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Population pulsations and the dynamic Stark effect
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We present a theoretical description of the interaction of optical waves due to the resonant nonlinear response of an
atomic system. We emphasize how the resonant nature of the nonlinear coupling is modified by the shifting of the
atomic energy levels as a consequence of the dynamic Stark effect and show the equivalent role played by population
pulsations in determining the nature of the nonlinear coupling. A general formalism is developed to treat these
effects and is explicitly applied to several examples of current interest, including single-beam saturation spectrosco-
py, pump-probe saturation spectroscopy, modulation spectroscopy, degenerate four-wave mixing for phase conju-
gation, and instabilities in the beam propagation through resonant media.

1. INTRODUCTION

This paper treats the subject of one or more weak waves
interacting with a two-level medium subjected to a strong
wave. Examples of these kinds of interaction include probe-
saturator spectroscopy,'-'0 modulation spectroscopy,711-15

resonance fluorescence, 6 -19 phase conjugation by four-wave
mixing,2 0-26 optical instabilities,2 7 -32 and the generation of
squeezed states.33 -3 5 There are two main approaches to
these interactions: (1) the dressed-states method36-3 9 and
(2) the bare-states or population-pulsation method. 8 4 0'4'
The former uses eigenstates of the coupled strong-wave/
atom Hamiltonian, and the latter uses the unperturbed
eigenstates. The approaches are equivalent, but each offers
certain computational advantages and its own special in-
sights. For example, it is easy to understand that the popu-
lations of unperturbed energy eigenstates pulsate at the beat
frequency between two modes interacting with them, much
as a square-law detector responds to the beat frequency
between two waves incident upon it. On the other hand, it is
also natural to envisage an atom interacting with a strong
wave as a modified atom-field system whose energy eigen-
states are fairly easily obtained. The weak fields then probe
this atom-field system. This second approach is useful in
demonstrating how the resonant structure of the nonlinear
mixing process is modified by the presence of the intense
field.

To concentrate on the basic phenomena, we consider only
homogeneously broadened two-level media interacting with
classical fields. Extensions to inhomogeneously broadened
media, more levels, and quantized fields are given in the
references. Section 2 introduces the dressed-states ap-
proach. Section 3 treats an arbitrarily intense single-mode
field interacting with a two-level atom. This section intro-
duces our population-matrix notation and derives the sin-
gle-mode absorption coefficient. Section 4 uses the single-
frequency polarization of Section 3 to calculate two impor-
tant multimode generalizations of the single-mode case,
namely, the degenerate-frequency cases of the probe-ab-

sorption coefficient and the coupled-mode equations for
four-wave mixing. We find that the absorption experienced
by the probe is substantially reduced below that experienced
by a single wave of the same total intensity. This result can
be understood as a consequence of the constructive scatter-
ing of the strong wave into the path of the probe wave,
thereby reducing the absorption of the probe wave. Simi-
larly we see that the coupling between the signal and conju-
gate waves in four-wave mixing can be understood in terms
of the scattering of the pump off a nonlinear-response grat-
ing whose origin can be traced to population pulsations.
Section 5 generalizes this single-frequency discussion to
treat nondegenerate interactions that reveal the pulsations
at the probe-saturator beat frequencies. Section 6 illus-
trates the nondegenerate absorption and reflection spectra
predicted by the theory.

2. DRESSED-STATES APPROACH

In this section we see how the energy-level structure of a two-
level atom is modified by the presence of a strong monochro-
matic, saturating laser field.36 We use a particularly simple
model that ignores damping effects and assumes that the
time evolution of the system is governed by the semiclassical
Hamiltonian

= No + cY(t). (1)

Here So is the Hamiltonian of the unperturbed atom and
W(t) is the electric-dipole interaction energy

"V(t) = erE(t), (2)

where -er is the atomic electric-dipole operator (-e is the
charge of the electron) and E(t) is the laser electric field

E(t) = l/e6e-ivt + c.c. (3)

We assume that the energy eigenstates of the unperturbed
Hamiltonian are given by
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frj(r, t) = uj(r)exp(-iwjt) j = a, b.

The requirement that each i/j satisfy the Schrddinger equa-
tion

ih 4(r, t) = WO(r, t)
at (5)

for W equal to the atomic Hamiltonian No implies that the
spatially varying part of the wave function must satisfy the
equation

Wfouj(r) = hjuj(r). (6)

In the presence of the intense laser field, the wave function
of the atom can be represented as a linear superposition of
the two eigenstates as

ip(r, t) = Ca'(t)ua(r)exp(iWat) + Cb'(t)ub(r)exp(-icbt),

(7)

where Ca' and Cb' denote the probability amplitudes that the
atom is in the excited or ground state, respectively. We now
require that this wave function obey the Schr6dinger equa-
tion [Eq. (5)] with the Hamiltonian of Eq. (1). We assume
that the atomic wave functions have definite parity so that
the dipole-moment operator possesses only off-diagonal ma-
trix elements. We then find that the nonvanishing matrix
elements of the interaction energy are given in the rotating-
wave approximation by

cVb = 'vba* = -1 2P'e , (8)

where p = (al-erlb). Because v may differ somewhat from
C Wa - b, it is convenient to write VI(r, t) slightly different-
ly from Eq. (7), namely, as

1'(r, t) = Ca(t)exp[i(a - /2)t]ua(r) + Cb(t)

X exp[-i(Wb + /2)t]ub(r), (9)

whose solution is in terms of sines and cosines. In particular
if at time t = 0 the atom is in the lower state [Cb(0) = 1, Ca(O)
= 0], then

Cb(t) = cos(Ot/2),

which from Eq. (11) gives

Ca(t) = i sin(Ot/2),

(13)

(14)

The probability that the system is in the lower level is I Cb(t) 2
= cos2 (Qt/2) = (1 + cos Qt/2, while Cal 2 = sin2(Qt/2) = (1 -

cos Qt)/2. Hence the probability of being in the upper or
lower state oscillates sinusoidally at the frequency Q = pEol
h, which is called the Rabi flopping frequency after Rabi,42

who studied a similar system (spin 1/2 magnetic dipole) in
nuclear magnetic resonance.

