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Abstract
We investigate the propagation of light in different conditions that lead to exotic

propagation of photons and use near-resonant light-matter interactions to enhance

these effects. First, we study the propagation of light in a moving highly dispersive

medium, namely rubidium atoms. Based on the special relativity the speed of light

changes with the speed of the medium. However, this drag effect in a non-dispersive

medium is very small and thus difficult to measure. We show that the drag effect

is enhanced significantly when the moving medium is highly dispersive. Thus,

with this enhancement even a slow motion can be detected. Next, we employ

the large nonlinear response of rubidium atoms to accentuate the formation of

optical caustics. Caustics are important as nature uses caustics to concentrate

the energy of waves. Moreover, caustics can be formed in many physical systems

such as water waves in oceans to amplify tsunamis or generate rogue waves. The

connection of our study to these giant water waves is discussed. Finally, we explore

light-matter interactions in plasmonic systems. We show that photons experience

a significant phase jump as they couple into and out of a plasmonic structure.

This coupling phase, also known as the scattering phase shift, is generic to all

scattering events. We measure this coupling phase with a triple-slit plasmonic

structure. Moreover, we use the near-field enhancement of the plasmonic structure

to enhance the coupling between the slits. Consequently, the photons can take

non-trivial trajectories that pass through all three slits. We measure such exotic

trajectories for the first time that are seemingly in violation of the superposition

principle. The application of the superposition principle and the validity of Born’s

rule is discussed.
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Chapter 1

Introduction

The propagation of light in different media and under different conditions has

fascinated scientists for centuries. In the absence of a medium, photons are essen-

tially noninteracting particles travelling at a constant speed of c. This is a desir-

able property for some applications such as communicating information. However,

light-matter interaction is an integral part of nature and pervades a vast realm of

physical phenomena from optics and atomic physics to condensed matter physics

and astrophysics. In the presence of a strongly polarizable medium, photon-photon

interaction is possible which facilitates information processing and computations

with photons. The interaction of photons with a medium not only provides infor-

mation about the nature of the interaction and the structure of the medium, but

also provides the possibility to control the properties of the photons. For example,

it has been established in the past couple of decades that it is possible to control

the speed of propagation of a pulse of light in a medium to achieve speeds as slow

as a few meters per second [1, 2, 3] or much faster than the speed of light in vac-

uum [4, 5, 6]. In addition, the propagation of light in a material system can be

used to study and simulate other physical phenomena such as the event horizon of

a black hole [7, 8], and the formation of giant waves in oceans [9].

In this article-based thesis, we consider a few applications of near-resonant light-

matter interaction in two different systems: rubidium atomic vapour and plasmonic



PhD Thesis - Akbar Safari 2

structures. The propagation of electromagnetic fields in plasmonic systems is well

explained in many references, see for example Ref. [10], and different commercial

packages are available for numerical simulation of plasmonic systems. In contrast,

the light-matter interaction in atomic vapour is more involved. Although the prin-

ciples are explained in great detail in numerous textbooks, calculation of the optical

response of the atoms requires careful attention to the different conventions and

definitions that may have been used in difference references. Therefore, in the re-

mainder of this chapter we briefly explain how we calculate the optical response of

rubidium atoms. Interested readers can refer to the references for more theoretical

details.

Chapter 2 describes how we enhance the light-drag effect by moving highly

dispersive atomic vapours. This experiment was in fact a repetition of the seminal

work by Fizeau in 1850, but performed with atomic vapours as the moving medium

instead of water. Fizeau’s experiment influenced Einstein the most in his theory of

special relativity. Peter Zeeman repeated the experiment with moving glass rods

and flowing water. He also anticipated that the effect can be enhanced by using

alkali vapours. However, the expected results were never observed. We show that

the change in the speed of light inside a moving highly dispersive rubidium vapour

is proportional to the group index of the medium, in great agreement with the

theoretical prediction.

In Chapter 3 we report the first observation of caustics formed from a nonlinear

phase shift. Caustics involve an important type of singularity, a ray catastrophe, in

which the rays become infinitely intense. We employ rubidium atomic vapour as the

nonlinear medium in which the nonlinear Schrödinger equation governs the prop-

agation of the electromagnetic wave. Remarkably, the same theoretical framework

is used to describe the nonlinear propagation of water waves in oceans. Therefore,

our results are also helpful to understand the formation of caustics in ocean waves
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which can amplify tsunamis or generate rogue waves in oceans.

Chapter 4 describes the exotic trajectories of photons in a triple-slit structure

imposed by the near-field enhancement of a plasmonic system. We show that

photons can take looped trajectories that pass through all the three slits. It was

postulated that such trajectories might violate Born’s rule, one of the main axioms

of quantum mechanics. Therefore, the application of the superposition principle

and the validity of Born’s rule is discussed.

In Chapter 5 we show that photons experience a phase jump as they couple in

and out of a plasmonic structure. We measure this phase jump by incorporating

the unique interference pattern of a triple-slit geometry on a plasmonic layer. We

model each plasmonic slit as a tritter, i.e. a beamsplitter with three input and three

output ports, and infer the coupling phase from our simple and accurate theoretical

model. This coupling phase, also known as the scattering phase shift, is intrinsic

to any scattering phenomena. Therefore, our approach provides a simple method

to characterize this scattering phase and its dependence on different parameters.

In the appendix we present a side project that is not part of the main body

of the thesis. This theoretical work studies the photon number discrimination

with Baysian analysis. We use spatial demultiplexing of photons to split them

into multiple channels with on/off detectors and arrive at an explicit formula for

the number of photons in terms of the number of counts. Our analysis takes into

account the dark counts due to noise, quantum efficiency less than unity, and

also the probability of coincidence where more than one photon falls on the same

detector. We discuss a few examples for the application of our method.
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1.1 Rubidium atoms

Alkali metals in the first group of the periodic table have the simplest structure of

all atoms. They have been studied very well and their properties can be calculated

either analytically or numerically with an extremely high precision. In the solid

phase, alkali metals have the simplest band structure and the Drude-Sommerfeld

model is adequate to explain the majority of their electronic properties [11]. In

the gas phase, alkali atoms are widely used for fundamental studies and precision

measurements. For example, the unit of time is defined in terms of a transition

frequency in atomic cesium. Moreover, alkali atoms were the first ones to be cooled

and trapped [12]. Warm atomic vapours, in particular rubidium atoms, are used

extensively for multiple reasons. Most important is that the excitation frequency

from the lowest energy level to the first excited state lies in the visible region

for which narrowband tunable diode lasers are available. Another reason for their

popularity is their large vapour pressure at a modest temperature close to the room

temperature. Therefore, it is not surprising that the main body of most textbooks

in atomic physics and solid state physics is devoted to the elements in the first

group of the periodic table.

Atomic vapours have a narrow transition line and can couple to resonant pho-

tons very efficiently. This has been employed, for example, to control the group

velocity of a pulse of light and achieve velocities less than 100 m/s [2], or even

stop the photons completely [13, 14, 15]. Moreover, atomic vapours are easy to

saturate. Therefore, they exhibit an extremely large nonlinear effects such as the

optical Kerr effect [1, 16, 17] or third harmonic generation [18].
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1.2 Atomic structure of rubidium

1.2.1 Gross energy levels

Rubidium (Rb) comes next to krypton (Kr) in the periodic table with ground

state electronic configuration [Kr]5s1. The valence electron in the 5s orbital is the

only electron participating in most interactions and the other 36 electrons form

a closed shell around the nucleus. Hence, Rb is a hydrogen-like atom and the

valence electron experiences a central potential. In a central potential proportional

to 1/r, there is an accidental degeneracy where the gross energy of the electron is

independent of its orbital angular momentum (L). In this case, the s and p orbitals

would have the same energy. However, this degeneracy is broken in alkali atoms

due to the quantum defect; the wavefunction of the s electrons penetrates through

the shell and has a significant overlap with the wavefunction of the core. Therefore,

the 5s level has a lower energy than 5p in Rb. A widely used empirical formula to

find the gross energy levels of alkalis is a modified form of Bohr’s formula [19]

E(n, l) = − e2

8πε0a0

1

(n− η)2
, (1.1)

where a0 is the Bohr radius, and the quantum defect η is subtracted from the prin-

cipal quantum number n. The quantum defect depends on the principal quantum

number and the orbital angular momentum L as can be seen from the Rydberg-Ritz

formula [20]

η = α(L) +
β(L)

n2
. (1.2)

Table 1.1 lists the values of the quantum defect for a few low-lying energy levels of

Rb atoms. The transitions from the ground state 5S1/2 to the excited states 5P1/2

and 5P3/2 are called D1 and D2 lines, respectively. Using Eq. (1.1) and Table 1.1
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the transition wavelengths are calculated to be 792 nm and 777 nm for the D1

and D2 transitions, which are close to the experimentally measured wavelengths

of 795 nm and 780 nm, respectively. Note that the effect of spin-orbit interaction

which further affects the excited states 5P1/2 and 5P3/2 is not included yet. Also

note that without the quantum defect, there would be no D1 or D2 transition in

alkali atoms.

1.2.2 Fine and hyperfine structures

The valence electron carries a spin angular momentum S and an orbital angular

momentum L. The total angular momentum of the electron is then given by

J = L+S which can take the quantized values in the range | L−S |≤ J ≤ L+S.

The electron in the ground state (S−term) is characterized by S = 1/2 and L = 0,

thus J = 1/2. The electron in the excited state (P−term) carries L = 1 and thus

J can take two values of 1/2 and 3/2. We denote these energy levels with the

spectroscopic notation

n(2S+1)LJ (1.3)

where L is a letter from the list S, P , D, F , · · · , corresponding to the orbital

angular momentum of L =0, 1, 2, 3, · · · , respectively. Since Rb has a single

valence electron, the spin multiplicity is always 2S+1=2, and we drop that from

Table 1.1: Quantum defect η of a few low-lying energy levels of
Rb, taken from Ref. [20]. Note that as the energy of a level increases,

its quantum defect decreases.

S−terms η P−terms η
5S 3.195 5P1/2 2.720

5P3/2 2.707
6S 3.154 6P1/2 2.683

6P3/2 2.669
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our notation.

The most important interaction, after the effect of quantum defect discussed

in the previous section, that shifts the energy levels of Rb atoms and leads to

the fine structure is the spin-orbit interaction. This can be understood simply as

the interaction between the magnetic dipole moment associated to the spin of the

electron and the magnetic field generated by the orbital angular momentum of the

electron. Therefore, the energy shift can be calculated from the interaction Hamil-

tonian Hso = CL.S. Evaluating the constant C requires the knowledge about

the radial part of the electronic wavefunction which demands extensive numerical

calculations. However, an empirical formula by Landé predicts that the spin-orbit

interaction scales as Z2 with Z being the atomic number. This explains why the

D1 and D2 spectral lines are well separated in Rb (795 nm and 780 nm) and even

more in cesium (894 nm and 852 nm).

In analogy to the spin of the electron, the nucleus of the atom also carries an

angular momentum I. Similar to the spin-orbit interaction, the angular momentum

of the nucleus interacts with the total angular momentum of the electron and results

in the hyperfine splitting of the energy levels. The Hamiltonian of this interaction

can be written as Hhf = A
�2
I.J , where A is a constant that depends on the electron

wavefunction at the position of the nucleus. The total angular momentum of the

atom is given by F = I + J . Therefore, using the fact that the magnitude of

an arbitrary angular momentum K is �
√
K(K + 1), the expectation value of the

hyperfine interaction can be expressed as

Ehf =
A

�2
〈I.J〉 = A

2�2
〈
F 2 − I2 − J2

〉

=
A

2
{F (F + 1)− I(I + 1)− J(J + 1)}.

(1.4)

Natural rubidium consists of two isotopes with mass numbers 85 and 87 with
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Table 1.2: Magnetic dipole constant A used in Eq. (1.4) to cal-
culate the hyperfine splitting for different levels of 85Rb and 87Rb

(taken from Refs. [23, 24, 25]).

85Rb levels A 87Rb levels A
5S1/2 h× 1011MHz 5S1/2 h× 3417MHz
5P1/2 h× 120.5MHz 5P1/2 h× 406.2MHz
5P3/2 h× 25.0MHz 5P3/2 h× 84.8MHz

abundances 72.17% and 27.83%, respectively. The two isotopes have different hy-

perfine structures mainly due to the different nuclear angular momentum that they

possess. The nuclear spin angular momentum of 85Rb and 87Rb are I = 5/2 and

I = 3/2, respectively. The constant A for a few levels of both isotopes are listed

in Table 1.2. The experimentally measured energy levels for 85Rb and 87Rb are

sketched in Fig. 1.1. The hyperfine intervals from Eq. (1.4) fall within 5% accuracy

of the experimental data shown in Fig. 1.1. For a more accurate theoretical ap-

proach, one has to include the higher order effects such as the electric quadrupole

hyperfine interaction, isotope shift, etc [19, 21, 22].
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Figure 1.1: Hyperfine structure of 85Rb and 87Rb for the D1 and
D2 transition lines from Refs. [23, 24, 25]
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1.3 Light-matter interaction in Rb

Optical susceptibility of Rb atoms can be found from the density matrix approach.

Although, as shown in the previous section, Rb atoms contain many different energy

levels, a two-level system approximation is good enough to derive many of the

optical properties of the atoms. In a two-level system, an external electromagnetic

field can place the atoms in a superposition of the two levels

|Ψ〉 = c1 |g〉+ c2 |e〉 , (1.5)

where |g〉 and |e〉 are the ground and the excited states of the atom, respectively.

Therefore, the density matrix is expressed as

ρ =

⎛
⎜⎝
〈|c1|2〉 〈c1c∗2〉
〈c∗1c2〉

〈|c2|2〉
⎞
⎟⎠ . (1.6)

The symbol 〈. . .〉 indicates the average value for the ensemble. The Hamiltonian of

the system can be written as H = H0 + V (t), where H0 is the atomic Hamiltonian

and V (t) is the perturbation due to the light-matter interaction. In the semi-

classical approach and within the electric dipole approximation, the perturbation

is given by

V (t) = −μ.E(t), (1.7)

where μ = −er is the electric dipole moment, and E(t) is the electric field of

the applied laser light. Using the Heisenberg equation of motion ρ̇ = − i
�
[H, ρ],

we arrive at the following equations for the time evolution of the elements of the
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density matrix [26]

ρ̇eg = −
(
iω0 +

1

T2

)
ρeg +

i

�
Veg(ρee − ρgg), (1.8)

ρ̇ee = −ρee
T1

− i

�
(Vegρge − ρegVge), (1.9)

ρ̇gg =
ρee
T1

+
i

�
(Vegρge − ρegVge). (1.10)

Here, ω0 is the resonant frequency of the two-level atoms, ρee−ρgg is the population

inversion, and ρeg is the coherence. T1 is the lifetime of the excited state and

T2 is the total dephasing time, discussed in more detail in the following section.

We assume that the applied laser field is linearly polarized along the x̂ direction.

Thus, the electric field of the laser is E(t) = Ee−iωtx̂+ c.c.. In the rotating-wave

approximation (i.e. ignoring the c.c. part of the electric field) the matrix element

of the interaction Hamiltonian can be expressed as Veg = −μegEe−iωt, where μeg =

−e 〈e|x|g〉 is the matrix element of the electric dipole moment, sometimes called

the transition dipole moment for short.

The response of the atoms to a monochromatic field can be found by solving

Eqs. (1.8) to (1.10) in steady-state. The electric dipole moment per unit volume is

called the atomic polarization and is given by

P (t) = N 〈μ〉 = NTr(ρμ) = N(μegρge + μgeρeg), (1.11)

where N is the number density of the atoms. We introduce the relation P (t) =

Pe−iωt+ c.c. to separate the fast oscillating part of the polarization from its com-

plex amplitude P . Therefore, the optical susceptibility can be found from

P = ε0χE . (1.12)
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Finally, the optical susceptibility is found to be [26]

χ =
N |μeg|2T2

ε0�

δT2 − i

1 + δ2T 2
2 + Ω2T1T2

. (1.13)

We have defined the Rabi frequency as Ω = 2|μeg||E|/� and the frequency detuning

by δ = ω − ω0. One should note that Eq. (1.13) gives the total susceptibility that

includes linear and nonlinear susceptibilities such as χ(3) and χ(5). To obtain the

form of the linear susceptibility one can take the limit E → 0. The derivation of

the density matrix equations (1.10) and their solutions are explained in great detail

in Chapters 3 and 6 of Ref. [26].

