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Competition between amplified spontaneous emission (ASE) and the four-wave-mixing (FWM)
process has been observed under conditions of two-photon resonant excitation of the sodium 3d lev-

el. The nature of the competition is that the FWM process is able to prevent the occurrence of ASE,
even though the gain of the ASE process calculated in the absence of competition effects is much

larger than that of FWM. The ASE is suppressed because the fields generated by the FWM process
create a new excitation pathway connecting the ground and 3d levels, and under quite general condi-
tions this pathway interferes destructively with that due solely to the applied laser field. These ef-
fects are modeled theoretically by solving perturbatively the density-matrix equations of the atomic
system, thereby determining the population in the upper level and the nonlinear polarization of the
medium. The coupling between the various optical fields due to the nonlinear polarization is

described by coupled amplitude equations. The solution to these equations predicts that when the
wave-vector mismatch is not too large the fields evolve spatially to reach steady-state values, and

that the population excited to the 3d level by the total steady-state optical field is much smaller than
that due to the incident laser field alone. We have observed experimentally the suppression of ASE
by FWM and have observed that this suppression does not occur when the medium is excited with

counterpropagating beams that cannot efficiently excite the FWM process. In addition, we have

conducted a series of experiments that shows that the degree of suppression of ASE depends on the

intensity and focusing characteristics of the incident laser as expected on the basis of our theoretical
model.

I. INTRODUCTION

An interesting possibility that can occur in nonlinear
optics is the competition between two different processes
in a complex and highly nonlinear manner. Perhaps the
simplest example of competition effects in nonlinear op-
tics is competition between two different stimulated
scattering processes. ' The nature of the competition in
this case is that the process with the largest gain grows
most rapidly, thus robbing the pump wave of its energy
and preventing the growth of other processes. A more
subtle type of competition is that in which a coherent
(that is, phase-matched) nonlinear optical process
suppresses an incoherent nonlinear optical process. The
first reported example of such an interaction was the
suppression of multiphoton ionization by third-harmonic
generation in an atomic vapor. ' Several additional
theoretical and experimental studies of competition ef-
fects involving these processes have subsequently been re-
ported.

We recently reported the observation of another exam-
ple of competition between a coherent and an incoherent
nonlinear optical process, namely the suppression of am-
plified spontaneous emission (ASE) by the four-wave-
mixing (FWM) process. Previous theories of competition
effects would not have predicted that competition would
occur under our experimental conditions in which the
only resonant interaction involves a two-photon transi-
tion. We interpreted out observations theoretically by
means of a density-matrix calculation performed within a

semiclassical framework. This calculation shows that the
ASE is suppressed due to a destructive interference be-
tween two excitation pathways connecting the ground and
excited states. A similar calculation in which the elec-
tromagnetic field is treated quantum mechanically has re-
cently been reported by Agarwal. ' His calculation shows
that, under conditions of suppression of ASE, the fields
generated by the FWM process constitute a squeezed state
of the radiation field. The primary intent of the present
paper is to present a more detailed account of the experi-
mental and theoretical work presented in our previous
letter, and to examine the conditions under which strong
suppression is expected to occur.

The experiment in which we observed competition be-
tween FWM and ASE was performed in atomic sodium
vapor. An intense laser field of frequency cu& is tuned
near to the 3s ~3d two-photon-allowed transition, as
shown in Fig. 1(a). Four-wave mixing" can then
occur, leading to the generation of two new fields, one at
frequency co2 which is close to the 3d~3p transition fre-
quency and the other at frequency ~3 ——2'& —co& which is
close to the 3p~3s transition frequency. When the laser
is tuned exactly to the two-photon-allowed transition,
population can be transferred to the 3d level, inverting it
with respect to the 3p level and leading to ASE (Refs. 23
and 24) at the 3d~3p transition frequency, as shown in