To solve coupled equations (10) and (11) including a non-
zero 6, we write them as the single matrix equation

d Ca(t)] i r-6 Qr Ca(t (15)

dt CbMt) 2 L 6 J[ Cb(t)J

This is a vector equation of the form dC/dt = HC, which has
solutions of the form et. Accordingly, substituting C(t) =
C(0) eiat into Eq. (15), we seek values of X that yield det(H -
iAI) = 0. This latter equation gives the eigenvalues

X= +2+ 22±Y
22

(16)

which lead to simple sinusoidal solutions of the form

Ca(t) = Ca(0)cos(Q't/2) + A sin(Q't/2),

Cb(t) = Cb(0)cos(Q't/2) + B sin(Q't/2).

Substituting these values into Eqs. (10) and (11) and setting
t = 0, we immediately find the constants A and B. Collect-
ing the results in matrix form, we have the general solution

L Ca(t)1 [cos(t/2) -

vCbMt)2 L iQQ,'
i(Q2sin(Q't/2)
Lsin(Q't/2)

Mos(/+ ' sin(2) Y J Ca( ) I
cos(Q't/2) + M`'- sin(fft/2)2 Cb(°)

(17)

where the frequency detuning is defined as = w - v. This
choice places the wave function in the rotating frame used in
Bloch-vector discussions. Substituting this expansion for ,'
into Eq. (5) and projecting onto the eigenfunctions ua and Ub,

we find that

% = i/2(-BCa + Cb),

Cb = i2(6Cb + Ca),

(10)

(11)

where Q = P6/h is assumed to be real for simplicity. These
equations have the form of coupled differential equations
with constant coefficients. If we do not include the terms
+6/2 in the exponentials in Eq. (9), the resulting equations
contain coefficients with an explicit time dependence and
are harder to solve.

Before solving Eqs. (10) and (11) generally, we can quickly
discover the basic physics by considering the case of exact
resonance, for which 6 = 0. We can then differentiate Eq.
(11) with respect to t and substitute Eq. (10) to find

Cb = /4 Q2Cb, (12)

For simplicity, we consider the case for which at time t = 0
the atom is in the lower state, that is, Cb(0) = 1 and Ca(0) = 0.
According to Eq. (17), the atomic wave function [Eq. (9)]
then reduces to

i(r, t) = M sin(Q't/2)exp[-1(wa - /2)tlua(r)

+ [cos(QYt/2) + Q sin('t/2)]

X exp[-i(Wb + 6/2)t]ub(r). (18)

This form for the wave function shows that the probability
for the atom to be in the upper or lower level oscillates
periodically in time at the Rabi frequency M'. For the case
of exact resonance (6 = 0), the probability to be in the upper
level oscillates between the values zero and unity, whereas
for the case of a nonzero detuning the atom is never driven
totally into its upper level. To obtain an understanding of
the nature of the nonlinear-optical properties of a two-level
atom, we should examine this behavior in the frequency
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strong field weak field

Fig. 1. Dressed levels of a two-level atom in the presence of strong
laser field of frequency v. These dressed levels lead to resonant
response at frequencies v and v i Q'. In the limit of a weak laser
field, two of the dressed levels correspond to the virtual levels,
shown as dashed lines.
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Fig. 2. Probe-absorption coefficient versus probe-saturator beat
frequency A in the presence of a strong pump wave with T2 = 5,
Q72 = 15 for the case T2/T1 = 2. (a) The feature centered at
frequency A = -Q' is due to the stimulated three-photon effect, (b)
the feature centered at A = 0 is due to the resonance induced at the
laser frequency, and (c) the feature centered at frequency A = i' is
due to the atomic resonance shifted by the dynamic Stark effect.
The energy-level diagrams at the top of the figure show the dressed-
level transitions leading to each of these features.

unperturbed atomic levels and the levels, shown dashed,
often referred to as virtual levels.

On the basis of the atomic-energy-level shifts predicted by
the arguments just presented, it would be expected that the
absorption spectrum experienced by a weak probe wave
propagating through an atomic vapor in the presence of a
strong laser beam would be dramatically modified. Such is
in fact the case, as is illustrated in the example shown in Fig.
2. This probe-absorption spectrum was calculated using
the density-matrix formalism described below and assumed
the values 6T 2 = 5, Q'T2 = 15, and T 2/T1 = 2. The maximum
absorption does not occur at the weak-field atomic-reso-
nance frequency but rather is shifted to the frequency P + Q'.
The origin of this shift is illustrated on the accompanying
dressed-level diagram. In addition to this resonance, two
new spectral features are induced by the presence of the
strong pump field. The region of negative absorption cen-
tered on the frequency - ' is a consequence of the stimu-
lated three-photon effect. As illustrated in the diagram at
the top of Fig. 2, in this process the atom makes a transition
from the lowest dressed level to the highest by the simulta-
neous absorption of two pump photons and the emission of a
photon of energy v - Q'. The third resonance leads to the
spectral feature centered at the pump-laser frequency hav-
ing the shape of a dispersive profile. The existence of each
of these features has been verified experimentally.1 31 4 43-45

3. SINGLE-FREQUENCY POLARIZATION OF
TWO-LEVEL MEDIA

In this section we derive an expression for the polarization of
a two-level medium subject to a plane running-wave electric
field

E(z, t) = 1/26(z)eivt + c.c. = /2 A(z)exp[i(Kz - t)] + c.c.,

(19)

where v is the oscillation frequency and K is the wave num-
ber, and where the complex field amplitude A(z) is assumed
to change little in an optical wavelength. This field induces
in the medium a polarization of the similar form:

P(z, t) = 1/2 P(z)e-it + c.c. = /2 p(z)exp[i(Kz - t)] + c.c.,

(20)

where the slowly varying complex polarization p(z) is typi-
cally shifted in phase with respect to A(z). We substitute
these expressions into the driven-wave equation

domain rather than the time domain. Figure 1 shows the
various frequency components present in the wave function
of Eq. (18). Four frequencies are present. It is useful to
think of these frequencies as the dressed levels of the atom,
that is, of the atomic energy levels as modified by the pres-
ence of the intense laser field. We show below that the
frequency differences between the levels shown in this dia-
gram are in fact the resonance frequencies of the atom as
modified by the presence of an intense laser field. We see
that these resonances occur at the frequency v of the laser
field and at the Rabi-sideband frequencies v ± '. Also
shown in Fig. 1 are the locations of the dressed levels in the
limit of a weak laser field. The dressed levels turn into the

a2E 82 E a2 p
_ + e10 at2 =/o t2 ' (21)

where E is the permittivity index of the.host material, and we
make the slowly varying envelope approximation, that is, we
neglect the second derivative of A(z). This procedure yields
the slowly varying amplitude form of Beer's law

dA/dz = i(K/2e)p =-aA,

where the complex amplitude-absorption coefficient

a = -i(K/2e)p/A = -i(K/2e)P/e

(22)

(23)

has been introduced. The corresponding equation for the
dimensionless intensity I = AhI2T1T2 is
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namely,

D = -2yaD - D(ihlCVabPba + c.c.)

