Physics and Applications of Epsilon-Near-Zero Materials

How Light Behaves when the Refractive Index Vanishes

Robert W. Boyd

Department of Physics and
Max-Planck Centre for Extreme and Quantum Photonics
University of Ottawa

Institute of Optics and Department of Physics and Astronomy
University of Rochester

The visuals of this talk are posted at boydnlo.ca/presentations

Presented at Photonics West, San Francisco, February 2, 2019
Physics and Applications of Epsilon-Near-Zero Materials

- Physics of ENZ Materials
 - Huge NLO Response of ENZ Materials and Metastructures
 - Non-perturbative Nature of the NLO Response
 - Some Applications of ENZ Materials
Physics of Epsilon-Near-Zero (ENZ) Materials

• ENZ materials possess exotic electromagnetic properties
 Recall that $n = \sqrt{\varepsilon \mu}$ where ε is the permittivity and μ is the magnetic permeability
 Many opportunities in photonics are afforded by ENZ materials and ZIM (zero-index materials)

\[
\lambda = \lambda_{\text{vac}} / n \quad v = c / n
\]

For $n = 0$ the wavelength is stretched and the phase velocity becomes infinite
Light oscillates in time but not in space; oscillations are in phase everywhere

• Radiative processes are modified in ENZ materials
 Einstein A coefficient (spontaneous emission lifetime = $1/A$)
 \[A = n A_{\text{vac}} \]
 We can control (inhibit!) spontaneous emission!
 Einstein B coefficient
 Stimulated emission rate = B times EM field energy density
 \[B = B_{\text{vac}} / n^2 \]
 Optical gain is very large!

Einstein, Physikalische Zeitschrift 18, 121 (1917).
Snell’s law leads to intriguing predictions

\[n_1 \sin \theta_1 = n_2 \sin \theta_2 \]

Light always leaves perpendicular to surface of ENZ material!

Thus light can enter an ENZ material only at normal incidence!
Maxwell Equations Prediction

• light enters slab at normal incidence
Some Consequences of ENZ Behaviour - 1

- Funny lenses

\[n = 0 \]

- Large-area single-transverse-mode surface-emitting lasers

\[L \]

\[L \gg \lambda_{\text{vac}} \]

gain medium, \(n = 0 \)

- No Fabry-Perot interference

O. Reshef et al., ACS Photonics 4, 2385, 2017.
Some Consequences of ENZ Behavior - 2

• Super-coupling (of waveguides)

• Large evanescent tails for waveguide coupling

mode of upper waveguide extends to lower waveguide for any separation

dielectric waveguide

• Automatic phase matching of NLO processes

Recall that $k = n \frac{\omega}{c}$ vanishes in an ENZ medium.
For example, the following 4WM process is allowed

Some Consequences of ENZ Behaviour - 3

- How is the theory of self-focusing modified?
- Does the theory of Z-scan need to be modified?
- How is the theory of blackbody radiation modified?
- Do we expect very strong superradiance effects?
- More generally, how is any NLO process modified when \(n_0 = 0 \)?
Physics and Applications of Epsilon-Near-Zero Materials

- Physics of ENZ Materials

- Huge NLO Response of ENZ Materials and Metastructures

- Non-perturbative Nature of the NLO Response

- Some Applications of ENZ Materials
Epsilon-Near-Zero Materials

- **Metamaterials**
 Materials tailor-made to display ENZ behaviour

- **Homogeneous materials**
 All materials display ENZ behaviour at their (reduced) plasma frequency
 Recall the Drude formula
 \[
 \epsilon(\omega) = \epsilon_\infty - \frac{\omega_p^2}{\omega(\omega + i\gamma)}
 \]

 Note that Re $\epsilon = 0$ for $\omega = \omega_p/\sqrt{\epsilon_\infty} \equiv \omega_0$.

- **Challenge:** Obtain low-loss ENZ materials
 Want Im ϵ as small as possible at the frequency where Re $\epsilon = 0$.