In order to calculate the susceptibility of Rb atoms, we need to find the quan-

tities appearing in Eq. (1.13); in section 1.3.1 we explain how to calculate the

transition dipole moment μeg of the hyperfine transitions; the number density N is

explained in section 1.3.2; finally, in section 1.3.3 we explain T1 and T2 and how to

incorporate line broadening mechanisms such as the Doppler shift and the effect of

Rb-Rb collision.

1.3.1 Rb hyperfine transition strengths

As discussed in section 1.2.2, Rb atoms contain several hyperfine energy levels.

Furthermore, each hyperfine level F splits into 2F + 1 magnetic sublevels mF .

We consider a transition between two magnetic sublevels with the electric dipole

moment μeg = −e 〈g|x|e〉 = −e
〈
Fg,mFg

∣∣x∣∣Fe,mFe

〉
. We decompose this matrix

element into two parts: the first part depends only on the angular part of the

wavefunction and can be evaluated by employing the Wigner-Eckart theorem [27].

The second part (the reduced matrix element - see below) contains the radial

component of the wavefunction, and of course, some angular dependence. In this

way, the electric dipole moment for transition between
∣∣Fg,mFg

〉
and |Fe,mFe〉 can
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be written as [12]

〈
Fg,mFg

∣∣erq∣∣Fe,mFe

〉
=(−1)Le+S+Jg+Je+I−mFe+1

×
√
(2Jg + 1)(2Je + 1)(2Fg + 1)(2Fe + 1)

×

⎛
⎜⎝ Fg 1 Fe

mFg q −mFe

⎞
⎟⎠
⎧⎪⎨
⎪⎩
Je Fe I

Fg Jg 1

⎫⎪⎬
⎪⎭

⎧⎪⎨
⎪⎩
Le Je S

Jg Jg 1

⎫⎪⎬
⎪⎭

× 〈αgLg||erq||αeLe〉 .
(1.14)

The round and curly brackets are Wigner-3j and Wigner-6j symbols respectively.

q ∈ {−1, 0, 1} indices the component of the position r in the spherical basis [27,

12]. Since each photon carries � spin angular momentum, q is also equal to the

integer change in mF upon the transition. Here we consider excitation with linearly

polarized light for which we set q = 0. 〈αgLg||erq||αeLe〉 is called the reduced

matrix element and is the only part that depends on the radial wavefunction. αg

and αe represent all the other parameters of the states besides their orbital angular

momentum. Note that the selection rules for the transition are essentially contained

in the Wigner coefficients in Eq. (1.14).

For all atoms, except hydrogen, the radial part of the atomic wavefunction can

only be calculated approximately. However, one can use the decay rate of the

excited state to calculate the reduced matrix element 〈αgLg||erq||αeLe〉. It can be

shown that the spontaneous decay rate is given by [28, 29]

Γ =
ω3
0

3πε0�c3
2Jg + 1

2Je + 1
| 〈Jg||er||Je〉|2. (1.15)
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Again, by using the Wigner-Eckart theorem, 〈Jg||er||Je〉 can be connected to

〈Lg||er||Le〉 by the relation

〈Jg||er||Je〉 =(−1)Je+Lg+S+1
√

(2Je + 1)(2Lg + 1)

⎧⎪⎨
⎪⎩
Lg Le 1

Je Jg S

⎫⎪⎬
⎪⎭

× 〈Lg||er||Le〉 .

(1.16)

For the D2 line, the transition occurs between |g〉 = |Lg = 0, Jg = 1/2〉 and

|e〉 = |Le = 1, Je = 3/2〉. Therefore, Eq. (1.16) reduces to

〈Jg||er||Je〉 =
√

2

3
〈Lg||er||Le〉 . (1.17)

The spontaneous decay rate is given by Γ = 1/τ , where τ = 26.24 ns (27.70 ns) is

the lifetime of the excited state of the D2(D1) line [30]. Thus, we use Eqs. (1.16)

and (1.17) along with these experimental values of the decay rates to calculate

〈Lg||er||Le〉. Hence, the dipole moment for each hyperfine transition can be cal-

culated from Eq. (1.14).

The square of the prefactor that is multiplied to the reduced matrix element

in Eq. (1.14) (the first three lines on the right hand side) is called the transition

strength and can be evaluated easily. The Wigner-3j and Wigner-6j symbols can

be calculated by Mathematica using the commands ThreeJSymbol and SixJSymbol,

respectively. In Fig. 1.2 we show the transition strengths for the D2 transition line

of 85Rb and 87Rb.

1.3.2 Rb number density

Rubidium has a low temperature melting point at 39.31◦C. Therefore, the vapour

pressure at moderate temperatures is significant. However, measuring the vapour
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Figure 1.2: Transition strengths for the D2 line of 87Rb and 85Rb
for linearly polarized light calculated from Eq. (1.14). In order to
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pressure as a function of temperature is difficult and different empirical formulas

are used in the literature:

log10 p = 11.722− 4302

T
− 1.5 log10 T. Ref.[31] (1.18)

loge p = 16.063− 9140

T
, Ref.[18] (1.19)

log10 p = 7.193− 4040

T
, Ref.[24] (1.20)

log10 p = 15.883− 4529

T
+ 0.000587T − 2.99 log10 T, Ref.[32] (1.21)

These equations provide the vapour pressure p of liquid Rb in Torr. The number

density (atoms/m3) can be calculated by

N =
133.323

kBT
p, (1.22)

where kB is the Boltzman constant. Fig. 1.3 plots the number density of Rb atoms

in liquid phase based on Eqs. (1.18) to (1.21). Similar formulas with different

predictions are also available for the vapour pressure in the solid phase, i.e. for the

temperatures below the melting point. However, since the majority of experiments

are performed at temperature above the melting point, we merely provide the

formula from Ref. [32]:

log10 p = −94.048− 1961

T
− 0.0377T + 42.575 log10 T. (1.23)

We should also emphasise that there are some subtleties in measuring the tem-

perature of the atomic ensemble. In our laboratory, we used a 75-mm-long Rb cell

and wrapped a heating wire around the two ends of the cell. We measured the

temperature of the cell with a thermocouple attached to the centre of the cell, far
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Figure 1.3: Number density of Rb atoms as a function of temper-
ature. Different empirical formulas are used in the literature that

predict different number densities at a given temperature.

from the heating wire. When we set the temperature to, let us say, 150◦C, the

reading from the thermocouple reaches the set point in a few minutes. However,

by observing the transmission spectrum of the Rb cell, we realized that the number

density is still rising gradually, even after several hours. Therefore, it takes several

hours for the temperature of the atoms to reach the set point, although we had

thermally insulated the cell. Hence, the actual temperature of the atoms is often

lower than the reading of the thermocouple.

1.3.3 Line broadening mechanisms

In the weak field regime, i.e. when Ω2T1T2 � 1, the imaginary part of the suscep-

tibility in Eq. (1.13) has a Lorentzian lineshape of width Δω = 2/T2. At higher

intensities, the lineshape retains its form, but its width increases to

Δω =
2

T2

√
1 + Ω2T1T2. (1.24)

This is known as the power broadening [28].
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The atomic coherence ρeg and consequently the atomic polarization decay in a

time scale T2 given by
1

T2

=
1

2T1

+ γc. (1.25)

The first term on the right hand side shows the decoherence (dephasing) rate due

to the decay of the excited state population. γc is the pure dephasing rate due to

the collision of the atoms and can be calculated from

γc = 2πδνs
N

N0

, (1.26)

where N0 = 2.69 × 1025 atoms/m3 is the Loschmidt constant. The collisional

broadening linewidth of the D2 transition of Rb atoms at standard temperature

and pressure is δνs 	 1012 Hz [18]. At temperatures above ∼ 120◦C the collisional

broadening becomes comparable to the natural linewidth of the transition and

needs to be accounted for.

Another important mechanism that leads to the broadening of the transition line

is the Doppler shift of the atomic transition frequency due to the thermal motion

of the atoms. Unlike the other broadening effects discussed so far, the Doppler

effect results in an inhomogeneous broadening which means that all the atoms are

not equally affected. Therefore, the Doppler broadening cannot be incorporated

directly into Eq. (1.13). To consider the effect of the Doppler shift, we take the

convolution of the susceptibility in Eq. (1.13) with the Gaussian distribution of the

atomic velocity. Therefore, the Doppler broadened susceptibility is given by

χD(ω) =

∫ ∞

−∞
g(ω′)χ(ω − ω′)dω′, (1.27)
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where the weight factor

g(ω) =
1√
πσ2

exp
[
−
(ω
σ

)2]
, (1.28)

is a normalized Gaussian distribution with σ = ω0u/c, where u =
√

2kBT/m is

the most probable speed in the distribution. If the susceptibility of an atom at rest

has a Lorentzian lineshape, the Doppler broadened susceptibility will be given by

the well known Voigt profile, which can be written in terms of the complementary

error function. For a more general case where the susceptibility does not have

a Lorentzian lineshape, the effect of the Doppler broadening must be calculated

numerically.

1.3.4 Results

Each hyperfine transition depicted in Fig. 1.1 has a Voigt profile with an amplitude

that depends on the strength of that particular transition as shown in Fig. 1.2. In

the weak field regime, the total susceptibility is calculated by adding the suscep-

tibility of each hyperfine transition. Hence, the transmission spectrum is given by

exp(−αL), where α = kImχ is the absorption coefficient and L = 75mm is the

length of our Rb cell. Fig. 1.4(a) shows the theoretical transmission spectrum of

the D2 line of natural Rb in the linear (weak field) regime for two different tem-

peratures. The results are in agreement with the experimental results reported in

Chapter 2. This comprehensive model of absolute transmission has been shown to

predict the absolute absorption of the Rb vapour to better than 0.5% [32].

The transmission spectrum in Fig 2.1 was measured after setting the tempera-

ture of the cell to 160◦C and waiting for one hour. However, later on, by tracking

the transmission spectrum for a longer time we noticed that it takes more than eight

hours for the temperature of the atoms to reach the the set point, as pointed out in
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Figure 1.4: Theoretical calculation of (a) transmission spectrum
(b) refractive index and (c) group index of the D2 line for a Rb
cell of length 75mm filled with natural Rb. Zero detuning is set
to the centre of the left transmission peak observed at 135◦C. The
shaded area shows the region of interest where our experiments are
performed. The refractive and the group index at T = 30◦C are very
close to unity. Thus, we have stretched the dashed lines in parts (b)
and (c) by a factor of 500 to make the variations visible. The inset
in (c) shows the group index in the region of interest at T = 135◦C.
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section 1.3.2. Therefore, we conclude that the actual temperature of the atoms in

the experiment reported in Chapter 2 is about 15% lower than the reported values.

The refractive index n 	 1 + Reχ/2 and the group index ng = n + ωdn/dω of

the D2 line in the linear regime are shown in Fig. 1.4(b) and (c), respectively. The

experiment reported in Chapter 2 is performed in the transmission window shown

in Fig. 1.4 by the shaded area. As shown in the inset of Fig. 1.4 (c), the group

index in the region of interest is between 200 to 300 depending on the frequency

detuning. This theoretical calculation of group index is also in excellent agreement

with the experimental measurement reported in Chapter 2 (see Fig. 2.1).

In the nonlinear (strong field) regime, we define the saturation intensity Is by

I

Is
= Ω2T1T2. (1.29)

Thus, the susceptibility can be written as

χ =
N |μba|2T2

ε0�

δT2 − i

1 + δ2T 2
2 + I/Is

. (1.30)

Each hyperfine transition has a different saturation intensity, depending on its tran-

sition strength. However, the saturation intensity for the cyclic transition between

|F = 2,mF = 2〉 and |F = 3,mF = 3〉 of 87Rb is often quoted as the saturation in-

tensity of Rb atoms, which is Is = 1.67mW/cm2 = 16.7W/m2. Figure 1.5 shows

the refractive index n =
√
1 + Reχ 	 1+Reχ/2 of natural Rb at the D2 transition

line for three different laser intensities, calculated from Eq. (1.30). Our experiment

with Rb in the nonlinear regime (Chapter 3) was performed at the frequency de-

tuning shown by the dashed line in Fig. 1.5. At this wavelength, the refractive

index is larger at higher laser intensities. Therefore, the laser beam experiences

self-focusing.
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Figure 1.5: Refractive index of natural Rb at D2 line in the non-
linear regime calculated from Eq. (1.30). Our nonlinear experiment
presented in Chapter 3 was performed at the frequency detuning
shown by the dashed line. At this wavelength, the refractive index
is larger at higher laser intensities, resulting in self-focusing of the

laser beam.

Equation (1.30) gives the total susceptibility of Rb atoms in two-level system

approximation. However, Rb atoms are not truly two-level and the effect of optical

pumping has to be considered. Rubidium atoms in the excited state can decay

to either of the ground states that satisfy the selection rules and transfer the

population to the state that is far detuned from the laser frequency. The optically

pumped state relaxes to equilibrium by collisions. A rigorous treatment of optical

pumping has to include the pumping rate and the relaxation due to collisions.

Since the relaxation time scale is typically longer than the transit time through the

laser beam, the atoms do not reach equilibrium during the interaction time and one

has to average over a range of transit times [33]. Moreover, at high laser powers,

optical pumping can align the Rb atoms. Therefore, calculating the exact response

of the atoms in the nonlinear regime can be heavily involved. The interested reader

can refer to Refs. [33, 34] for details. However, the effect of optical pumping in

the steady state (which is of our interest) can be accounted for by replacing the

saturation intensity with an effective saturation intensity [22]. In our experiment

presented in Chapter 3, the laser frequency was blue detuned by 840 MHz from
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Rb vapour at the frequency detuning shown by the dashed line in
Fig. 1.5. The effect of optical pumping is incorporated by employing
an effective saturation intensity. Reχ and thus the refractive index
increase with the intensity, indicating nonlinear focusing. Due to
the saturation of absorption, Imχ and thus the absorption decreases

with the laser intensity.

the 52S1/2, F = 3 → 52P3/2, F = 4 transition in 85Rb. For this transition we

use an effective saturation intensity of 3.1 × Is [35]. In Fig. 1.6 we plot the real

and imaginary parts of the total susceptibility at this frequency detuning as a

function of the laser intensity for a Rb cell at T = 115◦C. The refractive index

can be evaluated by n =
√
1 + Reχ 	 1 + Reχ/2 and the absorption coefficient

by α = kImχ. Figure 1.6 shows that the high intensity region of a laser beam

experiences a larger refractive index and also less absorption due to the saturation

of absorption. In Chapter 3 we discuss an experiment where we use this nonlinear

response of Rb atoms to generate and enhance the formation of caustics and rogue

events.
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Chapter 2

Light-Drag Enhancement by a

Highly Dispersive Rubidium Vapour

This chapter is based on the following paper [36]:

A. Safari, I. De Leon, M. Mirhosseini, O. S. Magaña-Loaiza and R. W. Boyd,

Phys. Rev. Lett. 116, 013601 (2016). DOI:10.1103/PhysRevLett.116.013601.

Author contributions: R. W. Boyd conceived the idea. A. Safari conducted

the experiment with assistance from I. De Leon, O. S. Magaña-Loaiza and M.

Mirhosseini. A. Safari analyzed the data and wrote the manuscript. All authors

discussed the results and commented on the manuscript. I. De Leon and R. W.

Boyd supervised the project.

2.1 Abstract

The change in the speed of light as it propagates through a moving material has

been a subject of study for almost two centuries. This phenomenon, known as the

Fresnel light drag effect, is quite small and usually requires a large interaction path

length and/or a large velocity of the moving medium to be observed. Here, we

show experimentally that the observed drag effect can be enhanced by over two
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orders of magnitude when the light beam propagates through a moving slow-light

medium. Our results are in good agreement with the theoretical prediction, which

indicates that, in the limit of large group indices, the strength of the light drag

effect is proportional to the group index of the moving medium.

