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Discriminating between Fock states with a high degree of accuracy is a desirable feature for modern applications
of optical quantum information processing. A well-known alternative to sophisticated photon number discrimi-
nating detectors is to split the field among a number of simple on/off detectors and infer the desired quantity from
the measurement results. In this work we find an explicit analytical expression of the detection probability for any
number of input photons, any number of on/off detectors, and we include quantum efficiency and a false count
probability. This allows us to explicitly invert the conditional probability using Bayes’ theorem and express
the number of photons that we had at the input in the most unbiased way possible with ready-to-use formulas.
We conclude with some examples. © 2018 Optical Society of America

OCIS codes: (040.5160) Photodetectors; (030.5260) Photon counting; (040.1240) Arrays; (040.1520) CCD, charge-coupled device.
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1. INTRODUCTION

For practical applications of optical quantum information
processing, it would be a great advantage to have a detector
that can discriminate between different photon number states
[1,2]. There are currently several different solutions that allow
one to achieve this to some extent [3–7], but the resources that
such detectors require (such as very low temperatures, particu-
lar materials, and/or optical configurations) may make them
costly to obtain and not straightforward to operate. There
are workarounds that involve squeezing more information
out of the conventional detectors [8,9], or by demultiplexing
the photons in time or space and directing them toward one or
multiple single-photon detectors [10–27].

The most common single-photon detectors are only able to
tell us whether they detected “zero photons” or “more than zero
photons.” Furthermore, they are subject to noise and a sub-
optimal efficiency, which means that sometimes they click
when they should not have or that they do not click when they
should have [28,29].

In this work we study photon-number discrimination by
demultiplexing, and our novel contribution is explicit formulas
that are straightforward to implement and that take into
account quantum efficiency and noise, as well as any number
of detectors.

2. DISCRIMINATION PROBABILITY

We consider a balanced linear device that converts D inputs
into D outputs. A single-mode input then becomes

â†in →
XD
j�1

b̂†jffiffiffiffi
D

p : (1)

A possible physical model for this device can be a cascaded se-
quence of D − 1 conventional beam splitters, with reflectivities
1
D,

1
D−1…

1
2 [30], but other possibilities exist; for example, using

a top-hat pulse with uniform spatial intensity [31], followed by
an array of detectors. We note that all-optical solutions are just
one area of applicability of our results, which can be applied to
any demultiplexer with a final set of detectors, which can be
even as large as the set of pixels in an electron multiplying
charge-coupled device (EMCCD) or an intensified charge-
coupled device (ICCD).

Note that a demultiplexer should avoid closed paths,
because photons, being bosons, would undergo the Hong–
Ou–Mandel effect and bunch together instead of spreading
out into the available modes, which defeats the purpose of
the demultiplexer. Furthermore, in the absence of closed paths
we are not required to take phases into account and the prob-
lem reduces to a classical counting problem.
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The demultiplexer finally couples to a set of on/off single
photon detectors. We wish to calculate the probability of
observing C clicks, given an initial photon number state of
N photons and given that all D detectors have a quantum ef-
ficiency η and a dark count probability ε. We start from the
ideal case η � 1, ε � 0 and then move on to the general case
0 ≤ η ≤ 1, 0 ≤ ε ≤ 1 and from the general case we retrieve a
simple corollary that holds for 0 ≤ η ≤ 1, ε ≪ N∕D.

A. Ideal Detectors
The fundamental ingredient for our analysis is the probability
of distributing N photons into exactly C out of D detectors.
We start by numbering the detectors from 1 to D, then a cer-
tain string of numbers will describe an event, where the detec-
tors numbered in the string are the ones that clicked. Note that
in the absence of noise the number of clicks cannot exceed the
number of input photons, i.e., C ≤ N .

Lemma (ideal detection). The probability of observing C
clicks by distributing a Fock state of N photons evenly among
D ideal on/off detectors (i.e., noiseless and with 100% quantum
efficiency) is given by

PD�C jN � �
�
D
C

�
C !
DN SC

N , (2)

where S is the Stirling number of the second kind.
Proof. Our goal is to compute the fraction of detection

strings (i.e., the strings of numbers describing a detection event,
as described above) that include exactly C out of D detectors,
modulo reorderings.