Fig. 1(b). We are able to distinguish these two processes
because they display different experimental signatures.
Due to phase-matching considerations, the FWM signal is
emitted only in the forward direction and, for the sodium
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FIG. 1. Under conditions of two-photon-resonant excitatior
of the sodium 3d level by an incident laser field of frequency col

either (a) the four-wave-mixing (FWM) process or (b) amplified
spontaneous emission (ASE) can occur. Competition between
these two processes has been observed.

number densities used in the experiment, is emitted in the
form of a cone surrounding the transmitted laser beam.
In contrast, the ASE signal is emitted in both the forward
and backward directions because it is a pure gain process.
Furthermore, the FWM process leads to a much broader
output spectrum because it involves a virtual intermediate
level. Since the ASE process involves the excitation of a
real as opposed to a virtual level, one would expect that
this process would have a larger gain than the FWM pro-
cess. In fact, the gain for ASE under our experimental
conditions calculated in the absence of competition effects
is —10 cm, whereas the gain for the FWM process cal-
culated under the same conditions is —100 cm ', as will
be shown below. However, experimentally we observe a
strong FWM signal and little if any ASE. Other non-
linear optical processes such as hyper-Raman scattering
were much weaker than either of these processes under
any of our experimental conditions.

We have performed an additional experiment which
shows that the ASE signal is absent because the FWM
process actually suppresses the ASE process. We excite
the sodium vapor with two counterpropagating laser fields
of different frequencies, adjusted so that the sum of their
frequencies is equal to the 3s~3d transition frequency
and so that the sum of their intensities is equal to that
used in the experiment using a single laser field in which
the ASE signal was absent. In the new experiment, the
FWM process is not phase matched and cannot occur effi-
ciently. In this case a strong bidirectional ASE signal is
observed.

These experimental results are perhaps at first sight
surprising because it is not clear how a coherent (i.e.,
phase-matched) process such as FWM can suppress an in-
coherent process such as ASE which requires only a popu-
lation inversion. The origin of the competition between
these processes is illustrated in Fig. 2. Since only the laser
field of frequency cu& is incident on the sodium cell, ini-
tially two-photon absorption involving two laser photons

FIG. 2. The nature of the suppression of the upper-level pop-
ulation by the FWM process is illustrated. (a) The incident laser
field creates an excitation pathway connecting the ground and
excited states. (b) Due to the FWM process, fields at frequencies
mq and cu3 are generated. (c) These new fields create a second ex-
citation pathway connecting these levels. Under quite general
conditions, this pathway interferes destructively with that due to
the incident field.

[Fig. 2(a)] is the only excitation pathway connecting the
ground and excited states. However, FWM leads to the
generation of new frequency components of frequency co2

and co3, as shown in Fig. 2(b). These new fields create a
second pathway of excitation of the 3d level, involving
two-photon absorption of an co2 and an co3 photon, as
shown in Fig. 2(c). We will show in the theoretical sec-
tion of this paper that under a broad range of experimen-
tal conditions the two new fields are generated with am-
plitudes and phases adjusted in such a manner that these
two pathways interfere destructively, preventing the exci-
tation of the 3d level. Any process such as ASE that re-
quires the presence of population in the two-photon excit-
ed level will thereby be suppressed. In particular, the effi-
ciency of multiphoton ionization and of parametric mix-
ing can be degraded, as can the possibility of achieving a
population inversion in laser-pumped lasers.

II. THEORY

In this section we present a theoretical treatment of the
suppression of the upper-level population due to the
FWM process. We first solve to fourth order in perturba-
tion theory the density-matrix equations of motion for the
three-level atomic system, shown in Fig. 3, in the presence
of the incident and generated fields. We use the results of
this calculation to determine the population in the upper
level and to determine the nonlinear polarization of the
medium and hence to derive coupled amplitude for the
three interacting fields. We then study the nature of the
solution to these equations and find that if the wave-
vector mismatch is not too large the fields evolve spatially
to reach steady-state values, and that in the presence of
this steady-state field the upper-level population is at least
partially suppressed. For the case of perfect phase match-
ing, complete suppression of the upper-level population is
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FIG. 3. Energy-level diagram showing the FWM process and
the notation used in the calculation.
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and that the unperturbed density matrix can be represent-
ed as

where 8'. denotes the energy of level i . We further as-
sume that the density-matrix elements can be expanded in
a perturbation series of the form

predicted. The vanishing of the upper-level population
can be traced to a destructive interference between two
pathways connecting the ground and excited states.

and

(0)
Paa

pl
' ——0 (for l&m and for 1 =m&a) .