= yaD - y.N - 2(ih-VabPba + C.c.).

Fig. 3. Upper-to-ground-lower-level decay model.

=-2 Re(a)I. (24)
dz

We have included the factor p 2TlT 2/h
2 in the definition of I

for reasons that become clear below in connection with Eq.
(40). The problem of calculating the absorption coefficient
experienced by the incident wave hence reduces to finding
the polarization fP(z) induced by 6(z).

To do this we suppose that the medium consists of a
collection of two-level systems with upper-to-ground-state
decay as depicted in Fig. 3. The ruby-laser medium is ap-
proximated by this model, as are many media of interest in
saturation spectroscopy and phase conjugation. For many
laser media, both the upper and lower levels are excited by
the incoherent pump process, and both experience decay.
The equations of motion for the corresponding two-level
density matrices differ somewhat from those relevant to Fig.
3, although the formulas for the steady-state polarizations
are very similar.

We describe the two-level system shown in Fig. 3 in terms
of a population matrix defined by

p(z, t) = NPatom(Z, t), (25)

where Patom(Z, t) is the density matrix describing one particu-
lar atom and where N is the total number of atoms per unit
volume. p(z, t) is called a population matrix because its
diagonal elements give the population densities (rather than
probabilities) of the levels. In terms of the population ma-
trix, the polarization [Eq. (20)] is given by

P(z, t) = jPAb(Z, t) + c-c- (26)

As we shall see shortly [in Eq. (35)], Pab varies as exp[i(Kz -

Pt)], so that we can combine Eqs. (20) and (26) to find

(Z) = 2peivtpab. (27)

We must next find how Pab(Z, t) evolves in time under the
influence of the electric-dipole interaction energy. The
component equations of motion for the population matrix
p(z, t) are given by 8

Pab =-(iC + Y)Pab + ih C"ab(Z, t)(Paa - Pbb),

paa = yaPaa - (jhcVabPba + C.c.),

Pbb +%Y.Paa + (jhCVabPba + C.c.) = -baw

These equations are obtained from Schr6dinger's equation.
The damping terms involve the dipole dephasing rate y, and
the upper-level population-decay rate PYa is added phenome-
nologically. The population equations of motion [Eqs. (29)
and (30)] can next be combined into the single equation of
motion for the population difference

(32)

For the single-frequency field of Eq. (19), the perturbation
energy t'ab, in the rotating-wave approximation, is given by
the expression

cV/b =- /2 pA(z)exp[i(Kz - t)]. (33)

Let us first examine the nature of the solution to these
equations in the rate-equation approximation. We first
note that Eq. (28) has the integral form

Pab(Z, t) = i dt' exp[-(iw + Y)(t - t')]'Y/b(z, t')D(z, t').

(34)

The rate-equation approximation consists of assuming that
the dipole-decay time T2 - 1/,y is much smaller than times
for which the population difference or the field envelope can
change. For a monochromatic field, this approximation is
essentially exact. We can then factor both the population
difference and the field envelope outside the t' integration,
perform the integral over exponentials [using Eq. (33) for
c~ab], and find that

Pab(Z, t) =-2 i(pA/h)exp[i(Kz - t)] D
2 'Y + (co-v)

(35)

Substituting this expression into the population Eqs. (29)
and (30), we find that the population difference obeys the
rate equation

D =-,yaD-yaN-RD,

where the rate constant R is given by

R = 1/2 IypA/h27-I(W) - v)

and the dimensionless Lorentzian ( - ) is given byL ) 2
ly2 +(W - 2

(36)

(37)

(38)

In steady state (i.e., for D = 0), we find that the population
difference is given by

DWz) - N(z)
1 + IL(co-v)

where the dimensionless intensity I is defined by

I = IA/AI 2T1 T2 ,

(39)

(40)

(28) where, for the level scheme of Fig. 3, Ti = l/ya. This dimen-
(29) sionless intensity is the intensity cIA2 given in units of the

saturation intensity
(30)

I = ch/p1 2/T1 T2 . (41)

For example, for I = 1 the population difference is reduced
to one half of its unsaturated value.

Combining the expression for saturated population differ-
ence [Eq. (39)] with that for the off-diagonal population-
matrix element [Eq. (35)], we find that Pab is given by

Pab = -i(pA/2h)exp[i(Kz - vt)] N:O(co - ) , (42)
1 + IL(w - v)

R. W. Boyd and M. Sargent III

D-Paa -Pbb, (31)



Vol. 5, No. 1/January 1988/J. Opt. Soc. Am. B 103

where the complex Lorentzian denominator is defined
through

VW - v) = 1
-Y + i(W -) (43)

Using Eq. (27), we find the desired complex polarization

9(Z) = -i( 2 /h) N (co - ) (44)

Substituting Eq. (44) into Eq. (23), we find the complex,
nonlinear absorption coefficient

a = - ) ' (45)
1 + L(o-v)

where the unsaturated (I = 0), line-center (v = co) absorption
coefficient

a° 2=K (46)

Combining Eqs. (24) and (45), we obtain

dI 2ao12
= I, (47)dz -1+IL

where L - L(w-v). For smallIL, Idecays exponentially to
0. For large IL, I decays linearly in z with the slope -2a 0 .
For a two-level medium with pumping, the number N of
atoms per volume in Eq. (46) is replaced by the difference
between the lower- and upper-level unsaturated popula-
tions. Hence, for a gain medium, a 0 < 0, and I grows expo-
nentially at first and then approaches a linear growth rate.

The real part of the absorption coefficient in Eq. (45) can
be expressed explicitly as

Re(a) = a0 (48)y2(1 + I) + (C -v)2'

the electric-field-amplitude factor A(z)eiKz in Eq. (19) by the
more general function of r:

E(r, t) = 1/26(r)eivt + c.c.

= /2[e2(r) + E(r)]e ipt + C.C.