2.2 Introduction

The phenomenon of light dragging by a moving host medium has been known for

many years. It was first predicted by Fresnel [37]on the basis of an elastic aether

theory and was observed experimentally by Fizeau [38]. This effect, sometimes

called Fresnel drag, can be explained by the special theory of relativity. Fresnel’s

theory ignores the effect of dispersion of the refractive index of the medium. The

influence of dispersion on the light-drag effect was first predicted by Lorentz [39].

Zeeman and his collaborators performed a series of experiments over a period of

more than 10 years [40, 41, 42, 43, 44, 45, 46] to measure the drag effect accurately.

They observed the predicted contribution of dispersion on the light-drag effect by

moving a 1.2-m-long glass rod at speed 10 m/s. However, in normal materials with

low dispersive properties, the effect of dispersion is so small that the magnitude of

this contribution can be disputed [47]. In the intervening years the Fresnel drag

effect has been investigated many times for different purposes, for instance, for

improving the measurement’s accuracy [48, 49], differentiating it from competing

effects such as the Sagnac effect [50, 51], dragging massive particles such as neutrons

[52], and proposing dielectric analogs of gravitational effects [8].

Highly dispersive materials, including alkali atomic vapours, can enable the

propagation of light pulses with extremely small group velocities [1, 2, 3]. This

phenomenon, known as the slow-light effect, has received much attention in the

past two decades [53]. Special relativity implies that the group velocity of light
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changes as one moves the slow-light material through which light propagates. This

effect can be used to control the group velocity of laser pulses in a slow-light

medium [14, 54]. It has also been shown theoretically that the light-drag effect can

be significantly enhanced using a slow-light material [55, 56]. Moreover, a recent

experiment demonstrated that spinning a slow-light material enhances the image

rotation induced by rotary photon drag effect [57].

In this chapter we investigate the change in phase velocity of a light beam

propagating through a slow-light material that results from moving the material

along the direction of propagation. In our experiment, the slow-light material is

a hot rubidium (Rb) vapour. We show experimentally that the dispersive contri-

bution to the drag effect (which is usually considered to be a correction term for

low-dispersion materials) is the dominant contribution in our case. Our results

indicate an enhancement of the drag effect proportional to the group index of the

medium, which in our case is ng ≈ 330.

2.3 Theory

As light enters a nondispersive medium with refractive index n, its phase velocity

with respect to the reference frame attached to the medium changes to c/n. If the

medium moves at speed v, light is dragged in the direction of motion. In effect, the

phase velocity of light u with respect to the stationary laboratory frame is given

by the relativistic addition of the two velocities v and c/n [58],

u =
c/n± v

1 + v/nc
	 c

n
± v

(
1− 1

n2

)
, (2.1)

where n is the refractive index of the moving medium. Throughout this chapter,

we follow the convention that the upper and lower signs correspond to the medium
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moving along the direction of propagation and opposite to it, respectively. The

approximation in Eq. (2.1) is valid for v � c. Equation (2.1) also assumes that the

medium moves parallel to the light beam.

In a dispersive medium, the formula above has to be modified. Because of the

Doppler effect, the frequency of the light ν as measured in the laboratory frame

becomes ν ′ 	 ν (1∓ v/c) as measured in the frame of the moving medium. Then,

to first order in v/c, the refractive index for the moving medium is found to be

n(ν ′) 	 n(ν)∓ ν
dn

dν

v

c
, (2.2)

where n(ν) is the refractive index measured when the medium is at rest. By

substituting n(ν ′) from Eq. (2.2) into Eq. (2.1), and keeping terms to first order in

v/c, one obtains for the phase velocity in the moving medium

u 	 c

n(ν)
± v

(
1− 1

n(ν)2
+

ng − n(ν)

n(ν)2

)

≡ c

n(ν)
±Δu,

(2.3)

where Δu is the change in the phase velocity of light due to the drag effect. Here

ng is the group index defined as ng = n(ν) + νdn/dν. It follows that the phase

shift induced by moving the medium with velocity v is given by

Δφ 	 2πvLn2

λc

(
1

n
− 1

n2
+

ng − n

n2

)
, (2.4)

where λ = c/ν is the wavelength of light in vacuum, L is the length of the medium,

and n = n(ν) for brevity. Laub [59] derived this formula for a medium with moving

boundaries such as a glass rod. However, the first treatment of the light drag effect

including the dispersion of the medium was due to Lorentz [39]. Following Fizeau’s

experiment, where water flows inside a fixed glass tube, Lorentz derived a slightly
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Figure 2.1: Experimental transmission spectra of natural Rb near
the D2 transition measured at two different temperatures. Zero de-
tuning is set to the centre of the left transmission peak observed at
160◦C. The label beneath each spectral feature gives the isotope and
ground state hyperfine level responsible for that feature [32]. The
shaded area shows the region where the experiment is performed

(see Fig. 2.3).

different expression for the dragged velocity for fixed boundaries.

Slow-light materials, such as Rb atomic vapour, are known to have large group

indices. Then, Eq. (2.3) indicates a large enhancement in the light drag effect, as

compared to Eq. (2.1), for a highly dispersive medium. In the experiment reported

below, n is nearly equal to unity. Therefore, Δu 	 ±ngv, and also the difference

between Laub and Lorentz’s formulae is negligible.

2.4 Experiment

In our experiment, the moving medium is a glass cell of length L = 7.5 cm filled

with natural Rb. No buffer gas was added to the cell. Natural Rb consists of

85Rb and 87Rb with abundances 72% and 28%, respectively. Rb atoms represent a

resonant atomic system and show large group indices near resonance [60].

Heating the Rb cell increases the number density of the atomic vapour, which

enables us to achieve large group indices. Fig. 2.1 shows the transmission spectrum
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Figure 2.2: Ring interferometer used to measure the phase shift
induced by light drag. LP is a linear polarizer and PBS is a polar-
izing beam splitter. The laser is operated at the Rb D2 transition
line, around zero frequency detuning shown in Fig. 2.1. The inset
shows a sample fringe pattern with the maximum fringe displace-
ment observed at 160◦C. The upper and lower fringes are the fringe

patterns as the cell moves to the left and right, respectively.

around the D2 line of natural Rb measured at two different temperatures. A tunable

continuous wave (CW) diode laser (Toptica DL Pro) with wavelength near 780.2 nm

(Rb D2 transition line) and the linewidth of less than 1 MHz is used. The laser

operates with power 4.2 mW.

To observe the phase shift induced by the light drag effect, we use a ring inter-

ferometer (also known as a Sagnac interferometer) with the Rb cell moving within

one arm as shown in Fig. 2.2. The two clockwise and counter-clockwise beams have

the same power with orthogonal polarizations. Thus, they interfere only after the

second polarizer. Since the two counter-propagating beams overlap, any phase shift

induced by jitters or other noise is applied to both beams and does not influence

the interference pattern that reveals the phase shift due to drag. The Rb cell is

enclosed in an aluminium box with two glass windows with anti-reflection coating.

To reduce heat dissipation and air turbulence around the box, the box is thermally

insulated with a layer of cork sheet. A heating wire wrapped around the cell and
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Figure 2.3: Change in phase velocity due to light drag, Δu, as
a function of a) temperature and b) frequency detuning at a Rb
temperature of 160◦C, when the speed of the Rb cell is at maximum
of v = 1m/s. The contribution of dispersion ngv is shown with blue
hollow circles. In (a) the laser is operated at -0.49 GHz frequency

detuning (see Fig. 2.1).

a thermocouple attached to the cell control the temperature of the cell with an

accuracy of ±1◦C. The aluminium box is mounted on a motor-controlled linear

slider that moves right and left at maximum speed of v = 1m/s. A charge-coupled

device (CCD) camera is triggered to capture an image of the fringe pattern when

the cell is moving at maximum speed.

We measure the displacement of the interference fringes. For accurate measure-

ment we misalign the interferometer by only a small amount to image a few fringe

lines onto the camera. To increase accuracy, the fringes are recorded and averaged

over 50 cycles. The main source of error is air turbulence around the Rb cell.

The phase difference between the two beams at the output of the interferometer,

induced by the drag effect, is given in Table 2.1. The laser operates at -0.49 GHz

frequency detuning (see Fig. 2.1), and the effect of dragging is measured at seven

different temperatures from 130◦C to 160◦C at 5◦C interval. Thermal equilibrium

was reached between the readings. Uncertainties in Table 2.1 are the standard

error of the mean of 50 different trials for each temperature.

The displacement of the fringe patterns normalized to the distance between the



PhD Thesis - Akbar Safari 31

Table 2.1: The observed phase shift in the light drag experiment
at the output of the interferometer, 4×Δφ, and the change in phase
velocity, Δu, at different temperatures. The third column is the re-
sult of the drag experiment, and the last column shows the expected

contribution of ng.

Temperature 4×Δφ Δu (Drag) Δu (Expected)
(oC) (Rad) (m/s) (m/s)
130 0.60 ± 0.06 75 ± 7 81 ± 1
135 0.75 ± 0.06 93 ± 8 98 ± 1
140 1.01 ± 0.07 125 ± 9 126 ± 1
145 1.25 ± 0.07 155 ± 9 166 ± 1
150 1.67 ± 0.08 207 ± 10 208 ± 2
155 1.99 ± 0.07 247 ± 9 252 ± 2
160 2.58 ± 0.08 320 ± 9 331 ± 2

fringes at the output of the interferometer is given by ΔZ = 4 × Δφ/2π, where

Δφ is given in Eq. (2.4). The factor 4 comes from the fact that there are two

counter-propagating beams going through the cell and we compare the left moving

fringes with the right moving ones. The change in phase velocity due to light drag,

Δu, is given in the third column of Table 2.1. It is obtained from Eq. (2.3) with

the help of Eq. (2.4) and the fact that the refractive index of Rb vapour n(ν) is

equal to unity to good approximation [60]. Fig. 2.3(a) plots the change in phase

velocity Δu as a function of temperature.

To confirm that the observed effect is in fact the consequence of dispersion and

comes from the group index in Eq. (2.3), we measured the group index directly

for the same wavelength and temperatures. The experimental setup for this mea-

surement is shown in Fig. 2.4. An electro-optic modulator (EOM) fed by a signal

generator is used to produce pulses of 10 ns duration. The group velocity of the

laser pulses inside the stationary Rb cell is given by c/ng. The group delay expe-

rienced by the laser pulses is measured by an oscilloscope. The group indices thus

obtained are used in Eq. (2.3) to calculate the expected change in phase velocity.
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Figure 2.4: Experimental setup to measure the group index of the
Rb vapour. An electro-optic modulator (EOM) is used to generate
laser pulses of 10 ns width, and the time delay is measured by an

oscilloscope.

The results are shown in the last column of Table 2.1 and in Fig. 2.3 with blue hol-

low circles. The uncertainty is determined by repeating the measurements several

times and taking the standard error of the mean. It can be seen that the observed

drag effect is in very good agreement with the prediction of theory.

For further confirmation of the understanding of the light drag effect we also

measured the light drag as a function of the frequency detuning at a Rb temperature

of 160◦C. The measurement is performed in the spectral region shown in Fig. 2.1

with shaded area. The results are shown in Fig. 2.3(b), along with the expected

effect of the group index.

At high optical powers one might expect to see the effects of optical pumping

and saturation [61]. However, in the temperature range used in this work, we did

not see any appreciable change in the transmission spectrum when we increased

the power from a few microwatts to a few milliwatts. Since the laser frequency

is about 1 GHz away from resonances, only the small fraction of atoms that are

Doppler shifted into resonance are saturated. Optical hyperfine pumping reduces

the absorption by transferring atoms from one hyperfine ground level to another

level. Nevertheless, at high temperatures, atom-atom collisions quickly redistribute

population among the hyperfine ground levels. Thus, the effect of optical pumping

is diminished by the short relaxation time at high temperatures.
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The refractive index of the Rb gas inside the cell is very close to unity (n 	 1).

Thus, the non-dispersive contribution to the light drag effect is due only to the four

glass windows fixed to the Rb cell assembly, which have a combined thickness of 2

cm. According to Eq. (2.4), the contribution of the moving windows in the observed

phase shift is about 0.001 rads., which is much smaller than the uncertainty of Δφ in

Table 2.1. Therefore, the observed drag effect is due primarily to the dispersion of

the Rb vapour. We verified this conclusion by performing additional measurements

far from the atomic resonances (where ng ≈ 1), and noting that no net displacement

of the fringe pattern is detected as the cell was moved (data not shown).

In typical materials with low dispersive properties, the contribution of disper-

sion in light drag is almost negligible. Zeeman and his colleagues [45] used a

1.2-m-long glass cylinder moving at speed 10m/s. They observed the phase shift

Δφ = 0.38 radians out of which 0.04 radians was the contribution of dispersion.

In a non-dispersive medium, Eq. (2.1) implies that the speed of light cannot

be changed by more than the translational speed of the medium. However, one

sees from Eq. (2.3) that by using a highly dispersive medium, one can exceed this

limit. In our experiment, the speed of light is changed by ng × v 	 330m/s,

where v is 1m/s, indicating an enhancement of more than two orders of magnitude

as compared to dragging light with a low-dispersive medium. The enhancement

observed in this work is in fact a manifestation of the Doppler shift and can also be

called the enhanced Doppler effect. Therefore, a highly dispersive medium moving

in an interferometer provides a sensitive method to detect linear motions.

With the technique of electromagnetically induced transparency (EIT), group

indices as large as 107 are achievable [1]. Therefore, one can enhance the observed

effect by an even larger factor, which could enable accurate detection of extremely

slow speeds [55]. Note, however, that for very large group indices one has to keep

higher-order corrections in Eq. (2.3), which cause the effect to saturate for large



PhD Thesis - Akbar Safari 34

speeds.

2.5 Conclusion

In summary, we investigated the change in phase velocity of light propagating

through a moving slow-light medium. We moved a warm Rb cell at speed 1 m/s

and observed a maximum change of 330 m/s in the phase velocity of light. The

enhancement observed in the Fresnel light-drag effect is proportional to the group

index of the moving medium. This enhancement is due to the large group index

of a Rb vapour and can be understood by means of the Doppler effect. By using

techniques such as EIT, one can achieve very large group indices. Then, this

immensely enhanced effect could be employed to increase the sensitivity of devices

that work based on the Doppler effect.
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Chapter 3

Generation of Caustics and Rogue

Waves from Nonlinear Instability

This chapter is based on the following paper [62]:

A. Safari, R. Fickler, M. J. Padgett and R. W. Boyd, Phys. Rev. Lett. 119,

203901 (2017). DOI:10.1103/PhysRevLett.119.203901.

Author contributions: R. W. Boyd and M. J. Padgett conceived the idea. A. Sa-

fari and R. Fickler conducted the experiment. A. Safari performed the simulation

with substantial help from R. Fickler and M. J. Padgett. A. Safari analyzed the

data and wrote the manuscript. All authors discussed the results and commented

on the manuscript. R. W. Boyd supervised all aspects the project.

3.1 Abstract

Caustics are phenomena in which nature concentrates the energy of waves and

may exhibit rogue-type behaviour. Although they are known mostly in optics,

caustics are intrinsic to all wave phenomena. As we demonstrate in this chapter,

the formation of caustics and consequently rogue events in linear systems requires

strong phase fluctuations. We show that nonlinear phase shifts can generate sharp
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caustics from even small fluctuations. Moreover, in that the wave amplitude in-

creases dramatically in caustics, nonlinearity is usually inevitable. We performed

an experiment in an optical system with Kerr nonlinearity and simulated the re-

sults based on the nonlinear Schrödinger equation and achieved perfect agreement.

As the same theoretical framework is used to describe other wave systems such

as large-scale water waves, our results may also aid the understanding of ocean

phenomena.

