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Instabilities of laser beams counterpropagating through a
Brillouin-active medium
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Counterpropagating laser beams in a Brillouin-active medium are shown to become unstable to the growth of
amplitude and phase fluctuations. Slightly above threshold, the nature of the instability is the temporal growth of
sidemodes separated from the laser frequency by approximately the Brillouin frequency of the medium. This
process leads to sinusoidal oscillations of the intensities of the transmitted waves. At higher input intensities the
system can become chaotic; many sidemodes are excited, and the transmitted fields fluctuate wildly. The origin of
the Brillouin instability is the combined action of the gain of the standard stimulated Brillouin scattering (SBS)
process and of the coupling of the waves due to multiwave mixing mediated by the electrostrictive interaction. The
threshold for the instability is at least several times lower than the threshold of the standard SBS process involving a
single pump beam.

INTRODUCTION

One of the simplest processes in nonlinear optics is the
mutual interaction of two light waves in a nonlinear medi-
um. Despite its conceptual simplicity, several recent theo-
retical investigations have shown that this interaction can
lead to very complicated behavior, including chaotic fluctua-
tions of the intensities of the transmitted waves. The possi-
bility of instability in the interaction of counterpropagating
waves was considered by Silberberg and Bar-Joseph' for the
case of a medium with a Kerr nonlinearity having a nonin-
stantaneous response. They showed that for sufficiently
large input intensities the transmitted fields fluctuate in
time and that at high input intensities these fluctuations
become chaotic. The origin of this instability is the com-
bined action of the gain experienced by the sidemodes to the
input fields and of the distributed feedback due to scattering
from the grating formed by the interference between the two
input fields. More recently, Gaeta et al.2 have shown that
chaotic temporal fluctuations can occur in the polarizations
of counterpropagating waves in a polarization-sensitive Kerr
medium and that this instability can occur even for the case
of a medium with instantaneous response.

In this paper we treat the stability of counterpropagating
waves in a Brillouin-active medium. It is known from stud-
ies of stimulated Brillouin scattering (SBS)3 and Brillouin-
enhanced four-wave mixing4- 7 that the Brillouin interaction
leads to strong coupling among the interacting waves. The
great strength of this coupling suggests that instabilities can
occur readily in this system. In fact, Randall and Albritton8

have shown that very complicated periodic and chaotic be-
havior can occur for the different geometry in which a reflec-
tive boundary is placed at one end of a Brillouin-active
medium and a single laser field is applied. In addition,
periodic oscillations in the intensities have been predicted
and observed 9 for the case of SBS in an optical fiber placed
between two reflective mirrors. Moreover, Zel'dovich and
Shkunov10 and Andreev et al." have predicted that, in the
limit of a medium short enough so that phase-mismatch

effects can be ignored, counterpropagating waves can be
unstable to the growth of sidemodes at the Brillouin fre-
quency. Narum and Boyd7 have briefly discussed this same
instability for a medium of arbitrary length in the context of
Brillouin-enhanced four-wave mixing.

THEORETICAL DEVELOPMENT

We assume that the total optical field within the Brillouin-
active medium can be represented as the sum of the forward-
and backward-traveling plane-wave components as

ETOT(Z t) = I/2Ef(z, t)exp[i(kz - t)I

+ /2Eb(z, t)exp[i(-kz - cot)] + c.c. (1)

Owing to the process of electrostriction, the local density of
the medium is modified by the total optical field in accor-
dance with the linearized acoustic wave equation3 :

d - a rdd _ v2 2p = 2 d E 2

at
2 at az

2 az2 8r TZ2
(2)

where denotes the variation of the density from its mean
value p, r = 4/3po is a damping parameter, characterizes
the viscosity, v is the speed of sound in the medium, and is
the electrostrictive constant. In evaluating the electrostric-
tive driving term on the right-hand side of Eq. (2), we drop
those contributions that oscillate at optical frequencies. We
also assume that the optical fields obey the slowly varying
amplitude approximation in that laEj/al << kEjl for j equal
to f and b, in which case the right-hand side of Eq. (2)
becomes

2

qy (EfEb*eiq, + c.c.),
16w f7 e~

with q = 2k. The form of Eq. (2) can now be simplified by
introducing the complex representation

= /2p(z, t)eiqz + c.c.,
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making the slowly varying amplitude approximation for the
phonon field, and assuming that the phonons are strongly
damped, i.e., Ilap/tl >> (2Q2/q)Jap/az1, to give

a2P + r P + Q2p = q8 2 EfEb*, (4)

where r = r'q2 denotes the Brillouin linewidth and i = qv
denotes the Brillouin frequency. We now assume that the
dielectric constant of the medium has a contribution propor-
tional to the material density, in which case the nonlinear
(NL) polarization can be expressed as