- **We are examining a several materials**
 ITO: indium tin oxide
 AZO: aluminum zinc oxide
 FTO: fluorine tin oxide
Epsilon-Near-Zero Materials for Nonlinear Optics

• We need materials with a much larger NLO response

• We recently reported a material (indium tin oxide, ITO) with an n_2 value 100 time larger than those previously reported.

• This material utilizes the strong enhancement of the NLO response that occurs in the epsilon-near zero (ENZ) spectral region.

Here is the intuition for why the ENZ condition is of interest in NLO

Recall the standard relation between n_2 and $\chi^{(3)}$

$$n_2 = \frac{3\chi^{(3)}}{4\epsilon_0 c n_0 \text{Re}(n_0)}$$

Note that under ENZ conditions the denominator becomes very small, leading to a very large value of n_2

Footnote:

Standard notation for perturbative NLO

$$P = \chi^{(1)}E + \chi^{(2)}E^2 + \chi^{(3)}E^3 + \ldots$$

P is the induced dipole moment per unit volume and E is the field amplitude.

Also, the refractive index changes according to

$$n = n_0 + n_2 I + n_4 I^2 + \ldots$$
ITO is a degenerate semiconductor (so highly doped as to be metal-like). It has a very large density of free electrons, and a bulk plasma frequency corresponding to a wavelength of approximately $1.24 \, \mu m$.

Recall the Drude formula

$$
\epsilon(\omega) = \epsilon_\infty - \frac{\omega_p^2}{\omega(\omega + i\gamma)}
$$

Note that $\text{Re} \, \epsilon = 0$ for $\omega = \omega_p/\sqrt{\epsilon_\infty} \equiv \omega_0$.

The region near ω_0 is known as the epsilon-near-zero (ENZ) region.

There has been great recent interest in studies of ENZ phenomena:

Huge nonlinear optical response of ITO at its ENZ wavelength

Indium tin oxide (ITO)

\[\lambda = 1240 \text{ nm} \]

\[n^2 \text{ (cm}^2 / \text{GW)} \]

Fast, ultra-large response of ITO at its ENZ wavelength

- overall change in refractive index of 0.8
- sub picosecond response time

M. Z. Alam et al., Science 352, 795-797 (2016)
Some Nonlinear Optical Materials

Nonlinearity of traditional nonlinear materials:

- SiO$_2$ \(n_2 = 3.2 \times 10^{-20} \text{ m}^2/\text{W} \)
- SiN \(n_2 = 2.5 \times 10^{-19} \text{ m}^2/\text{W} \) \(10 \times \text{SiO}_2 \)
- Si \(n_2 = 2.7 \times 10^{-18} \text{ m}^2/\text{W} \) \(100 \times \text{SiO}_2 \)
- Chalcogenide glasses \(n_2 = 2.0 \times 10^{-17} \text{ m}^2/\text{W} \) \(600 \times \text{SiO}_2 \)

A new class of materials known as **epsilon-near-zero** materials have demonstrated incredible nonlinear properties

- Indium tin oxide (ITO) \(n_2 = 1.1 \times 10^{-14} \text{ m}^2/\text{W} \) \(600 \times \text{ChG} \)
 - \(\Delta n = n_2 I = 0.7 \)

- Al-doped zinc oxide (AZO) \(n_2 = 3.5 \times 10^{-17} \text{ m}^2/\text{W} \) \(2 \times \text{ChG} \)
 - \(\Delta n/n = 4.4 \)

An ENZ Metasurface

- Can we obtain an even larger NLO response by placing a gold antenna array on top of ITO?
- Lightning rod effect: antennas concentrate the field within the ITO
- Coupled resonators: ENZ resonance and nano-antennas

Concept:

SEM:

The material exhibits extremely large n_2 over a broad spectral range. The magnitude of the on-resonance value is 7 orders of magnitude larger than that of SiO$_2$.

Physics and Applications of Epsilon-Near-Zero Materials

- Physics of ENZ Materials
- Huge NLO Response of ENZ Materials and Metastructures
- Non-perturbative Nature of the NLO Response
- Some Applications of ENZ Materials
Nonperturbative Nature of the NLO Response

1. The conventional equation $n = n_0 + n_2 I$ is not applicable to ENZ and other low-index materials. The nonlinear response is nonperturbative.

