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The black body remains the most prominent source of light 
for absolute radiometry1. Its main alternative, synchrotron 
radiation, requires costly and large facilities2. Quantum optics 
offers a new radiometric source: parametric down-conversion 
(PDC), a nonlinear optical process, in which pairwise photon 
correlations enable absolute calibration of photodetectors3–6. 
Since the emission rate crucially depends on the brightness 
of the electromagnetic field, quantum-mechanical fluctua-
tions of the vacuum7 can be seen as a seed of spontaneous 
PDC, and their amplitude is a natural radiometric standard. 
Thus, they allow for the calibration of the spectral radiance of 
light sources8–11 by measuring the ratio between seeded and 
unseeded PDC. Here, we directly use the frequency spectrum 
of the electromagnetic vacuum to trigger spontaneous PDC 
and employ the generated light to infer the spectral response 
of a spectrometer over a broad spectral range. Then, we 
deduce the absolute quantum efficiency from the spectral 
shape of PDC in the high-gain regime, without relying on a 
seed or reference detector. Our results compare well with the 
ones obtained with a reference lamp, demonstrating a prom-
ising primary radiation standard.

In general, a source can serve as a primary radiation standard 
if, within a specified bandwidth centred on the wavelength λ, the 
exact number of emitted photons N(λ) is known. However, the 
number of counts M(λ) recorded by a detector does not usually 
coincide with N(λ) due to an imperfect quantum efficiency η(λ) 
of the detecting device. These quantities are simply connected 
through the relation

λ η λ λ=M N( ) ( ) ( ) (1)

Measuring M(λ) while having a precise knowledge of N(λ) allows 
the determination of η(λ), which is at the heart of the absolute 
calibration of spectrometers. The spectral efficiency η(λ) can be 
further separated into its relative spectral shape R(λ) (that is, the 
response function of the measurement device) and a wavelength-
independent proportionality constant α, through η(λ) = αR(λ). 
Whereas a relative calibration procedure gives R(λ), obtaining 
the full η(λ) requires an absolute calibration. In the following 
we demonstrate in a two-step procedure that both relative and 
absolute calibration can be performed using parametric down-
conversion (PDC).

The total number of photons reaching the detector depends on 
the photon-number distribution N  per plane-wave mode character
izing the source, and on the modes that are detected. Using standard  

radiometric formalism (see details in the Methods), this fact trans-
lates to the expression
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where the first integral can be approximated by the transverse area 
As of the source and the duration of the emission τs multiplied by the 
speed of light c. The second integral describes the modes that are 
detected and can be approximated by the bandwidth Δλ and solid 
angle ΔΩ of the detector, if N  does not vary significantly over these 
quantities. To connect the plane waves to the solid angle and the 
wavelength, which are the relevant quantities for a spectrometer, we 
also introduced the quantity D λ λ= π −( ) (2 )3 4, which is a measure of 
the mode density7. If N  is known, we have all the necessary quanti-
ties for the absolute calibration of a spectrometer.

During the three-wave mixing process of PDC, pump photons 
(of frequency ωp) interact with the vacuum field within a crystal 
with a nonlinear susceptibility χ(2). This process leads to the genera-
tion of pairs of photons known as the signal and idler, of frequencies 
ω and ωi. In the spontaneous regime (low pump intensity), N , a 
function of frequency and emission angle, depends on the ampli-
tude of the vacuum fluctuations, the profile of the pump beam, the 
gain of the amplification process and a phase-matching function. 
For a monochromatic plane wave pump of amplitude Ep and a crys-
tal of thickness L, the photon-number spectral distribution of spon-
taneous PDC is given by

N χ ωω κ= ∕ Δ ∕−c L E nn L( ) ( ) sinc ( 2) (3)1 (2)
p

2
i i

2 2

where n and ni are the signal and idler refractive indices and 
Δκ = κp − κ − κi is the mismatch between the longitudinal wave-
vectors of the pump, the signal and the idler, respectively7,12. The 
frequency-dependent factors ω ∕ n  and ω ∕ ni i  arise from the 
quantization of the electric field for the signal and for the idler13. In 
the spontaneous regime of pair creation, those factors embody the 
amplitude of the vacuum fluctuations for the biphoton field given 
by the density of states. They explicitly appear in the expression for 
the electric field operators for the signal and for the idler, which 
are used in turn to write the Hamiltonian for the nonlinear interac-
tion. To denote the coupling strength, we use the gain parameter 
G χ= ∕−c L E nn1 (2)

p i , which we can assume to be constant over 
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the frequency range of interest. This assumption is discussed in  
the Methods.