3.2 Introduction

Caustics can be defined as the envelope of a family of rays that define the flow of

energy [63]. The energy of a wave field increases significantly on caustics compared

to the adjacent space. When a wave acquires random phase fluctuations with cor-

relation length larger than the wavelength of the wave, random caustics are formed

upon linear propagation. Such random caustics are related to the phenomenon of

branched flow observed in electron gases [64] and in microwaves [65]. A familiar

example of random optical caustics is the bright pattern appearing on the bottom

of a swimming pool on a sunny day. Moreover, caustics are also found in large-scale

wave systems such as oceans. It has been shown that a large underwater island

can act as a lens and focus the energy of tsunami waves into caustics [66]. Sub-

sequently, recent studies show that a small uncertainty in the profile of an ocean

floor can change the caustic pattern and lead to an unexpectedly large variation in

the wave height of tsunamis [67].

Although caustics can develop from Gaussian fluctuations, they have non-

Gaussian statistics with a very long tail, meaning that waves with extremely large

amplitudes appear more often than predicted from a normal distribution. The

long-tailed distribution is an indication of rogue-type waves, initially studied in the
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context of giant waves in oceans [68]. Rogue-type events are observed in various

systems including optics [69, 9, 70, 71]. The formation of rogue events in (1D+1)

waves (one spatial dimension plus time) has been extensively studied. Nonlinear-

ity, namely modulational instability, is commonly used to explain how rogue waves

develop in these (1D+1) systems such as unidirectional water waves and optical

fibers. However, the dynamics of waves is richer in higher spatial dimensions where

rogue waves can form from spatial focusing of waves (due to different propagation

directions) without the aid of nonlinearity. In fact, numerous studies have shown

that concentration of waves in caustics is a linear mechanism that can generate

rogue waves in oceans [72, 73, 74, 75] and also in optics [76]. However, the role

of nonlinearity in the formation of rogue waves is still under debate. In optical

systems, nonlinearity can either trigger [77] or destroy [78] rogue events. Similarly,

recent studies explain oceanic rogue waves without modulational instability [79] or

any type of nonlinearity [80].

In this chapter, we investigate the effect of nonlinearity on the formation of op-

tical caustics in (2D+1), where light propagates in two transverse directions plus

one longitudinal direction along the beam axis, z. This effect has been studied

previously in the context of nonlinear wave-current interactions in oceans [75, 81],

and it has been stated that nonlinearity may wash out caustics and decreases the

amplitude of extreme waves by destroying the phase coherence [68]. However, to

our knowledge, the effect of nonlinear instability on the formation of caustics is not

well examined. We show that in contrast to linear propagation where relatively

large fluctuations are required [76], even small phase fluctuations can generate

sharp caustics with the aid of nonlinear instability in the spatial propagation. Our

experiment shows that while rogue waves can form in linear systems, nonlinear-

ity facilitates the formation of rogue waves by removing the requirement of large

fluctuations in the system.
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3.3 Experiment

We first study caustic formation for the case of linear propagation through free

space. In order to generate optical caustics in the laboratory, we use collimated

continuous wave (cw) laser light with a beam waist of w0 	 1mm, and modulate

its phase front with a smooth random phase mask. We implement this random

phase modulation by forming a computer-generated hologram on a spatial light

modulator (SLM) to create a phase mask. The hologram is blazed to maximize the

efficiency of the first diffracted order, which is separated from the other orders by

use of an aperture. The random phase across the mask has a Gaussian distribution

with correlation length δ = 150 μm and an amplitude Δ that can vary up to 16π

(Fig. 3.1). An imaging system is used to image the SLM plane and expand the

beam by a factor of two. Upon propagation in free space, an intensity pattern is

formed that is imaged onto a CCD camera (640×640 pixels and 8-bit depth) with

another imaging system. The recorded structure of the pattern depends on the

random phase mask displayed on the SLM. The amplitude of the imprinted phase

determines the strength of the intensity maxima in the caustics and the distance l

at which the sharpest pattern is formed. The degree of sharpness can be quantified

by the scintillation index defined by [82, 83]

β2 =
〈I2〉 − 〈I〉2

〈I〉2 , (3.1)

where 〈...〉 indicates the spatial average over the transverse plane. Speckle patterns

that obey Gaussian statistics, for example, have a scintillation index of unity.

A scintillation index above unity indicates the strength of concentration of light

with respect to the adjacent space. Thus, the sharper the caustic, the higher

the scintillation index. For our system, we found out that when Δ is greater
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than 6π, the scintillation index goes above unity after 7.5 cm (the length of our

nonlinear medium employed later) of propagation in linear space. Therefore, we

take this value as the caustic threshold in our experiment. One should note that

this threshold is not universal and depends on parameters such as the wavelength

and the correlation length, δ.

Figure 3.2(a), (b) and (c) show the sharpest patterns formed from three differ-

ent phase masks with amplitudes Δ = 2π, 8π and 16π, after propagation distances

of l = 27.5 cm, 10.5 cm and 7.5 cm, respectively. This figure clearly shows that

a sharp caustic is formed only if the phase variations are large. When the phase

variations are small compared to the caustic threshold, 6π, the power of the caus-

tic focus is weak, the pattern is blurred and is formed at a longer distance. To

verify that this observation holds in general and not only for the patterns shown,

we generated a set of 1000 uncorrelated phase masks for each amplitude Δ, and

evaluated the statistical distribution of intensities in the final patterns. Since the

Gaussian transverse profile of the laser beam is superimposed on the patterns, one

does not obtain an unbiased intensity distribution within each pattern. Therefore,

we considered the intensities of pixels along a circular annulus centred on the beam

axis. As shown in Fig. 3.2(d) (blue circles) when the phase modulation is weak

(Δ = 2π) the statistical distribution closely follows an exponential decay. However,

as mentioned earlier, caustic patterns have heavy-tailed statistics [84, 85]. This is

confirmed in our measurements, Fig. 3.2(d); as the phase variations get stronger,

so do the intensity fluctuations and the statistics become non-Gaussian. Note that

the histograms in Fig. 3.2(d) are plotted in logarithmic scales and the intensities

are normalized to the average intensity in each histogram. Thus, strong phase

fluctuations can generate rogue events with intensities up to 45 times larger than

the average intensity.

In order to quantify the heavy-tailed behaviour we have used a least-square
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Figure 3.1: Scheme of the experimental setup. The spatial light
modulator (SLM) imprints a random phase mask (upper-left inset)
onto the transverse profile of a cw laser beam. The first imaging
system images the SLM onto the plane shown by the dashed line
(SLM plane). At this point the transverse intensity distribution
of the beam follows the Gaussian profile of the input laser. An
intensity pattern develops upon propagation. The distance l, after
which the sharpest pattern is formed depends on the amplitude Δ
of the phase modulation. Another imaging system is used to image
the pattern plane (dotted line) onto the CCD camera. The upper-
right inset shows an example pattern generated from Δ = 8π. To
study nonlinear propagation, the Rb cell is placed in the end of the

propagation before the pattern plane.
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Figure 3.2: Generation of caustics upon linear propagation. a, b,
c) Examples of patterns formed after propagation in free space from
different phase masks with amplitudes Δ = 2π, 8π and 16π, re-
spectively. We see that sharp caustics are formed only under strong
phase modulation. d) Intensity distributions for the patterns gener-
ated upon propagation through free space from three different phase
amplitudes Δ. The C-parameter from the fit function characterizes
the heavy-tailed behaviour; the lower the C-parameter, the longer
the tail of the distribution. Thus, sharp caustics are distinguished

by their heavy-tailed statistics.

method to fit the distribution with a stretched exponential function A exp
(−BIC

)
,

where A, B and C are the fitting parameters and I is the normalized intensity [77].

We are interested primarily in the C-parameter as it indicates the curvature of the

function and quantifies the heavy-tailed behaviour. In speckle patterns generated

from random scatterer, the intensity obeys negative exponential statistics, and thus

C = 1. As C becomes smaller, the tail of the distribution gets longer. The solid

lines in Fig 3.2(d) show the fit functions with the indicated C-parameters. As

expected, the patterns generated from strong phase modulations (Δ = 16π) have

the lowest C-parameters, and thus the strongest rogue-type statistics.
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To investigate the effect of nonlinearity on the formation of caustics we use

rubidium (Rb) vapour as the nonlinear medium. The motivation for using atomic

vapours as the nonlinear medium is that they can be saturated easily and thus

show large nonlinearity that can be controlled simply through the laser frequency

detuning. The Rb cell is 7.5 cm long and is filled with natural Rb: 85Rb and

87Rb with abundances of 72% and 28%, respectively. The Rb cell is heated to

115 ◦C. The cw laser with the wavelength of ∼ 780.2 nm and the linewidth of

less than 1 MHz is blue detuned by 840 MHz from the 52S1/2, F = 3 → 52P3/2,

F = 4 transition in 85Rb. The cell is placed in the setup (Fig. 3.1) such that the

last 7.5 cm of propagation before the caustic pattern is formed in the linear case

is now taking place within Rb. The camera images the output of the cell. The

laser power at the entrance of the cell is approximately 140 mW. Real (Re) and

imaginary (Im) parts of the total susceptibility are calculated from our theoretical

model based on Ref. [26]. Doppler broadening is implemented by calculating the

convolution of the power broadened lineshape with the Gaussian distribution of

the atomic velocities [28]. An effective saturation intensity is incorporated to take

into account the effect of optical pumping [86]. As shown in Fig. 3.3(a), Re χ and

consequently the refractive index n 	 1+Re χ/2 increases with intensity. Thus,

self-focusing is expected at this frequency detuning. The maximum nonlinear phase

shift experienced by the laser light in passing through the Rb cell is approximately

4π radians. Im χ and therefore absorption decreases with intensity, indicating

saturation of absorption.

For direct demonstration of the effect of nonlinearity, we employed the same

sequence of phase masks as for the study of linear propagation. A comparison of

the resulting patterns after nonlinear propagation (Fig 3.3) with those of Fig. 3.2

for linear propagation indicates that nonlinear instability in spatial propagation

enhances the sharpness of the patterns without changing their overall structure.
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This enhancement is more profound when the linear caustic is weak, i.e. when

the phase modulation is not strong enough to form sharp caustics upon linear

propagation. In the presence of nonlinearity, all patterns have approximately the

same maximum intensity which is about 25% of the maximum intensity of the linear

case. Although this decrease in intensity, which is due to linear absorption, reduces

the strength of nonlinearity, it does not play a central role in our results. Moreover,

absorption can be neglected when the laser frequency is far from resonance and a

longer nonlinear medium is used [87].

The statistical distribution of intensities after nonlinear propagation (Fig. 3.3(e))

confirms that when the phase modulation is weak (Δ = 2π) nonlinearity changes

the distribution substantially. Conversely, the effect of nonlinearity on the statis-

tics is negligible for Δ = 16π. This is in contrast to the conclusions reached in

Ref. [78] where the heavy-tailed distribution is found to be suppressed by nonlinear

propagation. Moreover, the statistics in Fig. 3.3(e) indicate that, under nonlinear

propagation condition, the smallest phase modulation generates the largest rogue

events; up to 75 time larger than the average intensity. Note that the intensities

in Fig. 3.3(e) are normalized to the average intensity in each histogram.
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Figure 3.3: Generation of caustics upon nonlinear propagation. a)
Real and imaginary parts of the total susceptibility of Rb vapour.
Re χ and thus the refractive index increases with intensity, indicat-
ing nonlinear focusing. b, c, d) Caustic patterns generated from the
same phase masks as in Fig. 3.2, but after the nonlinear propaga-
tion in Rb. In contrast to the linear case shown in Fig. 3.2, even
small phase modulations, with the aid of nonlinear focusing, can
concentrate light into sharp caustics. e) Intensity distributions of
the nonlinear caustic patterns generated from three different phase

amplitudes Δ.
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3.4 Simulation

For further investigations and to test the role of Kerr nonlinearity on the formation

of nonlinear caustics, we simulated the results of our experiment numerically using

a beam propagation method based on the use of the fast Fourier transform. Similar

to the propagation of waves in fluids, the propagation of the laser field through Rb

vapour is described by the nonlinear Schrödinger equation (NLSE)

∂E
∂z

− i

2k
∇2

⊥E =
ik

2ε0
P, (3.2)

where E is the field amplitude defined by E = Eei(kz−ωt)+c.c. and ∇2
⊥ = ∂2/∂x2 +

∂2/∂y2 is the transverse Laplacian. For a purely third-order nonlinear medium

the atomic polarization is given by P = 3ε0χ
(3)|E|2E . However, to include higher

order effects, we use the more general form P = ε0χ(E)E . The total susceptibility,

χ(E), is taken from our Rb numerical model, as shown in Fig. 3.3(a), without

any adjustable parameters. The split-step method [88] was used to implement

nonlinearity in the simulation. To be able to compare the results directly with the

experimental patterns, we used the same random phase masks as in the experiment.

All simulation results for both linear and nonlinear cases are in extremely good

agreement with the experiment (example patterns from the simulation are shown

in Fig. 3.4). This excellent matching of the results confirms that Kerr-saturated

nonlinearity is the mechanism behind the generation of caustics from small phase

fluctuations.

Since experimental imaging techniques are not compatible with nonlinear prop-

agation, we cannot use imaging to determine the patterns within the Rb cell.

However, our numerical simulation reproduces the experimental results accurately.

We are thus confident in using our numerical method to study the patterns within
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Figure 3.4: Intensity patterns and scintillation indices from com-
puter simulation. a, b, c) Patterns obtained from the numerical
simulation, which show excellent agreement with the experimental
results shown in Figs. 3.2 and 3.3. d) Scintillation indices, β2, aver-
aged over 1000 patterns, calculated from our numerical simulation,
as a function of the propagation distance from the entrance of the Rb
cell up to 100 mm after the cell where partial speckles are formed.
The grey area indicates the 7.5-cm-long Rb cell for the nonlinear
cases and the shaded regions show one standard deviation from the
mean. The nonlinear patterns have larger scintillation indices com-
pared to the corresponding linear cases. A scintillation index greater

than unity indicates the presence of sharp caustics.
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the nonlinear medium. We use the scintillation index (Eq. 3.1) to characterize the

sharpness of the caustics. Fig. 3.4(d) shows how the scintillation indices vary in

linear and nonlinear propagation from the entrance of the Rb cell up to 100 mm

after the cell, where partial speckles are formed. Inside the Rb cell, the nonlinear

focusing exceeds diffraction and thus accentuates the caustic focusing. Therefore,

the scintillation index tends to be large and to increase with propagation distance.

After the cell, the scintillation index drops very quickly as the result of diffraction.

3.5 Conclusion

In conclusion, linear caustics and nonlinear instability are known to be responsible

for focusing the energy of waves and for generating rogue-type events in various sys-

tems. Here, we experimentally and numerically investigated wave dynamics in the

presence of both mechanisms. Our results show that the formation of caustics in

Kerr media requires significantly smaller fluctuations compared to linear propaga-

tion. Thus, nonlinear instability in spatial propagation amplifies even small phase

fluctuations and generates rogue-type waves with very large amplitudes. Therefore,

although nonlinearity is not essential for generation of rogue waves, it enhances the

strength of the rogue waves with respect to the average intensity and mitigates the

requirement of large fluctuations in the medium. Our experiment was performed

in a nonlinear optical system, and the NLSE was used to simulate the dynamics.

Importantly, the NLSE also describes the nonlinear wave propagation in different

physical systems, such as fluids [89] and Bose-Einstein condensates [90], both of

which exhibit caustics as well [91]. Therefore, the nonlinear generation and en-

hancement of caustics and rogue-type events, which we observed, are not limited

to optics and might also be realized in other physical systems.
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Chapter 4

Exotic Looped Trajectories of

Photons in Three-Slit Interference

This chapter is based on the following paper [92]:

O. S. Magaña-Loaiza, I. De Leon, M. Mirhosseini, R. Fickler, A. Safari, U.

Mick, B. McIntyre, P. Banzer, B. Rodenburg, G. Leuchs and R. W. Boyd, Nature

Communication 7, 13987 (2016). DOI:10.1038/ncomms13987.
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was developed by B.R. and M.M. The experiment was performed by O.S.M.-L.,
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The data was analyzed by O.S.M.-L. and I.D.L. with help from B.R. and M.M.

