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Knots are topological structures describing how a looped 
thread can be arranged in space. Although most familiar as 
knotted material filaments, it is also possible to create knots 
in singular structures within three-dimensional physical fields 
such as fluid vortices1 and the nulls of optical fields2–4. Here 
we produce, in the transverse polarization profile of opti-
cal beams, knotted lines of circular transverse polarization. 
We generate and observe both simple torus knots and links 
as well as the topologically more complicated figure-eight 
knot. The presence of these knotted polarization singularities 
endows a nontrivial topological structure on the entire three-
dimensional propagating wavefield. In particular, the con-
tours of constant polarization azimuth form Seifert surfaces 
of high genus5, which we are able to resolve experimentally in 
a process we call seifertometry. This analysis reveals a level 
of topological complexity, present in all experimentally gen-
erated polarization fields, that goes beyond the conventional 
reconstruction of polarization singularity lines.

Many physical systems enclose regions that have a singular 
nature, often manifested as curves in three-dimensional space car-
rying a discrete physical quantity. For instance, in superconductors, 
the singularities of the magnetic field carry quantized units of mag-
netic flux6, whereas in superfluids, the singularities of the wave-
function carry quantized circulation7. Similar structures also occur 
within optical beams, where they manifest as singular lines of opti-
cal phase along zeros of the amplitude, known as wave dislocations 
or optical vortices8–10. These strands form complex self-winding 
looped three-dimensional structures that can even adopt knotted 
configurations. Although not so obvious as the knotted singulari-
ties themselves, such configurations also affect the topology of other 
structures in the surrounding wavefield. Namely, the singularities 
bound a space-filling structure of twisted phase sheets—that is, sur-
faces where the phase of the wavefield is constant—whose physical 
properties may be analysed as topological objects in their own right.

Knotted phase singularities have been demonstrated both theo-
retically and experimentally in optical beams2–4. However, only torus 
knots, which can be represented as multi-strand helices wrapped 
around a torus, have been previously successfully generated experi-
mentally in optical fields3,4. The simplicity of the torus knot pre-
scription, especially the trefoil knot, has led these to be chosen as 
examples of knots generated in physical systems such as fluid vorti-
ces1 and colloidal particles configuring liquid crystals11. Other knots 
can have a more involved structure, requiring twisting and cross-
ing in multiple directions, which can be constructed theoretically 
in complex scalar fields12,13, but are more technically challenging  

to implement experimentally. For any optical vortex knot, the full 
characterization of the phase structure of the surrounding ampli-
tude is generally a difficult task given that the knots reside in low-
intensity regions of the beam which are bright elsewhere. A full 
reconstruction of the topology of the field around the knot reveals 
extra topological information about how the phase surfaces are glob-
ally inter-nested12. Being oriented, these are Seifert surfaces for the 
knot5, and the set of all Seifert surfaces fills the three-dimensional 
space occupied by the field’s intensity. However, these surfaces break 
down at three-dimensional critical points of the phase that are anal-
ogous to certain types of phase saddles14. These points are locally 
diabolos across which the integer genus of the Seifert surfaces (that 
is, the number of bridges/holes on the surface) jumps by ±  1. The 
total absence of these critical points would give a fibred knot5,13, and 
is mathematically possible for torus knots and other structures such 
as the figure-eight knot13. Other knots, however, are defined by a 
Morse–Novikov index indicating the minimum number of critical 
points12. Here we demonstrate a method of analysing the Seifert sur-
face structure—seifertometry—of the polarization ellipse orienta-
tions around various knotted polarization singularities.

Polarization singularities are associated with an optical field’s 
electric field vector, which, in a beam propagating along the z direc-
tion, in general executes an ellipse in the xy plane9,10,15–17. Both the 
ellipse shape (that is, the ellipticity) and orientation (that is, the 
polarization azimuth) are determined by Stokes parameters, s1, s2, 
s3, and vary with x,y,z. The ellipse is circular at points in two dimen-
sions, known as C-points, and along lines in three dimensions, 
known as C-lines9,10, where the polarization azimuth is undefined. 
Such polarization singularities organize the topological structure of 
the ellipse fields in the same way that vortex lines organize the opti-
cal phase. When longitudinal polarization is also included, C-lines 
acquire more complicated three-dimensional properties manifested 
as optical Möbius bands18–22.