Call Si the set of strings corresponding to N input photons
that do not include the ith detector. Then select a specific subset
K of cardinality jKj � k from theD detectors. The set of strings
that exclude the detectors in K is the intersection of the sets ex-
cluding each of the elements of K: ⋂i∈KSi and its cardinality is���⋂

i∈K
Si
��� � �D − k�N , (3)

as we have N choices with repetition, from �D − k� possible
detectors. Of course, we are also counting strings that exclude
any other detector, in addition to the ones in K. To get around
this problem, we use the inclusion–exclusion rule to count the
elements in unions of sets Si. In particular, we need the union
of Si for i ∈ f1,…,Dg, i.e., the set of all strings that exclude
at least one detector, whose cardinality is���� ⋃

D

i�1

Si

���� �
XD
j�1

�−1�j�1

�
D
j

�
�D − j�N : (4)

The complement of this set is the set of strings that include
all D detectors (if they missed any they would belong to
⋃D

i�1Si), whose cardinality is����⋃
D

i�1

Si

���� � DN −

���� ⋃
D

i�1

Si

���� �
XD
j�0

�−1�j
�
D
j

�
�D − j�N : (5)

Finally, we can compute the number of strings that include
precisely C out of D detectors: pick D − C detectors to be ex-

cluded (there are
�D
C

�
ways of doing this) and compute the

number of strings that include all of the remaining C detectors:

�
D
C

�����⋃
C

i�1

Si

���� �
�
D
C

�XC
j�0

�−1� j
�
C
j

�
�C − j�N (6)

�
�
D
C

�
C !SC

N , (7)

where SC
N is the Stirling number of the second kind. So the

probability of ending up with exactly C clicks is the result above
divided by the total number of possible strings DN :

PD�C jN � �
�
D
C

�
C !
DN SC

N , (8)

and our proof is complete (see Eq. (14) in [27] for an implicit
positive operator-valued measure (POVM) representation). □

B. Nonideal Detectors
Nonideal detectors are subject to mainly two effects: sub-unity
quantum efficiency and noise, which can come from various
sources. We model these as Bernoulli trials, where for each de-
tector we have a probability η of missing the photon and a
probability ε of a false count within the measurement window,
in which case we are informed that the detector clicked regard-
less of a photon hitting it or not. Whether a detector detects an
actual photon or gives a false count, we consider it unable to
give further clicks until the electronics have enough time to
reset (e.g., about 40 ns for avalanche photodiodes). In this sec-
tion we take both of these effects into account.

Theorem (noisy detection). The probability of observing C
clicks by distributing a Fock state ofN photons evenly amongD on/
off detectors with quantum efficiency η and false count probability
ε, indicated as PD,η,ε�C jN �, is given by

XC
i�0

pε�ijD�
XN
j�C−i

pD−i
D
�jjN �

Xj

k�C−i

pη�kjj�PD−i�C − ijk�, (9)

where pξ�mjn� �
�
n
m

�
ξm�1 − ξ�n−m is the probability of having

m successes out of n trials when the success probability of a single
trial is ξ.

Proof. The proof comprises of three steps, each of which is of
a similar nature: we consider all the ways in which an event can
happen and we sum the relative probabilities. In the first step
we split the observed number of clicks into spurious and real
clicks. In the second step we split the initial photons into
those that landed onto inactive detectors (the noisy ones)
and those that landed onto active ones. In the third step we
split the photons that landed onto active detectors into those
that were lost because of quantum efficiency and those that
were not. Finally, we use the ideal detection Lemma.

Step 1: We sum over the probability of obtaining C total
clicks by having i of them come from noise and C − i come
from actual detections. We write the probability of i false events

given D detectors as pε�ijD� �
�
D
i

�
εi�1 − ε�D−i.

Step 2: Now C − i clicks must come from real detection
events at the remaining D − i active detectors. The probability
that j out of N photons make it to the D − i active detectors
is pD−i

D
�jjN �.
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Step 3: As our detectors have a quantum efficiency η ≤ 1, the
probability of remaining with k out of j photons is given
by pη�kjj�.

