the medium is modeled by the well-known nonlinear envelope
equation (NEE) written in normalized form as [20,21]
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where Ẽ = E/E0 is the normalized envelope of the electric field;
E0 is maximum electric field amplitude at the medium entrance;
z represents the coordinate along the direction of beam propa-
gation; t̃ = t/τ0 is the normalized time, with τ0 being the pulse
width; 1̃⊥ = ∂2/∂ x̃ 2

+ ∂2/∂ ỹ 2 is the transverse Laplacian
operator with x̃ = x/r0, ỹ = y/r0, r0 being the beam waist
radius; L env

w = Vg τ0 is the group length, with Vg = (∂k/∂ω)−1
ω0

being the group velocity of the pulse; L env
disp1 = 2τ 2

0 /β2 and

L env
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0 /β3 are the second- and third-order disper-

sion (TOD) lengths, respectively, where β2 = (∂
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is the GVD parameter, and β3 = (∂
3k/∂ω3)ω0 is the

TOD parameter, with k(ω)=ωn (ω)/c being the wave
number; L env

nl1 = c/ω01nnl and L env
nl2 = cτ0/1nnl are the

nonlinear lengths corresponding to the Kerr contribu-
tion and the self-steepening contribution, respectively, and
1nnl =

1
2 n2E2

0 = n′2 I is the intensity-dependent change in
refractive index with I being the peak intensity of the input
pulse; and L env

diffr = 2k0r 2
0 is the diffraction length. The val-

ues of Ẽ and its derivatives in Eq. (1) are of the order of unity.
Therefore, the dispersion, nonlinear, and diffraction lengths, as
described above, represent the corresponding influences on the
propagation of light through the medium.

We note that the inequalities L env
disp2 > L env

disp1 and L env
nl2 > L env

nl1

are valid for multi-cycle optical pulses. Consequently, we will
henceforth use L env

disp1 and L env
nl1 to denote the distances at which

the shape of the pulse changes noticeably due to dispersion and
nonlinearity, respectively.

Let us begin by considering the case

L env
nl1 = L env

diffr, (2)

i.e., the situation in which nonlinear and diffractive effects are
equally important. This situation corresponds to the conven-
tional critical power for self-focusing, and by introducing the
expressions for L env

nl1 and L env
diffr and the expression P = (πr 2

0 )I ,
we find that

Pcr = Rcr
λ2

0

8πn0n′2
, (3)

where Rcr is a parameter whose value depends on the input beam
profile [22,23], and λ0 = 2π/k0 is the central wavelength of
radiation. For an axially symmetric collimated Gaussian beam,
Rcr = 3.77 [22,23]. The situation given in (2) corresponds to
the case where Rcr = 1. We will, however, use Rcr = 3.77 in the
subsequent calculations of Pcr.

We next consider the situation given by

L env
disp1 < L env

diffr. (4)

We note that in this case, the nonlinearity competes with GVD
instead of diffraction. Under these conditions, the concept of
Pcr, as defined in (3), begins to lose its meaning. The inequality
(4) can be rewritten as

l0

D0
<
√

cω0n (ω0) β2, (5)

where l0 = 2cτ0 is the longitudinal extent of the pulse (or wave
packet), and D0 = 2r0 is its transverse size. We consider the
form of dispersion to be given by

n (ω)= N0 + acω2, (6)

where empirical parameters N0 and a characterize the medium
dispersion. We then rewrite the inequality (5) as

l0

D0
<

√
6N01ndisp, (7)

where 1ndisp = acω2
0 is the modification of the refractive

index at the central wavelength due to dispersion. To derive
inequality (7), we have considered that usually 1ndisp� N0.
Specifically for the examples that we have discussed in the next
section, 1ndisp is 2.634× 10−2 and N0 is 4.7344 for the THz
pulses, while 1ndisp is 2.433× 10−3 and N0 is 1.4508 for the
near-infrared (IR) pulses, where1ndisp = acω2

− bc/ω2. One
can therefore expect that for wave packets with longitudinal
dimension less than the transverse size (or “light pancakes”), the
concept of critical power for self-focusing would lose its physical
meaning.