(4a)

(4b)

A. Density-matrix calculation

E(z, t)= +El.e ' +c.c., j= 1,2, 3
J

where

( la)

We assume that the field incident on the atomic vapor
can be represented as

In solving the density-matrix equations, we retain only
those terms that contribute to the two-photon resonant
response of the atom. In lowest order of perturbation
theory, these contributions are those that remain in the
rotating-wave approximation, and in this approximation
the first-order correction to the density matrix is given as

—i CO
1

—i CO 2
—i 6)3

(() pba E) e E2e E3e
Pba + +a, —Erb, 2A, —6 —iI b, Q3

EJ ——EJe (lb)

and that the atomic response is governed by the density-
matrix equations of motion which we take to be of the
form 27, 28

~) =~ba ~]~ ~2 =~ca 2', and 63=cuba ~3&

with co;&
——( W, —WJ )/R. The second-order contribution to

the density matrix is given by

(2) PcbPba
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—I 2coitE )e +
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—i (co2+co3)t i ( Cc)2 +603 )t
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(6)

We assume that none of the applied fields can resonantly excite the b ~a transition, that is, that 6&, 63, and 2h
&

—63 are
much greater than I ~, so that pbb' is negligible. In the next order of perturbation theory, there exists two off-diagonal
elements of the density matrix which represent the nonlinear polarization of the medium These density-matrix elements
are given by

2
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and
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Finally, to fourth order in perturbation theory, we obtain an expression for the population in the upper level c as

, 4&
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where

r, = & r„ (Sb)
P(z, t)= QP(co~)e ' ' +c.c. (j=1,2, 3) . (10)

J

(w,. &w )

denotes the inverse of the lifetime of level c. Under our
approximations, pbb' is negligible.

B. The nonlinear polarization

The nonlinear polarization of the medium can be ob-
tained in terms of the density matrix calculated in Sec.
IIA as

P (z, t) = N (P,bP'b, '+PbcP'cb'+ c.c.), (9)

where N denotes the atomic number density. It is con-
venient to represent the nonlinear polarization in terms of
its frequency components as

p( ) 2yFwME E E e —idkz+ 2y
I
E

I

2E

p( ) gFwME E* +fdkc+y A
I

E
e+'dk'+&"" IE I'E

(12a)

(12b)

(12c)

where the susceptibilities for FWM and for two-photon

The quantities P (co~ ) can be obtained in general from Eqs.
(7), (9), and (10). However, our experiments were con-
ducted under conditions such that to good approximation
the inequalities

))A3 ))62 and A&, A3 ))I b

were satisfied. Under these conditions, the nonlinear po-
larizations can be expressed simply as
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Ak =k2+k3 —2k) . (13b)

The spatial evolution of the field amplitudes are described
in the slowly varying amplitude approximation by the
coupled amplitude equations

dE~ 2771 Q7~
P(coj. ) .

dz
(14)

absorption (TPA) involving the same and different fre-
quencies are given by

2 2

X = X = Xd =3FWM

e'S, S3(~,—ir,.)
'

(13a)

and where the wave-vector mismatch Ak is defined by

hence from Eq. (14) one sees that the field amplitudes
remain spatially invariant. In Sec. II C we investigate the
nature of the solutions to the coupled amplitude equations
(14) and thereby determine the conditions under which
propagation causes the fields to evolve so that their ampli-
tudes obey condition (19).