The last factor of equation (3) is the well-known phase-match-
ing function of a bulk crystal. At exact phase-matching, Δκ van-
ishes and the phase-matching function takes on the value unity. 
Thus, the phase-matched distribution (3) takes its maximal value 
and reads

N G ω ω ω= −( ) (4)PM
2

p

where we assumed that photon energy is conserved in the para-
metric process, such that ωi = ωp − ω. For absolute calibration, we 
need a complete knowledge of NPM, but it is difficult to determine 
G experimentally in the spontaneous regime of PDC. However, the 
photon number for different NPM follows a parabola, as illustrated 
in Fig. 1a. Because ω(ωp − ω) does not depend on laboratory param-
eters, we use the shape of NPM and perform a relative calibration12.

By introducing a pinhole in the far-field of the crystal, we limit 
the emission solid angle and suppress the frequency content in the 
other angular modes (details in the Methods). A spectrometer then 
disperses the light and images it onto a charge-coupled device chip 
(see Fig. 1c). Since the position on the chip corresponds to a par-
ticular wavelength, we expect a specific functional behaviour that 
originates in the parabola but is modified by D λ( )14. Thus, any devi-
ation of the measured spectrum at the phase-matched wavelength 
from D λ ω ω ω−( ) ( )p  can be assigned to detector inefficiencies,  
and therefore to R(λ).

Since R(λ) is proportional to the ratio between the number of 
counts M(λ) and the number of photons N(λ), we can write

D
λ λ

λ ω ω ω
∝

−
R M( ) ( )

( ) ( )
(5)

p PM,LG

where ω = 2πc/λ and we used the proportionality symbol because 
G is yet to be determined. The right-hand side is evaluated at the 
wavelength λPM that satisfies the phase-matching condition and 
the measured spectra M(λ) are acquired in the low-gain limit, 
denoted by LG.

In our experiment, we pump a barium borate (BBO) crystal 
with a pulsed laser (355 nm wavelength) and acquire a large num-
ber of spectra Mj, with j corresponding to different tilt angles of 
the nonlinear crystal, spanning phase-matched frequencies over a 
broad spectral range, as shown at the bottom of Fig. 1c. We over-
lap all the measured spectra in Fig. 2 and highlight three of them 
to show their twin-peak structure. Crucially, the maximum num-
ber of counts at any particular wavelength as the crystal tilt angle 
is varied gives the phase-matched measurement Mj(λPM), because 
sinc2(ΔκL/2) is equal to unity only when the phase-matching 
condition is satisfied. We show in the inset of Fig. 2 and in the 
Methods that the peak number of counts in a single spectrum does 
not always occur at λPM.

We perform the experiment in the spontaneous regime of PDC 
to ensure the validity of equation (3). We retrieve R(λ) directly from 
the spectra by virtue of equation (5), where M(λPM) is extracted by 
taking the maximum of many spectra. We assume the normalization 
condition that for degenerate down-conversion R(2λp) = 1, such that 
η(2λp) = α. The response function obtained from the spontaneous 
PDC agrees very well with the response function measured with a 
reference lamp (Fig. 3). The experiment was repeated with an addi-
tional dichroic filter to demonstrate that the method resolves rich 
and rapidly varying spectral features. For a proper comparison, it is 
crucial that the light from spontaneous PDC and from the reference 
lamp undergo exactly the same transfer function. The skewness of 
the PDC response with respect to that of the lamp stems from chro-
matic aberration and non-perfect polarization filtering, as well as 
inaccuracies in the reference spectrum of the lamp.