The project was supervised by G.L. and R.W.B. All authors contributed to the

discussion of the results and to the writing of the manuscript.
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4.1 Abstract

The validity of the superposition principle and of Born’s rule are well-accepted ten-

ants of quantum mechanics. Surprisingly, it has been predicted that the intensity

pattern formed in a three-slit experiment is seemingly in contradiction with the

most conventional form of the superposition principle when exotic looped trajec-

tories are taken into account. However, the probability of observing such paths is

typically very small, thus rendering them extremely difficult to measure. Here we

confirm the validity of Born’s rule and present the first experimental observation

of exotic trajectories as additional paths for the light by directly measuring their

contribution to the formation of optical interference fringes. We accomplish this

by enhancing the electromagnetic near-fields in the vicinity of the slits through the

excitation of surface plasmons. This process increases the probability of occurrence

of these exotic trajectories, demonstrating that they are related to the near-field

component of the photon’s wavefunction.

4.2 Introduction

The phenomenon of interference has been recognized as “the only mystery” of quan-

tum mechanics [93]. The enormous interest and history of this fundamental effect

can be traced back to the two-slit experiment devised by Thomas Young in the

early 19th century. Young’s experiment is conceptually the simplest method for

demonstrating the superposition principle, as the appearance of interference fringes

in the far-field is unexplainable unless it is understood that the particle seemingly

travels through both slits simultaneously. Such an experiment, originally performed

with light, has since been conducted on particles ranging from individual photons,

neutrons, and atoms, to large molecules consisting of dozens of atoms [94]. As
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the superposition principle lies at the core of quantum physics, many of its coun-

terintuitive features such as entanglement, non-locality, wave-particle duality, and

delayed-choice concepts can be demonstrated or tested using a two-slit system [95,

96, 97, 98, 99, 100, 101, 102].

The standard interpretation of the two-slit experiment is given by solving the

wave equation for an initially prepared complex wavefunction, ψ. For example,

if ψA represents the wavefunction at the detector for a photon emerging from

slit A, and ψB is the wavefunction for a photon emerging from slit B, then the

implementation of the superposition principle is to assume that the wavefunction

is a superposition of the different paths given by ψAB = ψA + ψB. The probability

of detection is given by Born’s rule as

PAB ≡ |ψAB|2 = PA + PB + (ψ∗
AψB + ψAψ

∗
B) , (4.1)

where PA = |ψA|2 and PB = |ψB|2. From this equation it is clear that the outcome

of the two-slit experiment is given by the sum of outcomes from each slit alone,

plus an additional interference term.

Due to the inherent structure of any wave theory, Born’s rule always bounds the

complexity of any effect involving superpositions of an arbitrary number of wave-

functions to a sum of terms denoting the interference between pairs of wavefunc-

tions [103]. For instance, in accordance with Born’s rule, the interference pattern

obtained in a three-slit experiment can be described by the following probabilities

PABC = PAB + PBC + PAC − PA − PB − PC. (4.2)

Note that this expression does not include a probability term that involves three

slits, but is entirely described by probabilities involving only one and two slits. Any
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possible contribution from higher-order interference terms (i.e., a path involving the

three slits) has been quantified by the so-called Sorkin parameter [103, 104]

ε = PABC − PAB − PBC − PAC + PA + PB + PC, (4.3)

which should be identically zero if only the direct paths through the three in-

dividual slits are considered. Sinha et al. [104] showed that ε can be evaluated

experimentally by making a set of measurements for each term in Eq. (4.3).

Although it might appear that the measurement of a non-zero ε implies a clear

violation of quantum mechanics [104], De Raedt et al. demonstrated by numeri-

cally solving Maxwell’s equations that a non-zero value of ε can exist without such

violation [105]. Later it was found that this result is a consequence of the pres-

ence of exotic looped trajectories of light (e.g. red curve in Fig. 4.1a) that arise

in the Feynman path integral formulation with extremely low probability of occur-

rence [106]. This interpretation was subsequently shown to agree with the exact

numerical solution of the wave equation [107].

In this work we demonstrate that looped trajectories of photons are physically

due to the near-field component of the wavefunction, which leads to an interaction

among the three slits. As such, it is possible to increase the probability of occur-

rence of these trajectories by controlling the strength and spatial distribution of the

electromagnetic near-fields around the slits. By a proper control of the conditions

in a three-slit experiment, we successfully demonstrate a dramatic increase of the

probability of photons to follow looped trajectories, and present the first successful

measurement of a non-zero value of ε.
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Figure 4.1: Trajectories of light in a three-slit interferometer. a)
The three-slit structure considered in this study. The red path go-
ing from point s to point d illustrates a possible looped trajectory of
light. b) Direct trajectories of light resulting from considering only
the first term in Eq. (4.8). c) Examples of exotic looped trajectories
arising from the higher order terms in Eq. (4.8). The red cloud in
the vicinity of the slits depicts the near-field distribution, which in-
creases the probability of photons to follow looped trajectories. d)
Normalized Poynting vector P in the vicinity of the three slits ob-
tained through full wave simulations at a wavelength λ = 810 nm,
using a slit width w equals to 200 nm, slit separation p = 4.6 μm,
sample thickness t = 110 nm, and assuming infinite height, h = ∞.
The simulations consider a Gaussian beam excitation polarized along
x, and focused onto slit A. The Poynting vector clearly exhibits a
looped trajectory such as the solid path in (c). e) Far-field interfer-
ence patterns calculated under x-polarized (solid) and y-polarized
(dashed) optical excitation. Interference fringes are formed in the
far field only when strong near fields are excited (x-polarization). f)
Experimental evidence that shows the far-field pattern for a situa-
tion in which only one slit is illuminated with y-polarized heralded
single-photons. g) The presence of exotic looped trajectories leads
to an increase in the visibility of the far-field pattern. This effect is
observed when x-polarized light illuminates one of the slits. h, The

transverse profile of the patterns shown in (f) and (g).
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4.3 Theory

4.3.1 Origin of the looped trajectories of photons

Under the scalar wave approximation, the propagation of light is described by the

Helmholtz equation (∇2 + k2
)
ψ(r) = 0, (4.4)

subject to the boundary conditions specifying the physical setup. This equation

can be solved by computing the propagation from any point r1 to any other point

r2 via the Green’s function kernel, which according to Rayleigh-Sommerfeld theory

is given by

K(r1, r2) =
k

2πi

eik |r1−r2|

|r1 − r2| χ, (4.5)

where χ is an obliquity factor [108]. This equation satisfies Eq. (4.4) and the

Fresnel-Huygens principle in the form of the following propagator relation

K(r1, r3) =

∫
dr2K(r1, r2)K(r2, r3). (4.6)

If one repeatedly applies Eq. (4.6), the path-integral formulation of the propagation

kernel is obtained in the form [109]

K(r1, r2) =

∫
D[x(s)] exp

(
ik

∫
ds

)
, (4.7)

where
∫ D[x(s)] is the functional integration over paths x(s). The boundary condi-

tions can be included by restricting the possible paths x(s). If one is concerned only

with diffraction from slits in a single plane, then Eq. (4.7) can be perturbatively

expanded as [106]

K = K1 +K2 +K3 + · · · , (4.8)
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where Kn represents the nth application of Eq. (4.6) and each integration is carried

over the plane containing the slits.

Solving the wave equation taking K = K1 is equivalent to considering only

direct paths, such as the paths in Fig. 4.1b. These paths propagate from the

source and through one of the slits to the detector. We call these wavefunctions

ψA, ψB and ψC. The higher-order terms in Eq. (4.8) are responsible for the looped

trajectories of photons that propagate from the source to a slit, and to at least

one other slit before propagating to the detector (see Fig. 4.1c). It follows that the

wavefunction of a photon passing through the three slits is given by

ψABC = ψA + ψB + ψC + ψL, (4.9)

where ψL represents the contribution of the looped trajectories to the wavefunction

ψABC. Note that in general ε, as defined by Eq. (4.3), is not zero because of the

existence of these looped trajectories. Thus, the presence of looped paths leads to

an apparent deviation of the superposition principle [106].

4.3.2 Occurrence of looped trajectories of photons

The conclusion that ψABC is not simply the superposition of the wavefunctions

ψA, ψB, and ψC is a consequence of the actual boundary conditions in a three-slit

structure. Changing the boundary conditions affects the near-field components

around the slits, but it typically does not affect the far-field distribution because

of the short range extension of the near fields [110]. As shown below, the looped

trajectories of photons are physically due to the near-field components of the wave-

function. Therefore, by controlling the strengths and the spatial distributions of

the near-fields around the slits, it is possible to drastically increase the probabil-

ity of photons to undergo looped trajectories, thereby allowing a straightforward
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visualization of their effect in the far-field interference pattern. To demonstrate

this phenomenon, a three-slit structure was designed such that it supports surface

plasmons, which are strongly confined electromagnetic fields that can exist at the

surface of metals [10, 111]. The existence of these surface waves results in near

fields that extend over the entire region covering the three slits [112, 98], thereby

increasing the probability of looped trajectories.

As a concrete example, we consider the situations depicted in Fig. 4.1d and

4.1e. First, we assume a situation in which the incident optical field is a Gaussian

beam polarized along the long axis of the slit (y polarization) and focused to a

400-nm spot size onto the left-most slit. For this polarization, surface plasmons

are not appreciably excited and the resulting far-field distribution is the typical

envelope, with no fringes, indicated by the dashed curve in Fig. 4.1e. This intensity

distribution is described by the quantity |ψA|2. The presented results were obtained

through a full-wave numerical analysis based on the finite-difference-time-domain

(FDTD) method, on a structure with dimensions w = 200 nm, p = 4.6 μm, and

t = 110 nm and at a wavelength λ = 810 nm (see section 4.5). The height of the

slit, h, was assumed to be infinite. Interestingly, the situation is very different when

the incident optical field is polarized along the x direction. The Poynting vector

for this situation is shown in Fig. 4.1d. This result shows that the Poynting vector

predominantly follows a looped trajectory such as that schematically represented

by the solid path in Fig. 4.1c. The resulting far-field interference pattern, shown

as the solid curve in Fig. 4.1e, is an example of the interference between a straight

trajectory and a looped trajectory. Thus, it is clear that the naive formulation of

the superposition principle does not provide an accurate description for the case

where near fields are strongly excited.
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4.4 Experimental implementation

First, we experimentally verify the role that looped trajectories have in the forma-

tion of interference fringes. For this purpose we exclusively illuminate one of the

three slits. This experiment is carried out in the setup shown in Fig. 4.2a. As shown

in Fig. 4.1f, no interference fringes are formed when heralded single-photons illu-

minating the slit are y-polarized. Remarkably, when the illuminating photons are

polarized along the x direction the visibility of the far-field pattern is dramatically

increased, see Fig. 4.1g and h. This effect unveils the presence of looped trajecto-

ries. In our experiment, the contributions from looped trajectories are quantified

through the Sorkin parameter by measuring the terms in Eq. (4.3). To this end, we

measured the interference patterns resulting from the seven arrangements of slits

depicted in Fig. 4.2b, thus the illumination field fills each arrangement of slits. In

our experiment we use heralded single-photons with wavelength of 810 nm produced

via degenerate parametric down-conversion (see section 4.5). The single photons

were weakly focused onto the sample, and the transmitted photons were collected

and collimated by an infinity-corrected microscope objective (see Fig. 4.2c). The

resulting interference pattern was magnified using a telescope and recorded using

an intensified charge-coupled device (ICCD) camera, which was triggered by the

detection event of the heralding photon [113]. The strength of the near fields in

the vicinity of the slits was controlled by either exciting or not exciting surface

plasmons on the structure through proper polarization selection of the incident

photons.

The scanning electron microscope images of the fabricated slits are shown in

the first row of Fig. 4.3. The dimensions of the slits are the same as those used

for the simulation in Fig. 4.1, with h = 100 μm being much larger than the beam

spot size (∼ 15 μm). The interference patterns obtained when the contribution



PhD Thesis - Akbar Safari 57

b

c

ABC

AB

AC

BC

C

B

A

SMF 

Lens 

Polarizer 

HWP 

Mirror 

ICCD camera 

Sample Objective 

Glass
Au 
Oil 

Objective 

Laser

Thermally
controlled
ppKTP crystal

Mirror 

Dichroic
Mirror 

Beam
splitter

Fiber
delay

Trigger
signal

APD

a

Figure 4.2: Experimental setup utilized to measure exotic trajec-
tories of light. a) Sketch of the experimental setup used to measure
the far-field interference patterns for the various slit configurations.
b) The seven different slit arrangements used in our study. This
drawing is not to scale; in the actual experiment each slit structure
was well separated from its neighbours to avoid undesired cross talk.
c) Detail of the structure mounted on the setup. The refractive in-
dex of the immersion oil matches that of the glass substrate creating

a symmetric index environment around the gold film.
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from near-field effects is negligible (y polarization) are shown in the second row,

while those obtained in the presence of a strong near fields in the vicinity of the

slits (x polarization) are shown in the third row. These interference patterns are

obtained by adding 60 background-subtracted frames, each of which is captured

within a coincidence window of 7 nsec over an exposure time of 160 sec (see insets

in Fig. 4.3). Only the pattern for PAB is shown in Fig. 4.3 because PAB and PBC

produce nearly identical patterns in the far field, a similar situation occurs for

PA, PB and PC. The bottom panels show detail views of the interference patterns

measured along an horizontal line.

Note that the intensities of the interference patterns (i.e., the probability ampli-

tudes) for the two polarizations scale differently for each arrangement of slits. This

is shown by the ratios of the position-averaged probabilities, Px/Py, indicated at

the bottom of Fig. 4.3. The significant changes in the probabilities obtained with

x-polarized photons ultimately lead to a value of ε that significantly deviate from

zero. This interesting effect is produced by constructive and destructive interfer-

ence among looped trajectories, whose probability has been increased through the

enhancement of the near fields.
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Figure 4.3: Experimental results. a-d) Measured interference pat-
terns corresponding to the various probability terms in Eq. (4.3)
(indicated as a label within each panel of the bottom). In this case
the illumination field fills each arrangement of slits. The first row
shows scanning electron microscope images of the slits used for the
measurements, the scale bar represents 500 nm. The second and
third panels show, respectively, the background-subtracted interfer-
ence patterns formed when 60 frames, such as those in the insets are
added, for the situations in which the probabilities of looped trajec-
tories are negligible (using y-polarized illumination), and when such
probabilities are increased due to the enhancement of near fields (us-
ing x-polarized illumination). Each of the frames shown in the insets
was taken with an ICCD camera using heralded single-photons as
a source. The bottom show the intensity dependence of the inter-
ference pattern measured along a horizontal line on the second and
third panels. The ratio of the average probabilities obtained using
x-polarized illumination to those obtained using y-polarized illumi-
nation, Px/Py, is shown at the bottom. All the measurements are
conducted at a wavelength λ = 810 nm, and using structures with

dimensions w = 200 nm, h = 100 μm and p = 4.6 μm
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4.5 Methods

4.5.1 Sample design

Full-wave electromagnetic simulations were conducted using a Maxwell’s equation

solver based on the finite difference time domain method (Lumerical FDTD). The

dispersion of the materials composing the structure was taken into account by

using their frequency-dependent permittivities. The permittivity of the gold film

was obtained from Ref. [114], the permittivity of the glass substrate (BK7) was

taken from the manufacturer’s specifications, and the permittivity of the index

matching fluid (Cargille oil Type B 16484) was obtained by extrapolation from the

manufacturer’s specification.

4.5.2 Sample fabrication

The glass substrates are standard BK7 cover slips (SCHOTT multipurpose glass

D 263 T eco Thin Glass) with a thickness of ∼ 170μm, polished on both sides

to optical quality. The substrate was ultrasonically cleaned for 2 hours in 2%

Hellmanex III alkaline concentrate solution and subsequently rinsed and sonicated

in MEK denatured Ethanol and then in demineralized water. The gold films were

evaporated directly onto the clean glass substrates with no additional adhesive

layer using a Plassys MEB 550S e-beam evaporation system. The growth of the

film thickness was monitored in-situ during the evaporation by a water cooled

quartz micro-balance. The slit patterns were structured by Ga ion beam milling

using a Tescan Lyra 3 GMU SEM/FIB system with a canion FIB column from

Orsay Physics. Each slit pattern consisted of 100μm long slits. While fabricating

the different slit sets, proper focusing of the FIB was checked by small test millings
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and if needed the FIB settings were readjusted accordingly to provide a consistent

and reproducible slit quality.