Beams carrying polarization singularities can be generated by 
means of a coherent superposition of structured left- and right-
handed circularly polarized light16,17. In particular, the relative 
spatial intensity profiles of both polarizations define the ellipticity 
profile of the resulting beam. Likewise, the relative spatial phase 
profiles of both circular components determine the azimuth of 
the polarization ellipse. Therefore, beams that carry C-lines can be 
readily produced by superposing a circularly polarized beam carry-
ing phase singularities with an oppositely polarized beam that has a 
smooth phase profile.

The core of our method to generate optical polarization 
knots relies on the above superposition principles and the use of  
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holographic beam-shaping methods that allow precise control over 
a beam’s intensity and phase profile23. Further details regarding the 
employed generation scheme can be found in Fig. 1, the Methods, 
and the Supplementary Information. Namely, this scheme creates 
a space-varying polarized light beam with C-line singularities that 
undergo knotted trajectories upon free-space propagation. For such 
beams, the wavefield in which the knot is encoded consists of the 
complex Stokes field s1 +  is2, whose phase corresponds to twice the 
value of the polarization azimuth. The dynamics of the knotted 
C-lines are examined by measuring the optical field’s Stokes param-
eters, from which a complete reconstruction of the beam’s polariza-
tion pattern can be performed. These measurements also allow us 
to resolve sheets of constant polarization azimuth that terminate on 
the knot itself.

With this method, we reconstruct the contour surfaces on which 
the ellipse azimuth is constant and that form our polarization knots’ 
Seifert surfaces. In Fig. 2a,b we show the experimental and theo-
retical trefoil knot, one of its Seifert surfaces, and cross-sectional 
images of the knot’s polarization ellipse profile. We also perform 
similar experimental reconstructions of torus knots and a choice of 
azimuth Seifert surface for the Hopf link in Fig. 2c and the cinque-
foil knot in Fig. 2d (the other knot and link structures which were 

previously experimentally generated4). The knot types are suffi-
ciently simple to be classified by visual inspection, emphasized by 
appropriate projections in the figure, but we have also confirmed 
them by standard mathematical knot identification procedures 
summarized in the Methods24. The chosen Seifert surfaces for the 
knots in Fig. 2 seem to be the simplest surfaces spanning the knot; 
in the Supplementary Information, we observe that these particular 
surfaces have minimal genus.

In Fig. 3, we show the results of the first experimental generation 
of a figure-eight knot engineered in an optical field. This kind of 
knot must be embedded in a field of sufficient complexity, stated 
to be beyond the capability of previous implementations4. Using 
an improved hologram design13, our polarimetric measurements 
were sensitive enough to resolve and characterize its complex three-
dimensional pattern, which appears to have distinctly more struc-
ture than the torus knots discussed previously. The knot obtained 
from our experiments can be found in Fig. 3a next to its expected 
structure shown in Fig. 3b. Seifert surfaces for different polariza-
tion azimuths are shown in Fig. 3c,d. The topology of these surfaces, 
quantified by their genus, is different between theory and experi-
ment. In Fig. 3e, we plot, as a function of azimuth, the experimental 
and theoretical genus of the closed surface join of Seifert surfaces 

+

−π

+π
0

1

0

a.u.
a.u.

R
ad

λ
2

λ
2

λ
4

λ
2 M

M

M

LL

a

c

b

SLM

PBS PBS

IH

IH

IV ID IR

IA IL

s1 s2 s3

CCD
λ/4

0

1

−1

+1

Ii (a.u.)
S

i (a.u.)