To improve the precision of our method, one could include the 
frequency dependence of G if the linear and nonlinear dispersion 
relations of the crystal are known. In this case, it is also straightfor-
ward to generalize equation (3) so that it incorporates the spatial 
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Fig. 1 | Physical principle and idealized set-up. a, Different tilt angles of 
the nonlinear crystal correspond to different phase-matching conditions, 
altering the spectrum N ω( ) accordingly, as exemplified by the orange, 
green and magenta curves. N ω( )PM  (grey curve) is obtained by taking the 
maximum of N  for different phase-matching conditions. Since the shape 
of N ω( )PM  is known, see equation (4), we can use it as a reference to 
retrieve the response function R(λ). b, The relative calibration with PDC  
is performed in the low-gain regime (LG) and the absolute calibration  
with PDC in the high-gain regime (HG). We transition from low gain to 
high gain by increasing the intensity of the pump laser. In the high-gain  
limit, there is a one-to-one correspondence between the shape of NPM  
and the number of generated photons, leading to an absolute standard.  
c, For each tilt angle of the nonlinear crystal, the photon-number spectrum 
N(λ) is measured with an angular filter (a pinhole in the far field selects a 
small solid angle) and a spectrometer. The shape of N(λ) follows from the 
conversion of N ω( ) from the plane-wave representation to the wavelength 
and solid-angle representation associated with the spectrometer. CCD, 
charge-coupled device.
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Fig. 2 | Measured spectra. We extract the response function R(λ) from 
the overlap of 411 measured spectra (grey). The twin-peak structure in 
the orange and teal spectra is a feature of phase matching and energy 
conservation. For the magenta curve, the second peak does not lie within 
our measurement range. The maximum possible signal at a certain 
wavelength λ is proportional to R(λ). To illustrate this method, the inset 
shows several spectra (Fourier-filtered to suppress the noise) from the box 
enclosing the right-hand peak of the teal curve.
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and temporal profiles of the pump beam15. To stress the simplicity 
of our procedure, we refrain from applying these corrections, but 
nonetheless obtain excellent results. With a knowledge of R(λ) we 
can accurately measure the shape of any spectrum. In the following, 
we perform the second step of our calibration procedure and estab-
lish an absolute calibration method. In particular, we extract the 
number of photons from the shape of high-gain PDC spectra, based 
on our previous measurement of R(λ), as exemplified in Fig. 1b, 
where we see a distortion of the parabola when the gain is increased.

For an arbitrary value of the gain, the photon-number spec-
tral distribution under phase matching and for a monochromatic, 
plane-wave undepleted pump, becomes

N G ω ω ω= −( )sinh ( ) (6)PM
2

p

which reduces to equation (4) in the spontaneous regime—that is, 
for G ω ω ω− ≪( ) 1p

7. In the high-gain regime, the phase-matched 
photon-number spectrum is therefore a distorted parabola, whose 
spectral shape (curvature) and photon number are uniquely deter-
mined by the gain parameter G. In complete analogy to equation (5) 
we obtain the relation

G
D

α ω ω ω λ
λ λ Γ

− =( ) M
R

sinh ( ) ( )
( ) ( )

(7)2
p

PM

where we introduced, for a more convenient notation, the constant 
Γ = ΔΩΔλAscτs for the emission and detection parameters. Note 
that, in contrast to equation (5), we have an equality. Except for 
α, which we defined earlier through η(λ) = αR(λ), all the quanti-
ties are known: we obtained R(λ) from spontaneous PDC and the 
shape of the phase-matched spectrum uniquely determines G. We 
approximate As by the transverse area of the pump beam and τs 
by mτp, with τp being the pump pulse duration and m the num-
ber of pulses during an acquisition time. Further, we calculate the 
solid angle ΔΩ from the pinhole size in the far field of the crystal, 
and obtain Δλ from the bandwidth associated with a pixel of the 
spectrometer’s camera. The only remaining free parameter, α, is 
obtained via fitting.