C. The coupled amplitude equations

In order to solve the coupled amplitude equations (14),
it is convenient to rewrite them in terms of the real field
amplitudes and phases. We express the complex field am-
plitudes Ei as

E~ ——AJ e (20a)

and introduce the phase angle p of the nonlinear suscepti-
bilities (13) as

Through use of these equations, one can determine the
variation of the intensity SJ =(cnj/2')

~

EJ.
~

of each
field component as

Im j+FwM
tan

yFWM
(20b)

dSJ
2~) Im—[E~*P (co~ )] .. .

dz

In terms of these quantities, the coupled amplitude equa-
tions become

Under these same set of conditions (11), the population in
the upper level can be expressed as

dpi = —a&A& A2A3cos(0+P)+ A JcosP
dz

(21a)

p,', '= [Im(X, ") fE,
/

+Im(g ") /E, /'/E, /'
XC

+Im(X" )(E2E3E*, e ' +c.c. )] . (16)

This quantity is related to the total intensity
St t

——S&+S2+S3 of the optical field through the relation

dStot (4)

dz
2Xfico 1&cpcc

dA2
(x2A3 A )cos(6 —P)+ A2A3cosP

dZ

dA3 = —a3A2 A ] cos(6 P) + A2A 3cos/3
dz

where the new phase variable 0 is defined by

O=gz+P3 2P, —b,kz—
and obeys the equation

(21b)

(21c)

(22a)

which is obtained straightforwardly using Eqs. (12)—(16).
Note that the expression (16) for p„'contains an interfer-
ence term which for appropriate values of the complex
field amplitudes can cause the population in level c to
vanish. This cancellation is the origin of the suppression
of ASE by FWM. The origin of this interference can be
traced to the expression [Eq. (6)] for the second-order
coherence between the ground and upper levels, which
under the present conditions reduces to

dO =2a~A2A3sin(8+P)
dz

3 )A2
2 2

+ CX2 +a3 sin(8 —p)
A3

+ 2a, A )
—a2 A3 —a3 A2 sinP —b,k,

AA3
pca =

&Pbcgab

~yjwM E2 + ~ E E —ihkz3e
3

When the complex field amplitudes obey the condition

(18)

with coupling coefficients uj. given by

47TCO ] FWM

k]c

27TCO~ FWM
i

J

(22b)

(23a)

(23b)

—i hkzE
~
——— E2E3e (19) In terms of the new variables A~ and t9, the population in

the upper level is given by

p,', ' vanishes, and consequently all higher-order contribu-
tions to the density matrix vanish. In particular, p,', ' van-
ishes, implying that no population is transferred to the
upper level. Furthermore, the nonlinear polarization
which is proportional to p,'b' and to pb,

' also vanishes, and

(4) 2I~" ~3
pcc

2

4 2A ] + A 2A 3 +2 A qA 3 A, cosg, (24)
3 3
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and the condition for suppression under our experimental
conditions where 51 and h3 have the same sign is 0=~
and A2A3/A 1

—A3/61.

where C is the constant of integration. The resulting
equation is separable and can be directly integrated. The
resulting integral can be simplified through use of the
substitution

D. Solution for b, &
——0 and 6k=0

The set of coupled equations given by Eqs. (21) and (22)
are very difficult to solve in general. However, consider-
able simplification occurs for the special case in which the
incident laser is tuned to the two-photon resonance so that
Az ——0 and hence P=0 and in which the phase-matching
condition is precisely satisfied so that 6k=0. In this case,
Eq. (22b) has the form

A 3 ——C coskx

and yields the solution

x =tanh ' —(a +b )'1

a

&&tanh (a +b )' z

(30)

dO =f (z)sinO,
dz

(25)

dA1
=a1A1 A2A3-

dz 1

(26a)

where f (z) is positive definite. One can see by inspection
that the asymptotic solution of this equation for large
values of z is 0~~. Physically, one expects that 0 will
approach this value after propagation through a distance
several times the characteristic coupling distance
A=(a2a3) ' A, . Once 9 has approached this value,
the coupled equations for the real amplitudes become

a tanhxo+b
+ tanh (a+b)