= 
1 /2[A2(r)U2(r) + e(r)]e L>t + c.c., (49)

where 2(r) is the complex amplitude of the~ arbitrarily
strong pump (or saturator) wave, A2(r) is its slowly varying
amplitude, U2(r) is its spatial distribution function
[exp(iK 2. r) for a running wave], and E(r) is the field ampli-
tude of the weak wave. The polarization [Eq. (44)] then
takes the form

P[&(r), *(r)] = i (p 2 /h)N§J

1 +
,S.,2

(50)

where d02 = (h/p) 2/TT 2. To first order in e and E*, the total
polarization amplitude [Eq. (50)] is given by

(62 + , 2* + E*) = i
(p22/h)ND&

(1 + 121)[1 + (E2* + IE2) 1
L '2(1 +12_2) J

( 2 /h)N1O&

1 + 2LC

[ g32( + 2C) ] (51)

where I2 = (A 2/h) 2T1 T2 . The term containing the weak-
wave/strong-wave interference factor ( 2 * + E*62) repre-
sents the dc limit of the population-pulsation factor. As we
see below, it leads to scattering of the strong wave into the
weak waves. In particular, suppose that e(r) is the field

which has the form of a power-broadened Lorentzian. Note
that although the width of the Lorentzian in Eq. (48) in-
creases as the intensity increases, the value of the absorption
for any given tuning decreases.

4. DEGENERATE PROBE ABSORPTION AND
DEGENERATE FOUR-WAVE MIXING

We can use the single-frequency polarization of Eq. (44) to
calculate the absorption coefficient experienced by a weak
probe wave in the presence of a strong wave at the same
frequency, as depicted in Fig. 4(a). We have already solved
the dynamics of this problem in Section 3; we need only
generalize the way in which we project the total polarization
onto the pump and probe modes. We see below that the
probe absorption is reduced substantially below that given
by Eq. (45) for a single wave. Similarly we can derive the
degenerate-frequency-coupled amplitude equations that
govern the propagation of two weak waves, the so-called
signal and conjugate waves, for either three- or four-wave
mixing [Figs. 4(b) and 4(c)].

Suppose that the electric field consists of a strong wave
and a weak wave having the same frequency but different
propagation directions. We want to calculate the absorp-
tion coefficient for the weak wave. To do this, we replace

E(r) = A1 exp(iK -r), (52)

where A1 is assumed to vary little in a wavelength. We
choose the z axis such that K1 -r = K1z. The slowly varying

V2

/ V 1

(a) (b) (C)

Fig. 4. (a) Measurement of the absorption experienced by a probe
wave in a medium subjected to a strong wave. (b) Three-wave
mixing. (c) Four-wave mixing.
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polarization component Pl(z) that contributes to a Beer law
[Eqs. (22) and (23)] for Al(z) is given by that part of P that
varies spatially as exp(iK1 -r), that is, by the projection

K1 (2nr/Kl
P1() I d~ exp[-iK,(z + )](r), (53)

2n~ir o

where P is given by Eq. (51) and n is a sufficiently small
integer that 61(z) varies little in the distance 2n7r/Kl. In
carrying out this projection, we suppose the angle between
K1 and K2 is sufficiently large that the contribution from e*
is negligible (* leads primarily to three- and four-wave mix-
ing, as discussed below). We thus obtain

Pi(z) = 1 ( 1 .A 2 A
l +12C k1 +1I212

= +2-° 2A,. (54)

Substituting this polarization component into Beer's law
[Eqs. (4) and (5)], we find for the absorption coefficient

a1 = ao-y:o/(l + I2_)2. (55)

Comparing this equation with the single-mode absorption
coefficient of Eq. (45), we see that the probe-absorption
coefficient is reduced by an additional factor of 1/(1 + 121).
This reduction can be understood in terms of the grating
picture that is often used to describe four-wave mixing pro-
cesses. Specifically, the probe and saturator waves interfere
to form a fringe pattern in the two-level nonlinear medium.
The fringe induces a grating in the population difference,
which scatters the saturator wave into the oncoming path of
the probe wave. This scattering is represented by the -I2X/
(1 + 1212) factor in the first line of Eq. (54). For this degen-
erate-frequency case, the scattering is constructive, thereby
reducing the probe's absorption.

To see why the scattering is constructive, we note that
when the two fields interfere constructively, they create a
slightly larger total field that saturates the medium slightly
more than the average. In contrast, when the fields inter-
fere destructively, they saturate the medium less. The pro-
jection [Eq. (53)] of the total polarization onto the probe
mode samples the constructive (more saturated) portion
more than the destructive (less saturated) case. Hence the
projection selects a more-than-average saturation absorp-
tion for the probe, which implies reduced probe absorption.

To treat degenerate-frequency three- and four-wave mix-
ing, we take (r) as the sum of two weak fields

E(r) = 61 + 3 = A1 exp(iK1 r) + A3 exp(iK3 -r), (56)

where A and A3 vary little in a wavelength along their
respective propagation directions. More-general wave
fronts can be represented by a sum over such amplitudes.
Two kinds of pump wave that are of interest are the traveling
pump wave U2 (r) = exp(iK 2.r), which gives rise to three-
wave mixing, and the standing pump wave U2(r) =
cos(K 2 .r), which gives rise to four-wave mixing.

For the three-wave case of Fig. 4(b), we substitute Eqs.
(56) and (51) into the probe-polarization integral [Eq. (53)]
to find

P1 (Z) = (1+2_2)2 (A 1 - A3 *I 2-te iAIz), (57)

where we have introduced the phase-mismatch factor AKz =
(K1 - 2K2 + K3) r. Note that the entire A3* contribution
comes from the scattering term in Eq. (51), which is the
result of the dc limit of population pulsations. A similar
expression is obtained for P3(z). Substituting these polar-
ization components into Beer's law in Eq. (22), we find the
coupled-amplitude equations

dA,
dz =-aA + xlA3* exp(2iAKz),

dA 3 *
dz = -c.3*A3 * + x3*A, exp(-2iAKz),

(58)

(59)

where the absorption coefficient a1 is given by Eq. (55), the
coupling coefficient x, is given by

Xi = -aoyYI 212/(1 + 1212)2,

and the phase-mismatch factor AK is given by

AK = 12K2 -K 1 -K3 1.

(60)

(61)

For this degenerate-frequency case, a 3 and X3 are also given
by Eqs. (55) and (60), respectively.