4.5.3 Experimental method

We generate single photons by means of heralding a photon by a “partner” photon

detection from a photon pair source. The photon pairs were created in a spon-

taneous parametric down conversion process using a 2-mm-long type-I nonlinear

crystal (periodically poled potassium titanyl phosphate (ppKTP)). We pump the

crystal with a blue 405 nm continuous-wave diode laser (∼200 mW), thereby cre-

ating degenerate photon pairs at 810 nm wavelength. Both photons are passed

through a 3 nm band-pass filter, coupled into a single-mode fibre and split by a

50/50-fibre beams splitter, which led to a coincidence count rate of approximately

40 kHz. The heralding photon is detected with a single-photon avalanche photo

diode. Its partner photon is delayed by a 22-m-long fibre, send through the setup

and imaged by an ICCD. The ICCD is operated in the external triggering mode

(7 nsec coincidence gate time), where the heralding detection signal is used as an

external trigger, to ensure that only these single photon events are registered [113].

Note that due to the low coincidence count rate there is only one photon at a

time in the experimental setup. For experiments using a weak laser instead of

heralded single photons, the ICCD was operated in the continuous mode, where

the intensifier is permanently switched on.

For the case in which we used single photons, the idler photons are detected by

a single-photon avalanche photo diode (APD) that heralds the detection of signal

photons with an ICCD. We used either y- or x-polarized light which is selected

by means of a polarizer and half-wave plate. The beam is weakly focused onto

the arrangement of slits that is mounted on a motorized three-axis translation
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stage that can be displaced in small increments of 60 nm. An infinity-corrected oil-

immersion microscope objective (NA=1.4, magnification of 60×, working distance

of 100μm) was used to collect the light emerging from the slit patterns. The light

collected by the objective was then magnified with a telescope and measured by

an ICCD camera.

4.5.4 Data analysis

The background subtracted interference patterns were used to determine the mag-

nitudes of κ shown in Fig. 4.4. In Fig. 4.4a, we show the values of κ, obtained in

the single photon regime, for different positions of the detector. The deviation from

the theory and the magnitude of the error bars are larger at the edges of the κ pro-

file because the signal is low at the edges of the interference patters, which results

in a noisier signal. On the other hand, the central maximum of the interference

patterns permits a more reliable characterization of κ. The values of κ obtained for

classical light as a function of the wavelength, shown in Fig. 4.4b and 4.4c, were

calculated using central maximum of the interference patterns. For these cases, we

used only the regions of central fringe having intensities within 70% of the peak

value. The data was then used to obtain the mean value and standard deviations

for κ.

4.6 Results and discussion

We quantify the contribution from the looped trajectories through the normalized

Sorkin parameter, defined as κ ≡ ε/Imax with Imax being the intensity at the

central maximum of the three-slit interference pattern [106]. Both theoretical and

experimental values of this parameter are shown in Fig. 4.4a. The theoretical values

were obtained via FDTD simulations, while the experimental values were calculated
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Figure 4.4: Quantifying the contribution of looped trajectories
through the normalized Sorkin parameter, κ. a) shows numerical
and experimental results, for a sample with w = 200 nm, h = 100
μm and p = 4.6 μm and an illuminating field consisting of heralded
single-photons at a wavelength of 810 nm. The experimental points
are obtained by measuring κ at different peaks of the interference
patterns shown in Fig. 3. b) shows theoretical and experimental ev-
idence at the central maximum for different widths and for various
wavelengths for an attenuated laser diode, in this case the contribu-
tions from looped paths makes the κ different from zero. c) shows a
situation in which looped trajectories are not enhanced and conse-
quently κ is almost zero. These results confirm that the strengths of
looped trajectories can be controlled by engineering the size of the
slits and the wavelength of the illuminating field. These values of κ
were measured at the centre of the interference pattern. The error
bars represent the standard deviation over the ensemble of measure-
ments. The labels x and y indicate the polarization state of the

incident light.

from the results in Fig. 4.3. Clearly, we observe that when the near fields are not

enhanced, the parameter κ is much smaller than the uncertainty associated with

our measurements. However, when the near fields are enhanced, κ is dramatically

increased due to the increased probability for the looped trajectories [106], enabling

the measurement of this parameter despite experimental uncertainties. Taking as

a reference the central maximum of the κ profile, the experimental results indicate

that the contribution of looped trajectories has been increased by almost two orders

of magnitude.
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Finally, we show that it is possible to control the probability of photons un-

dergoing looped trajectories by modifying the dimensions of the three slit struc-

ture or by changing the wavelength of the optical excitation. Fig. 4.4b and 4.4c

show theoretical predictions and experimental data at the central maximum for

different slit parameters and wavelengths. These measurements were taken with

classical light from a tunable diode laser. Fig. 4.4b shows the normalized Sorkin

parameter for a situation in which looped trajectories significantly contribute to

the formation of interference fringes, whereas Fig. 4.4c shows the same parameter

for a situation in which near-field effects, and consequently looped trajectories, are

negligible. In general, we note that the theoretical and experimental results are in

good agreement, with the observed discrepancies being attributed to experimental

uncertainties due to imperfections in the fabricated sample and due to the limited

dynamic range of the camera.

4.7 Conclusion

We have demonstrated that exotic looped paths occur as a physical consequence

of the near-field component of the wave equation. As such, it is possible to control

the probability of occurrence of such paths by controlling the strength and spatial

distribution of the near-fields around the slits. By doing so, we have shown a

drastic increase in the probability of photons to follow looped paths, leading to

the first experimental observation of such exotic trajectories in the formation of

interference fringes. Our work elucidates new properties of light that could be used

to enrich protocols that rely on interference effects such as quantum random walks

and quantum simulators [95, 115].
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Chapter 5

Measurement of the

Photon-Plasmon Coupling Phase

Shift

This chapter is based on the following paper:

A. Safari, R. Fickler, E. Giese, O. Magaña-Loaiza, R. W. Boyd and I. De Leon

(Accepted in Physical Review Letters).
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data and I. De Leon performed the numerical simulation. The theoretical model

was developed by E. Giese and A. Safari. A. Safari wrote the manuscript with help

from E. Giese. All authors discussed the results and commented on the manuscript.

R. W. Boyd and I. De Leon supervised all aspects of the project.
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5.1 Abstract

Scattering processes have played a crucial role in the development of quantum

theory. In the field of optics, scattering phase shifts have been utilized to un-

veil interesting forms of light-matter interactions. Here we investigate the phase

shift experienced by a single photon as it scatters into a surface plasmon polariton

and vice versa. This coupling phase shift is of particular relevance for quantum

plasmonic experiments. Therefore, we demonstrate that the photon-plasmon inter-

action at a plasmonic slit can be modeled through a quantum-mechanical tritter,

a six-port scattering element. We show that the visibilities of a double-slit and a

triple-slit interference patterns are convenient observables to characterize the in-

teraction at a slit and determine the coupling phase. Our accurate and simple

model of the interaction, validated by simulations and experiments, has impor-

tant implications not only for quantum plasmonic interference effects, but is also

advantageous to classical applications.

5.2 Introduction

Light can couple to collective charge oscillations at the interface between a metal

and a dielectric, forming surface electromagnetic waves that propagate along the in-

terface [10]. Such surface waves, referred to as surface plasmon-polaritons (SPPs),

exhibit remarkable properties that make them suitable for a variety of applica-

tions [116, 117, 118, 119, 120]. Since SPPs show intriguing non-classical effects,

there is growing interest in the application of SPPs in quantum systems [121].

Since SPPs preserve both entanglement and photon number statistics [122, 123,

124], they constitute an alternative for on-chip quantum circuitry. Although SPPs

are formed from photons (bosons) and electrons (fermions), they exhibit a bosonic
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behavior in the limit of many electrons [125]. Therefore, two indistinguishable SPPs

interfering at a plasmonic beam splitter can bunch and show the Hong-Ou-Mandel

(HOM) effect [126, 127]. In contrast to their all-optical counterpart, plasmonic

beam splitters are lossy. However, these intrinsic losses can be beneficially used to

e.g. adjust the phase shift imprinted by a plasmonic beam splitter such that the

two SPPs antibunch [128], in contrast to the conventional HOM bunching.

Similar to a scattering process, the electromagnetic field experiences a phase

jump during coupling to SPPs. Determining this coupling phase and character-

izing the complex photon-plasmon coupling amplitude is of great importance in

designing experiments that contain quantum features. In fact, this coupling phase,

also known as the scattering phase shift, is intrinsic to any scattering phenomena;

a wavepacket scattering off a potential acquires a phase shift, and consequently

a time delay known as the Wigner delay [129, 130, 131]. In plasmonic systems,

this phase has been measured by employing special techniques to image SPPs

directly [132, 133] or using several double-slit structures with different slit separa-

tions [134]. However, some inconsistencies can be seen in the literature; while some

theoretical models predict a constant scattering phase shift [135, 136, 137], numer-

ical simulations and experimental measurements have shown significant deviations

from the predicted phase shift [134, 138, 139, 132, 140].

In this chapter, we show that the visibility of the unique interference pattern of

a plasmonic triple-slit is a convenient observable from which the photon-plasmon

coupling phase jump can be inferred. The advantage of measuring the visibility is

its insensitivity to some experimental errors such as imperfect imaging. However,

in a double-slit experiment, the visibility is independent of the coupling phase as

it only appears as a transverse shift of the interference pattern. Therefore, we

use a combination of double- and triple-slit structures to characterize the complex

photon-plasmon coupling amplitude. As for the quantum mechanical description
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of the structure, we demonstrate that each slit on a plasmonic layer can be modeled

by a tritter, i.e. a device that couples three input to three output modes. Finally,

we verify the accuracy of our analysis by performing a numerical simulation. Such a

simple and accurate model is beneficial for future quantum plasmonic experiments.

5.3 Theory

Multiple-slit experiments lie at the heart of fundamental quantum mechanics. For

example, double-slit experiments play an important role in revealing and under-

standing the wave-particle duality [141]. Triple-slit interference patterns have been

used to test the validity of Born’s rule [142, 143, 144, 145], one of the foundations

of quantum physics. A triple-slit structure on a metallic film reveals that an ad-

ditional coupling of the slits through the SPP modes leads to exotic trajectories

of the pointing vector through the slit configuration and modifies the pattern, still

in agreement with Born’s rule [92]. Moreover, plasmonic slits are used to perform

weak measurements [146] and to control the spatial coherence of light [147, 148,

149, 150]. Therefore, having an accurate and simple model for the coupling process

at plasmonic slits can have important fundamental and practical implications.

In contrast to the two-mode coupling typically observed in recent quantum

plasmonics experiments [126, 127], illuminating a single slit in a metallic surface

can lead to a three-mode interaction, where the light field couples to two SPP

modes, each of them on either side of the slit, or is transmitted through the slit,

see Fig. ?? (a). For a quantum description, we model each slit by a six-port element,

a tritter [151, 152, 153], as a generalization of and in analogy to a beam splitter.

Such elements play a crucial role for many-particle and high-dimensional quantum

communication and computation [154, 155, 156]. In most implementations a tritter

is composed of beam splitters within a complex setup [152] or custom-tailored
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Figure 5.1: Illustration of plasmonic tritters. a) Sketch of a slit
on a gold film that acts as a tritter. The input field couples into two
plasmonic modes each with a complex probability amplitude κin. A
plasmonic mode propagating towards a slit can either reflect back,
tunnel through the slit, or scatter into photons with probability
amplitudes r, τ , and κout, respectively. For clarity, we only show
the coupling of one plasmonic mode. The other mode couples in
a similar manner. b) Schematic diagram of the triple-slit structure
where each slit acts as a tritter. The middle-slit is illuminated with
single photons. The SPPs propagating from the middle-slit towards
the outer slits acquire a factor of eikP d. The distance from slit j to

the screen at the far-field is shown by rj .
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with integrated waveguide structures [157, 154, 155, 156], whereas the three-mode

interaction at a plasmonic slit happens quite naturally.

We introduce the six-port coupling matrix of a tritter to model the plasmonic slit

and denote the input modes through the annihilation operators â, b̂1, and b̂3 of the

light field as well as two SPPs, respectively. We require the annihilation operators

to fulfill the bosonic commutation relations. These operators are connected to the

respective output modes â′, b̂′1, and b̂′3 through the transformation

⎛
⎜⎜⎜⎜⎝
b̂′1

â′

b̂′3

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

τ κin r

κout t κout

r κin τ

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
b̂1

â

b̂3

⎞
⎟⎟⎟⎟⎠ (5.1)

in the Heisenberg picture, see Fig. 5.1 (a). Note that even though the elements

of this matrix may be complex, the matrix itself has to be unitary to preserve

the bosonic commutation relation and by that to conserve energy. We have also

assumed that the coupling of the photon to the two SPP modes is symmetric. We

perform our study at a single-photon level to lay the basis for future experiments

with plasmonic slits in the quantum regime. We emphasize that at a single-photon

level and to observe quantum effects such a description is necessary. However,

since we only measure first moments, the same results could be obtained by using

a classical light source, i.e. a laser.

To investigate the validity of our description and to determine some of the

matrix elements of Eq. (5.1), we use a triple-slit arrangement to make use of all

three output channels. In general, the interference pattern generated by a triple-

slit, which is essentially generated through three-path interference, can be described
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by the relation

I =I1 + I2 + I3 + 2
√

I1I2 cosφ12

+ 2
√

I2I3 cosφ32 + 2
√

I1I3 cosφ13,

(5.2)

where Ij is the intensity of the light emerging from slit j and φij is the phase

difference between path i and path j, see Fig. 5.1 (b).

We focus on the case where only the middle slit (slit 2) is illuminated by single

photons. An interference pattern forms at the far-field which can be understood

by the following analysis: The photons are either coupled to two SPP modes or

are transmitted through the slit. The transmission probability is |t|2 = I2 and

corresponds to the normalized transmitted intensity of slit 2. The probability to

couple to each plasmonic mode is |κin|2. During the coupling process, the generated

SPPs pick up a phase φin = arg κin. The losses inside the plasmonic material could

be modeled by a beam splitter transformation that couples to a vacuum. However,

since we are interested only in first-order moments, it is sufficient to multiply each

SPP state with a factor eikP d to describe the propagation between the slits. Here, d

is the shortest distance between the outer slits and the centre slit, and kP = k′
P+ik′′

P

is the complex wavenumber of the SPPs. When the SPPs reach the outer two slits,

they can be scattered into a photonic mode with a probability of |κout|2 and pick

up a phase φout = arg κout. Hence, we find I1 = I3 = |κin|2 exp(−2k′′
Pd)|κout|2 for

the intensity output of slits 1 and 3. From each slit the photons propagate to

the screen, which gives an additional phase factor of exp(ink0rj), where rj is the

distance from slit j to the observation point on the screen and n = 1.52 is the

refractive index of the index-matching oil and the glass used in our microscope
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setup. Hence, the phase differences in Eq. (5.2) are given by

φj2 = k′
Pd+ φin + φout + nk0(rj − r2) (5.3)

for j = 1, 3 and

φ13 = φ12 − φ32. (5.4)

We demonstrate in the following that we can extract the contribution φin + φout

from the visibility of a triple-slit interference pattern.

5.4 Experimental implementation

As shown in Fig. 5.2, our sample contains two different double-slit structures (A)

and (B) with a slit separation of d = 4.43 μm and 9.05 μm, respectively, and a triple-

slit structure (C) with a slit separation of d = 4.43 μm. The sample is made of a

110-nm-thick gold film deposited on a glass substrate whose thickness is ∼170 μm.

