

How light behaves when the Refractive Index Vanishes Physics and Applications of Epsilon-Near-Zero Materials

Robert W. Boyd

Department of Physics University of Ottawa

Institute of Optics and Department of Physics and Astronomy University of Rochester

The visuals of this talk will be posted at boydnlo.ca/presentations

Presented at Frontiers in Optics, Washington DC, September 17, 2019

- Physics of ENZ Materials
- Huge NLO Response of ITO and ITO Metastructures
- Materials for ENZ
- Applications of ENZ Materials

Physics of Epsilon-Near-Zero (ENZ) Materials

• ENZ materials possess exotic electromagnetic properties

Recall that

$$n = \sqrt{\epsilon \mu}$$

where ϵ is the permittivity and μ is the magnetic permeability

Many opportunities in photonics are afforded by ENZ materials and ZIM (zero-index materials)

$$\lambda = \lambda_{\rm vac}/n$$
 $v = c/n$ $\sqrt{n^{-0}}$

For n = 0 the wavelength is stretched and the phase velocity becomes infinite

Light oscillates in time but not in space; oscillations are in phase everywhere

Silveirinha and Engheta, Phys. Rev. Lett. 97, 157403 (2006).

Terminology: ZIM= zero-index material; ENZ=epsilon near zero; EMNZ= epsilon and mu near zero

Physics of Epsilon-Near-Zero (ENZ) Materials

• Radiative processes are modified in ENZ materials

Einstein A coefficient (spontaneous emission lifetime = 1/A) $A = n A_{vac}$ We can control (inhibit!) spontaneous emission!

Einstein *B* coefficient Stimulated emission rate = *B* times EM field energy density $B = B_{Vac} / n^2$ Optical gain is very large! Einstein, Physikalische Zeitschrift 18, 12

Einstein, Physikalische Zeitschrift 18, 121 (1917). Milonni, Journal of Modern Optics 42, 1991 (1995).

- Implications:
- If we can inhibit spontaneous emission, we can build thresholdless lasers.
- Expect superradiance effects to be pronounced in ENZ materials.

Physics of Epsilon-Near-Zero (ENZ) Materials -- More

Snell's law leads to intriguing predictions

$$n_1 \sin \theta_1 = n_2 \sin \theta_2$$

• Light always leaves perpendicular to surface of ENZ material!

Y. Li, et al., Nat. Photonics 9, 738, 2015; D. I. Vulis, et al., Opt. Express 25, 12381, 2017.

• Thus light can enter an ENZ material only at normal incidence!

Y. Li, et al., Nat. Photonics 9, 738, 2015.

Maxwell Equations Prediction

- light enters slab at normal incidence
- but leaves in all directions!

Some Consequences of ENZ Behaviour - 1

• Funny lenses

A. Alù et al., Phys. Rev. B 75, 155410, 2007; X.-T. He, ACS Photonics, 3, 2262, 2016.

• Large-area single-transverse-mode surface-emitting lasers

J. Bravo-Abad et al., Proc. Natl. Acad. Sci. USA 109, 976, 2012.

• No Fabry-Perot interference

O. Reshef et al., ACS Photonics 4, 2385, 2017.

Some Consequences of ENZ Behavior - 2

• Super-coupling (of waveguides)

M. G. Silveirinha and N. Engheta, Phys. Rev. B 76, 245109, 2007; B. Edwards et al., Phys. Rev. Lett. 100, 033903, 2008.

• Large evanescent tails for waveguide coupling

mode of upper waveguide extends to lower waveguide for any separation

ENZ (n = 0) waveguide

Automatic phase matching of NLO processes

Recall that $k = n \omega / c$ vanishes in an ENZ medium.

For example, the following 4WM proces is allowed

H. Suchowski et al., Science 342, 1223, 2013.

Some Consequences of ENZ Behaviour - 3

- How is the theory of self-focusing modified?
- Does the theory of Z-scan need to be modified?
- How is the theory of blackbody radiation modified?
- Do we expect very strong superradiance effects?
- More generally, how is any NLO process modified when $n_0 = 0$?

Physics and Applications of Epsilon-Near-Zero Materials

• Physics of ENZ Materials

Huge NLO Response of ITO and ITO Metastructures

- Materials for ENZ
- Applications of ENZ Materials

- Metamaterials
 Materials tailor-made to display ENZ behaviour
- Homogeneous materials

All materials display ENZ behaviour at their (reduced) plasma frequency

Recall the Drude formula

$$\epsilon(\omega) = \epsilon_{\infty} - \frac{\omega_p^2}{\omega(\omega + i\gamma)}$$

Note that $\operatorname{Re} \epsilon = 0$ for $\omega = \omega_p / \sqrt{\epsilon_\infty} \equiv \omega_0$.