For the four-wave case of Fig. 4(c), the squared saturation
denominator in Eq. (51) has spatial holes. Unless K1 and K2
are nearly parallel, the projection in z of Eq. (53) averages
over these holes. Including this average and changing the
variable of integration from 2K 1,to 0, we have

Pl(z) = i'h-'ND

X I dO
F A1 *b 1+cos0

2ir o L(a + b cos0)2 (a + b cosO)2

(62)

where b = 2121 and a = 1 + b. Simplifying, we obtain

P1=i22-N 1 [2"' O[A + A3* (a -b) 
da 2r Jo a + b cos0

= i(1+ 2b3 2 [Al(1 + b) - A3*b]. (63)

We again substitute this polarization into Beer's law and
find a coupled amplitude equation of the form of Eq. (58)
with coefficients

aoy)(l + 2I212)
a1 - (1 + 4I212)3/2

2aoTyI 212
Al = (1 + 4I212)312

(64)

(65)

but with AK identically zero. The coupled-mode equation
[Eq. (59)] for A3 has the same coefficients as in Eqs. (64) and
(65) for this degenerate-frequency case, and again no phase
mismatch occurs.
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5. NONDEGENERATE-FREQUENCY
ABSORPTION AND COUPLING COEFFICIENTS

In Sections 3 and 4 we treated probe absorption and three-
and four-wave mixing in the limit in which all the applied
fields were at the same frequency. To treat the nondegener-
ate-frequency case, we have to consider the dynamics of the
population-matrix equations of motion [Eqs. (9) and (13)]
for multiple frequencies. This section carries out that deri-
vation and shows explicitly the role of population pulsations
in determining the form of the nonlinear coupling. Our
results reduce to those of Sections 3 and 4 in the limit of
degenerate frequencies. The present derivation hence justi-
fies the statements made regarding the role of population
pulsations in the dc limit in determining the form of the
nonlinear coupling for the degenerate case.

We take the electric field to have the form

E(r, t) = E (r)exp(-ivt) + c.c.
n

= 2- E An(r)exp[i(Knr - Vant)] + c.c. (66)
n

for n = 1, 2, and 3, where the mode amplitudes An(r) are in
general complex and Kn are the wave-propagation vectors.
As in Section 4, A2 is the amplitude of the arbitrarily intense
field. The field [Eq. (66)] induces the polarization

P(r, t) = - E P,(r)exp [i(K-r - vat)] + c.c.
2

(67)

for n = 1, 2, and 3, where Pn(r) is a complex polarization
amplitude that can be used to calculate refractive index and
absorption and gain characteristics for the probe and satura-
tor waves. We are interested only in the components of P(r,
t) given by Eq. (67), although in general the polarization has
other components. For example, strong-wave interactions
involving the v1 and 2 fields induce components not only at
the frequencies v1 and v2 but also at v2 + k(v 2 - v1 ), where k is
any integer. To project the components Pn(r) out of P(r, t),
we can use the mode factors exp(iKn r), as in Eq. (53) above,
provided that they differ sufficiently from one another over
the relevant interaction distances. For copropagating (or
nearly copropagating) waves, these mode functions do not
vary sufficiently rapidly, and one must separate the compo-
nents by their temporal differences, for example, by hetero-
dyne techniques.

The problem hence reduces to determining the slowly
varying complex polarization P1 (r) driving the probe wave,
from which the absorption coefficient is determined from an
equation formally identical to Eq. (22) with a subscript 1 on
A and a, and with p replaced by P1. One might (incorrectly)
guess that the probe-absorption coefficient a 1 is simply a
Lorentzian line-shape function for the probe frequency mul-
tiplied by the population difference calculated in the pres-
ence of the saturator wave. However, as in Eq. (54), an
additional contribution enters as a result of population pul-
sations. Specifically, the medium responds to the superpo-
sition of the modes to give pulsations in the population
difference at the beat frequency A = 2 - V1. Since we
assume that the probe is sufficiently weak that it cannot

saturate the medium, the pulsations occur only at IA, as we
demonstrate explicitly below. These pulsations act as mod-
ulators (or as Raman shifters), putting sidebands onto the
medium's response to the strong 2 wave. One of these
sidebands falls precisely at v1, yielding a contribution to the
probe-absorption coefficient. The other sideband leads to a
response at the conjugate frequency v3 = 2 + ( 2 - v1 ).

The interaction-energy matrix element CYab appropriate
to the field of Eq. (66) is given in the rotating-wave approxi-
mation by

(68)Y~rab = 2^ E, 6(r)exp(-ivt)
2h 

To determine the response of the medium to this multimode
field, we express both the polarization component Pab and
the population difference D as Fourier series:

Pab = N exp[i(Kl r - vlt)]

X E Pm+, explim[(K2 - K1)-r - At]I
M=--

(69)

and

D(r, t) paa(r, t) - Pbb(r, t)

= N , dk expt-ik[(K2 - K1)-r- At]1. (70)
k=--

We substitute these expansions into the population-matrix
equations of motion [Eqs. (28)-(32)] and identify coeffi-
cients of common exponential frequency factors. We con-
sider the general three-mode case but suppose that 61 and 63
are not sufficiently strong to saturate the medium. In this
approximation only Pi, P2, and p 3 occur in the polarization
expansion [Eq. (69)], and only do and d 1 appear in the
population-difference expansion [Eq. (70)]. The origin of
this simplification can be understood by considering the
number of times that each frequency component acts (in the
sense of a perturbation expansion) in determining the re-
sponse of the medium. After some arbitrary number of 62
interactions, the v1 field acts to give the products E162* and
61*62, which create the pulsations d41. From then on only
62 can act, since a weak probe field may act only once. We
hence obtain polarization sidebands of v2 at frequencies v1
and V3 , which subsquently combine with v2 to give only the
d+1 population components.

We first calculate the amplitude P2 in the presence of the
saturator wave only, that is, we assume that only &2 is non-
zero in Eq. (68). We find by substituting Eqs. (68)-(70) into
Eq. (28) and equating terms that oscillate as exp(-iv 2 ty)
that

-iv2 p2 = -(iW + Y)P2 -i(PO212)do

and hence that

P2 = -i(p'/2h)620 2 do, (71)

where we have defined the complex denominator

0 = 1/[y + i(co - v,)]. (72)
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Equation (71) is simply an alternative way of writing the
single-mode density-matrix element of Eq. (35).