The complex wavenumber of the SPPs is given by [10]

kP = k′
P + ik′′

P = k0

√
εdεm

εd + εm
, (5.5)

where k0 is the photon wavenumber in vacuum, and εd and εm are the complex

relative dielectric constants of the dielectric and metal, respectively. These values

are tabulated in Palik’s compendium [158] from which we obtain kP = 1.22×107+

3.39 × 104i for gold-glass interface at 810 nm as used in our experiment. Note

that the film is thick enough to avoid coupling between the SPP modes excited on

the top and bottom surfaces of the film [10]. In our experiments, we illuminate

one of the slits with heralded single photons focused by a microscope objective on
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Figure 5.2: Scheme of the experimental setup. A 405-nm laser
pumps a nonlinear ppKTP crystal to generate the signal-idler pairs
through the process of SPDC. The idler photons are used to herald
the presence of the signal photons, which are focused onto the sample
by means of a microscope objective. A sketch of the sample with
different slit arrangements (A), (B), and (C) is shown in the inset
along with a scanning electron micrograph of the triple-slit structure
of arrangement (C). The dimensions are: w = 0.20 μm, d = 4.43 μm,
and h = 98 μm with an uncertainty of ±0.03 μm. The polarization
of the signal photons is controlled by a polarizer (P) and a half-
waveplate (HWP). Photons at the far field are collected with an
oil-immersion objective. A lens system images the far field pattern

onto an ICCD camera.
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the sample. An index-matching oil-immersion microscope objective is utilized to

magnify the field distribution and an imaging system images the far field pattern

onto an intensified charge-coupled device (ICCD) camera.

Our heralded single-photon source is realized using spontaneous parametric

down-conversion (SPDC) in a 2-mm-long type-I periodically poled potassium ti-

tanyl phosphate (ppKTP) nonlinear crystal pumped by a 405 nm continuous wave

diode laser (∼200 mW). The pairs are degenerate at a wavelength of 810 nm and

pass through a 3-nm-band-pass filter before they couple into a single-mode fiber.

The idler and the signal photons are separated probabilistically by means of a 50/50

fibre beam splitter. A coincidence count rate of ∼36 kHz is obtained. We detect

the idler photons with a single-photon avalanche photo diode (APD) that is used

to trigger the ICCD camera that registers the detection of the signal photons. To

compensate for the electronic delay of the camera, we delay the signal photons by

passing them through a 22-m-long fibre before we send them through the sample.

The ICCD (with a 7-ns-gate-time) registers the signal photons in the far field of

the slits.

The excitation of SPPs at a slit requires a transverse magnetic polarization. If

the photons are polarized along the long axis of the slit (x-polarization), there is no

coupling to plasmonic modes and the far-field pattern does not show any interfer-

ence; see the red patterns in Fig. 5.3. However, upon rotation of the polarization

of the input photons by 90 degrees an interference pattern is formed even though

only one slit is illuminated [159, 160, 161]. Multiple-slit interference occurs because

the SPPs excited at the illuminated slit propagate to the neighbouring slits where

they scatter into photons. The measurements depicted in green in Fig. 5.3 show

the interference pattern for the polarization perpendicular to the long axis of the

slit (y-polarization). For the rest of the experiment we perform the measurements

with y-polarized photons to excite SPPs and use the x-polarized photons only to
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calibrate the far field pattern.

To obtain the modulus of the photon-plasmon coupling constant of Eq. (5.1),

we first measure the visibility of the double-slit structure (A). We analyze our data

with Eq. (5.2) and set I3 = 0. Equation (5.2) therefore reduces to a simple double-

slit pattern I = I1 + I2 + 2
√
I1I2 cosφ12 with a visibility of V = 2

√
I1I2/(I1 + I2).

Since I2 = |t|2 and I1 = |κin|2 exp(−2k′′
Pd)|κout|2 with d = 4.43 μm, the visibility

depends on the three coupling parameters |t|, |κin|, and |κout|. However, because

of the unitarity of the tritter matrix we have |t|2 = 1 − 2|κin|2. If we additionally

assume reciprocity of the coupling process [153], we find |κin| = |κout| and the

visibility depends only on one free parameter.

We measure a visibility V = 0.41± 0.01 for slit structure (A) from the interfer-

ence in Fig. 5.3(A) and extract |t| = 0.78 ± 0.01 and |κin| = |κout| = 0.44 ± 0.01.

For a consistency check, we measure the visibility of the double-slit structure (B)

from the pattern shown in Fig. 5.3(B) and we obtain V = 0.35 ± 0.01. The theo-

retical prediction based on the values determined above and with d = 9.05 μm is

V = 0.34± 0.01, which shows a prefect agreement to our experimental result.

In a double-slit experiment, the visibility is independent of the coupling phases

φin and φout, since they only appear as a transverse shift of the far-field interference

pattern. Finding the zero-fringe to obtain these coupling phases in a double-slit

experiment would require a perfect alignment of the camera to the centre of the

structure. To avoid this difficulty and use only the visibility as an observable, we

turn to a triple-slit structure (C) to measure the coupling phases. The visibility of

the triple-slit pattern depends on the coupling phases because the far-field intensity

has three interference contributions, as demonstrated by Eq. (5.2). We assume that

the device is symmetric so that I1 = I3 < I2, and, through use of a trigonometric
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Figure 5.3: Far-field interference patterns from the three dif-
ferent slit structures labeled in Fig. 5.2. Only the photons with
y-polarization excite SPPs (green), no interference occurs for x-
polarization (red). The Fourier transforms (FT) in each part show
the spatial frequency of the fringes. Since the slit separation is larger
in (B) its fringe pattern has a higher spatial frequency than (A). In
(C), the interference of the two modes emerging from the two outer
slits has a small contribution in the triple-slit pattern as shown with

the arrows on the Fourier transform.
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identity, Eq. (5.2) reduces to

I = 2I1 + I2 + 4
√

I1I2 cos
φ12 + φ32

2
cos

φ13

2
+ 2I1 cosφ13, (5.6)

where we used the definition of φ13 from Eq. (5.4). Since φ12 + φ32 depends only

weakly on the transverse position in the far-field, the first cosine in Eq. (5.6) does

not vary significantly over the interference pattern. Also, the last term in Eq. (5.6)

makes a small contribution as I1 � 2
√
I1I2. This conclusion can be drawn by

looking at the Fourier transform of the experimental interference pattern shown in

the inset of Fig. 5.3 (C); the dominant spatial frequency comes from cos(φ13/2), and

the contribution of cosφ13, which oscillates at twice this frequency, is negligible.

Hence, the visibility is determined by φ12+φ32, which includes the coupling phases

as well as the phase k′
Pd.

By matching the visibility of our model to the visibility of the experimental

pattern shown in Fig. 5.3 (C), we find the coupling phases to be φin + φout = 5.4±
0.4 radians. Note that the main source of uncertainty comes from the measurement

of the slit separation from the scanning electron micrograph in Fig. 5.2.

To test the accuracy of our theoretical model and its results, we perform a finite-

difference time-domain (FDTD) simulation of the triple-slit experiment. Since the

visibility of the interference pattern depends on the exact size of the beam on the

illuminated slit and absolute coupling efficiencies, the visibility of the simulated

pattern cannot be compared directly with that of the experiment. Therefore, we

plot the far-field pattern for different slit separations d, from 4.3 μm to 4.8 μm. By

comparing the results of the FDTD simulation and our theoretical model shown in

Fig. 5.4, we find that the coupling phase is φin+φout = 5.8±0.1 radians. This value

is in complete agreement with the coupling phase obtained from the experimental

data. If we were to use a different coupling phase in our theoretical model, the
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Figure 5.4: Far-field interference pattern for different slit separa-
tions from 4.3 μm to 4.8 μm obtained from FDTD simulation and
from our theoretical model. For the theoretical plots Eq. (5.2) is
multiplied by a sinc function to account for the finite width of the
slits. The theoretical result matches to the numerical simulation
when we incorporate a coupling phase of φin + φout = 5.8 radians.
With other values of the coupling phase the position of the minimum
visibility (indicated by the arrows) shifts, as shown in the rightmost
plot. The excellent agreement between the simulation and the the-
oretical results confirms the validity of our theoretical model. The
outer fringes in the theoretical plots are faint due to the deviation

from the small angle approximation used for the sinc function.
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position of the minimum of visibility would be shifted. As an example, Fig. 5.4

also shows the theoretical pattern with a wrong coupling phase of 5.3 radians. The

minimum visibility is clearly shifted upwards and another minimum appears from

the bottom of the pattern.

5.5 Conclusion

In summary, we have characterized three-mode photon-plasmon coupling phenom-

ena at a slit by employing a simple but accurate quantum-mechanical description

of a tritter. We showed that a triple-slit arrangement constitutes a convenient

structure to analyze the six-port coupling matrix, and in particular to measure the

phase of the coupling process. This phase jump is a generic physical phenomenon

and occurs in any scattering event. Thus, our approach of directly measuring it

will be of particular importance for nearly all quantum interference effects and as

such important for future quantum-plasmonic experiments. In addition, the com-

plex nature of the multi-mode photon-plasmon coupling at a slit might lead to

the investigation of unique properties of multi-particle interactions [154]. In our

experiments, the distance between the slits is large enough to suppress the cou-

pling between the slits through localized modes [162]. Therefore, we only studied

the coupling phase of propagating modes. However, interference between localized

and propagating modes would affect the transmission spectrum of 2D arrays of

holes [163]. Therefore, a measurement of the coupling phase is important to char-

acterize the extraordinary transmission of light through 2D arrays. In this case,

one has to consider in addition the SPP-SPP scattering at the holes [164, 165].
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Chapter 6

Conclusion

We described a few experiments in which near-resonant light-matter interactions

have been employed to enhance some effects that are typically negligible or very

small. Two different material systems have been used in this thesis; rubidium

atomic vapour and plasmonic structures. First we studied the propagation of light

in a moving medium. As light propagates inside a moving a medium its speed

changes with respect to the stationary laboratory frame according to the theory

of special relativity. This effect, known as the Fizeau drag effect, is typically very

small and requires the medium to be moved with a large velocity in order to be

detected. For example, to observe this effect in glass P. Zeeman used a 1.2-m-long

glass rod moving at 10 m/s [43]. However, a particular aspect of this phenomenon,

first described by H. A. Lorentz [39], is the influence of the medium’s dispersion.

For a typical low-dispersion material such as glass the dispersive contribution of

the drag effect is almost negligible and is considered to be a correction to the non-

dispersive contribution. Using a highly dispersive material, the effect of dispersion

can be orders of magnitude larger than the non-dispersive contribution. By using

rubidium atoms and tuning the laser frequency between two resonances we achieved

a very large dispersion (a group index as large as ng = 330). Thus, by moving the

vapour cell at a speed of 1 m/s we observed a change in the phase velocity of

light inside the cell as large as 330 m/s. This dramatic change in the speed of
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light scales linearly with the group index of the medium and can be understood

as the manifestation of the Doppler shift in a highly dispersive material. When

the medium moves, the resonance frequency of the atomic transition shifts with

respect to the frequency of the input photons. If the medium is highly dispersive,

the refractive index of the medium changes significantly with the shifted frequency.

Therefore, the phase velocity of the photons inside the medium depends on the

speed of the medium.

An extremely large group index (even larger than one million) can be obtained

using techniques such as electromagnetically induced transparency (EIT) [16, 1,

14]. Therefore, with this enhancement even a slow motion can be detected. This

technique has been implemented in cold rubidium atoms to measure the speed of

the atomic ensemble falling due to the gravity [166]. In a follow up experiment

we are investigating the transverse light-drag effect in EIT condition. In this case,

the medium moves perpendicular to the propagation direction of the laser beam

and the photons are expected to experience a lateral shift. In addition, we use

electromagnetically induced absorption to achieve a large negative group index.

Hence, the photons are expected to move opposite to the motion of the atoms. We

investigate the possibility of this upstream motion of photons for the first time.

Next we investigated the formation of caustics upon nonlinear propagation.

Caustics are important as they occur naturally in all wave systems and localize the

energy of waves. Formation of caustics under linear propagation condition has been

the subject of study for more than two centuries. Although a simple ray picture

gives the overall shape of the patterns, caustics are singularities of rays and the

appropriate theory had to await the mathematics of catastrophe theory developed

in 1970s [167, 168]. Despite the importance of caustics, the effect of nonlinearity on

the formation of caustics is overlooked in literature. As a wave acquires a random

phase fluctuation, a caustic pattern develops after some propagation distance. To
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develop caustics under linear propagation condition, the phase fluctuations have to

be relatively large. We demonstrated that in the presence of nonlinear instability,

even small fluctuations are accentuated and generate sharp caustics. This is in

contrast to the claim that nonlinearity may wash out caustics by destroying the

phase coherence [68].

Our results can also help with understanding some ocean phenomena such as

rogue waves and tsunamis. Recent studies show that caustic focusing plays a

significant role in the formation of giant oceanic waves such as tsunamis and rogue

waves. Moreover, the dynamics of water waves in oceans is well described by

a nonlinear Schrödinger equation similar to our system described in Chapter 3.

Hence, our experiment provides a crucial step towards understanding the role of

nonlinearity in the formation of these giant waves which is still under debate.

In Chapter 4 we described the first observation of looped trajectories in a mul-

tiple slit experiment in which the photons can take a path that passes through all

the slits. In a multiple slit (such as double-slit and triple-slit) interference experi-

ments it is often assumed that the wave function at the screen with all slits open

is equal to the sum of the wave functions with the slits individually open one at

a time. This assumption rules out the possibility of trajectories that pass through

all three slits in a triple-slit arrangement. Such looped trajectories, seemingly in

contradiction with the superposition principle, has been predicted previously [104],

but had not been observed experimentally. In a typical multiple slit experiment

the slits are not coupled and thus closing or opening a slit does not affect the field

emerging from the other slits. Therefore, we implemented a triple-slit arrangement

on a plasmonic layer where the slits are coupled by surface plasmon polaritons. We

showed that the near-field enhancement in the vicinity of the plasmonic structure

increases the probability of these looped trajectories significantly. Nonetheless, the

superposition principle is not violated; one has to note that closing or opening a
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slit changes the boundary condition. Thus, a naive application of the superposition

principle and Born’s rule is insufficient.

Finally, in Chapter 5 we investigated the phase evolution of photons as they

scatter into surface plasmon polaritons and vice versa. For almost a century, out-

standing classical properties of plasmonic systems have been a subject of interest

to many physicists. In the past few years, there has been a rapid expansion of

research into the non-classical features of plasmonic systems. However, an impor-

tant aspect of the coupling process regarding the phase evolution of the photons

has been overlooked in the literature. We showed that photons experience a phase

jump during coupling into and decoupling out of a plasmonic structure. We used

the visibility of the unique interference pattern of a triple-slit structure and mod-

eled each plasmonic slit as a quantum tritter, i.e. a beamsplitter with three input

and three output ports, and measured a coupling phase jump of 5.4± 0.4 radians.

Characterization of this coupling phase is of great importance in designing quantum

plasmonic experiments. Moreover, this coupling phase, also known as the scatter-

ing phase is a generic phenomenon in all scattering events; a wavepacket scattering

off a potential acquires a phase shift. Therefore, our approach allows one to char-

acterize the scattering phase shift and its dependence on different parameters. In

addition, our simple but very accurate quantum treatment of plasmonic slits can

be extended to other plasmonic structures and provides an accurate theoretical

model for future quantum palsmonic experiments.
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Appendix A

Explicit formulas for photon number

discrimination with on/off detectors

Here we describe a side project that was not part of the main body of the thesis.

This appendix is based on the following paper [169]:

F. M. Miatto, A. Safari and R. W. Boyd, Applied Optics 57, 6750 (2018).

DOI:10.1364/AO.57.006750.

Author contributions: F. M. Miatto initiated the work. F. M. Miatto and

A. Safari developed the theory. F. M. Miatto wrote the manuscript. All authors

discussed the results and commented on the manuscript. R. W. Boyd supervised

the project.

A.1 Abstract

Discriminating between Fock states with a high degree of accuracy is a desirable

feature for modern applications of optical quantum information processing. A well-

known alternative to sophisticated photon number discriminating detectors is to

split the field among a number of simple on/off detectors and infer the desired
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quantity from the measurement results. In this work we find an explicit analyti-

cal expression of the detection probability for any number of input photons, any

number of on/off detectors, and we include quantum efficiency and a false count

probability. This allows us to explicitly invert the conditional probability using

Bayes’ theorem and express the number of photons that we had at the input in the

most unbiased way possible with ready-to-use formulas. We conclude with some

examples.