3. NUMERICAL MODELING

In this section, we numerically study the changes in self-action
phenomena under the conditions (5) and (7) for two typical
cases. For the first case, we consider a pulse with λ0 = 800 nm
that propagates through bulk fused silica, which is normally dis-
persive in the assumed spectral region with a dispersion relation
given by

n (ω)= N0 + acω2
− bc/ω2, (8)

where N0 = 1.4508, a = 2.7401 · 10−44 s3/cm, and
b = 3.9437 · 10171/(s · cm) [24]. Here, the condition (5)
becomes l0/D0 > 0.18. For the second case, we consider a
pulse with ν0 = c/λ0 = 1.0 THz that propagates through
a normally dispersive stoichiometric MgO:LiNbO3 crystal,
whose dispersion relation is given by (6), where N0 = 4.734
and a = 2.224 · 10−38 s3/cm [25]. In this case, the condition
(7) becomes l0/D0 > 0.87. In both cases, we consider pulses
with fewer than 10 oscillations of the optical field. Assuming
cylindrical symmetry, we write the electric field at the entrance
of the medium (or at z= 0) in the envelope notation as

E (0, r , t)= E (0, r , t) sin (ω0t), (9)

where the envelopeE is assumed to have Gaussian transverse and
temporal profiles, i.e.,

E (0, r , t)= E0 exp

(
−

r 2

r0
2

)
exp

(
−

t2

τ0
2

)
, (10)
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with r =
√

x 2 + y 2 being the radial coordinate.
In our numerical simulations, we use the following

normalized form of Eq. (10):

Ẽ
(
0, r̃ , t̃

)
= exp

(
−r̃ 2) exp

(
−t̃2). (11)

In all cases, we assume that the peak power of the pulse P0 is
larger than Pcr. Since we are considering the evolution of pulses
that are at most a few cycles in duration, we treat the evolution
of the full electric field of the pulse E (0, r , t), and not just its
envelope E(0, r , t) [24,26]. Hence, instead of the NEE shown
in (1), we consider the following carrier-resolved propagation
equation written in the normalized form:
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where Ẽ = E/E0 is the normalized electric field amplitude, E0

is the maximum electric field amplitude at the entrance to the
nonlinear medium, t̃ = t/τ0 is the normalized time, x̃ = x/r0,
ỹ = y/r0, L f
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Appendix A has the detailed derivation of the NEE from the un-
normalized carrier-resolved propagation equation.

The generalized field equation (12), which can be rewrit-
ten as Eq. (1) for the special case of quasi-monochromatic
pulses (see Appendix A), correctly describes the dynamics of
the self-focusing process including spectral broadening and
the generation of radiation at odd harmonics of the input
frequency [25]. We use the split-step Fourier method for the
numerical integration of (12) [21]. The effects of dispersion
and diffraction are calculated in the spectral domain, while the
effect of nonlinearity is calculated in the time domain by the
Crank–Nicolson method. The fast Fourier transform algorithm
is used to transform from the spectral to the temporal domain,
and vice versa. We first study the propagation of a multi-cycle
pulse through a normally dispersive medium. Here, we discuss
only the propagation of a near-IR pulse propagating through
fused silica (n′2 = 2.9× 10−16 cm2/W [24]). We assume
λ0 = 800 nm, intensity I = 5× 1011 W/cm2, and beam
radius r0 = 30λ0, which corresponds to L env

diffr = 13 mm, at the
entrance to the medium. The critical power for self-focusing
Pcr obtained from (3) is 2.3× 106 W for the parameters con-
sidered and is consistent with the known value [27]. We assume
a pulse width of τ0 = 27 fs, which corresponds to an l0/D0

ratio of 0.3 (or L env
disp1 = 3.3L env

diffr. We also assume the num-
ber N of oscillations of the optical field (N = 2τ0/T0, where
T0 = 2π/ω0) at the entrance to medium is N = 20. The peak
power of the input pulse P0 is taken to be 4Pcr. Figure 1 shows

the spatiotemporal evolution of the aforementioned fs pulse as it
propagates through the medium. The panels in the left column
of the figure depict two-dimensional density plots of the pulse
at different distances (z) within the medium. The panels in the
right column show the modulus of the field spectrum on the
beam axis (r = 0) for the corresponding distances, i.e., they
show G(z, 0, ω), which is obtained from the following Fourier
transform relation:

G (z, 0, ω)=
∫
+∞

−∞

E (z, 0, t) exp (−iωt) dt . (15)

The insets in panels in the right column of the figure show the
corresponding modulus of the electric field |E (z, 0, t)| on the
beam axis.