(31)

(32a)

where xo is another constant of integration,
a =(aza3)' A i, and b =(a2hiC /263). In the limit
z~ ~ the co3 field approaches the value

1/2 1/4
3 CX3

A3~A1
CX2

dA2

d
=a2A3 A1 —

2,
A2A

dz 3

dA3 —Cx3A2 A 1
— A2A3

dz

(26b)

(26c)

and hence, through use of Eq. (29) in the limit C~O
1/2 1/4

3 CX2
as z~~ .

CX3

(32b)

These equations possess a steady-state solution in which
the field amplitudes are spatially invariant and are related
by

A2A3

A',
(27)

A2

Q2 Q3
(28)

is a constant of the motion. This fact allows one to
represent Az in Eq. (26c) as

1/2

CX3
(A3 —C ) (29)

This condition is precisely the condition which according
to Eq. (24) leads to the suppression of the upper-level pop-
ulation. In order to determine the conditions under which
the fields actually evolve so as to fulfill condition (27), one
needs to solve the coupled set of Eqs. (26). This set of
equations does not yield a simple analytic solution. How-
ever, in our experiments the fractional conversion from
the pump wave into the generated waves is always small.
In the limit in which one can assume that the pump am-
plitude A

&
remains constant, the reduced set of Eqs. (26b)

and (26c) can readily be solved analytically. One can see
by inspection of Eqs. (26b) and (26c) [or for that matter
from the more general Eqs. (21b) and (21c)] that the quan-
tity

C)
II
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~ Vr V
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0
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CL0
CL 0—

I
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(4)
Pcc (A, /A, }V'a3/a]

(A, IA)} Vagina,

1/2 2propagation distance, z(a2a3) A,

0.5
u3I
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a
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FIG. 4. Spatial evolution of the generated fields A2 and A3
and the excited state population p,', ' for the case of perfect phase
matching ( Ak =0) and exact tuning to the two-photon resonance
(5&——0), as predicted by the theory described in the text.

The limit C~O is the limit in which the co2 and co3 fields
contain the same number of photons, and hence corre-
sponds to the experimental situation in which these two
fields grow from noise. Note that in the limit C~O,
z~ ao the product of the asymptotic values of A 2 and A 3

approaches the value A id.3/b,
&

as required by Eq. (27) for
a steady-state solution and that, according to Eq. (24)
with 0=~, p,', ' vanishes under these conditions. In Fig. 4
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we show the spatial evolution of A2 and A3 as given by
Eqs. (29)—(31) for the case in which the constants of in-
tegration have the values xo ——0 and C =10 A~. Also
shown at each position in the medium is the value of p,', '

calculated from Eq. (24). Note that A2 and A3 grow to
their steady-state values in several coupling lengths and
that the upper-level population is suppressed once the
fields have attained these values.

E. Solution of arbitrary b, z and 4k

In the more general case in which Ak and P are arbi-
trary, it is very difficult to solve the set [(21) and (22)] of
coupled equations for the spatial evolution of the fields.
However, even in this case we can determine those condi-
tions under which steady-state (spatially uniform) solu-
tions to these equation exist. We do this by setting all of
the spatial derivatives to zero and solving the resulting set
of equations algebraically. It is easy to show that in gen-
eral this set of equations does not possess a solution ex-
cept for special values of hk and P. However, in the con-
stant pump limit (A~ and P& constant), which is relevant
to our experimental conditions, steady-state solutions for
the cuz and ~3 fields exist under fairly general conditions.
In the constant pump limit the equations that must be
solved simultaneously are Eqs. (21b), (21c), and Eq. (22b)
with those contributions due to the variation of P& (i.e.,
those which are proportional to at) omitted. The condi-
tion dA2/dz=O requires that

3rU2-

gp H

C
Eg

QJ

tg

CL

rU2-,

0.07
p

OJ

CL

E
EP

CJ

0,—,

)/'