For that, we acquire a large number of densely packed spectra 
Mj(λ) for different crystal tilt angles with a much higher pump 
energy per pulse to reach a large parametric gain. After taking the 
maxima of these dense spectra, we perform a bivariate curve fit 
using the free parameter α and the pump-normalized gain G ∕ Ep,  
a quantity that allows us to suppress the pulse energy drift of our 
pump laser over the acquisition time, and where a relative measure-
ment of Ep is sufficient. We then obtain the spectral quantum effi-
ciency by taking the product η(λ) = αR(λ), with R inferred from the 
spontaneous measurement and α from the high-gain regime.

In the absolute calibration measurement, we use a pump 
energy four times higher than in the spontaneous configuration. 
We show the maxima of the spectra and the fit (orange curve) in 
Fig. 4. The quantum efficiency at λ = 2λp, extracted from fitting, is 
α = 0.42 ± 0.04, where the uncertainty is dominated by the system-
atic error in the pulse duration and transverse profile of the pump. 
Note that α includes all the losses in the optical set-up, from the 
nonlinear crystal to the detector. The estimated quantum efficiency 
of the experimental set-up, based on the nominal efficiency of each 
optical component, is α = 0.38 ± 0.07. The largest source of loss is 
the diffraction grating of the spectrometer, with an efficiency of 
60% at 2λp, as reported by the manufacturer. In addition, we tested 
the consistency of the fit parameters by repeating the measurement 
with other pump energies. Using the previously obtained value of α, 
and estimating the gain from G ∕ Ep and a new measurement of Ep, 
we obtain the red curves (Fig. 4), which also show excellent agree-
ment with experimental data. Undesired effects due to additional 
nonlinear processes arising with the higher pump intensity, such as 
self-focusing or fluorescence, are found to be negligible.

Equation (6) is obtained by solving the Heisenberg equation of 
motion for the creation and annihilation operators in the form of 
a Bogolyubov transformation relating the modes associated with 
the signal and the idler photons7. The validity of models for high-
gain PDC in the context of a pulsed laser has been discussed16 and 
verified experimentally by looking at the exponential increase in 
the number of photons with the pump power14,17–20. The results pre-
sented in Fig. 4 are experimental demonstrations of the distortion 
of the phase-matched spectral shape of light generated by a pulsed 
laser for increasing gain, and as such provide additional support 
for this description of PDC. Moreover, equation (7) underlines that 
high-gain PDC offers the possibility to perform the absolute cali-
bration of a single-element detector by measuring the number of 
counts against the pump pulse energy.
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Fig. 3 | Spectral response function of the experimental set-up. Upper 
panel shows a comparison of R(λ) obtained from spontaneous PDC (red, 
normalized to unity at the degenerate wavelength 2λp) and the response 
function measured with a reference lamp (blue envelope enclosing the  
5% error reported by the manufacturer; scaled onto the PDC curves using  
a linear fit). To obtain the curves in the lower panel, we added a dichroic 
filter to the spectrometer to induce rich spectral features into the  
response function.

2.2 3 3.4 3.8
0

1

2

3

ωp/2

ω (1015 rad s–1)

M
j/(

R
   

Γ)
∣ P

M

α,   /Ep

Fig. 4 | Absolute calibration from high-gain PDC. The maxima of densely 
packed high-gain spectra (right-hand side of equation (7); shown in black) 
and their fit (left-hand side of equation (7); shown in red and orange) 
are obtained for five different pump intensities. The curves are shown 
in the frequency domain to highlight the distortion of the parabola. The 
fit parameters for the orange curve were obtained with the second-to-
top measurement. To demonstrate their accuracy, we used the same fit 
parameters to draw the red curves. The fitting curves are noisy because 
fluctuations in the pump energy are taken into account.
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In contrast to the relative calibration, the absolute calibration 
using high-gain PDC cannot be straightforwardly generalized to 
arbitrary pump beams. Corrections to the model could be imple-
mented, for instance by taking into account the spatial profile and 
frequency spectrum of the pump as well as the frequency depen-
dence of G. However, our results demonstrate that even without a 
more sophisticated treatment, which would require the determina-
tion of many more laboratory parameters and solving Heisenberg’s 
equations of motion numerically, we measure the quantum effi-
ciency accurately. State-of-the-art spectroradiometric sources based 
on black-body radiation, which have benefited from a century of 
technical improvements, typically exhibit a relative uncertainty of 
the order of 1% around the wavelength 700 nm (ref. 21), whereas we 
report a relative uncertainty of the order of 10%. It is reasonable 
to expect that a PDC standard could reach the level of precision of 
methods based on black-body radiation. As a first step, one could 
carefully monitor the pump laser spatial profile and pulse duration. 
Less prominent sources of error, which include geometric factors 
and the quality of the fitting, could also be addressed. Furthermore, 
it would be interesting to explore different strategies to engineer the 
density of states, by using for instance metallic surfaces or nanopar-
ticles, to increase the brightness of the source.