R
ad

2π

532 nm

π
2

– π
2

Fig. 1 | Schematic of the experimental apparatus used to generate and characterize polarization singularity knots. a, Linearly polarized light emitted from 
a 532 nm diode laser is sent through a half-wave plate (HWP) balancing the beam’s horizontal and vertical polarization components. These components 
are then separated by a polarizing beam splitter (PBS) and sent through a folded Sagnac interferometer where each polarization component is individually 
modulated by a spatial light modulator (SLM) into a beam carrying knotted phase singularities and a Gaussian beam, respectively. The two beams, which 
now have different transverse modulations in addition to being orthogonally polarized, then exit the interferometer where they become superimposed. 
A quarter-wave plate (QWP) alters the two modulated linearly polarized components into circularly polarized beams, thus producing a space-varying 
polarized light beam carrying knotted C-lines. The beam is then imaged using two lenses (L) to probe the knotted dynamics of the C-lines. The beam’s 
characterization is performed through polarization tomography relying on a sequence of a QWP, a HWP, a PBS and a charge-coupled device (CCD) 
camera. b, The SLM configuration used to produce beams carrying polarization singularity knots. Two holograms designed to individually modulate each 
component in the interferometer are placed side by side on the SLM as shown above. The intensity and phase profiles of the resulting beams are shown 
below the holograms, respectively. The images on the left correspond to the component with knotted phase singularities forming a trefoil knot upon 
propagation while the images on the right consist of the Gaussian component with a flat phase front. c, Required tomographic measurements attributed 
to the components shown in b. Namely, the intensity of horizontal (IH), vertical (IV), anti-diagonal (IA), diagonal (ID), left (IL), and right (IR) polarized 
components are used to calculate the beam’s reduced Stokes parameters s1, s2 and s3, which are thereafter employed to reconstruct the polarization profile 
of the beam and extract its polarization orientation profile. This profile is shown on the far right and highlights the regions carrying C-points along with four 
contours of constant azimuth that are coloured based on the value to which they are associated. Figure legends: λ /2: half-wave plate, λ /4: quarter-wave 
plate, M: mirror, and L: lens.
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for orthogonal polarization azimuths. The numerical procedure 
for calculating the genus is described in the Methods: the choice to 
use closed surfaces avoids numerical sampling issues at the knotted 

boundary of the polarization surfaces, but does not otherwise affect 
the analysis. We call the analysis of the continuous set of surfaces, 
and their quantification via genus, the seifertometry of the knotted 
complex polarization field (the same analysis is performed for torus 
knots in the Supplementary Information).

Theoretically, for almost all values of azimuth except those close 
to 0 and π /2, the genus takes the minimal value of 1 for each of the 
Seifert surfaces, and 2 in small intervals around 0 and π /2, which 
are doubled when the surfaces are joined. An illustration of the 
genus discontinuities close to 0 is shown in Fig. 3f; as the azimuth 
increases through 0, two bridges on the Seifert surfaces appear, then 
break through diabolos situated at three-dimensional (3D) critical 
points (in fact corresponding to the two-dimensional (2D) cyan 
saddle points in Fig. 3b). Experimentally, however, values of genus 
from 2 up to approximately 16 are found in the measured volume, 
despite the knotted singularity being preserved. This indicates that 
the topology of the experimental Seifert surfaces is strongly dis-
rupted by the presence of extra critical points in the azimuth func-
tion, each of which causes the genus to jump. The maximum genus 
occurs where the azimuth is near to 0 and π /2, as with the theo-
retical plot, indicating these surfaces are particularly unstable and 
3D critical points may tend to occur close to these values. This is 
due to experimental imperfections such as aberrations, which are 
sufficiently small to ensure the existence of the rather complicated 
figure-eight knot structure in the polarization singularity lines, but 
cause the existence of critical points in the azimuth elsewhere in the 
3D volume. Achieving agreement of the genus of constant azimuth 
surfaces with the theoretical profile seems to be much more chal-
lenging than simply realizing knotted singular lines.