0.78

0.4

(b)

ApA3 63cos(0 P)
b, &cosP

(33a)

as does the condition dA 3/dz =0. The condition
d 0/dz=0 requires that

bk +(a2A 3+cz3A p)(b, )/b3)sinP
sin(0 —P) = (33b)

a2333 ] /AQ+(X3c4QA ] /A3

These equations are now solved simultaneously subject to
the constraint imposed by Eq. (29) (which is valid in gen-
eral), where for simplicity we take C=O since it is small
compared to the steady-state values of 3

&
and A3 for the

case of interest in which the fields grow from noise. We
find that 0 is given by the equation

3.5 I-

CD

II
N

~u

CU

lg

U
fQ
QJ

'LJ

y= 1 ~ r 0.78

~ 0.4
~ 0

X 1(

(c)

Aksin(0 —P) + tanf3 cos(0 —f3) =
2(apa3)' A i

The fields are then given in tertns of 0 by
1/2

a2 b, 3A f cos(0 —13)

CX3 b, , cosP
CZ2

A2 ——

Q3

(34a)

(34b)

The fields and upper-level populations given by Eq. (24)
are shown for representative cases in Fig. 5. In Fig. 5(a)
we show the relative phase angle 0 of the optical fields
plotted as a function of the normalized wave-vector
mismatch for several different values of the phase angle P
characterizing the nonlinearity. Recall that only for 0=~
can there be complete suppression of the upper-state pop-
ulation. Each curve is plotted over the entire domain the
values of Ak for which a steady-state solution exists. For
P~O, this domain includes regions in which a weak input

0-
I I I

-2 -1 0
1/2 2

wave-vector mismatch, ak/2(u, u, ) A,

FICs. 5. (a) and (b) Steady-state solutions to the coupled am-
plitude equations (21) and (22) in the constant-pump limit, plot-
ted as a function of the normalized wave-vector mismatch for
several different values of the phase angle fi of the nonlinear
susceptibility. The solution is plotted over the entire range of
values of Ak for which a stable, steady-state solution exists. (c)
Upper-level population p,', ' in the presence of the fields shown in
(a) and (b), normalized by its value in the presence of the pump
field alone. All of these curves lie on top of one another; howev-
er, curves corresponding to different values of P have different
end points as indicated. The dashed portions of the curves cor-
respond to conditions under which the solution will not grow
from noise.
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wave will not experience net gain and hence where the
steady-state solution cannot be reached by the growth of
the generated fields from noise. These regions cannot be
realized in an experiment such as ours involving a single
input frequency, and thus are shown dashed in the figure.
In the limit of large detuning from the two-photon reso-
nance, I3 approaches the value vr/2 and 6) attains the value
~ everywhere. Figure 5(b) shows the dependence of the
field amplitude A3 on the wave-vector mismatch and on
P. According to Eq. (29), the field amplitude A2 is direct-
ly proportional to A3. Figure 5(c) shows the dependence
of the normalized upper-state population on Ak for vari-
ous values of P. Note that the curves for different values
of P lie on top of one another, except that they have dif-
ferent end points within the region where the curves are
shown dashed. Curves of the sort shown in Fig. 5 can be
obtained for negative values of f3 by reflecting the curves
for positive values of /3 about the axis b, k=O. For the
conditions of our experiment, 61 and 63 are both positive,
and hence, for collinear propagation of the three waves
Ak is negative. By allowing the waves to be noncollinear,
however, Ak can be made to increase and eventually to
take on positive values.