Online content
Any methods, additional references, Nature Research reporting 
summaries, source data, statements of data availability and asso-
ciated accession codes are available at https://doi.org/10.1038/
s41567-019-0447-2.
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Methods
Radiometry. Since the quantization of the electric field is usually performed in 
plane-wave modes denoted by a wavevector k, we express general radiometric 
quantities through the photon number per mode N k( ) of the field under 
consideration. A detector cannot detect all of these modes, and hence the detected 
photon number per source volume can be written as

N N∫ ∫ ∫λ Ω
λ

ϱ =
π

=
λ ΩΔ Δ

k k k1
(2 )

d ( ) d d 1 ( ) (8)3
detector

3
4

where we used d3k = k2dkdΩ = (2π)3λ−4dλdΩ in the last step. We neglect here 
the index of refraction of air and assume that the detector has a bandwidth of 
Δλ and collects light from a solid angle ΔΩ. In the following we introduce for a 
more convenient notation the Jacobian D λ π λ= −( ) (2 )3 4, relating d3k and dλdΩ, 
which is proportional to the mode density. For a sufficiently small Δλ around the 
wavelength λ and a small ΔΩ around the direction set by k, we can perform the 
integration and find

D Nλ Ω λ Ω λϱ ≅
π

Δ Δ k( , ) 1
(2 )

[ ] ( ) ( ) (9)3

This quantity is closely related to the spectral radiance D Nω π λℏ − c(2 ) ( )3 , which 
is the energy per unit of time, area of the source, solid angle and bandwidth (in 
wavelength) of the detector22.

To calculate the total number of photons that fall onto the detector, equation 
(9) has to be integrated over the volume of the source, to obtain

D N∫λ Ω λ Ω τ λ Ω λ= ϱ ≅ π Δ Δ−N r A c( , ) d ( , ) (2 ) [ ] [ ] ( ) (10)
source

3 3
s s

where in the last step we assumed that the source has a surface area of As and emits 
light for a time duration τs.

We have not yet specified N k( ). We do that in the next section and show that 
the assumption of a small solid angle as well as a small bandwidth of the detector 
is justified.

Angular distribution of spontaneous PDC. The photon number per mode N  
for spontaneous PDC in a bulk crystal of length L with a nonlinearity χ(2) and 
illuminated by a plane wave pump with a field amplitude Ep is given by equation 
(3). The longitudinal wavevectors appearing in the expression for Δκ are given by 

κ ≡ −k q2 2 for the signal and κ ≡ −k qi i
2

i
2 for the idler. Here, the signal and idler 

photons have the wavevectors k and ki and the transverse wavevectors q and qi. 
Note that kj = ωjnj/c, with c the speed of light and ωj the frequency of the idler and 
pump fields with j = i,p, and no subscript for the signal.

With this notation, we find the expression

κ κΔ = − − −k k q (11)p i
2

i
2

for the longitudinal wavevector mismatch. Since we assume in equation (3) a plane 
wave and monochromatic pump, we have due to energy conservation ωi = ωp − ω 
and due to momentum conservation q = −qi. Hence, our expression depends only 
on ω and q. Moreover, introducing spherical coordinates, we can define the polar 
angle θ of the detected field and have cosθ = κ/k and sinθ = |q|/k. Therefore, the 
longitudinal wavevector mismatch

κ θ θΔ = − + ∕ −( )k k k kcos ( ) sin (12)p i
2 2

as well as equation (3), depends only on λ (using ω = 2πc/λ) and θ, which are the 
natural dimensions of the detector.