As seen in the left panel of Fig. 1(a), the pulse initially under-
goes transverse as well as longitudinal compression leading to
the formation of a self-focused filament at z̃= z/L env

diffr = 0.2
[left, Fig. 1(b)]. Here, the peak intensity of the pulse increases by
a factor of 6.6, while the pulse width (spectral width) decreases
(increases) by a factor of 1.4 (2.7). Also, the maximum of
the spectrum red-shifts, while the blue region of the spec-
trum undergoes a larger broadening. Noticeable radiation is
generated at tripled frequencies. Our estimates of the non-
linearity, diffraction, and dispersion lengths for the pulse at
z̃= 0.2 (or z= 2.5 mm) are: L env

nl1 = 0.1 mm, L env
nl2 = 5.9 mm,

L env
diffr = 0.8 mm, and L env

disp1 = 22 mm. In other words, the
main influence on the nature of optical wave propagation
is exerted by the Kerr nonlinearity. The effect of intensity-
dependent group velocity, which leads to self-steepening,
becomes evident in Fig. 1(c), where the trailing edge of the
pulse envelope [inset, right column, Fig. 1(c)] becomes more
pronounced than the leading edge. Linear effects (dispersion
and diffraction) start to dominate from a distance z̃= 0.25 (or
z= 3.3 mm) onwards causing the pulse to spread spatiotem-
porally, which lowers the intensity at the center of the pulse
causing it to split temporally [inset, right column, Fig. 1(d)].
This observed spectral and temporal evolution is consistent
with previously reported experimental findings for ultrashort
pulses propagating in a nonlinear medium, and serves to verify
our numerical integration procedure [28]. A more detailed
theoretical analysis of this particular case can also be found in
[29]. A multi-cycle THz pulse shows very similar qualitative
behavior as it propagates through a MgO : LiNbO3 crystal (see
Appendix B for the corresponding plots).

A. Near-IR Radiation

Figure 2 shows the spatiotemporal evolution of a shorter (τ0 =

8 fs) near-IR (800 nm) pulse, which corresponds to an l0/D0

ratio of 0.1 (or L env
disp1 = 0.3L env

diffr, and N = 6 at the entrance
to medium as it propagates through fused silica. All the other
parameters are taken to be the same as the multi-cycle near-IR
pulse shown in Fig. 1. As seen in the left panels of Figs. 2(b) and
2(c), there is no transverse compression (self-focusing) of the
pulse. Instead, significant temporal spreading of the pulse occurs
due to the strong dispersion even for distances as small as z̃=
0.11 (or z= 1.5 mm). As a result, the peak intensity of the pulse
is uniformly reduced, thereby decreasing the Kerr contributions
as well and arresting the process of self-focusing. The third-order
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Fig. 1. Left: spatiotemporal evolution of the electric field amplitude E of a near-IR pulse propagating through fused silica. Right: modulus |G| of
the frequency spectrum on the beam axis for the same propagation distances z̃, with the time-varying field |E | in the insets. The parameters of the
input pulse are: λ0 = 800 nm, r0 = 30λ0, τ0 = 27 fs (i.e., N = 20), I = 5× 1011 W/cm2. Here, τ = t − z/Vg is the retarded time, r̃ = r /r0, τ̃ =
τ/τ0, ω̃=ω/ω0. We see that self-focusing dynamics is not appreciably influenced by pulse duration effects under the conditions reported here. The
spatiotemporal evolution shown here is consistent with reported results [5,6,9,28].

nonlinearity of the medium gives rise to a slight broadening
of the spectrum and noticeable generation of radiation at
third-harmonic frequencies [right, Figs. 2(b) and 2(c)].