PNL(z, t) = ' (z, t)EToT(Z, t) (5)
47rpo

We substitute NL and ETOT into the driven wave equation
and get

B2 ETOT 1 d 2ETOT 4ir a2pNL
az2 (c/n) 2 dt2 C2 at2

(6)

where n is the refractive index of the medium. We then use
Eq. (1), make the slowly varying amplitude approximation,
and thereby obtain the coupled amplitude equations for the
forward- and backward-traveling waves:

OEf 1 c3E1-+ - =iKpEb,
daz (c/n) t

aEb 1 Eb

dz (c/n) dt = -IKP*Ef,

where K = yc/4ponc. Equations (4) and (7) have been de-
rived previously 8 but were used to treat the case in which Eb

was generated by reflection of the transmitted field Ef. We
impose different boundary conditions, namely, we treat the
case in which both Ef and Eb are applied externally. As we
show below, complex temporal behavior can occur even
when there is no external feedback. Equations (4) and (7)
yield the following simple steady-state solution (designated
by the superscript zero):

p(z)= 2 Ef(z)Ebo*(z), (8a)
87rv2

Ef(z) = Ef(O)exP(igo r Ib Z (8b)

Ebo(z) = Ebo(L)exp[igo r If(L - z)] (8c)

where go = y
2
W

2/2rnvc 3po is the line-center Brillouin ampli-
tude gain coefficient and I? = (nc/87r)1Ef(0)2 and Ibo = (nc/
8r)lEb(L)12 are the input intensities of each wave. The
threshold for the usual single-beam SBS process is usually
taken as the condition that goIL be equal to 15, but we show
in the next section that the threshold for the Brillouin insta-
bility treated here is typically considerably lower. We see
from Eqs. (8) that in the steady state the fields do not
exchange energy but that the phase velocity of propagation
of each wave is affected by the intensity of the other wave.
The NL contribution to the phase shift is proportional to the
ratio r/Q of the Brillouin linewidth to the Brillouin frequen-
cy shift.

(7a)

(7b)

LINEAR STABILITY ANALYSIS

To determine the stability characteristics of the steady-state
solution [Eq. (8)], we perturb the amplitudes of the forward
and backward waves such that

Ef = Ef + f(z)ext + fa(z)exp(X*t),

Eb = Ebo + bS(z)ext + ba(z)exp(X*t),

(9a)

(9b)

where the second and third terms represent small perturba-
tions to the steady-state solution. If Re X > 0, the steady-
state solution will be temporally unstable to the growth of
these perturbations. We now insert these expressions for
the electric fields into Eqs. (4) and (7) and derive the linear-
ized equations for the perturbation amplitudes:

df = r /cn E o* b,
__=(-Xn/c + gIbo)f, + igo Q cn Ef bdz b/s

+ g(87r Ef° Ebo)ba*,

db, r/cn '
dz =(n/c -gIf°)b - igoQ( Ef b)

dz Q 8i) r I

- g(cn Efo Ebo fa*,

(lOa)

(lOb)

da = _(Xn/c + gIb)fa* - ig 0 (8 Ef( Ebo)ba*

- g(cn Efo* Eb*)b,

da* = (Xn/c + gIfo)ba* + 90 (8 Ef° Ebo*)fa*
dz + i 0 87 r I

+ g(8 E(f Ebo*)fS,

(lOc)

(lOd)

where

i2+ Q
(lOe)

To understand the nature of the coupling described by
these equations, we assume that Im > O. [Because A and
X* of Eqs. (9) form a complex-conjugate pair, we can always
require X to have this property.] We can then interpret fs
and b, to be the amplitudes of the forward- and backward-
traveling Stokes fields, respectively, and fa and ba to be the
amplitudes of the forward- and backward-traveling anti-
Stokes fields, respectively. Then, for example, Eq. (lOa)
describes the spatial evolution of the forward-traveling
Stokes wave. The first term on the right-hand side de-
scribes the change in the propagation vector that is associat-
ed with X and with the normal SBS gain (proportional to g)
owing to the presence of the backward pump wave. From
Eq. (lOe) we can see that the gain coefficient g is resonantly
enhanced when Im X (i.e., the frequency difference between
the pump and Stokes fields) is equal to the Brillouin fre-
quency Q. The second term in Eq. (lOa) can be interpreted
as the scattering of the backward-Stokes wave from the
refractive index variation associated with the standing-wave
pattern created by the interference of the counterpropagat-
ing pump waves. This term describes distributed feedback
of the same type as that discussed by Silberberg and Bar-
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Fig. 1. Forward input intensity at (a) the threshold for instability
and (b) the frequency of oscillation, each plotted as a function of the
backward-to-forward input intensities for /u = 0.03 and for vari-
ous values of the normalized length of the medium 2nQL/c.