In equation (9) we approximated the integral of N  over dλ and dΩ = sin θdθdϕ 
by just multiplying the integration intervals. This is of course valid if N  depends 
only weakly on both λ and θ over the range of interest.

In the experiment we place a pinhole in the far field of the spontaneous PDC 
light to filter a small range of angles. We show in the density plot of Supplementary 
Fig. 1 the product D Nλ( )  as a function of θ and λ, and mark the size of our pinhole 
by a semi-transparent white strip. This numerical result is based on the Sellmeier 
equations of the three fields for BBO23. We further assume that G is constant in the 
wavelength range of interest, and we justify this assumption in the next section. We 
work close to collinear propagation, with θ ≈ 0, where the function D Nλ( )  does not 
vary significantly across the pinhole area so that we can perform the integration by 
just multiplying by the solid angle. Similarly, the size of a pixel corresponds roughly 
to a bandwidth of 0.063 nm. On this scale, N  does not change significantly. Hence, 
our approximation in equation (9) is valid for our set-up.

Of course, one can also integrate over the solid angle covered by the pinhole to 
obtain a more accurate result, but at some point the contribution of other crystal 
properties, such as its length, as well as the dispersion relations of all the light 
fields will dominate. In the spirit of an easy-to-implement calibration technique, 

we refrain from this more complex analysis but emphasize that it is possible. In a 
similar manner, one could include both the frequency as well as the angular profile 
of the pump in equation (3). However, on axis this treatment would not lead to 
a different result and our plane wave and monochromatic assumption is well-
justified for our laser system.

Wavelength dependence of gain. In the main text, we assumed that the 
wavelength dependence of the gain function

G χ= ∕−c L E nn (13)1 (2)
p i

can be neglected. In this section, we investigate different effects that could 
contribute to the wavelength dependence in our experiment and demonstrate 
that they do not vary much across the spectral region of interest. In addition to 
the linear dispersion (n(λ) and ni(λ)) as well as the nonlinear dispersion χ(2)(ωp, ω, 
ωi), obvious from equation (13), other contributions arise from tilting the angle of 
the crystal to scan different phase-matching conditions. By tilting the crystal, the 
Fresnel coefficients vary (for the pump or for the down-converted light) and the 
effective length L of the nonlinear crystal (defined as the length of propagation 
of the pump inside the crystal) changes. The different Fresnel coefficients change 
the intensity of the pump inside the crystal, as well as how much of the down-
converted light couples out of the crystal. Using the Sellmeier equations for BBO23 
and Miller’s rule24 (relating the first-order and second-order susceptibilities), we 
estimate the impact of those contributions, and show our results in Supplementary 
Fig. 2. The largest deviations are attributed to the dispersion in the nonlinear 
susceptibility χ(2) and to the change in the effective length of the nonlinear crystal 
upon tilting it. However, over a spectral range of 300 nm around degeneracy, the 
gain function G does not vary by more than 1%.