Such seifertometric measurements could help illuminate the 
difficulties in forming particular types of knotted fields, and for 
instance could be used to optimize beam parameters by stabiliz-
ing their polarization structures rather than by adjusting the shape 
of the singularities themselves. Smoothing experimental imper-
fections will cause the critical points to move and react with each 
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Fig. 2 | Topological traits of torus structures. a,b, Depiction of the various 
entities attributed to an optical trefoil knot corresponding to experimental 
(a) and theoretical results (b). In this display, the knotted trajectories of 
the C-lines are shown in red and the Seifert surface defined by regions with 
an azimuth of ±  π /2 are displayed in pale red. The transverse polarization 
profile of the optical knot is shown for different propagation distances as 
cross-sectional images. c,d, A similar experimental surface reconstruction 
is performed for other torus structures, including a Hopf link (c) and a 
cinquefoil knot (d). The polarization profile in the focal plane of these 
optical structures is shown at the bottom right corner of the surfaces.  
All three-dimensional images are accompanied by a top-view image in 
which crossings have been made more noticeable. The aspect ratios of the 
plots were chosen to better depict the main features of the knots’ structure 
and do not necessarily scale to the real dimensions of the knots. Additional 
details surrounding the knots’ dimensions can be found in the Methods.
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Fig. 3 | Topological characterization and seifertometry of an optical figure-eight knot. a–d, Optical polarization figure-eight knots reconstructed 
from experiment (a) and theory (b) along with the knotted beam’s polarization structure at the focal plane and an axial view in which crossings have 
been emphasized. The Seifert surfaces of these structures are shown in c and d, respectively, where they are labelled by the polarization azimuth value 
attributed to the surface. Enlarged versions of these surfaces can be found in the Supplementary Information. e,f, Numerically extracted genus of the 
closed surfaces which are the join of pairs of Seifert surfaces with azimuth values different by π /2 (e) (see Methods). In theory, the genus remains 
constant except in the vicinity of the 0 orientation surfaces, where it spikes due to the addition of two holes in the surface as shown in f, where surfaces 
with azimuths of − 1/40, 0 and + 1/40 are shown.
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other, eventually causing them to annihilate to a minimal number. 
However, our results indicate that these events are far more subtle 
and delicate even than manipulating polarization singularity lines, 
and their topological processes are currently not understood in 
optical fields.

To summarize, we demonstrated the ability to generate optical 
polarization fields with mathematically nontrivial 3D topology, by 
creating knotted polarization singularities in the form of torus knots 
and links, and the figure-eight knot, and showing that they can be 
accurately characterized by means of polarimetric measurements. 
This allows detailed reconstruction of a knotted field’s structural 
elements, especially its Seifert surfaces, and we described the basis 
of our seifertometric analysis. Our method could lead to the devel-
opment of schemes used to generate and characterize more com-
plicated optical structures12,13 that are of fundamental or applied 
interest. Although our intricate apparatus allows for the generation 
of highly customizable structures, it could also potentially be scaled 
down using devices that are routinely used to produce polariza-
tion singularities17,25. Such devices could be used to generate sim-
pler structures with reduced aberrations that could be practical for 
applications. The quantum nature of these knots26 could also be 
explored within the framework of polarization pattern entangle-
ment27,28. The idea of seifertometry can also be extended to random 
polarization fields, whose 3D singular lines have been previously 
studied14, and in which a wide variety of knots have been found in 
large-scale simulations29. Finally, the generation of our polarization 
structures motivates their study in physical systems that display 
exotic nonlinear dynamics when illuminated with space-varying 
polarized light beams30. For instance, the seifertometry procedure 
could be used to investigate nonlinearly induced critical points in 
the knot’s structure.

Methods
Methods, including statements of data availability and any asso-
ciated accession codes and references, are available at https://doi.
org/10.1038/s41567-018-0229-2.
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Methods
Generation scheme for optical polarization knots. As shown in Fig. 1, by means 
of a folded Sagnac interferometer26,31, we can produce a beam defined by distinct 
opposite circular polarizations, one of which is defined by phase vortices that 
experience knotted trajectories upon propagation, and the other consisting of 
a conventional Gaussian beam that is sufficiently large to match the transverse 
extent of the knotted component. Each of these two beams is modulated by 
means of phase holograms that simultaneously structure their intensity and phase 
profiles23 to precisely produce optical configurations displaying knotted dynamics. 
The beam resulting from this superposition therefore consists of a space-varying 
polarized light beam with C-line singularities that undergo knotted trajectories 
upon free-space propagation. By measuring the beam’s Stokes parameters, we can 
perform a polarimetric reconstruction of its transverse polarization distribution. 
This distribution thereafter allows us to resolve the positions of the C-lines and 
of sheets of constant polarization azimuth that terminate on the knot itself. 
To generate our knots, we specifically employ computer-generated holograms 
that are displayed on a spatial light modulator (Holoeye, Pluto series). Specific 
details regarding the holograms themselves are provided in the Supplementary 
Information. In consideration of the imaging lenses in the set-up, which reduced 
the knots’ beam size by a factor of 2/5, these holograms produced optical knots 
defined by a transverse extent of roughly 1 mm and a length varying between 15 to 
30 cm depending on the generated knot. Polarization measurements are recorded 
by means of a CCD camera (Thorlabs DCU223C).