B. THz Radiation

The value of n2 of materials at THz frequencies can be several
orders of magnitude larger than the corresponding value of
n2 at visible and near-IR frequencies [30–32]. In recent years,
there have been several works on the measurement of n2 of
various materials at THz frequencies [31–34]. It is important
to note that the typical methods for measuring n2 of quasi-
monochromatic pulses in the visible and near-IR spectral ranges
can give significant methodological errors for few-cycle pulses,
which become especially significant for the single-cycle pulses
produced by conventional THz sources [34]. In [31], Korpa
et al. have used an alternative technique to estimate the approxi-
mate value of the nonlinear refractive index of lithium niobate
(LiNbO3) at THz frequencies by comparing the result of the
measurement of transmitted time-varying electric field through
the sample given in [35] with their numerical simulations.
Due to the limitations of available pulse intensities and crystal

lengths, Korpa et al. [31] are able to provide an order-of-
magnitude estimate of the n2 of LiNbO3 at THz frequencies,
which is three orders of magnitude larger than the value at visible
frequencies in concurrence with the earlier similar theoretical
predictions [30]. In addition, Korpa et al. have numerically
demonstrated the influence of diffraction on the propagation
of few-cycle, near-IR pulses in fused silica. However, they have
not performed a rigorous study of the self-focusing dynamics of
these few-cycle pulses [31].

We now study the propagation of single-cycle THz pulses
through a stoichiometric MgO:LiNbO3 crystal with nonlinear
refractive index n′2 = 5.4× 10−12 cm2/W [35] and dispersion
parameters described at the beginning of Section 3. It should
be noted that we have used an earlier reported value of n2 of the
MgO:LiNbO3 crystal [35], which might not be accurate due to
the aforementioned methodological errors in measurement of
n2 in the THz region. However, our calculations have been per-
formed with normalized parameters, and it is straightforward to
extend our results if further experiments refine the value of n2 by
changing the electric field intensity so as to have the same value
of1nnl considered here.
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Fig. 2. Left: spatiotemporal evolution of the electric field amplitude E of a near-IR few-cycle pulse propagating through fused silica. Right: modu-
lus |G| of the frequency spectrum on the beam axis for the same propagation distances z̃. The parameters of the input pulse are: λ0 = 800 nm, r0 =

30λ0, τ0 = 8 fs (i.e., N = 6), and I = 5× 1011 W/cm2, corresponding to P = 4Pcr. Instead of transverse and longitudinal compression of the pulse
as observed in Figs. 1(b) and 1(c), here, we observe significant temporal broadening due to the strong GVD, but no transverse compression (i.e., no
self-focusing). We see that, for this few-cycle optical pulse, the strong normal GVD is able to inhibit self-focusing even though P = 4Pcr.
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Fig. 3. Left: spatiotemporal evolution of the electric field amplitude E of a single-cycle THz pulse propagating in a MgO : LiNbO3 crystal. Right:
modulus |G| of the frequency spectrum on the beam axis for the same propagation distances z̃. The parameters of the input pulse are: λ0 = 300 µm,
r0 = 5λ0, τ0 = 0.3 ps (i.e., N = 0.6), and I = 3× 108 W/cm2 corresponding to P = 4Pcr. For the single-cycle THz pulse considered here, we again
see that the strong dispersive spreading of the pulse overcomes self-focusing even for P = 4Pcr, and dominates the evolution of the pulse as it propa-
gates through the medium.
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We assume pulses with λ0 = 300 µm, a peak elec-
tric field amplitude E0 = 0.2 MV/cm (or peak intensity
I0 =

1
2 n0ε0c 0|E0|

2
= 3× 108 W/cm2, with ε0 being the

vacuum permittivity), and beam radius r0 = 5λ0, which cor-
responds to L env

diffr = 45 cm, at the entrance to the medium.
The critical power for self-focusing, Pcr, for this case is