Experimental set-up. A detailed set-up is shown in Supplementary Fig. 3. The 
third harmonic (355 nm wavelength, 29 ps pulse duration, 50 Hz repetition rate, 
pump beam area As = 2πσ2 = (0.17 ± 0.01) mm2, with the standard deviation σ 
of the Gaussian profile, 100 μJ pulse energy in the spontaneous regime, up to 
500 μJ in the high-gain regime) of a pulsed Nd:YAG laser (EKSPLA, PL2231) is 
prepared as the pump for PDC from a nonlinear crystal (β-BBO, 3 mm thickness, 
type-I phase-matching, uncoated, cut for degenerate PDC) whose phase-
matching frequencies are tuned using a motorized rotation mount. We estimate 
the systematic error on the pulse duration to be ± 2 ps. The standard error on 
the pump beam area is obtained from repeated measurements of the attenuated 
pump on the Gentec Beamage-3.0 beam profiler. The wavelengths that satisfy 
the phase-matching condition are tuned by varying the angle between the optic 
axis of the crystal and the wavevector of the pump. We test the uniformity of the 
crystal by measuring the PDC spectra produced by pumping different portions 
of the crystal. A set of dichroic mirrors removes the pump after the crystal. 
The pump energy drift over time is monitored using a photodiode. A concave 
mirror of focal length 200 mm is used to bring the down-converted light to 
the far field, where a pinhole (0.5 mm diameter) selects a small solid angle. To 
ensure a fixed polarization, a broadband polarizing beam splitter is placed before 
the pinhole. A pair of lenses is used to image the pinhole onto the entrance 
slit (1 mm in width) of the spectrometer with a magnification of 4/3. The 
spectrometer is an imaging spectrograph (Acton SP-2558) with a charge-coupled 
device camera (PIXIS:100BR_eXcelon, pixels of size 20 μm × 20 μm). Transverse 
binning is enabled, so that the signal at a certain wavelength is the sum of the 
photoelectron counts over all the pixels that correspond to that wavelength. 
The integration time for each of the 411 spectra is 500 ms. Each spectrum 
spans the range from 450 nm to 900 nm. To cover this range, we need to repeat 
the acquisition for different angular positions of the grating (600 grooves per 
mm, 500 nm blaze). The experiment is automated: after each acquisition by the 
spectrometer, the motorized holder rotates the crystal through an angle of about 
0.01°, up to a total change of approximately 8°. To reduce errors, we filter out the 
noise (rapidly fluctuating signal) in each spectrum with an algorithm based on 
the fast Fourier transform. For the nonlinear curve fitting of PDC in the high-
gain regime, we used a weight function to reduce the influence of the data points 
associated with high residuals. The spectrometer is calibrated in wavelength 
using a neon–argon lamp along with a Princeton Instruments Intellical system. 
The reference lamp (an LED-stack with a diffuser, Princeton Instruments) 
is introduced at the crystal plane. Its spectrum is acquired using the same 
experimental settings.

Details of the data analysis. Our calibration method relies on the comparison of 
the measured phase-matched number of counts M(λPM) to the expected phase-
matched number of photons N(λPM). We therefore acquire a large number of 
spectra Mj corresponding to different phase-matching conditions over a broad 
spectral range. However, the peak number of counts in a measured spectrum 
does not correspond, in general, to M(λPM). Instead, we can extract the response 
function from the properties of N . From the main text, we know that

N ω ω ω κ ω ω ω∝ − Δ ∕ ≤ −L( )sinc ( 2) ( ) (14)p
2

p
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where the inequality becomes an equality only for phase matching Δκ = 0.  
We denote the wavelength of phase matching with λPM. With equation (5) we  
find the inequality

D
λ λ κ λ

λ ω ω ω
≥ Δ ∝

−
R R L M

( ) ( )sinc
2

( )
( ) ( )

(15)
j2

p

with an equality sign for λ = λPM. If we approximate the phase matching function by 
a Gaussian, that is,

κ λ λ σΔ ∕ ∝ − − ∕ λLsinc ( 2) exp[ ( ) (2 )] (16)2
PM

2 2

it is easy to show that the peak of the product R(λ)sinc2(ΔκL/2) shifts to the 
wavelength

∼
∼

λ λ
λ

σ= +
λ

λR
R1 d

d (17)PM
2

Hence, the steeper the slope of the response function, the greater the shift between 
the phase-matched wavelength and the peak. We show this effect in the inset of 
Fig. 2. Since the response function is not known but is the result of the calibration 
procedure, equation (17) cannot be used to determine the phase-matching 
wavelength. However, equation (15) directly gives a method to determine the 
response function despite the shift: when we acquire a large number of spectra 
Mj, each with a slightly varying λPM, the amplitude of Dω ω ω∕ −M [ ( )]j p  at one 
particular wavelength is the largest if the wavelength corresponds to λPM. Hence, we 
obtain the response function from
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p
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p p
2

where we normalize the response function to unity at the degenerate wavelength 
λ = 2λp. To reduce errors in the analysis according to equation (18), we suppress 
for each spectrum Mj(λ) the high-frequency content, filtered out via a fast Fourier 
transform procedure.