- Challenge: Obtain low-loss ENZ materials Want Im ϵ as small as possible at the frequency where Re $\epsilon = 0$.
- We are examining a several materials ITO: indium tin oxide AZO: aluminum zinc oxide FTO: fluorine tin oxide

Implications of ENZ Behavior for Nonlinear Optics

Here is the intuition for why the ENZ condition is of interest in NLO Recall the standard relation between n_2 and $\chi^{(3)}$

$$n_2 = \frac{3\chi^{(3)}}{4\epsilon_0 c \, n_0 \, \mathrm{Re}(n_0)}$$

Note that under ENZ conditions the denominator becomes very small, leading to a very large value of n_2

Footnote:

Standard notation for perturbative NLO

$$P = \chi^{(1)}E + \chi^{(2)}E^2 + \chi^{(3)}E^3 + \dots$$

P is the induced dipole moment per unit volume and E is the field amplitude.

Also, the refractive index changes according to

$$n = n_0 + n_2 I + n_4 I^2 + \dots$$

Optical Properties of Indium Tin Oxide (ITO)

- ITO is a degenerate semiconductor (so highly doped as to be metal-like).
- It has a large density of free electrons, and a bulk plasma frequency corresponding to a wavelength of approximately 1.24 μ m.
- Recall the Drude formula

$$\epsilon(\omega) = \epsilon_{\infty} - \frac{\omega_p^2}{\omega(\omega + i\gamma)}$$

Note that $\operatorname{Re} \epsilon = 0$ for $\omega = \omega_p / \sqrt{\epsilon_\infty} \equiv \omega_0$.

The region near ω_0 is known as the epsilon-near-zero (ENZ) region.

• There has been great recent interest in studies of ENZ phenomena:

H. Suchowski, K. O'Brien, Z. J. Wong, A. Salandrino, X. Yin, and X. Zhang, Science 342, 1223 (2013).
C. Argyropoulos, P.-Y. Chen, G. D'Aguanno, N. Engheta, and A. Alu, Phys. Rev. B 85, 045129 (2012).
S. Campione, D. de Ceglia, M. A. Vincenti, M. Scalora, and F. Capolino, Phys. Rev. B 87, 035120 (2013).
A. Ciattoni, C. Rizza, and E. Palange, Phys. Rev. A 81,043839 (2010).

Huge, Fast NLO Response of Indium Tin Oxide at its ENZ Wavelength

- We functionalize ITO by creating a photonic metasurface
- We obtain an even larger NLO response by placing a gold antenna array on top of ITO.
 - Lightning rod effect: antennas concetrate the field within the ITO
 - Coupled resonators: ENZ resonance and nano-antennas

SEM:

Alam, Schulz, Upham, De Leon and Boyd, Nature Photonics 12, 79-83 (2018).

A thin ENZ medium supports a bulk plasma mode.

A thin layer of ITO supports two modes

- the bulk plasma mode, also called the ENZ or long-range SPP mode
- the short range surface plasmon polariton (SPP) mode

NLO response of the coupled antenna-ENZ system

The material exhibits extremely large n2 over a broad spectralrange. The magnitude of the on-resonance value is 7 orders of magnitudelarger than that of SiO2.Alam, Schulz, Upham, De Leon and Boyd,

Nature Photonics 12, 79-83 (2018).

Nonperturbative Nature of the NLO Response

- 1. The conventional equation $n = n_0 + n_2 I$ is not applicable to ENZ and other low-index materials. The nonlinear response is nonperturbative.
- 2. The problem is that n_2 is not a reliable metric under ENZ conditions. But n_2 is the standard way for quantifying intensity-dependent index changes. What can we do?
- 3. The nonlinear response can be accurately modeled in the $\chi^{(3)}$ limit by

$$n = \sqrt{n_0^2 + 2n_0 n_2 I}$$

and the second second

where

$$n_2 = \frac{3\chi^{(3)}}{4n_0 \operatorname{Re}(n_0)\epsilon_0 c}.$$

and

$$I = 2\operatorname{Re}(n_0)\epsilon_0 c|E|^2$$

4. More generally, the intensity dependent refractive index can be described by

$$n = \sqrt{\epsilon^{(1)} + 3\chi^{(3)}|E|^2 + 10\chi^{(5)}|E|^4 + \cdots}$$

• Dependence of the polarization P on the electric field obeys the usual power series expansion.

 $P = \chi^{(1)}E + \chi^{(2)}E_2 + \chi^{(3)}E_3 + \dots$

 However, the dependence of the refractive index n on the intensity |E|² is nonperturbative.