5.3× 106 W. The pulse width is taken to be τ0 = 0.3 ps
(shown in Fig. 3), which corresponds to an l0/D0 ratio of 0.06
(or L env

disp1 = 4.8× 10−3L env
diffr, and N = 0.6). The peak power of

the input pulse P0 is 4Pcr, as in the previous case.
Figure 3 shows the spatiotemporal evolution of the single-

cycle THz pulse. The strong dispersion is evidenced by the
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Fig. 4. Left: spatiotemporal evolution of the electric field amplitude E of a very intense, single-cycle THz pulse propagating in a MgO:LiNbO3

crystal. Right: modulus |G| of the frequency spectrum on the beam axis for the same propagation distances z̃. The parameters of the input pulse
are: λ0 = 300 µm, r0 = 5λ0, τ0 = 0.3 ps, I = 1.48× 1010 W/cm2, corresponding to P = 200Pcr. The panel (d’) shows the output of propa-
gating the pulse in the left panel of (c) through the entire length of the medium while considering only linear propagation, or equivalently with
the nonlinear contributions neglected (n′2 = 0). In contrast with the spatiotemporal evolution of a single-cycle THz pulse for P = 4Pcr shown in
Fig. 3, here, we find that transverse compression (self-focusing) does occur. We observe self-focusing of the pulse [left, panels (c) and (d)] followed by
dispersive-diffractive spreading of the pulse with further propagation [left, panel (e)].
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significant temporal broadening of the pulse for propagation
distances as small as z̃= 0.01 (or z= 0.5 cm), seen in the left
panel (b). Also, as observed in the subsequent panel, there is no
transverse compression of the pulse, or self-focusing, for the
propagation distances considered. We note that the maximum
propagation distance considered here is 0.04 (or z= 2 cm),
which is an order of magnitude larger than the dispersion length
Ldisp1 for this case. The third-order nonlinearity manifests in
the negative (positive) chirp of the leading (trailing) edge of
the pulse [left, Figs. 3(b) and 3(c)], and the generation of new
frequency components in the blue region of the spectrum [right,
Figs. 3(b) and 3(c)] due to the Kerr effect. The effect of diffrac-
tion is present only in the leading edge of the pulse, as indicated
by the curvature of the wavefront at the leading edge of the pulse
[left, Figs. 3(b) and 3(c)]. This temporal asymmetry in diffrac-
tion is due to the fact that lower-frequency spectral components
on the leading edge of the pulse diffract more strongly than the
higher-frequency components on the trailing edge of the pulse.

We further examine the spatiotemporal evolution of a
single-cycle THz pulse (τ0 = 0.3 ps) with a significantly
larger peak power at the input. Specifically, we consider the
situation where P0/Pcr = 200, which corresponds to a peak
electric field amplitude of E0 = 1.53 MV/cm (or peak intensity
I0 = 1.48× 1010 W/cm2). Here, we do observe self-focusing,
as evidenced in the left panels of Figs. 4(d) and 4(e). However,
in contrast to the case considered in Fig. 1, the pulse undergoes
significant temporal broadening due to both strong disper-
sion and large nonlinearity. The temporal broadening is even
larger than in Fig. 3 (where P0/Pcr = 4) due to the significantly
larger nonlinear contribution. We note that the Kerr effect is
also manifested by the significant wavefront curvature at the
steeper leading edge of the pulse prior to self-focusing [Figs. 4(b)
and 4(c)]. This curvature leads to self-focusing upon further
propagation and the formation of a self-trapped filament at the
distance of z̃= 0.1 (or z= 4.4 cm) [Fig. 4(d)]. Figure 4(d’)
additionally shows the result of propagation of the pulse in
the left panel of Fig. 4(c) in the same medium while ignoring
the nonlinear contributions (n′2 = 0). As can be seen clearly in
Fig. 4(d’), the self-focusing occurs even for linear propagation
due to the large wavefront curvature. In addition, significant
generation of radiation is observed at the odd harmonics along
with a gradual blue-shift of the maximum of the spectral density
[Figs. 4(c)–4(e)]. Subsequently, the usual dispersive-diffraction
spreading of the pulse continues after the formation of the
filament [Fig. 4(e)].