We have been unable to find an analytic solution for the
spatial evolution of the fields for the case of arbitrary
values of 62 and of Ak, and we have therefore integrated
the coupling amplitude equations (14) numerically under
these conditions. Representative solutions are shown in
Fig. 6. We have assumed the values 6

& /63 ——513,
A

&
(z =0)=80 esu, 1 „=1.3 )& 10' s ', and y, = 1.2 X 10

s ', and that the coupling coefficients on line center are
given by a~ ——1.03 & 10, o.2 ——4.29)& 10, and
o.3

——5.97&10, which correspond to our experimental
conditions. For each case treated we show the spatial evo-
lution of the fields and excited-state population in the box
on the left and the spatial evolution of the phases in the
box on the right. Figure 6(a) corresponds to the case of
perfect phase matching (b,k=0) and a laser tuned precise-
ly to the two-photon reosnance. The fields rapidly reach
their steady-state values and the upper-state population
becomes completely suppressed. The effects of increased
wave-vector mismatch are shown in Figs. 6(b) and 6(c).
For hk = —30 cm ' the fields still come rapidly to steady
state. However, the steady-state relative phase 0 is no
longer equal to ~, and hence the upper-state population is
no longer completely suppressed. For Ak= —100 cm
a steady-state solution to the coupled amplitude equations
no longer exists. Physically, this occurs because the non-
linearity is not strong enough to force the various waves
to adjust their phases in order to overcome the wave-
vector mismatch. Figure 6(d) shows that complete
suppression still occurs for the case of a nonzero detuning
from the two-photon resonance, although a longer propa-
gation path length is required for the fields to come to
steady state.

III. EXPERIMENT

The experiment entails focusing the output of a tunable
dye laser into a sodium vapor cell. The dye laser operates
at approximately 6855 A and produces —500 pJ of ener-

gy in a 0.7-cm ' spectral bandwidth in a pulse duration
of 1.5—10 ns. The dye laser output is focused to a spot
size of —100 pm in a sodium cell containing between 10'
and 10' sodium atoms per cm and —10 Torr of helium
buffer gas. When the laser is tuned to within —1 A of the
3s~3d two-photon transition, a cone of light surround-
ing the laser beam is emitted in the forward direction, as
shown in Fig. 7. In order to determine the spectral com-
position of this light, the cone is imaged onto the entrance
slit of a 0.75-m spectrometer having a resolution of 0.2 A.
The portion of the output spectrum that is near the
3d~3p transition frequency is shown in Fig. 8(a). The
spectrum is seen to be composed of two components due
to resonance enhancement by the two fine-structure com-
ponents of the 3p level. Each component extends from
resonance to higher frequencies because the phase-
matching condition for FWM can be met only for noncol-
linear propagation for this sign of the detuning. FWM
cannot occur in the backward direction because of the
large propagation vector mismatch. However, ASE can
occur in the backward direction when the laser is tuned to
the exact two-photon resonance and when the suppression
of the upper-level population is not complete. Figure 8(b)
shows the emission spectrum in the backward direction
under these conditions. The emission is weak compared
to the emission in the forward direction and is seen to
consist of two narrow components centered at the two
transition frequencies. Figure 8(c) shows the spectrum of
the forward emission when the laser is tuned to the exact
two-photon resonance. The spectrum is seen to be that of
FWM and not of ASE, even though the calculated gain
for FWM is much less than that for ASE calculated in the
absence of competition. In particular, the gain coefficient
for the FWM process is given by A '=33 cm ' for
%=5&&10' cm and 3& ——80 esu. The gain cross sec-
tion at line center for the 3d ~3p transition under condi-
tions of Doppler broadening is 5)&10 ' cm, and the cal-
culated population inversion ignoring competition effects
if S)&10' cm, leading to a calculated gain coefficient
for ASE of 2.5)&10 cm

In order to quantify the degree to which FWM
suppresses ASE, we have measured the ratio of the emis-
sion near the 3d~3p transition frequency in the back-
ward direction (which is solely ASE) to that in the for-
ward direction (which is due to both ASE and FWM).
Shown in Fig. 9 is a plot of this ratio as a function of the
peak value of the laser intensity for two different values
of the pump beam confocal parameter b. The sodium
number density is —1 )& 10' cm . It is seen that FWM
suppresses ASE more efficiently when the laser intensity
and hence the gain for FWM is highest. Since FWM is a
phase-matched process, the confocal parameter of the
pump laser is an appropriate measure of the effective in-
teraction length. The suppression is also seen to be more
complete when the interaction occurs over the longer in-
teraction length that is associated with the use of a larger
confocal parameter.