Joseph.' The third term describes the four-wave mixing
process arising from the scattering of the backward pump
wave from the retreating acoustic wave driven by the inter-
ference between the forward pump wave and the backward
anti-Stokes wave. The other equations [(lOb)-(lOd)] can be
interpreted in an analogous fashion. For each equation the
second term vanishes for the case of a sharp Brillouin line, r/
Q- 0, which is the limit in which SBS is usually studied. In
this limit the system of four coupled equations decouples
into two systems of two coupled equations; each system
describes a four-wave mixing process.' 0

We solve the linearized equations [Eqs. (10)] with pump
wave amplitudes given by Eqs. (8b) and (8c) by seeking
solutions for the perturbations that vary as exp(az). The
general solution for fs, b,, fa, and ba is then found in terms of
linear combinations of such solutions for each of the four
eigenvalues of a. The particular solution is found by apply-
ing the boundary conditions f8(0) = b,(L) = fa(0) = ba(L) = 0.
Because the steady-state solution is unstable for Re X > 0, we
find the threshold for instability by setting Re X = 0. More
than one solution to the linearized equations can be found
even under these conditions, and the different solutions
correspond to different longitudinal modes of the system
and to different oscillation frequencies Im X. The instabil-
ity threshold for the system is the lowest intensity that
yields a solution to the coupled linearized equations with
Re X = 0 for any value of Im X.

Typical results of the stability analysis are shown in Fig. 1
for the case of a Brillouin medium with r/Q = 0.03. In Fig.
1 (a) the normalized forward input intensity at threshold for
the Brillouin instability is plotted as a function of the ratio of
the input intensities for several different values of the nor-
malized length of the medium. In each case the system is
unstable in the region above the curve. Figure 1(b) shows
the normalized oscillation frequency Im X at threshold. The
oscillation frequency is close to the Brillouin frequency for
each case shown. The quantity 2nQL/c, which we call the
normalized length of the medium, is therefore approximate-
ly equal to the single-pass phase mismatch AL of the nearly
degenerate four-wave mixing process.7 The threshold input

intensity increases rapidly for a short medium (2nQL/c =
0.1) with balanced pumping (lb/If = 1). This increase occurs
because for balanced pumping the Stokes gain is equal to the
anti-Stokes loss, and for a short medium the coupling be-
tween the waves is sufficiently strong to prevent either wave
from growing.10"2" 3 For comparison, we have plotted in
Fig. 2 the results of the stability analysis for the case of a
medium with a much larger Brillouin linewidth such that I/
Q = 0.3. Although these two cases are quite similar in their
behavior near the threshold for instability, we will show
below that for sufficiently large input intensities the insta-
bility becomes chaotic for the case of r/o = 0.3.

The Brillouin instability predicted above is an example of
a dynamic instability in that the perturbation to the steady-
state solution grows exponentially in time and will thus
develop from an arbitrarily small initial perturbation. The
process usually known as SBS is the exponential spatial
growth of an input Stokes wave and hence is not a dynamic
instability. Even if no Stokes wave is applied externally, an
input Stokes (and anti-Stokes) wave is created by spontane-
ous Brillouin scattering, that is, scattering from thermally
generated phonons. The threshold for SBS excited by a
single laser beam and seeded by spontaneous Brillouin scat-
tering is described by the condition that the single-pass
amplitude gain golfL is approximately equal to 15. We see
from Figs. 1 and 2 that the threshold for the Brillouin insta-
bility is lower than the threshold for single-beam SBS for
most of the cases that we consider; hence the dynamic (Bril-
louin) instability will occur but SBS will not. However, the
threshold for instability predicted in Figs. 1 and 2 is higher
than that of single-beam SBS for the case of a short medium
with balanced pumping and for the case of a long medium
with imbalanced pumping. To determine whether SBS or
the dynamic instability will occur in these two cases, a more
detailed consideration of the initiation of SBS by spontane-
ous scattering must be performed. The effects of spontane-
ous Brillouin scattering on the present calculation can be
accounted for in an approximate manner by modifying the
boundary conditions for the perturbations so that the input
fields acquire nonzero values. For the case of highly imbal-
anced pumping, the physical situation is similar to that of
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Fig. 2. Same as in Fig. 1 but for the case of a much larger Brillouin
linewidth such that /Q = 0.3.
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Fig. 3. Forward input intensity at (a) the threshold for instability
and (b) the frequency of oscillation for each longitudinal mode of
the system. The forward input intensity is plotted as a function of
the normalized length of the medium for the case of equal input
intensities and r/Q = 0.3. The solid curve in (a) gives the lowest
threshold intensity for any mode, and the solid curves in (b) give the
corresponding oscillation frequency.