- Physics of ENZ Materials
- Huge NLO Response of ITO and ITO Metastructures
- Materials for ENZ
- Applications of ENZ Materials

Epsilon-Near-Zero (ENZ) and Near-Zero-Index (NZI) Examples

J. Caldwell (Vanderbilt) Kim et al., Optica (2016)

Metamaterials

E. Mazur Liet al., Nat. Photon. (2015)

Chan, Huang et al., Nat. Mater. (2011)

SEM from: Polman's & Engheta's

Vesseur et al., PRL (2013)

 $\operatorname{Re}(\varepsilon) \cong 0$ Wire SEM from : Zayat & Podolskiy Pollard et al., PRL (2009) StackSEM from : Polman & Engheta Mass et al., Nat. Photon. (2013)

Nader Engheta

- H. Nedwill Ramsey Professor at the University of Pennsylvania
- B.S. degree from the University of Tehran and his M.S and Ph.D. from Caltech.
- Activities include ENZ, photonics, metamaterials, nano-optics, graphene optics, electrodynamics, microwave and optical antennas, studies of fields and waves.
- Many awards including the Streifer Award of IEEE and the Gold Medal from SPIE

Eric Mazur

- Balkanski Professor of Physics and Applied Physics at Harvard University
- Ph.D. University of Leiden.
- Activities include light-matter interactions with ultrashort laser pulses, nonlinear optics at the nanoscale, and zero-index dielectric metamaterials.
- Awards include the Beller Award of OSA and the Millikan Medal of the AAPT

Alan Willner

- Steven & Kathryn Sample Chair in Engineering at the University of Southern California.
- Ph.D. Columbia University
- Honors include Member of US National Academy of Engineering; Int'l Fellow of UK Royal Academy of Engineering; President of OSA and of IEEE Photonics Society.
- Activities include using nonlinearity for signal processing and wave manipulation.

Three Material Platforms Under Investigation

• Nanoantennas coupled to ENZ substrate (out of plane; free-space coupling) (Rochester)

Dirac cone metamaterials

 (in plane; compatible with integrated optics)
 (Harvard)

 Photonically doped metamaterials (out of plane; free-space coupling) (Penn)

- Physics of ENZ Materials
- Huge NLO Response of ITO and ITO Metastructures
- Materials for ENZ
- Applications of ENZ Materials

Some Potential Applications of ENZ Behavior

Adiabatic Wavelength Conversion through Time Refraction

• Space refraction (e.g., Snell's law)

$$\frac{c}{f} = n \cdot \lambda \quad \longrightarrow \quad n_1 \lambda_1 = n_2 \lambda_2$$

• Time refraction (analog of Snell's law)

$$\frac{c}{f} = n \cdot \lambda \quad \longrightarrow \quad n_1 f_1 = n_2 f_2$$

index vs. time

Photon frequency (energy) is changed because of the temporal change in index, but the wavelength (inverse of momentum) is conserved in the absence of any spatial asymmetry

• Time refraction is an alternative way of understanding frequency broadening and shifting by self-phase modulation:

$$\delta\omega(t) = \frac{d}{dt}\phi_{\rm NL} = \frac{d}{dt}[n_2 I(t)\omega/c]$$

- Pump and probe beams are degenerate and p-polarized. Pulse width ~120 fs.
- Angle of incidence: pump 15 degrees, probe 10 degrees.
- Focused Airy disk diameter: pump ~90 um, probe ~30 um.

Experimental results at 1240 nm

Probe phase and amplitude are measured by frequency-resolved optical gating (FROG) The wavelength shift can be controlled by the pump intensity and the sign of the time delay.

- The observed effect is 100 times larger than previous reports of AWC.
- Application: wavelength-division multiplexing for telecom

Ultrafast Real-Time Holography with an Epsilon-Near-Zero Material

Can we perform holography at video (or faster) frame rates?

In optical holography an interference pattern is stored in a material to be read later by another light beam.

Gabor (1948); Leith and Upatnieks(1964).

Photorefractive and photochromatic materials are typical holographic materials. See also works by Lohman, Goodman, Yariv, and Peyghambarian.

Standard holographic methods have very slow write rates.

Holography using ITO

 \bigcirc

 The interference pattern gets written on the refractive index variation in ITO due to its large intensity-dependent changes in refractive index.

- A second gaussian beam of same or different wavelength can be used to read out the transient hologram.

Holography Using ITO: Experimental Results

- Measured diffraction efficiency is 25%.
- 9-12 orders of magnitude larger refresh rate than conventional methods

Special Thanks To My Students and Postdocs!

Ottawa Group

Rochester Group