4. CONCLUSION

To summarize, through the use of an inequality [expression (5)]
that compares the geometric parameters of an optical pulse
(specifically, the ratio of its longitudinal dimension to its trans-
verse dimension) propagating in a nonlinear medium, with the
material parameters of the medium, we have identified a regime
in which the concept of a critical power for self-focusing loses its
validity. In this regime, self-focusing of intense few-cycle pulses
is arrested even for peak powers larger than the critical power
because of the predominance of dispersion over diffraction that
competes with nonlinear refraction. We have numerically con-
firmed the validity of this prediction for two different cases of

ultrashort pulse propagation in nonlinear media, with the first
case being a near-IR pulse and the second being a THz pulse.
We have further shown that for single-cycle pulses, the critical
power for self-focusing can increase by two orders of magnitude.
Due to this significant nonlinear contribution, a single-cycle
pulse evolves differently in comparison with few-cycle pulses
that undergo self-focusing. Furthermore, the suppression of
self-focusing of single-cycle pulses for powers that are achievable
in practice also implies that the possibility of optical damage
would be significantly reduced.

APPENDIX A: DERIVATION OF THE NONLINEAR
ENVELOPE EQUATION FROM THE
CARRIER-RESOLVED PULSE PROPAGATION
EQUATION

The dynamics of the electric field E of a paraxial linearly polar-
ized wave propagating in an isotropic dispersive medium with a
linear refractive index given by Eq. (8), and an instantaneous (or
inertia-less) cubic non-linearity characterized by the coefficient
of nonlinear refractive index n2 has the form [24,26]

∂E
∂z
+

N0

c
∂E
∂t
− a

∂3 E
∂t3
+ b

∫ t

−∞

E dt ′ + g E 2 ∂E
∂t

=
c

2N0
1⊥

∫ t

−∞

E dt ′, (A1)

where g = 3n2/c [26]. Equation (12) was obtained from
Eq. (A1) through the use of normalization factors given in
Eqs. (13) and (14). This normalized carrier-resolved pulse
propagation equation was subsequently used in our numerical
simulations.

The nonlinear envelope equation, given by Eq. (1), is a special
case of Eq. (A1) that is applicable in the regime where the enve-
lope approximation of the field is valid. This regime includes the
well-known case of quasi-monochromatic pulses [21], as well as
the cases where there is at least one complete optical cycle within
the full-width at half-maximum pulse width [20,36]. To derive
Eq. (1) from Eq. (A1), following the steps outlined in [24], we
make the following substitution for the electric field in (A1):

E (r, t)=
1

2
E(r, t)i(k0z−ω0t)

+ c.c. (A2)

Here,ω0 is an arbitrary fixed frequency, k0(=ω0n(ω0)/c ) is the
corresponding propagation constant, with n(ω) being the linear
refractive index described by Eq. (6) or (8), and E(r, t) is a new
variable that represents a slowly evolving field envelope. The
time derivatives on the left-hand side of Eq. (A1) are straight-
forward to calculate after substituting the electric field given by
(A2) in (A1). In the calculation of the integral on the left-hand
side, repeated integration by parts would result in a power series
in (i/ω0)

n with the corresponding coefficients being ∂nE/∂tn .
We subsequently make the unidirectional approximation and
consider only the forward-propagating components in (A1),
which gives us the following equation in the envelope notation
after some simplification:
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∂E
∂z
+

1

V
∂E
∂t
+ i

β2

2

∂2E
∂t2
−
β3

6

∂3E
∂t3

−

∞∑
n=4

βn
in+1

n!
∂nE
∂tn
− iγ1|E |2E + γ2

∂

∂t

(
|E |2E

)

−

(
iγ1E3

− γ2E2 ∂E
∂t

)
exp (2i(k0z−ω0t))

=
i

2k0
1⊥

[
ω0

i

∫ t

−∞

E(r, t ′) exp
(
iω0(t − t ′)

)
dt ′
]
,

(A3)

where V = ( ∂k
∂ω
)−1
ω0

, βn = (
∂nk(ω)
∂ωn )ω0 , k = N0

c ω+ aω3
−

b
ω

,
γ1 =

gω0
4 ,γ2 =

g
4 .