2. The problem is that n_2 is not a reliable metric under ENZ conditions. But n_2 is the standard way for quantifying intensity-dependent index changes. What can we do?

3. The nonlinear response can be accurately modeled in the $\chi^{(3)}$ limit by

$$n = \sqrt{n_0^2 + 2n_0 n_2 I}$$

where

$$n_2 = \frac{3\chi^{(3)}}{4n_0 \text{Re}(n_0) \epsilon_0 c}.$$

and

$$I = 2\text{Re}(n_0) \epsilon_0 c |E|^2.$$

4. More generally, the intensity dependent refractive index can be described by

$$n = \sqrt{\epsilon^{(1)} + 3\chi^{(3)} |E|^2 + 10\chi^{(5)} |E|^4 + \cdots}.$$
Nonlinear Response of ITO is Nonperturbative
Physics and Applications of Epsilon-Near-Zero Materials

- Physics of ENZ Materials
- Huge NLO Response of ENZ Materials and Metastructures
- Non-perturbative Nature of the NLO Response
- Some Applications of ENZ Materials
Giant Nonlinear Response of ENZ Metastructures

Boyd (Rochester), **Engheta** (UPenn), **Mazur** (Harvard), **Willner** (USC)

Concept

- **Nonlinear optical phenomena** currently require high-intensity sources, which are generally incompatible with nanophotonics.
- Photonics could have an enormous impact on many new fields if nonlinearity is fundamentally enhanced.
- **ENZ metastructures** provide giant tailorable nonlinearity.
- Enhanced nonlinearity will open door to manipulating light on the nanoscale.

Impact

- **New fundamental understanding** of light-matter interaction in ENZ/EMNZ materials.
- **Complete dynamic control** of beam parameters: amplitude, phase, polarization, wavelength, and propagation direction.
- **Low-threshold NLO devices** that are integrated, fast, tunable, broadband, power-efficient.

Approach

- Re-formulate nonlinear optics for non-perturbative regime.
- Explore experimental characteristics of ENZ/EMNZ platforms.
- Fabricate devices to exploit novel features.

Context

- Nonlinear optical phenomena require high-intensity sources, which are generally incompatible with nanophotonics.
- Photonics could have an enormous impact on many new fields if nonlinearity is fundamentally enhanced.
- **ENZ metastructures** provide giant tailorable nonlinearity.
- Enhanced nonlinearity will open door to manipulating light on the nanoscale.

Source Selection Information – see FAR 2.101 & 3.104
Some Potential Applications of ENZ Behavior

(a) Non-magnetic isolation
- Forward direction: Input beam → Output beam → NLO-ENZ → dielectric
- Backward direction: No output beam → Intense input beam
- Geometry mismatch.
- Non-uniform power distribution.
- Breaking reciprocity.

(b) Full-band shifting and conjugation
- Pump: $\Delta \geq 100$ nm bandwidth
- NLO-ENZ
- Output beam with shifted band: (backward FWM)
- Output beam with shifted band: (forward FWM)

(c) High-speed tunable interferometers
- Input beam → NLO-ENZ → Interference Output beam → Mach-Zehnder interferometer

(d) On-demand quantum emitter
- NLO-ENZ
- Short pulse laser
- Output photons
- Single photon detector
Ultrafast Holography and Beam Copying

- Real-time holography with sub-picosecond response time

- Schematic of beam-copying procedure

- Laboratory results

![Schematic of beam-copying procedure](image1)

![Laboratory results](image2)

- Signal conjugate (x5)
- Signal reference beam
- Signal (x5)
- Reference beam
- Object beam
• Extremely interesting physical processes occur in ENZ materials

• ENZ materials, metamaterials, and metastructures display extremely large NLO response

• The huge, ultrafast NLO response of ENZ materials lend themselves to many important applications

The visuals of this talk are posted at boydnlo.ca/presentations
Max Planck Centre for Extreme and Quantum Photonics

Research Interests:
Nonlinear optics, quantum optics integrated photonics, metamaterials, etc.
Special Thanks To My Students and Postdocs!

Ottawa Group

Rochester Group