We next calculate Pi for the probe wave in an analogous
manner. We find that

-ivlpl = -(iw + -y)p1 - i(p/2h)[e1do + 62d],

giving

P1 = -i(p/2h)Dl[d 1 do + &2d]. (73)

The term 0 2d1 leads to the scattering of 62 into the 61 mode
by means of the population-pulsation component d1 . Simi-
larly, the component p3 has the value

p3 = -i(p/2h) 3 (0 3do + &2d-1).

bining the pulsation component [Eq. (78)] with the polariza-
tion component [Eq. (73)], setting PI = 2pNpl, and using
Eqs. (53) and (23), we find that the amplitudes A1 and A3
obey the coupled-amplitude equation [Eqs. (58) and (59)]
with the nondegenerate complex absorption coefficient

_o__ _ 1 2 1
ai = I I

1 + I2L2 + I25r(A)-(o1 + I.)
2

-inc + coh (80)

and the complex coupling coefficient
(74)

P0 remains zero when only do and dl are nonzero since it is
proportional to 1 d,, involving the product of at least two
weak-field amplitudes (6 's), whilepj forj > 3 vanishes since
dk for k < 0 would be involved.

We next calculate the Fourier components of the popula-
tion difference. We first consider the dc component do = nao
- nb0 as saturated by the pump wave 62 alone. Substituting
Eq. (70) into Eq. (32) and equating the sum of the dc coeffi-
cients to zero, we obtain

0 = -ado - - (2-y) 1162 /I 2 12 do. (75)

Here the dimensionless Lorentzian of Eq. (38) is abbreviated
as

Cn = y2 /[y 2 + (W - Vn) 2 ]. (76)

The 61 contributions are ignored, since we have assumed
that 61 does not saturate. Solving Eq. (75) for do, we find
that

do = -1-12 12 d0

=1/(1 + I2L2). (77)

This result agrees with that of Eq. (39) for the population
difference for the single-mode case.

We next calculate the coefficient d. Substituting Eq.
(70) into Eq. (32) and equating the sum of the coefficients of
eiAt to zero, we obtain

iAdl = -yadl + i(f/2h)(61p2* + -2P3*-62*Pl)-

We now substitute Eqs. (71), (73), and (74) into this expres-
sion to obtain amplitude d1 of the fundamental frequency of
population pulsations as

(81)
XaY0 I 2Y(A) 2(-V2 + 3)

1 + 212 1 + I 2yI(A>)2(1 + D3*)

a 3 and X3 are given by similar equations obtained by inter-
changing the subscripts 1 and 3 and replacing A by -A.
Note that in the degenerate-frequency case ( = V2 = PI),
Eqs. (80) and (81) reduce to Eqs. (55) and (60), as they
should.

The absorption coefficient consists of two contributions.
One contribution results simply from the reduction of the
population difference that is due to the presence of the v2
wave. This contribution leads to the 1 inside the square
brackets and is called the incoherent contribution ainc to al.
The second contribution involves the interference between
1 and 62 and hence depends on the factor Y(A) and is called

the coherent contribution. It leads to the scattering of the
saturator wave off the grating induced by the interference
between the probe and saturator fields. In this terminology,
the coupling coefficient of Eq. (81) is a coherent contribu-
tion, since it also results from the population-pulsation coef-
ficient d1.

It is instructive to interpret the incoherent and coherent
contributions in terms of the number of electric-dipole inter-
actions. By restricting the intensity of the probe to nonsa-
turating values, we have obtained an expression valid for
arbitrarily large values of the saturator intensity I2. The
saturation denominator 1/(1 + I212) appearing in Eq. (80)
expands to 1 - I212 in the third-order approximation
(616262* is involved). For much of saturation spectroscopy
this value is inadequate, for 2 is typically as large as unity or
larger, and the geometric series fails to converge for any
order! Hence we interpret Eq. (80) in a nonperturbative

(p/h)2 TlT2 (/) 2 [&1'02*(:Z + O2*) + 6263 (02 + 03)]
2

1 + I25TA)Th0 1V + 'D3.)
2

where we have introduced the dimensionless complex popu-
lation-pulsation factor

5 (A) = 'Ya (79)
lYa + iA

This factor approaches unity as A - 0. Analogously, we
find that the coefficient d.1 is given simply by d-1 = d1*.

Our calculation is self-consistent, since only do, dl can
obtain nonzero values from PI, P2, Pa, and vice versa. Com-

fashion as follows: The saturator interacts with the unsatu-
rated population difference N an effective number of times
giving the summed series saturation factor 1/(1 + I2C2).
Given an effective dc-saturated population difference N/(1
+ I212), the probe then interacts, producing a polarization
at the probe frequency. This yields the incoherent contri-
bution and in addition gives the start of (A) 1 term in Eq.
(80). For the latter, the saturator in turn interacts with the
probe polarization to yield a population pulsation. Alterna-

do, (78)
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Fig. 5. Beat-frequency saturation spectroscopy configurations.
(a) The beat-frequency signal at frequency A = 2- v1 resulting
from the superposition of the probe and saturator waves is studied
as a function of A. (b) The large intensity beam at frequency V2
passes through a modulator, producing two sidebands at the fre-
quencies V1 = P2 - A and 3 V2 + A. The beat-frequency signal is
studied as in (a).

tively to this probe interaction, the saturator interacts with
the effective dc-saturated population difference to generate
a polarization at the frequency V2 [giving the 02* term in Eq.
(80) without its denominator], followed by a probe interac-
tion,. a sequence also yielding a population pulsation. The
saturator then interacts an additional amount represented
by the denominator 1/[1 + I2, (A) ... ] in Eq. (80) and corre-
sponding to successive generations of probe polarizations (at
V3 and v1, i.e., at 2 I A) and population pulsations at A.
These sequences give the scattering of the saturator into the
probe wave, i.e., the coherent i(A) term of Eq. (80). For a
saturating probe, higher-order population pulsations (at nA,
n > 1) occur, forcing one to use the more general continued
fraction. This truncates ultimately, owing to the finite
bandwidth of the medium. For small A, a saturating probe
can generate a substantial number of higher-order pulsa-
tions.

An interesting property of a, is that the integrated area
under the curve al(A) is independent of the coherent contri-
bution ah. Whatever decrease in absorption results be-
cause of population pulsations for one value of A must be
compensated for by increased absorption at some other val-
ues of A. The population pulsations hence merely redistrib-
ute the absorption as a function of A and do not modify the
integrated absorption of the medium. To demonstrate this
fact, we note that Eq. (80) interpreted as a function of A has
no poles in the lower half-plane. Therefore the integral

J dAaOh(A) (82)

must vanish. For the same reason, the integral of xl vanish-
es. However, it can be shown that the result in expression
(82) is no longer valid for the case of probe intensities suffi-
ciently large to lead to saturation of the medium.