For quasi-monochromatic pulses, it can be assumed that ω0

is equal to the carrier frequency, and the variable E(r, t) can
then be associated with the envelope of the pulse. We now con-
sider dispersion terms only until the third order, which requires
neglecting the summation term on the left-hand side of Eq.
(A3). We also ignore the last term on the left-hand side, which
describes the generation of harmonics. The diffraction term on

the right-hand side is expanded as follows [29]:

i
2k0

1⊥

[
ω0

i

∫ t

−∞

E(r, t ′) exp
(
iω0(t − t ′)

)
dt ′
]

=
i

2k0
1⊥

(
E(r, t)−

i
ω0

∂E(r, t)
∂t

+

(
i
ω0

)2
∂2E(r, t)
∂t2

− ...

)
,

(A4)

with the result on the right obtained by integration by parts. We
include only the first term of this expansion in (A3) to obtain the
well-known nonlinear envelope equation [21]

∂E
∂z
+

1

V
∂E
∂t
+ i

β2

2

∂2E
∂t2
−
β3

6

∂3E
∂t3
− iγ1|E |2E

+ γ2
∂

∂t

(
|E |2E

)
=

i
2k0

1⊥E . (A5)

For few-cycle pulses, which have a broad spectrum, the number
of dispersion terms considered in the envelope equation can
be increased in order to adequately describe the dependence of
k(ω) throughout the pulse spectra. The corresponding integral
terms on the right-hand side that describe diffraction should
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Fig. 5. Left: spatiotemporal evolution of the electric field amplitude E of the few-cycle THz pulse propagating in a MgO:LiNbO3 crystal. Right:
modulus |G| of the frequency spectrum on the beam axis for the same propagation distances z̃, with the time-varying field |E | in the insets. The
parameters of the input pulse are: λ0 = 300 µm, r0 = 5λ0, τ0 = 8 ps (i.e., N = 16), I = 3× 108 W/cm2, and P0 = 4Pcr, where Pcr = 5.3× 106W .
For the multiple-optical-cycles-long THz pulse shown here, the spatial evolution of the pulse is functionally similar to the evolution of multi-cycle
near-IR pulses propagating in a normally dispersive medium, shown in Fig. 1.
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also be included. We note that in reference [20], this term is
written in the form of an equivalent inverse operator:

ω0

i

∫ t

−∞

E(r , z, t ′) exp
(
iω0(t − t ′)

)
dt ′ =

[
1+

i
ω0

∂

∂t

]−1

× E(r , z, t).
(A6)

The validity of the representation (A6) can be easily verified by

applying the operator
[
1+ i

ω0

∂
∂t

]
to both the left- and the right-

hand sides of Eq. (A6).
Equation (A5) above when written in the normalized form

gives Eq. (1). The normalizing factors and their implications are
discussed at length in Section 2. The same normalization factors
can be used to rewrite Eq. (A1) as Eq. (12).

APPENDIX B: SPATIOTEMPORAL EVOLUTION
OF A MULTI-CYCLE THZ PULSE THROUGH A
NORMALLY DISPERSIVE MEDIUM

Here, we treat the spatiotemporal dynamics of a multi-cycle
THz pulse as it propagates through the normally dispersive
MgO:LiNbO3 crystal (n′2 = 5.4× 10−12 cm2/W) [35] and
dispersion parameters described at the beginning of Section 3
in the main text. We also note that at present, the generation
of multi-cycle THz waveforms with high intensity is a big
challenge [37–39].

We assume a pulse with λ0 = 300 µm, intensity
I = 3× 108 W/cm2 (or amplitude 0.2 MV/cm), and beam
radius r0 = 5λ0, which corresponds to L env

diffr = 45 cm, at the
entrance to the medium. The critical power for self-focusing,
Pcr, for this case is 5.3× 106 W. The pulse width is assumed
to be τ0 = 8 ps, which corresponds to an l0/D0 ratio of 1.6
(or L env

disp1 = 3.4L env
diffr). The peak power of the input pulse P0

is 4Pcr. As we see in Fig. 5, the spatiotemporal dynamics of an
intense multi-cycle THz pulse propagating through a normally
dispersive medium is qualitatively similar to the corresponding
case of a near-IR pulse, which has been discussed in the main
text and shown in Fig. 1.
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