Now we can now apply the Lemma to write the probability
of detecting C − i out of k survivor photons with D − i detec-
tors and combine these steps in the final result. □

There is a simple corollary of this theorem, which describes
the case ε � 0. Such corollary can be used even for noisy de-
tectors as long as the number of false positives is low
enough (Dε ≪ N ):

Corollary (noiseless detection). The probability of observing
C clicks by distributing a Fock state of N photons evenly among D
noiseless on/off detectors with quantum efficiency η is given by

PD,η�C jN � �
XN
k�C

pη�kjN �PD�C jk�: (10)

Proof. We use the identity p0�mjn� � δm,0 to replace every oc-
currence of i in the noisy detection theorem by 0, and the iden-
tity p1�mjn� � δm,n to replace every occurrence of j by N. This
gets rid of the first two summations and the result follows. □

Note that modeling the imperfect detectors by placing a
beam splitter with transmissivity η in front of ideal detectors
[32,33] would be wrong in this context because quantum effi-
ciency does not apply to false counts: first we exclude false
counts and photons that landed on inactive detectors, only then
we can factor in the quantum efficiency.

3. RETRODICTING THE PHOTON NUMBER

To retrodict the photon number given an observed number of
clicks, we have to invert the probability in the main theorem
using Bayes’ rule:

PD,η,ε�N jC� � PD,η,ε�C jN � Pr�N �P
kPD,η,ε�C jk� Pr�k�

: (11)

This general formula is always valid, but it cannot be solved
explicitly unless we specify the prior, which is what we will do
next, for some special cases of particular relevance.

A. Poisson Prior
In the case of a Poissonian prior with mean photon number μ
(which may occur when we deal with coherent states, for
instance), we have

Pr�N � � μN e−μ

N !
, (12)

and we can find an explicit expression for the ideal retrodiction
probability:

PPoisson
D �N jC� � C !SC

N

N !γN
1

�e1∕γ − 1�C , (13)

where γ � D∕μ.

B. Thermal Prior
In the case of a thermal prior with mean photon number μ
(which occurs, for instance, for two-mode squeezed vacuum
states), we have

Pr�N � � μN

�μ� 1�N�1
, (14)

and the ideal retrodiction probability can be written as

PTherm
D �N jC� � C !SC

N

�D� γ�N
Γ�D� γ�

Γ�D� γ − C�! : (15)

C. Considerations
When one moves away from the ideal case, quantum efficiency
typically matters more than the number of detectors. The prob-
ability of detecting all the input photons with a noiseless
apparatus saturates at a value lower than 1 even for an infinite
number of detectors:

lim
D→∞

PD,η�N jN � � ηN : (16)

The effect of noise in the detectors is tangible only when
their number is sufficiently large, for instance, when the num-
ber of spurious counts is comparable with the actual number of
photons hitting the detectors, i.e., when Dε ≈N . This fact
makes the noiseless detection corollary a good tool even in the case
of realistic detectors if we have a large enough number of them.

4. APPLICATIONS

We now would like to give a few examples of how to apply our
results. The examples will be about retrodicting the photon
number in order to herald some desired quantum states
and are based on our analytical results (not on Monte Carlo
simulations).

A. Example 1: Heralding of a NOON State
NOON states are two-mode states in the form �jN , 0i �
j0,N i�∕ ffiffiffi

2
p

. For this example we consider the following setup:
we replace the two mirrors in the middle of a Mach–Zehnder
(MZ) interferometer with 50:50 beam splitters and add detec-
tors to measure the photons that leak. This configuration (if the
phase difference between the two arms of the MZ is set to π∕2)
will output a �j4, 0i � j0, 4i�∕ ffiffiffi

2
p

state if we start with the
state j3, 3i and if each of the two detectors measures exactly
one photon.

Now the question is how well do we know that we had ex-
actly one photon at the detectors? If we resort to demultiplexed
detection, we first need to compute the prior joint probability
Pr�N 1,N 2� of having N 1 photons at detector 1 and N 2 pho-
tons at detector 2. This is achieved using simple input–output
relations for 50:50 beam splitters; we report it in Fig. 1.