SBS with a single pump beam, and a threshold for SBS is
simply gIL = 15, where I is the intensity of the stronger
pump beam. Therefore, since in this limit the dynamic
instability treated here has a higher threshold, it is probably
not observable experimentally for this case. For the case of
a short medium (2nQL/c << 1) with balanced pumping, the
situation is quite different. Here, as mentioned above, the
coupling between the Stokes wave (which, in the absence of
coupling, experiences gain) and the anti-Stokes wave
(which, in the absence of coupling, experiences loss) is so
large that the coupled solution experiences little net gain,
and, as a result, even the usual SBS process is suppressed by
the presence of counterpropagating pump waves.10 To see
that even the normal SBS gain is suppressed by the presence
of the counterpropagating pump wave, we consider the sim-
ple limiting case in which r/Q approaches 0 and the Stokes
and anti-Stokes waves are tuned exactly to the Brillouin
resonance. By solving Eqs. (10a) and (lOd), we find that the
transmitted Stokes field strength is related to the input
Stokes and anti-Stokes fields when If = Ib and in the limit
gIfL >> 1 by

f3 (L) = 2f,(O) + ba*(L).

for any mode. Local minima in this threshold occur for
2nQL/c approximately equal to integral multiples of 7r. The
solid curves in Fig. 3(b) give the oscillation frequency of the
mode with the lowest threshold. This frequency is approxi-
mately equal to the Brillouin frequency except for the case of
a short medium, in which case the lowest-frequency mode of
the system has an eigenfrequency much greater than the
Brillouin frequency.

Silberberg and Bar-Joseph'4 have shown that the origin of
the instability of counterpropagating waves in a Kerr medi-
um with noninstantaneous response is the combined action
of the gain experienced by the sidemodes of the pump fre-
quency and distributed feedback. Distributed feedback1 5

results from the scattering of light at the sidemode frequen-
cies from the grating induced by the interference between
the two pump waves. However, this gain-distributed feed-
back mechanism does not appear to be the origin of the
instability for the case of a Brillouin-active medium. The
Brillouin instability occurs even in the limit of a medium
with a sharp Brillouin linewidth, although, as mentioned
above, there is no distributed feedback structure in this
limit. The Brillouin instability appears to be more closely
related to the infinite reflectivity that is predicted to occur
for certain values of the pump intensity in phase conjugation
by four-wave mixing. We can establish this connection
most simply by considering the limit r/Q - O, in which case
the linearized perturbation equations [Eqs. (10)] decouple
into two sets of equations. Each set describes a four-wave
mixing process. These equations are identical to those de-
scribing Brillouin-enhanced four-wave mixing, and the Bril-
louin instability is a consequence of the infinite reflectivity
that can occur in phase conjugation by Brillouin-enhanced
four-wave mixing. 7 Infinite reflectivity is also predicted for
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Hence, in the presence of counterpropagating pump waves,
the Stokes field is amplified only by a factor of approximate-
ly 2, although the amplification in the presence of a single
pump wave of the same intensity would be exp(gIfL), where
gIfL was assumed to be large.