Before examining Eq. (80) in various special cases, we
extend the treatment somewhat to include two experimental
configurations (Fig. 5). In both cases the probe-saturator
beat-frequency intensity is studied, and a heterodyne ad-
vantage is obtained in the signal-to-noise ratio. For the
two-wave case of Fig. 5(a), the atom-field interaction is
described as above. For the configuration of Fig. 5(b) the
saturator wave is weakly modulated, imposing sidebands at
frequencies v1 and V3, which act as probes. The absorption
coefficient for this case is similar to that for Fig. 5(a) but
includes the effects of population pulsations generated by
both the 6162* and 6263* interactions. Furthermore, the
relative phase between the three fields is important. If at
some time all three modes are in phase with one another,
then the two population pulsation sources add. This case is
called the amplified-modulation (AM) case. If the phases of
the saturator and one sideband are equal and differ from the
phase of the other sideband by 7r, the two population pulsa-
tions cancel out, giving a constant envelope in time. This
case is called the frequency-modulated (FM) case. Both of
these limiting cases have attracted substantial attention.
The AM case has been used to measure T, for cases when T,
>> T2.13"14 The FM case has been used by Bjorklund" and
Drewer et al.,'2 who use the fact that the medium may
modify the phase and amplitude relationships of an FM
wave, thereby producing an easily detected AM component.
In addition to spectroscopy, the problem is important in
phase conjugation, laser instabilities, and cavity stabiliza-
tion.

For simplicity we assume that 62 is real and take 63* to be
zero (the single-sideband case), equal to 61 (the AM case), or
equal to-61 (the FM case). In general the product 6'0263*
may not be phase matched to exp(iKl r), so that AK in
coupled-mode equations (58) and (59) is nonzero. Such a
mismatch reduces the effectiveness of the coupling term.
For a sufficiently large angle between K, and K2, the cou-
pling terms in Eqs. (58) and (59) can be dropped altogether.

For the case for central saturator tuning (V2 = c), Eq. (58)
leads to a simple physical interpretation. Since in this case
0 3* = 1, 2 = 1/y, and AK vanishes identically, the spatial
variation of the weak part of the field 61 exp(-ivlt) + 63
exp(-iv3t) obeys Beer's law [Eq. (22)]; the absorption coeffi-
cient [Eq. (80)] has the coherent contribution

y aoy7lI2 5(A)('yf, + 1)

°acoh 2 1 + I2 + I2(A)-yD1
(83)

where = 1 + 63*/61. Hence = 0 corresponds to El =
-63* (the FM case), in which case the population pulsations
cancel, fl = 1 corresponds to E3* = 0 (a single-side-mode
probe wave), and j = 2 gives = 63* (the AM case), in
which case the population pulsations from the beating of
each side mode with the saturator add constructively.

6. COHERENT DIPS AND THE DYNAMIC
STARK EFFECT

In this section we illustrate the probe-absorption coefficient
for several different limiting conditions. First we consider
the case of an upper-level lifetime long compared with the
dipole lifetime. For a saturator wave tuned near the center
of the absorption line, this case leads to a coherent dip in
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Fig. 6. Graphs of normalized probe-absorption coefficient of Eq.
(84) for the single-probe case ( = 1) showing power-broadened
Lorentzian coherent dips as saturator intensity is varied. The dou-
ble-probe case has dips twice as deep. The medium is homoge-
neously broadened.

absorption versus probe detuning, caused by the inability of
the population inversion to follow a probe-saturator beat
frequency much larger than its decay rate. Hence the co-
herent contribution to the probe-absorption coefficient falls
off as the beat frequency is increased. These dips allow one
to measure the population-decay times, a fact particularly
valuable for situations in which that decay is nonradiative,
e.g., picosecond decays in liquids or semiconductors. We
then consider the case of comparable population and dipole-
decay times. We find that the coherent interaction leads to
dynamic Stark splitting with resonances at the Rabi side-
bands.

A. Short Dipole Lifetime Limit
We first treat the case in which the dipole lifetime T2 (l/y)
is much shorter than the upper-level lifetime 1/'ya. Then for
beat frequencies A = 2 - v small compared with the homo-
geneous linewidth, the ifs in the absorption coefficient [Eq.
(80)] reduce to 1/-y. We then obtain from Eqs. (80) and (83)
the single- and double-side-mode absorption coefficient

a(A) = a [ 1t,2-r2'Ya 1 (84)
[ + 12-12 '(a2(1 + 21 )2 + A2 ]

The second term in Eq. (84) results from the population
term d in Eq. (78) and represents the attempt of the medi-
um to follov the oscillating component in the coherent su-
perposition of probe and saturator waves. Figure 6 illus-
trates Eq. (84) for the two-wave case. For the AM three-
wave case, the dips are twice as deep, and the probes can
actually experience gain owing to the coherent interaction
with the medium.

We can understand the physical origin of the coherent dip
as follows. The populations are effectively damped anhar-
monic oscillators with zero-resonance frequency that are
driven by the product of the electric field and the induced
polarization [see Eq. (32)]. This product includes an oscil-
lating component at the frequency A. For A's substantially
less than the smaller population-difference bandwidth Ya,
the population differences pulsates, following the A compo-
nent without phase lag. This response decreases the ab-
sorption, as one can see as follows. Because constructive
interference between the probe and saturator waves (slightly
larger total field intensity) produces above-average satura-

tion, that is, reduced absorption, and destructive interfer-
ence yields reduced saturation, the average population re-
sponse to the A component favors constructive interference,
that is, it leads to increased probe transmission (reduced
absorption). As A is increased beyond the smaller power-
broadened level decay constant, the population difference
pulsation lags behind, and the transmission is correspond-
ingly reduced in a power-broadened Lorentzian fashion
(typical of anharmonic oscillators). This reduction consti-
tutes a decrease in the absorption versus A.

At first glance it might appear that the physics of nearly
collinear interactions with infinite fringe spacing and of
counterpropagating interactions are very different. Howev-
er in both cases, the populations try to follow the probe-
saturator beat-frequency component; their success is depen-
dent on the ratio of the beat frequency to the level decay
constants. In the counterpropagating case, the induced
population pulsations are accompanied by spatial phase
variations that produce the grating, allowing the saturator to
scatter into the probe's path in spite of the difference in
direction. In fact, as the angle between the probe and satu-
rator waves is varied from the counterrunning (0 = 0) to the
corunning (0 = r/2) case, a grating is induced that is perfect-
ly phase matched to scatter the saturator wave into the path
of the probe. Diffusion of the active atoms, such as in a gas,
affects the copropagating and counterpropagating cases
quite differently.