Figure 10 shows the conversion efficiency of the pump
wave into the cu2 wave in both the forward and backward
directions as a function of the position of the focus of the
incident laser beam relative to the center of the cell.
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FIG. 7. Transverse intensity profile of the radiation emitted
near the 3s ~3p transition frequency due to FWM for a sodium
number density of approximately 5 X 10' cm

FIG. 9. Ratio of the intensity in the backward direction to
that in the forward direction vs incident laser intensity for two
different values of the beam confocal parameter. The limiting
values of unity and zero correspond to pure ASE and pure
FWM, respectively.

These data were collected at a sodium number density of
1)& 10' cm, a confocal parameter of 5 mm, and a peak
laser intensity of 400 MW cm . Note that the emission
into the forward direction is maximized when the focal
spot is near the center of the cell. However, the emission
into the backward direction (ASE) is suppressed when the
position of the focus is near the position that maximizes
the forward emission. The dip in the curve is actually
shifted slightly toward the entrance face of the cell be-
cause under this condition the initiation of the FWM pro-
cess can occur closer to the entrance face and hence the
FWM process can suppress the upper-level population
over a greater fraction of the length of the cell.

3cl ~ 3p 3cl ~ 3p

Figure 11 shows the intensity of the emission at co& in
the forward direction as a function of the laser intensity
under conditions of strong suppression of ASE. The laser
is tuned exactly to the two-photon resonance, and the
laser confocal parameter is 5 mm. The intensity of this
emission is seen to scale quadratically with the intensity
of the input laser, as expected from a FWM process in
which the fields have evolved so as to be spatially invari-
ant [see Eq. (27)]. Note that the output intensity depends
weakly upon the sodium number density. We believe that
this dependence occurs because at higher number densities
the conical emission process causes more radiation to be
ejected from the interaction region, requiring that more
radiation at the co2 frequency be generated to maintain the
proper amplitude of the ~2 field within the interaction re-
gion.

IV. CONCLUSIONS

C
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FIG. 8. (a) Spectrum of the radiation generated by FWM in
the forward direction for a detuned laser. (b) Spectrum of the
radiation (ASE) emitted in the backward direction. (c) Spectrum
of the radiation emitted in the forward direction with the laser
tuned precisely to the two-photon resonance. Note that this
spectrum is that of FWM and not that of ASE.

In conclusion, we have shown both theoretically and ex-
perimentally that four-wave mixing due to the two-
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FIG. 10. Intensities of the emission in the forward and back-
ward directions vs position of the beam waist in the cell. Note
that ASE is suppressed when FWM is enhanced.
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FIG. 11. Intensity of the FWM signal plotted as a function
of the laser energy for several different values of the sodium
number density. In each case the intensity scales quadratically
with the laser energy, as expected on the basis of the model
presented in the text.

photon-resonance response of an atomic vapor can lead to
the suppression of amplified spontaneous emission from
the excited level. The suppression is due to an interfer-

ence between two excitation pathways connecting the
ground and excited states. Under conditions of perfect
phase matching, the fields generated by the four-wave-
mixing process evolve in such a way that there is complete
destructive interference between these two pathways, and
hence no population is placed in the upper level. As the
wave-vector mismatch is increased, the degree of suppres-
sion of the upper-level population becomes less complete.
We have observed this suppression experimentally and
have shown that the suppression does not occur when the
medium is excited by counterpropagating laser beams that
cannot efficiently excite the FWM process. We have also
conducted a series of experiments that are in agreement
with these theoretical predictions in terms of the depen-
dence of the four-wave-mixing efficiency and degree of
suppression of the ASE on the pump laser intensity and
focusing characteristics.
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