Then, we apply Bayes’ rule (assuming that the two sets of
demultiplexed detectors are identical, but we could easily
modify the equation below to account for different configura-
tions) and find PD,η,ε�N 1,N 2jC1,C2� to be given by

PD,η,ε�C1jN 1�PD,η,ε�C2jN 2� Pr�N 1,N 2�P
k1, k2PD,η,ε�C1jk1�PD,η,ε�C2jk2� Pr�k1, k2�

: (17)

We finally use the quantity PD,η,ε�N 1,N 2jC1,C2� to infer
the retrodictive power of our demultiplexed detectors. To com-
plete the example, in Fig. 2 we plot the retrodicted probabilities
of four configurations: 4 and 64 detectors with 60% and 75%
quantum efficiency (and 500 dark counts/s, with 10 ns gated
measurement window), given that they both reported a single
click each.

For comparison, in Fig. 3 we plot the retrodiction proba-
bilities for a nondemultiplexed measurement.
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B. Example 2: Single-Photon Heralding from
Squeezed Vacuum
We now consider an example of single-photon heralding from a
two-mode squeezed vacuum, which is performed by producing
photons in pairs and heralding one by detecting the other. Such
a two-mode state can be generated by pumping a nonlinear
crystal with an intense coherent laser [34]. The output of
the process is a state in the following form:

Ŝ�ζ�j0, 0i �
X∞
n�0

einϕ
sinh �g�n

�sinh �g�2 � 1�n�1
2

jn, ni, (18)

where ζ � geiϕ is the squeezing parameter. For small enough
values of the gain g one can indeed ignore components with
photon number larger than one, but if the gain is too large,
the heralded state is likely to contain more than one photon.
If such states were further used for crucial applications, such as
quantum cryptography, they would be vulnerable, for example,
to the photon number splitting attack. Could a demultiplexed
detection scheme make for a better heralded single-photon
source? First note that the amplitudes of the two-mode
squeezed vacuum follow a thermal distribution, if we recognize
that sinh �g�2 is the mean photon number per mode. Then, we
apply Eq. (11) [we could use Eq. (15) in case our quantum
efficiency is high] to find the retrodicted photon number dis-
tribution, which we plot for a few examples in Fig. 4. Note that
as the gain increases, the probability of the various number
states levels off and becomes constant; but recall that these
probabilities are conditional on detecting a single photon,
whose probability will decrease with gain.

5. CONCLUSIONS AND OUTLOOK

In conclusion, we have shown the most unbiased way of ana-
lyzing a detection event in a demultiplexed measurement

Fig. 2. Plots of the probability of retrodicted photon number for
a NOON state heralding setup using demultiplexed detection.
Although the most probable case is the desired j1, 1i, its individual
probability can be quite low, which leads to a low fidelity with the
desired NOON state. The bottleneck in this case is quantum effi-
ciency: even increasing the number of detectors from 4 to 64 does not
perform as well as increasing the quantum efficiency from 60%
to 75%.

Fig. 1. Joint probabilities of having �i, j� photons (where i and j are
listed in the headings on top and on the left) at the detectors in the
modified MZ interferometer of the NOON state heralding example.
These are computed assuming the input j3, 3i.

Fig. 3. (Left) Pair of realistic detectors are likely to lie: if they report
a single click each, the state was more likely to be j1, 2i or j2, 1i or
even j2, 2i. (Right) Even a pair of ideal (100% quantum efficiency)
detectors assign equal probability to the states j1, 1i, j1, 2i, and j2, 1i.

Fig. 4. Plots of the probability of retrodicted photon number for a
squeezed vacuum state. Again, the bottleneck is quantum efficiency:
four detectors with 80% quantum efficiency are better at identifying a
single photon than 100 detectors with 60% quantum efficiency.
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scheme, taking noise and efficiency into account. The corollary
of our theorem can apply even to realistic situations if some
conditions on the noise are met, which can be very advanta-
geous as it is computationally much simpler to implement than
the full theorem.

Our results can be applied also to optical engineering issues,
such as on-chip denoising in consumer imaging devices, where
multiple pixels can fill an Airy disk and can be used to retrodict
the intensity more accurately. There are still interesting ques-
tions to be asked, for instance, whether it is possible to find
closed form solutions of Eq. (11) for useful priors when the
quantum efficiency is not unity, or if there is a reasonable
way of relaxing the assumption of uniform illumination. We
leave these to a future work.

Funding. Natural Sciences and Engineering Research
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