B. Comparable Population Difference and Dipole
Lifetimes
Let us now consider the limit of Eqs. (80) and (83) in which
the dipole response time T2 is comparable with that of the
populations (T1). In this case both the dipole and popula-
tion difference may not be able to follow the beat-frequency
component. To understand the changes from Fig. 6, note
that the equations of motion [Eqs. (28) and (32)] for the
dipole and population difference form a coupled set of
damped oscillators. When subjected to an oscillating com-
ponent in the electric-dipole interaction energy, both di-
poles and populations can introduce phase shifts for values
of A comparable with or greater than the respective power-
broadened bandwidths (the power-broadening factor times
y for the dipole and times -ya for the population difference).
The coupled dipole-population response to the probe-satu-
rator beat frequency yields the coherent contribution [Eq.
(80) or (83)] to the absorption coefficient a. In addition, a
contains an incoherent (i.e., phase-independent) contribu-
tion ain, resulting from the modification of population that is
due to the saturator wave alone. For nonzero A, the sum of
the dipole and population phase shifts can exceed r/2 and
hence cause an increase in absorption (acoh > 0, whereas ac oh
< 0 in the dip region) relative to the ainc value. This results
in the shoulders in Figs. 7 and 8.

Figure 7 shows the y(a = 0.Oly and y( = cases for a
number of saturator intensities. Figure 7(a) reveals sharp
power-broadened pulsation dips (produced by acoh).
Curves for the incoherent contribution inc are pure Lorent-
zians without the dips or increased shoulder area. In going
from Fig. 7(a) to Fig. 7(b), we see the coherent dip change
shape into a dynamic Stark splitting [12 = 2 in Fig. 7(b)], as
two sidebands appear.

Figure 8 shows a = y case with two sidebands, such as
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Fig. 7. Real part of the probe-absorption coefficient [Eq. (80)]
versus probe-saturator detuning A for various saturator intensities
and the decay-constant relationships: (a), ,y = 0.01 y; (b), Ya=a-

resemble the twin-peak, dip structure shown in Fig. 9. All
the curves in Figs. 7 and 8 are obtained by adding the shoul-
der-dip structure in this figure to Lorentzians. Hence the
dynamic Stark splitting is an extension of the coherent dip
into regions of beat frequencies as large as or larger than the
homogeneous linewidth.

The dynamic Stark effect can be interpreted in terms of
an amplitude modulation of the dielectric polarization by
optical nutation. In brief, the Bloch vector is transformed
into a reference frame rotating at the frequency V2, where it
rotates because of a saturator-induced torque at the Rabi
flopping frequency p6 2 /h and because of torque resulting
from the probe-saturator beat frequency A. Resonance oc-
curs for A = P21h, that is, the population pulsations inter-
act resonantly with the Rabi flopping frequency.

This physics is illustrated by a simple analytic formula
valid for the large I2 shapes in Figs. 7(b) and 8. We have
already seen from Eq. (55) that for the degenerate tuning, vi
= V2, the absorption coefficient saturates proportionally to
1/(1 + I2f 2)2 . This saturation explains the small but posi-
tive bumps for A = 0 in Figs. 7(b) and 8. Furthermore, for
large I2 and A Q = p 2/h, the absorption coefficient of
Eq. (80) reduces to

a 1(A\ e 1Q) 2 Yay
2 (7Ya + i)(,y + iA) + 2

a 2 'YaY'

2 (Q + A)(Q - A) + WA(ya + -y)/2

ao Ya 
(85)

4Q ( + -Ya)/2 I i(Q i A)
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A

Fig. 8. Real part of the AM absorption coefficient versus A given
by Eq. (80) with ach doubled and zYa = y. In comparison with Fig.
7(b), we see that the gain region is deeper when the probes work
together.

occurs in AM spectroscopy. The coherent contribution is
doubled, leading to a substantially larger gain region. The
same kind of curve was published in the laser-instability
discussions of Risken and Nummedal 4 6 and appears in the
optical bistability instability of Bonifacio and Lugiato.47

For those problems, side modes see gain given by curves like
Fig. 8 (or the negative of these curves), and when that gain
exceeds the cavity losses, the side modes build up. From the
present discussion, it is apparent that these instabilities are
due to the coherent contribution and hence to population
pulsations. 2 7

Although the dip and Stark-splitting behaviors appear to
be quite different from each other, plots of acoh alone all

Note that this expression describes a symmetrically placed
pair of indexlike curves for the absorption (real part) and
Lorentzian curves for the index (imaginary part). The half-
width of the Lorentzian is (y + 'ya)/2, that is, the average of
the dipole and population-difference decay constants, be-
cause the coherent term results from driving both the dipole
and the populations at the frequency A. Similar features
occur in the closely related phenomenon of resonance fluo-
rescence, where fluorescence sidebands occur displaced by
the Rabi flopping frequency on either side of the saturator
frequency V2. To obtain the AM double-side-mode absorp-
tion coefficient corresponding to Eq. (80), multiply expres-
sion (85) by 2.

0.05
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aCoh (A)

-0.05

-0.1 L
-8 -4 0 4 8

A

Fig. 9. acoh versus probe-saturator beat frequency A = 2 - vj for a
number of values of T1/T2.
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.

R. W. Boyd and M. Sargent III

= Fi



110 J. Opt. Soc. Am. B/Vol. 5, No. 1/January 1988

7. CONCLUSIONS

In this paper we have shown how the shifting of atomic
energy levels as a result of the dynamic Stark effect can lead
to new resonances in the nonlinear-optical susceptibility
describing probe-wave absorption and four-wave mixing.
This modification can equivalently be described as resulting
from the new frequency components introduced into the
temporal evolution of the induced dipole moment at the
frequency of the population pulsations, which are driven by
the beating of the various frequency components of the field.
We have illustrated these points by treating a number of
examples, all within a semiclassical context for one-photon
two-level media.48 Population pulsations and dynamic
Stark effects play a key role in determining the nonlinear
behavior of quantum systems interacting with quantized
fields as well,49 as has been described elsewhere.33-35
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