In Fig. 3 we have plotted the normalized length of the
medium versus the normalized input intensity goIfL [Fig.
3(a)] and normalized oscillation frequency (Im X - )/r
[Fig. 3(b)] corresponding to each of the allowed solutions of
the linearized perturbation Eqs. (10) with Re X = 0. We
assume the case r/u = 0.3 and balanced pumping (b/If = 1).
The various U-shaped curves in Fig. 3(a) can be interpreted
as the threshold for instability for the different longitudinal
modes of the system. The solid curve in Fig. 3(a) corre-
sponds to the lowest input intensity that leads to instability
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Fig. 4. Temporal evolution of the transmitted intensity of the
forward-traveling wave for the case 2nQL/c = 2, r/9 = 0.03, and
equal input intensities. For all input intensities shown, the output
oscillates periodically with a fundamental frequency equal to the
Brillouin frequency.
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Fig. 5. Temporal evolution of the transmitted intensity of the
forward-traveling wave for the case 2nQL/c = 2, r/s2 = 0.3, and equal
input intensities. As the input intensities are increased, the system
becomes chaotic following the period-doubling route. For input
intensities such that goIfL = 3, the output oscillates with a funda-
mental frequency equal to the Brillouin frequency. For input in-
tensities golfL = 5 and goIfL = 8 the output oscillates with a funda-
mental frequency equal to one half and one quarter, respectively, of
the Brillouin frequency. For goIfL = 15 the temporal evolution is
chaotic.

phase conjugation by degenerate four-wave mixing in a Kerr
medium,'6 and it might be thought that this infinite reflec-
tivity is related to the instabilities that can occur with coun-
terpropagating beams in a Kerr medium.1"2 However, in the
scalar limit such instabilities occur only for the case of a
medium with noninstantaneous response, whereas the infi-
nite phase-conjugate reflectivity is predicted for any value of
the medium response time. Infinite reflectivity in degener-
ate four-wave mixing in the phase-conjugation geometry
does not necessarily imply instabilities in counterpropagat-
ing waves for the following reason: When the angle between
the pump and probe waves in the phase-conjugation geome-
try becomes sufficiently small, additional nearly phase-
matched contributions to the nonlinear polarization, known
as cross-coupled waves, become important.' 7 These addi-
tional contributions prevent the development of the insta-
bility unless the medium has a noninstantaneous response.
Curiously (and importantly), the cross-coupled waves do not
contribute for the case of a Brillouin-active medium with r
<< Q because these additional contributions are not Brillouin
resonant. Moreover, polarization instabilities in counter-
propagating waves have been shown theoretically to exist
even for a medium with instantaneous response,2 and a relat-
ed instability has been observed experimentally.'8

NUMERICAL EVALUATION OF THE COUPLED
NONLINEAR EQUATIONS

To determine the full dynamic behavior of the system above
the threshold for instability, we have numerically integrated
the coupled nonlinear equations [Eqs. (4)-(7)] in both space
and time by using the method of characteristics. In per-
forming the numerical integration, we ramp on the input
fields slowly starting at time t = 0 to simulate the turn-on
characteristics of the laser. We display the results of these
calculations in Figs. 4 and 5 over a time interval that begins
60 transit times after time t = 0. At this time the temporal
evolution is no longer dominated by transient effects associ-
ated with the turn on of the laser. Figure 4 shows the
temporal evolution of the output intensity of the forward-
traveling wave for several different values of the input inten-
sity when r/Q = 0.03 and 2nQL/c = 2 and for equal input
intensities. In each case shown the output oscillates period-
ically with a fundamental frequency approximately equal to
the Brillouin frequency.

Results of the numerical calculation for the same condi-
tions as those of Fig. 4, except assuming the case of a broader
Brillouin line (r/Q = 0.3), are shown in Fig. 5. For this case
of a broader Brillouin linewidth, the output displays chaotic
fluctuations for sufficiently large input intensities. The sys-
tem evolves from a stable state to a chaotic state as the input
intensities are increased following the period-doubling
route. For input intensities slightly above the threshold for
instability (golfL = 3), the transmitted intensity oscillates at
the Brillouin frequency. However, for the higher input in-
tensity go0 L = 5, the output intensity oscillates periodically
with a fundamental frequency equal to one half of the Bril-
louin frequency. For still higher intensities (golfL = 8), the
output intensity oscillates with a fundamental frequency
equal to one quarter of the Brillouin frequency. At the
highest intensity shown (golfL = 15), the output intensity
fluctuates in a chaotic fashion. We have verified that the
output is chaotic in the strict sense by using the method of
Grassberger and Procaccia.19

CONCLUSIONS

We have demonstrated that counterpropagating waves in a
Brillouin-active medium are temporally unstable above a
certain threshold intensity. We have also shown how the
threshold for instability varies as a function of the ratio
between the input intensities Ib/If for various values of the
wave-vector mismatch, which is proportional to 2nQL/c.
We have found that even when one of the beams is relatively
weak, the instability can occur at a threshold intensity much
lower than that normally required for single-beam SBS in-
volving only the stronger wave. The temporal evolution
immediately above this threshold is periodic and at higher
intensities can, for the case of a relatively broad Brillouin
linewidth, become chaotic.
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