A.2 Introduction

For practical applications of optical quantum information processing, it would be a

great advantage to have a detector that can discriminate between different photon

number states [170, 171]. There are currently several different solutions that allow

one to achieve this to some extent [172, 173, 174, 175, 176], but the resources that

such detectors require (such as very low temperatures, particular materials, and/or

optical configurations) may make them costly to obtain and not straightforward

to operate. There are workarounds that involve squeezing more information out of

the conventional detectors [177, 178], or by demultiplexing the photons in time or

space and directing them toward one or multiple single-photon detectors [179, 180,

181, 182, 183, 184, 185, 186].

The most common single-photon detectors are only able to tell us whether they

detected “zero photons” or “more than zero photons.” Furthermore, they are subject

to noise and a sub-optimal efficiency, which means that sometimes they click when

they should not have or that they do not click when they should have [187].

In this work we study photon-number discrimination by demultiplexing, and

our novel contribution is explicit formulas that are straightforward to implement
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and that take into account quantum efficiency and noise, as well as any number of

detectors.

A.3 Discrimination probability

We consider a balanced linear device that converts D inputs into D outputs. A

single-mode input then becomes

â†in →
D∑
j=1

b†j√
D
, (A.1)

A possible physical model for this device can be a cascaded sequence of D − 1

conventional beam splitters, with reflectivities 1
D

, 1
D−1

. . . 1
2
, but other possibilities

exist; for example, using a top-hat pulse with uniform spatial intensity [188], fol-

lowed by an array of detectors. We note that all-optical solutions are just one area

of applicability of our results, which can be applied to any demultiplexer with a

final set of detectors, which can be even as large as the set of pixels in an elec-

tron multiplying charge-coupled device (EMCCD) or an intensified charge-coupled

device (ICCD).

Note that a demultiplexer should avoid closed paths, because photons, being

bosons, would undergo the Hong–Ou–Mandel effect and bunch together instead of

spreading out into the available modes, which defeats the purpose of the demul-

tiplexer. Furthermore, in the absence of closed paths we are not required to take

phases into account and the problem reduces to a classical counting problem.

The demultiplexer finally couples to a set of on/off single photon detectors.

We wish to calculate the probability of observing C clicks, given an initial photon

number state of N photons and given that all D detectors have a quantum efficiency

η and a dark count probability ε. We start from the ideal case η = 1, ε = 0 and
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then move on to the general case 0 ≤ η ≤ 1, 0 ≤ ε ≤ 1 and from the general case

we retrieve a simple corollary that holds for 0 ≤ η ≤ 1, ε � N/D.

A.3.1 Ideal detectors

The fundamental ingredient for our analysis is the probability of distributing N

photons into exactly C out of D detectors. We start by numbering the detectors

from 1 to D, then a certain string of numbers will describe an event, where the

detectors numbered in the string are the ones that clicked. Note that in absence of

noise the number of clicks cannot exceed the number of input photons, i.e. C ≤ N .

Lemma (Ideal detection). The probability of observing C clicks by distributing

a Fock state of N photons evenly amongst D ideal (i.e. noiseless and with 100%

quantum efficiency) on/off detectors is given by

PD(C|N) =

(
D

C

)
C!

DN
SC
N , (A.2)

where S is the Stirling number of second kind.

Proof. Our goal is to compute the fraction of detection strings (i.e. the strings of

numbers describing a detection event, as described above) that include exactly C

out of D detectors, modulo reorderings. Call Si the set of strings corresponding

to N input photons that do not include the i-th detector. Then select a specific

subset K of cardinality |K| = k from the D detectors. The set of strings that do

not include any of the detectors in K is the intersection of the sets excluding each

of the elements of K:
⋂

i∈K Si and its cardinality is

∣∣∣∣∣
⋂
i∈K

Si

∣∣∣∣∣ = (D − k)N (A.3)
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as we have N choices with repetition, from (D − k) possible detectors. Of course,

we are also counting strings that exclude any other detector, in addition to the

ones in K. To get around this problem, we use the inclusion-exclusion rule to

count the elements in unions of sets Si. In particular, we need the union of Si for

i ∈ {1, . . . , D}, i.e. the set of all strings that exclude at least 1 detector, whose

cardinality is

∣∣∣∣∣
D⋃
i=1

Si

∣∣∣∣∣ =
D∑
j=1

(−1)j+1

(
D

j

)
(D − j)N (A.4)

The complement of this set is the set of strings that include all D detectors (if they

missed any they would belong to
⋃D

i=1 Si), whose cardinality is

∣∣∣∣∣∣
D⋃
i=1

Si

∣∣∣∣∣∣ = DN −
∣∣∣∣∣
D⋃
i=1

Si

∣∣∣∣∣ =
D∑
j=0

(−1)j
(
D

j

)
(D − j)N (A.5)

Finally, we can compute the number of strings that include precisely C out of D

detectors: pick D − C detectors to be excluded (there are
(
D
C

)
ways of doing this)

and compute the number of strings that include all of the remaining C detectors:

(
D

C

) ∣∣∣∣∣∣
C⋃
i=1

Si

∣∣∣∣∣∣ =
(
D

C

) C∑
j=0

(−1)j
(
C

j

)
(C − j)N (A.6)

=

(
D

C

)
C!SC

N , (A.7)

where SC
N is the Stirling number of the second kind. So the probability of ending

up with exactly C clicks is the result above divided by the total number of possible

strings DN :

PD(C|N) =

(
D

C

)
C!

DN
SC
N (A.8)
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and our proof is complete (see Eq. (14) in [186] for an implicit POVM representa-

tion).

A.3.2 Nonideal detectors

Nonideal detectors are subject to mainly two effects: sub-unity quantum efficiency

and noise, which can come from various sources. We model these as Bernoulli

trials, where for each detector we have a probability η of missing the photon and a

probability ε of a false count within the measurement window, in which case we are

informed that the detector clicked regardless of a photon hitting it or not. Whether

a detector detects an actual photon or gives a false count, we consider it unable

to give further clicks until the electronics have enough time to reset (e.g. about

40 ns for avalanche photodiodes). In this section we take both of these effects into

account.

Theorem (Noisy detection). The probability of observing C clicks by distribut-

ing a Fock state of N photons evenly amongst D on/off detectors with quantum

efficiency η and false count probability ε is given by

PD,η,ε(C|N) =
C∑
i=0

pε(i|D)
N∑

j=C−i

pD−i
D

(j|N)

j∑
k=C−i

pη(k|j)PD−i(C − i|k), (A.9)

where pξ(m|n) = (n
m

)
ξm(1 − ξ)n−m is the probability of having m successes out of

n trials when the success probability of a single trial is ξ.

Proof. The proof comprises of 3 steps, each of which is of a similar nature: we

consider all the ways in which an event can happen and we sum the relative prob-

abilities. In the first step we split the observed number of clicks into spurious and

real clicks. In the second step we split the initial photons into those that landed

onto inactive detectors (the noisy ones) and those that landed onto active ones.
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In the third step we split the photons that landed onto active detectors into those

that were lost because of quantum efficiency and those that weren’t. Finally, we

use the ideal detection Lemma.

Step 1 : We sum over the probability of obtaining C total clicks by having i

of them come from noise and C − i come from actual detections. We write the

probability of i false events given D detectors as pε(i|D) =
(
D
i

)
εi(1− ε)D−i.

Step 2 : Now C − i clicks must come from real detection events from the re-

maining D − i active detectors. The probability that j out of N photons make it

to the D − i active detectors is pD−i
D

(j|N).

Step 3 : As our detectors have a quantum efficiency η ≤ 1, the probability of

remaining with k out of j photons is given by pη(k|j).
Now we can now apply the Lemma to write the probability of detecting C − i

out of k survivor photons with D− i detectors and combine these steps in the final

result.

There is a simple corollary of this theorem, which describes the case ε = 0.

Such corollary can be used even for noisy detectors as long as the number of false

positives is low enough (Dε � N):

Corollary (Noiseless detection). The probability of observing C clicks by dis-

tributing a Fock state of N photons evenly amongst D noiseless on/off detectors

with quantum efficiency η is given by

PD,η(C|N) =
N∑

k=C

pη(k|N)PD(C|k). (A.10)

Proof. We use the identity p0(m|n) = δm,0 to replace every occurrence of i in the

noisy detection Theorem by 0, and the identity p1(m|n) = δm,n to replace every
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occurrence of j by N . This gets rid of the first two summations and the result

follows.

Note that modeling the imperfect detectors by placing a beam splitter with

transmissivity η in front of ideal detectors [189, 28] would be wrong in this context

because quantum efficiency does not apply to false counts: first we exclude false

counts and photons that landed on inactive detectors, only then we can factor in the

quantum efficiency. Note that this result is different than what one would obtain

when modeling the imperfect detector by placing a beamsplitter with transmissivity

η in front of an ideal detector.

A.4 Retrodicting the photon number

To retrodict the photon number given an observed number of clicks, we have to

invert the probability in the main theorem using Bayes’ rule:

PD,η,ε(N |C) =
PD,η,ε(C|N)Pr(N)∑
k PD,η,ε(C|k)Pr(k)

(A.11)

This general formula is always valid, but it cannot be solved explicitly unless we

specify the prior, which is what we will do next, for some special cases of particular

relevance.

A.4.1 Poisson prior

In case of a Poissonian prior with mean photon number μ (which may occur when

we deal with coherent states for instance) we have:

Pr(N) =
μNe−μ

N !
, (A.12)



PhD Thesis - Akbar Safari 92

and we can find an explicit expression for the ideal retrodiction probability:

PPoisson
D (N |C) =

C!SC
N

N ! γN

1

(e1/γ − 1)C
(A.13)

where γ = D/μ.

A.4.2 Thermal prior

In case of a thermal prior with mean photon number μ (which occurs for instance

for two-mode squeezed vacuum states) we have:

Pr(N) =
μN

(μ+ 1)N+1
, (A.14)

and the ideal retrodiction probability can be written as:

PTherm
D (N |C) =

C!SC
N

(D + γ)N
Γ(D + γ)

Γ(D + γ − C)!
(A.15)

A.4.3 Considerations

When one moves away from the ideal case, quantum efficiency typically matters

more than the number of detectors. The probability of detecting all the input

photons with a noiseless apparatus saturates at a value lower than 1 even for an

infinite number of detectors:

lim
D→∞

PD,η(N |N) = ηN (A.16)

The effect of noise in the detectors is tangible only when their number is suffi-

ciently large, for instance, when the number of spurious counts is comparable with

the actual number of photons hitting the detectors, i.e., when Dε ≈ N . This fact
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makes the noiseless detection corollary a good tool even in the case of realistic

detectors if we have a large enough number of them.

A.5 Applications

We now would like to give a few examples of how to apply our results. The

examples will be about retrodicting the photon number in order to herald some

desired quantum states and are based on our analytical results (not on Monte Carlo

simulations).

A.5.1 Example 1: heralding of a NOON state

For this example we consider the following setup: we replace the two mirrors

in the middle of a Mach-Zehnder (MZ) interferometer with 50:50 beam splitters

and add detectors to measure the photons that leak. This configuration (if the

phase difference between the two arms of the MZ is set to π/2) will output a

(|4, 0〉 + |0, 4〉)/√2 state if we start with the state |3, 3〉 and if each of the two

detectors measures exactly 1 photon.

Now the question is how well do we know that we had exactly 1 photon at

the detectors? If we resort to demultiplexed detection, we first need to compute

the prior joint probability Pr(N1, N2) of having N1 photons at detector 1 and N2

photons at detector 2. This is achieved using simple input-output relations for

50:50 beam splitters; we report it in Table A.1.

Then, we apply Bayes’ rule (assuming that the two sets of demultiplexed de-

tectors are identical, but we could easily modify the equation below to account for
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Table A.1: Joint probabilities of having (i, j) photons (where i and
j are listed in the headings on top and on the left) at the detectors
in the modified MZ interferometer of the NOON state heralding

example. These are computed assuming the input |3, 3〉.

different configurations) and find PD,η,ε(N1, N2|C1, C2) to be given by

PD,η,ε(C1|N1)PD,η,ε(C2|N2)Pr(N1, N2)∑
k1,k2

PD,η,ε(C1|k1)PD,η,ε(C2|k2)Pr(k1, k2)
(A.17)

We finally use the quantity PD,η,ε(N1, N2|C1, C2) to infer the retrodictive power of

our demultiplexed detectors. To complete the example, in Fig. A.1 we plot the

retrodicted probabilities of four configurations: 4 and 64 detectors with 60% and

75% quantum efficiency (and 500 dark counts/sec, with 10 ns gated measurement

window), given that they both reported a single click each.

For comparison, in Fig. A.2 we plot the retrodiction probabilities for a non-

demultiplexed measurement.
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(a) 4 detectors per port,
60% QE

(b) 4 detectors per port,
75% QE

(c) 64 detectors per port,
60% QE

(d) 64 detectors per port,
75% QE

Figure A.1: Plots of the probability of retrodicted photon number
for a NOON state heralding setup using demultiplexed detection.
Although the most probable case is the desired |1, 1〉, its individual
probability can be quite low, which leads to a low fidelity with the
desired NOON state. The bottleneck in this case is quantum effi-
ciency: even increasing the number of detectors from 4 to 64 does
not perform as well as increasing the quantum efficiency from 60%

to 75%.
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(a) 1 detector per port,
75% QE

(b) 1 detector per port,
100% QE

Figure A.2: (left) A pair of realistic detectors are likely to lie: if
they report a single click each, the state was more likely to be |1, 2〉
or |2, 1〉 or even |2, 2〉. (right) Even a pair of ideal (100% quantum
efficiency) detectors assign equal probability to the states |1, 1〉, |1, 2〉

and |2, 1〉.

A.5.2 Example 2: single photon heralding from squeezed

vacuum

We now consider an example of single photon heralding from a two-mode squeezed

vacuum, which is performed by producing photons in pairs and heralding one by

detecting the other. Such two-mode state can be generated by pumping a nonlinear

crystal with an intense coherent laser [190]. The output of the process is a state in

the following form:

Ŝ(ζ)|0, 0〉 =
∞∑
n=0

einφ
sinh(g)n(

sinh(g)2 + 1
)n+1

2

|n, n〉, (A.18)

where ζ = geiφ is the squeezing parameter. For small enough values of the gain g

one can indeed ignore components with photon number larger than 1, but if the

gain is too large, the heralded state is likely to contain more than 1 photon. If such
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Figure A.3: Plots of the probability of retrodicted photon number
for a squeezed vacuum state. Again, the bottleneck is quantum
efficiency: four detectors with 80% QE are better at heralding a

single photon than 100 detectors with 60% QE.

states were further used for crucial applications such as quantum cryptography,

they would be vulnerable for example to the photon number splitting attack. Could

a demultiplexed detection scheme make for a better heralded single-photon source?

First note that the amplitudes of the two-mode squeezed vacuum follow a thermal

distribution, if we recognize that sinh(g)2 is the mean photon number per mode.

Then, we apply Eq. (A.11) (we could use Eq. (A.15) in case our quantum efficiency

is high) to find the retrodicted photon number distribution, which we plot for a few

examples in Fig. A.3. Note that as the gain increases, the probability of the various

number states levels off and becomes constant, but recall that these probabilities

are conditional on detecting a single photon, whose probability will decrease with

gain.
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A.6 conclusions and outlook

In conclusion, we have shown the most unbiased way of analyzing a detection event

in a demultiplexed measurement scheme, taking noise and efficiency into account.

The corollary of our theorem can apply even to realistic situations if some conditions

on the noise are met, which can be very advantageous as it is computationally much

simpler to implement than the full theorem.

Our results can be applied also to optical engineering issues, such as on-chip

denoising in consumer imaging devices, where multiple pixels can fill an Airy disk

and can be used to retrodict the intensity more accurately. There are still interest-

ing questions to be asked, for instance, whether it is possible to find closed form

solutions of Eq. (A.11) for useful priors when the quantum efficiency is not unity,

or if there is a reasonable way of relaxing the assumption of uniform illumination.

We leave these to a future work.
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