Characterization limitations of optical knots with phase singularities. From a 
practical point of view, measuring knotted polarization singularities by polarimetry 
is a more accurate way of characterizing the structure of knotted optical fields 
than measuring optical vortices in scalar fields by either intensity measurements 
or phase contrast. Superposing an orthogonally polarized component without 
vortices to a scalar field containing a knotted vortex reduces the variation of overall 
intensity across the light beam, whereas optical vortices occur in low-intensity 
regions32. For scalar field measurements4, the only way phase can be determined 
is by interfering the hologram’s phase with a sequence of reference waves. Since 
the detector contrast is optimized for dark regions, measurements become 
oversaturated in higher-intensity regions. Here, the polarization azimuth around 
the knotted polarization singularities, analogous to the scalar phase, is determined 
directly from measured Stokes parameters.

Procedures for numerical seifertometry. The numerical procedure for calculating 
the genus of the polarization surfaces is as follows, and uses certain standard 
methods for the topological analysis of surfaces. First, rather than taking every 
surface separately, it is numerically simpler to trace the pair of surfaces with 
azimuths φ, φ +  π /2, which together form a smooth surface passing through the 
knotted singularity. The genus of the surfaces is additive, so this does not affect 
the quality of the results but avoids introducing unnecessary boundaries. The 
input to the genus calculation is then an array of complex numbers representing 
the value of the wavefield at different points, which may be obtained numerically 
or experimentally. The surfaces of constant argument of the complex numbers, 
corresponding to surfaces of constant polarization azimuth, are extracted using the 
standard ‘marching cubes’ algorithm, which returns a numerical triangulation of 
the surface33.

This triangulation can then be used to obtain the surface’s Euler characteristic 
χ =  V −  E +  F, where V is the number of distinct triangle vertices, E is the number 
of distinct edges, and F is the number of triangle faces. Note that most vertices and 
edges are shared between triangles, except on boundaries of the surface. Finally, 
the genus is obtained as g =  (b −  χ +  2)/2, where b is the number of boundary 
components of the triangulation. This numerical procedure is simple but efficient, 
and it is easily practical to sample many tens or hundreds of different polarization 
surfaces from a given input array.

The main limitations of this procedure come from the resolution of the input 
measurements, as the recovered surfaces essentially arise from linear interpolation 
between the measured points of the field. This does not appear to be a major issue, 
as the experimental resolution is high on the scale of the knotted structures, and 
the polarization sheets are recovered without difficulty. It is also important that 
the genus is a topological quantity, and so is not affected by distortions in the 
approximated local geometry.

Identifying knots. In general our curves are sufficiently simple that their knot 
type can be determined by visual inspection, made easier by appropriate choices 
of projection as shown in Figs. 2 and 3a,b. However, this is unsatisfactory as a 
method for automated data analysis, and we have also confirmed the knotting by 
mathematical calculation.

The knot type is found algorithmically by calculating ‘knot invariants’ of the 
curve. These are functions that depend only on its knot type, regardless of the local 
geometry5. The knot is found by calculating one or more invariants, then finding 
the knot type from a pre-determined knot catalogue. Knot invariants are not in 
general perfect discriminators of different knots, but when the curves are not 
very tangled (as in our data) even simple choices are sufficient to unambiguously 
determine their topology.

We detect our knot types using primarily the standard Alexander polynomial 
invariant, implemented in the pyknotid knot identification toolkit24 (the algorithm 
is standard34). The Alexander polynomial is easy to calculate but not an especially 
discriminatory choice compared to more powerful invariants. However, our 
knotted vortices are geometrically relatively simple, even if this is not clear to 
the eye. This allows the numerical routines to bound the maximum possible 
complexity of its knot topology, identifying the curve unambiguously as the single 
specific knot we expect.

Data availability. The data that support the plots within this paper and other 
findings of this study are available from the corresponding author upon  
reasonable request.
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