A similar idea can be used for absolute calibration. For an arbitrary G, the 
photon distribution per plane-wave mode assuming a monochromatic plane wave 
pump can be written as7

N
G Q

G Q
G Q

κ
κ=

− Δ ∕
− Δ ∕

L
L

( 2)
sinh ( 2) (19)(HG)

2 2

2 2 2
2 2 2 2

where Q ω ω ω≡ −( )2
p  and the superscript (HG) highlights that we are using this 

equation to describe the high-gain regime of PDC. Since the maximum of this 
function occurs for phase matching (Δκ = 0), we find

N GQ N≤ ≡sinh ( ) (20)(HG) 2
PM
(HG)

where we defined the phase-matched photon distribution N PM
(HG), which has the 

well-known hyperbolic form of parametric amplification and is used in the main 
body of our article. Note further that for GQ≪ 1 we recover the low-gain result.

The quantum efficiency at the degenerate wavelength α = η(2λp) is

α λ λ λ= ∕M R N( ) [ ( ) ( )] (21)j

with the definitions from the main text. With that, we find from equation (20) and 
with the help of equation (10) the inequality

GQ Dα λ λ λ Ω λ τ≥ ∕ Δ ΔM R A csinh ( ) [ ( ) ( ) ] (22)j
2

s s

where again the equal sign is valid for λ = λPM. Hence, we find, similarly to the low-
gain method
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( ) ( )

(23)
j

j2

s s

as an exact equality if the spectra are sufficiently dense. Taking the maximum of all 
recorded spectra, each one of them divided by Dλ λR( ) ( ) and a numerical factor that 
depends on laboratory parameters (spatial dimensions and bandwidths), we can fit 
the data to the function GQα sinh2  with two fitting parameters α and G. Note that 
we do not need to measure the exponential increase of the number of generated 
photons with increasing pump intensity, but determine both parameters from the 
distortion of the spectral shape of the maximum of all spectra. With this fitting 
procedure, one can determine not only the quantum efficiency η(λ) = αR(λ), but 
also the gain G.

Even though we do not use the exponential increase with the pump power 
for our calibration method, we still record the intensity while scanning different 
phase matching functions. We do this to correct for drifts and fluctuations 
during the course of one measurement. We are then able to perform the fitting 
procedure using G ∕ Ej, where Ej is the pump field amplitude during measurement 
corresponding to the jth phase-matching condition.

The α obtained using our method for absolute calibration is compared to an 
estimated quantum efficiency based on the properties of each optical component 
in the experimental set-up, listed in Supplementary Table 1. The losses of uncoated 
components are estimated from the Fresnel coefficients, whereas the losses of 
coated components are taken from the manufacturers.

Spontaneous regime of PDC. As shown in equation (19), the photon- 
number distribution grows exponentially with the intensity of the pump.  
In the low-gain regime, where the photon pairs are generated spontaneously, the 
number of photons grows linearly with the intensity, which can be seen from  
the expansion

N GQ G Q G Nω ω ω= ≅ = − =sinh ( ) (24)PM
(HG) 2 2 2 2

p PM

where NPM is the low-gain photon distribution for phase matching. To obtain  
the response function R(λ), we do not need to know the exact value of G, but  
rely on the fact that the first-order expansion above is valid. Note that G2 
is proportional to the intensity of the pump7. To verify that we work in the 
spontaneous regime of PDC, we measure the number of counts for a single 
wavelength and increase the pump intensity. The results, given in Supplementary 
Fig. 4, show that we are well within the linear regime up to roughly 150 μJ pump 
energy. We performed the relative calibration experiment at a pump intensity of 
100 μJ, whereas the high-gain part of the experiment used a more intense pump, 
around 200 μJ and higher.

Data availability
The data that support the plots within this paper and other findings of this study 
are available from the corresponding author on reasonable request.
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